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1. Introduction

The classical Alexander polynomial from knot theory has proven to be a powerful
and versatile tool in the study of complements of plane algebraic curves. As noted
by Zariski [26] (see also [13]), the Alexander polynomial of a plane curve comple-
ment is sensitive to the local type and position of singularities of the curve, and
it can be used to detect Zariski pairs (i.e. pairs of plane curves that have homeo-
morphic tubular neighbourhoods but non-homeomorphic complements). The study
of Alexander polynomials of complements of higher-dimensional complex hypersur-
faces was initiated by Libgober [14], and pursued in greater generality (for arbitrary
singularities) in [4, 17,19].

A twisted version of the Alexander polynomial (based on the extra datum of a
representation of the fundamental group) was introduced by Lin [16], Wada [25]
and Kirk and Livingston [12] in the 1990s, and has proved its worth, for instance,
in the works of Friedl and Vidussi (see, for example, [9] and the references therein).
Of course, the classical Alexander invariants correspond to the trivial rank-1 rep-
resentation.

The twisted Alexander polynomial was adapted to the study of plane algebraic
curves by Cogolludo and Florens [2], who used it to refine Libgober’s divisibility
results from [13], and showed that these twisted Alexander polynomials can detect
the new Zariski pairs that were undistinguishable by the classical Alexander poly-
nomial. Moreover, twisted Alexander invariants associated with rank-1 representa-
tions are closely related to the so-called characteristic varieties of the complement.
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In this paper, we extend the Cogolludo–Florens construction to high dimen-
sions and arbitrary singularities, and establish some of the basic properties of the
twisted Alexander invariants in this algebro-geometric setting. More concretely, we
investigate torsion properties for the twisted Alexander modules, and extend the
local-to-global divisibility results of [4, 19] to the twisted setting. In the process,
we also study the splitting fields containing the roots of the corresponding twisted
Alexander polynomials.

1.1. Main results

In what follows, we establish our notation and give a brief overview of our results.
Let V ⊂ CPn+1 be a projective complex hypersurface defined globally as the zero

set of a degree-d homogeneous polynomial, and fix a hyperplane H in CP
n+1 that

we call the hyperplane at infinity. Let

U := CP
n+1 \ (V ∪ H) = Cn+1 \ V a

denote the (affine) hypersurface complement, with V a := V \H the affine part of V .
Alternatively, if f : Cn+1 → C is a degree-d polynomial, then V a := {f = 0} ⊂ Cn+1

and V ⊂ CP
n+1 is the projectivization of V a.

Fix a field F, and let V ∼= F� be a finite �-dimensional F-vector space. To a pair
(ε, ρ) of an epimorphism ε : π1(U) → Z and a representation ρ : π1(U) → GL(V),
we associate (co)homological (global) twisted Alexander modules Hε,ρ

i (U , F[t±1]) and
Hi

ε,ρ(U , F[t±1]), respectively, which are F[t±1]-modules of finite type and, moreover,
homotopy invariants of the complement U .

In all our results below, we assume in addition that the epimorphism ε is positive,
in the sense that it takes positive values on the meridian generators of H1(U , Z).

Definition 1.1. We say that the projective hypersurface V (or its affine part V a)
is in general position at infinity if the reduced hypersurface Vred underlying V is
transversal to H in the stratified sense.

One of our first results describes torsion properties of the (global) twisted Alexan-
der modules (see theorems 3.1 and 4.1 and corollary 4.4).

Theorem 1.2. Let V ⊂ CP
n+1 be a hypersurface in general position at infinity, let

ε : π1(U) → Z be a positive epimorphism and let ρ : π1(U) → GL(V) be an arbitrary
representation on the �-dimensional F-vector space V. Then the twisted Alexander
modules Hε,ρ

i (U , F[t±1]) are torsion F[t±1]-modules for any 0 � i � n; they vanish
for i > n+1, and Hε,ρ

n+1(U , F[t±1]) is a free F[t±1]-module of rank (−1)n+1 ·� ·χ(U).

This is a far-reaching generalization of results in [4,17,19], which only dealt with
the case of the linking number homomorphism and the trivial representation defined
on complements of reduced hypersurfaces (i.e. defined by square-free polynomials).

For any point x ∈ V , let Ux = U ∩ Bx denote the local complement at x for Bx a
small ball about x in CP

n+1. Then (ε, ρ) induces via the inclusion map ix : Ux ↪→ U
a pair (εx, ρx) on Ux, so that local twisted Alexander modules of (Ux, εx, ρx) can be
defined. Proposition 4.9 asserts that for any pair (ε, ρ) as above, with ε a positive
epimorphism, we have the following local torsion (or acyclicity) property.
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Proposition 1.3. If V is in general position at infinity, then the local twisted
Alexander modules Hεx,ρx

i (Ux, F[t±1]) are torsion F[t±1]-modules for any x ∈ V .

This local torsion property removes a technical assumption used by Cogolludo
and Florens [2] in the proof of their main divisibility result for twisted Alexander
polynomials of plane curve complements.

Since F[t±1] is a principal ideal domain, torsion F[t±1]-modules of finite type have
orders (called Alexander polynomials) associated with them (see, for example, [21]).
For ε : π1(U) → Z a positive epimorphism and ρ : π1(U) → GL(V) an arbitrary
representation, we let ∆i,U and ∆i

U (for 0 � i � n) and ∆k,x and ∆k
x (for k ∈ Z),

respectively, be the corresponding global and local twisted Alexander polynomials
associated with the above (co)homological twisted Alexander modules (which are
torsion F[t±1]-modules by theorem 1.2 and proposition 1.3). In theorem 4.13 we
indicate how to estimate the global twisted Alexander polynomials from the local
topological information at points on the hypersurface. This relationship can be
roughly formulated as follows (see theorem 4.13 for the precise formulation).

Theorem 1.4. For a projective hypersurface V in general position at infinity, the
zeros of the global twisted Alexander polynomials of the complement U are among
those of the local twisted Alexander polynomials at points in the affine part of some
irreducible component of V .

This result is a generalization to the twisted setting of the local-to-global analysis
for the classical Alexander polynomials initiated by Libgober [13,14] in the isolated
singularities case, and extended to arbitrary singularities in [19] (see also [4, 17]).

Let us briefly comment on our working assumption of hypersurfaces in general
position (i.e. transversality) at infinity. Firstly, such an assumption is needed to
conclude that the link at infinity of the hypersurface is fibred, and this is the key
feature behind the torsion property of theorem 1.2. The F[t±1]-ranks of the clas-
sical (untwisted) Alexander modules without the transversality assumption were
computed in [6] in terms of vanishing cycles. However, in the case of hypersur-
faces with only isolated singularities, including at infinity (e.g. in the case of plane
curves), the only relevant classical (untwisted) Alexander module (i.e. in degree n)
is still torsion (see [14]), but the divisibility statement also includes local contri-
butions coming from the singular points at infinity. For more instances when the
torsion property for the classical (untwisted) Alexander modules still holds (below
the middle degree), see [18, proposition 6.8]. Furthermore, as a consequence of the
proof of our theorem 4.13, we remark that the torsion property for the local twisted
Alexander modules at points in V ∩H is enough to conclude that the global twisted
Alexander modules are torsion F[t±1]-modules in the desired range. For hypersur-
faces in general position at infinity, such a local torsion property at points in V ∩H
is a consequence of transversality and the Künneth formula (see the proof of propo-
sition 4.9 and corollary 4.10), but there may be other instances (e.g. for various
choices of (ε, ρ)) when it is satisfied. Secondly, since U := Cn+1 \V a is defined only
in terms of the affine hypersurface V a, it is desirable to understand its global invari-
ants (such as twisted Alexander polynomials) only in terms of information encoded
by the singularities of V a, independently of the hyperplane at infinity, H; this is
achieved here under the assumption of transversality at infinity, since complements
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of links at points in V ∩ H are in this case determined by those at nearby points
in V (or V a) (but see also [14], where isolated singularities at infinity are taken
into account). Dealing with singularities at infinity in the non-isolated context is
certainly much more challenging, and most methods used in this paper (and other
papers on the subject) break down.

We also single out the contribution of the meridian at infinity (i.e. a meridian
loop about H) to the global twisted Alexander polynomials (see theorem 4.11 for
the precise formulation). For the case of the linking number homomorphism and
trivial representation, theorem 4.11 reduces to the zeros of the classical Alexander
polynomials of U being roots of unity of order d = deg(V ): a fact shown in [4, 19]
for reduced hypersurfaces.

In the case of reduced plane curves and for ε the linking number homomorphism,
we explicitly identify splitting fields containing the roots of the corresponding global
twisted Alexander polynomials. Similar results were obtained by Libgober [15] using
Hodge-theoretic methods. More precisely, in theorem 3.5 we prove the following.

Theorem 1.5. Let C be a reduced curve of degree d and in general position at
infinity, and assume that ε : π1(U) → Z is the linking number homomorphism.
Suppose F = C, and let ρ : π1(U) → GL�(C) be an arbitrary representation. Denote
by x0 the (homotopy class of the) meridian about the line H at infinity, and let
λ1, . . . , λ� be the eigenvalues of ρ(x0)−1. Then the roots of ∆ε,ρ

1,U (t) lie in the splitting
field S of

∏�
i=1(t

d − λi) over Q, which is cyclotomic over K = Q(λ1, . . . , λ�).

This result is based on our calculation of the twisted Alexander polynomial for the
Hopf link on d components (see proposition 2.9), which in our geometric situation
can be identified with the link of C ‘at infinity’.

2. Twisted chain complexes and twisted Alexander invariants

2.1. Definitions

In this section, we recall the definitions of twisted chain complexes, twisted
Alexander modules and twisted Alexander polynomials of path-connected finite
CW-complexes. For more details, see [2, 12].

Let X have the homotopy type of a path-connected finite CW-complex, with
π = π1(X), and fix a group homomorphism

ε : π1(X) → Z.

Note that ε extends to an algebra homomorphism

ε : F[π] → F[Z] ∼= F[t±1].

Fix a field F, and let
ρ : π → GL(V)

be a linear representation of π on a finite �-dimensional F-vector space V. For future
reference, we fix an isomorphism V ∼= F�. For simplicity, this representation will also
be denoted by Vρ.

Let X̃ be the universal cover of X. The cellular chain complex C∗(X̃, F) of X̃ is a
complex of free left F[π]-modules, generated by lifts of the cells of X. For notational
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convenience, we follow [12] and regard V as a right F[π]-module, i.e. with the right
π-action for v ∈ V and α ∈ π given by

v · α = vρ(α),

where we view the elements of V ∼= F� as row vectors. Also consider the right
F[π]-module F[t±1] ⊗F V, with F[π]-multiplication induced by ε ⊗ ρ as

(p ⊗ v) · α = ptε(α) ⊗ v · α = ptε(α) ⊗ vρ(α), α ∈ π.

Let the chain complex of (X, ε, ρ) be defined as the complex of left F[t±1]-modules:

Cε,ρ
∗ (X, F[t±1]) := (F[t±1] ⊗F V) ⊗F[π] C∗(X̃, F),

where the (left) F[t±1]-action is given by

tn((p ⊗ v) · c) = (tn · p ⊗ v) · c.

It is a complex of free F[t±1]-modules.

Definition 2.1. The ith homological twisted Alexander module Hε,ρ
i (X, F[t±1]) of

the triple (X, ε, ρ) is the F[t±1]-module defined by

Hε,ρ
i (X, F[t±1]) := Hi(Cε,ρ

∗ (X, F[t±1])).

Similarly, the ith cohomological twisted Alexander module Hi
ε,ρ(X, F[t±1]) of (X, ε,

ρ) is the F[t±1]-module given by

Hi
ε,ρ(X, F[t±1]) := Hi(HomF[π](C∗(X̃, F), F[t±1] ⊗F V)),

where F[t±1] ⊗F V is now regarded as a left F[π]-module with π-action defined by
using the involution on F[π], i.e.

α · (p ⊗ v) := (p ⊗ v) · α−1 = pt−ε(α) ⊗ vρ(α)−1, α ∈ π.

The twisted Alexander modules are homotopy invariants of X.

Remark 2.2.

(i) The classical Alexander modules correspond to the case of the trivial repre-
sentation ρ = triv, i.e. V = F = Q and ρ(α) = 1 for all α ∈ π.

(ii) In [5, 18], cohomological Alexander-type invariants were considered via the
cohomology of the dual complex HomF[t±1](C

ε,ρ
∗ (X, F[t±1]), F[t±1]). These are

directly related to the homological Alexander modules via the universal coef-
ficient theorem applied to the principal ideal domain F[t±1], namely

Hi(HomF[t±1](Cε,ρ
∗ (X, F[t±1]), F[t±1]))

∼= HomF[t±1](H
ε,ρ
i (X, F[t±1]), F[t±1]) ⊕ ExtF[t±1](H

ε,ρ
i−1(X, F[t±1]), F[t±1]).

On the other hand, the relationship between the cohomological twisted Al-
exander modules of definition 2.1 and the homological twisted Alexander mod-
ules is explicitly described in [12, pp. 638–639], as we shall now explain. Let
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W := V∗ = HomF(V, F) be endowed with the dual representation ρ∗ : π →
GL(W):

(w · α)(v) = w(v · α−1), w ∈ W, v ∈ V, α ∈ π,

which induces a corresponding right F[π]-module structure on F[t±1] ⊗F V∗

by
(p ⊗ w) · α = ptε(α) ⊗ w · α.

Then the co-chain complexes

HomF[t±1](Cε,ρ∗

∗ (X, F[t±1]), F[t±1]) and HomF[π](C∗(X̃, F), F[t±1] ⊗F V)

are anti-isomorphic, i.e. isomorphic as co-chain complexes of F[t±1]-modules,
provided one of them is given the conjugate F[t±1]-module structure (p ·
h)(z) = p̄ · h(z), which is obtained by composing all F[t±1]-module struc-
tures with the involution ·̄ : F[t±1] → F[t±1], t 	→ t̄ := t−1. In particular, if
we denote by H̄i

ε,ρ(X, F[t±1]) the group Hi
ε,ρ(X, F[t±1]) with the conjugate

F[t±1]-module structure, then

H̄i
ε,ρ(X, F[t±1]) ∼= Hi(HomF[t±1](Cε,ρ∗

∗ (X, F[t±1]), F[t±1])).

Therefore, the universal coefficient theorem yields

H̄i
ε,ρ(X, F[t±1]) ∼= HomF[t±1](H

ε,ρ∗

i (X, F[t±1]), F[t±1])

⊕ ExtF[t±1](H
ε,ρ∗

i−1 (X, F[t±1]), F[t±1]). (2.1)

Furthermore, in the case when ρ and ρ∗ are conjugate representations (e.g. V

is a real orthogonal representation of π), one can take W = V and use ρ on
both sides of (2.1).

An equivalent definition of the twisted chain complex of (X, ε, ρ) was given in [12].
Let X∞ be the infinite cyclic cover of X associated with π′ = ker ε. The chain
complex

C∗(X∞, Vρ) := V ⊗F[π′] C∗(X̃),

defined via the restricted actions to π′, can be regarded as a complex of F[t±1]-
modules via the action tn · (v ⊗ c) = v · γ−n ⊗ γnc, where γ is an element in π such
that ε(γ) = 1. Then [12, theorem 2.1] states that C∗(X∞, Vρ) and Cε,ρ

∗ (X, F[t±1])
are isomorphic as left F[t±1]-modules (and the isomorphism is independent of the
choice of γ).

Definition 2.3. Denote by F(t) the field of fractions of F[t±1], and define

Cε,ρ
∗ (X, F(t)) = F(t) ⊗F[t±1] Cε,ρ

∗ (X, F[t±1]).

We say that (X, ε, ρ) is acyclic if the chain complex Cε,ρ
∗ (X, F(t)) is acyclic over

F(t).

Remark 2.4. Since F[t±1] is a principal ideal domain, F(t) is flat over F[t±1]. So,
(X, ε, ρ) is acyclic if and only if Hε,ρ

∗ (X, F[t±1]) are torsion F[t±1]-modules.
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Since F[t±1] is a principal ideal domain and V is finite dimensional over F, the
twisted Alexander modules Hε,ρ

∗ (X, F[t±1]) are finitely generated modules over
F[t±1]. Thus, they have a direct sum decomposition into cyclic modules. Similar
considerations apply for the cohomological invariants.

Definition 2.5. The order of the torsion part of Hε,ρ
i (X, F[t±1]) is called the ith

homological twisted Alexander polynomial of (X, ε, ρ), and is denoted by ∆ε,ρ
i,X(t).

Similarly, we define the ith cohomological twisted Alexander polynomial of (X, ε, ρ)
to be the order ∆i

ε,ρ,X(t) of the torsion part of the F[t±1]-module Hi
ε,ρ(X, F[t±1]).

The twisted Alexander polynomials are well defined up to units in F[t±1]. More-
over, it follows from (2.1) that

∆̄i
ε,ρ,X(t) = ∆ε,ρ∗

i−1,X(t).

For further use, we also recall here the following fact.

Proposition 2.6 (Kirk and Livingston [12]). If ε is non-trivial, Hε,ρ
0 (X, F[t±1]) is

a torsion F[t±1]-module.

2.2. Examples

In this subsection, we compute the twisted Alexander invariants on several exam-
ples with geometric significance.

2.2.1. Hopf link with d components

This example has important consequences in the study of twisted Alexander
invariants of plane curve complements. More precisely, for a degree-d plane curve
C with regular behaviour at infinity, the Hopf link with d components is what we
call ‘the link of C at infinity’.

Recall that a link in S3 is an embedding of a disjoint union of circles (link
components) into S3. Throughout this section, let K be the d-component Hopf link
in S3, consisting of d fibres of the Hopf fibration.

Lemma 2.7. If K ⊂ S3 is the d-component Hopf link, then

π1(S3 \ K) ∼= Z × Fd−1 ∼= 〈x0, x1, . . . , xd−1 | x0xix
−1
0 x−1

i , i = 1, . . . , d − 1〉, (2.2)

with Fd−1 the free group on d − 1 generators.

Proof. First note that S3 \K is homotopy equivalent to the link exterior associated
with the singularity {xd = yd} ⊂ C2. Equivalently, if A = {xd = yd} is the central
line arrangement of d lines in C2, then S3 \ K � C2 \ A.

On the other hand, it can easily be seen that

C2 \ A � C∗ × (CP
1 \ {d points}).

Indeed, the Hopf fibration C2 \ {0} → CP
1 restricts to a C∗-locally trivial fibration

C2 \ A → CP
1 \ {d points}. Moreover, the latter fibration is trivial, since it can

be seen as a restriction of the trivial fibration C2 \ H → CP
1 \ {one point} = C
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obtained from the Hopf fibration by first restricting to the complement of only one
line H of A.

Altogether, we have

S3 \ K � C2 \ A � S1 ×
( ∨

d−1

S1
)

,

which yields the desired presentation for π1(S3 \ K).

Remark 2.8. An equivalent presentation of π1(S3 \ K) can be obtained by using
the van Kampen theorem (see, for example, [3, theorem 4.2.17, proposition 4.2.21]
and the references therein). More precisely, π1(S3 \ K) is called G(d, d) in [3], and
has the presentation

π1(S3 \ K) ∼= 〈x0, x1, . . . , xd | xdxd−1 · · ·x1x
−1
0 , x0xix

−1
0 x−1

i , i = 1, . . . , d〉,

where the generators x1, . . . , xd correspond to meridian loops about the d lines of A.

We can now compute the twisted Alexander invariants of S3 \K (see also [8,10]).

Proposition 2.9. Let K ⊂ S3 be the Hopf link with d components. Let

ε : π1(S3 \ K) → Z

be an epimorphism with
ε(x0) = 0,

and
ρ : π1(S3 \ K) → GL(V) = GL�(F)

be a linear representation of rank �. Then the following hold:

(a) Hε,ρ
i (S3 \ K, F[t±1]) are torsion F[t±1]-modules for i = 0, 1;

(b) Hε,ρ
i (S3 \ K, F[t±1]) = 0 for i � 2;

(c) ∆ε,ρ
0 (t) is the greatest common divisor of the �×� minors of the column matrix

(tε(xi)ρ(xi) − Id)i=0,...,d−1;

(d) ∆ε,ρ
1 (t)/∆ε,ρ

0 (t) = (det(tε(x0)ρ(x0) − Id))d−2.

Proof. Recall from lemma 2.7 that the link complement S3 \ K has the homotopy
type of a (central) line arrangement complement, namely S3 \ K � C2 \ A. Thus,
it has a minimal cell structure (i.e. so that the number of i-cells equals its ith
Betti number bi for all i � 0); see, for example, [7, 23]. Moreover, since C2 \ A is
a complex two-dimensional smooth affine variety, it follows by Morse theory [20]
(see also [11]) that it has the homotopy type of a finite real two-dimensional CW-
complex. Therefore, Hε,ρ

i (S3 \ K, F[t±1]) = 0 for i � 3.
We next note that S3 \K is a K(π, 1)-space, since C2 \A is a K(π, 1)-space, with

π = π1(S3 \ K). Indeed, since A is defined by a homogeneous polynomial, there is
a global Milnor fibration

F ↪→ C2 \ A → C∗
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whose fibre F has the homotopy type of a wedge of circles. The long exact sequence
of homotopy groups for this fibration then yields that πi(C2 \ A) = 0 for all i � 2.

Since S3 \K is a K(π, 1)-space, its (twisted) homology can be computed from its
(twisted) group homology using Fox calculus (this was the starting point for Wada’s
construction of twisted Alexander invariants [25]). So the twisted chain complex of
S3 \ K can be identified with the complex of Fox derivatives for the presentation

π1(S3 \ K) ∼= 〈x0, x1, . . . , xd−1 | x0xix
−1
0 x−1

i , i = 1, . . . , d − 1〉

in lemma 2.7, and it has the form

0 → F[t±1]�(d−1) ∂2−→ F[t±1]�d ∂1−→ F[t±1]� → 0.

In particular, as in [12, § 4], we have that ∂1 is the column matrix with ith entry
given by

tε(xi)ρ(xi) − Id,

which yields the desired description of ∆ε,ρ
0 (t). Similarly, ∂2 is a (d − 1) × d matrix

with entries in M�(F[t±1]) given by the matrix of Fox derivatives of the relations,
tensored with F[t±1]�. Therefore, ∂2 equals

⎛
⎜⎜⎜⎜⎜⎜⎝

Id − tε(x1)ρ(x1) tε(x0)ρ(x0) − Id 0 · · · 0
Id − tε(x2)ρ(x2) 0 tε(x0)ρ(x0) − Id · · · 0

...
...

...
...

...
Id − tε(xd−2)ρ(xd−2) 0 · · · tε(x0)ρ(x0) − Id 0
Id − tε(xd−1)ρ(xd−1) 0 · · · 0 tε(x0)ρ(x0) − Id

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Since, by our assumption, ε(x0) = 0, this yields that ker(∂2) = 0. Therefore,

Hε,ρ
2 (S3 \ K, F[t±1]) = 0.

Also, since ε is non-trivial, we get by proposition 2.6 that Hε,ρ
0 (S3 \ K, F[t±1]) is a

torsion F[t±1]-module. So, by using the fact that

χ(S3 \ K) = b0 − b1 + b2 = 1 − d + (d − 1) = 0,

we obtain that

rankF[t±1](H
ε,ρ
1 (S3 \ K, F[t±1])) = −χ(S3 \ K) = 0.

Hence, the first twisted Alexander module Hε,ρ
1 (S3 \ K, F[t±1]) is also torsion over

F[t±1]. Finally, by [12, theorem 4.1], we get that

∆ε,ρ
1 (t)/∆ε,ρ

0 (t) = (det(tε(x0)ρ(x0) − Id))d−2.

2.2.2. Links of Aodd-singularities

Let C = {x2 − y2n = 0} ⊂ C2, n > 1, and fix (ε, ρ) as before, with ε non-trivial.
The germ (C, 0) of C at the origin of C2 is known as the A2n−1-singularity. The
curve C is the union of two smooth curves that intersect non-transversely at the
origin. Let K ⊂ S3 be the link of (C, 0). Since the defining polynomial of (C, 0)
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is weighted homogeneous, it follows that S3 \ K � C2 \ C fibres over S1 � C∗,
with the fibre homotopy equivalent to a wedge of circles. In particular, S3 \ K is
aspherical, so its twisted Alexander invariants can be computed by Fox calculus
from a presentation of the fundamental group. By [22], we have that

π1(S3 \ K) ∼= π1(C2 \ C) ∼= G(2, 2n) = 〈ai, β | β = a1a0, R1, R2〉,

where
R1 : ai+2n = ai, R2 : ai+2 = β−1aiβ, i = 0, . . . , 2n − 1.

So, explicitly,

π1(S3 \ K) ∼= 〈a0, a1, . . . , a2n−1, β | a1a0β
−1, βa2β

−1a−1
0 , βa4β

−1a−1
2 , . . . ,

βa0β
−1a−1

2n−2, βa3β
−1a−1

1 , βa5β
−1a−1

3 , . . . , βa1β
−1a−1

2n−1〉.

By direct computation, it can be seen that in the corresponding twisted chain com-
plex one has ker(∂2) = 0, so Hε,ρ

2 (S3 \ K, F[t±1]) = 0. Also, since ε is non-trivial,
we get by proposition 2.6 that Hε,ρ

0 (S3 \ K, F[t±1]) is a torsion F[t±1]-module. An
Euler characteristic argument similar to that of the previous example then yields
that Hε,ρ

1 (S3 \ K, F[t±1]) is a torsion F[t±1]-module.

3. Twisted Alexander invariants of plane curve complements

Twisted Alexander invariants were adapted to the study of plane algebraic curves
by Cogolludo and Florens [2], who showed that these twisted invariants can detect
Zariski pairs that share the same (classical) Alexander polynomial. In this sec-
tion, we study torsion properties of the twisted Alexander modules of plane curve
complements and study splitting fields containing the roots of the corresponding
twisted Alexander polynomials. We focus here on homological invariants, while sim-
ilar statements about their cohomological counterparts can be obtained via (2.1).

Let C be a reduced curve in CP2 of degree d with r irreducible components, and
let L be a line in CP2. Set

U := CP2 \ (C ∪ L) = C2 \ (C \ (C ∩ L)),

where we use the natural identification of C2 with CP2\L. The line L will usually be
referred to as the line at infinity. Alternatively, if f(x, y) : C2 → C is a square-free
polynomial of degree d defining an affine plane curve Ca := {f = 0}, we let C be
the zero locus in CP2 (with homogeneous coordinates x, y, z) of the homogenization
fh of f , with L given by z = 0. Then U = C2 \ Ca.

Recall that H1(U , Z) ∼= Zr, generated by homology classes νi of meridian loops
γi bounding transversal discs at a smooth point in each irreducible component of
Ca. Let n1, . . . , nr be positive integers with gcd(n1, . . . , nr) = 1. Let ab : π1(U) →
H1(U , Z) denote the abelianization map, sending [γi] to νi. Then the composition

ε : π1(U) ab−→ H1(U , Z)
ψ : νi→ni−−−−−−→ Z

defines a positive epimorphism. If all ni = 1, then ε can be identified with the total
linking number homomorphism

lk : π1(U)
[α] �→lk(α,C∪−dL)−−−−−−−−−−−−→ Z,
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which is just the homomorphism f# : π1(U) → π1(C∗) ∼= Z induced by the restric-
tion of f to U (see, for example, [3, p. 77]).

Fix, as before, a field F and a finite �-dimensional F-vector space V endowed
with a linear representation ρ : π1(U) → GL(V). As in § 2.1, the F[t±1]-module
Hε,ρ

i (U , F[t±1]) is defined for any i � 0, and is called the ith (homological) twisted
Alexander module of C with respect to L. The twisted Alexander modules H lk,ρ

i (U ,
F[t±1]) associated with the total linking number homomorphism lk are denoted by
Hρ

i (U , F[t±1]) and we let ∆ρ
i,U (t) be the corresponding Alexander polynomials. In

the case of the trivial representation, these further reduce to the classical Alexander
invariants, as originally studied in [13].

Note that, since U is the complement of a plane affine curve, it is a complex
two-dimensional affine manifold. Therefore, U has the homotopy type of a real two-
dimensional finite CW-complex (see, for example, [11,20]). Hence, Hε,ρ

i (U , F[t±1]) =
0 for i � 3, and Hε,ρ

2 (U , F[t±1]) is a free F[t±1]-module. For i = 0, 1, the F[t±1]-
modules Hε,ρ

i (U , F[t±1]) are of finite type, and we investigate their torsion properties
below.

3.1. Torsion properties

In this section, we prove the following result.

Theorem 3.1. Let C be a reduced complex projective plane curve and ε : π1(U) → Z

be a positive epimorphism. If C is irreducible and ρ is abelian (i.e. the image of
ρ is abelian), or if C is in general position at infinity (i.e. C is transversal to the
line at infinity L), then the twisted Alexander modules Hε,ρ

i (U , F[t±1]) are torsion
F[t±1]-modules, for i = 0, 1.

Proof. The claim about Hε,ρ
0 (U , F[t±1]) follows from proposition 2.6 since ε is non-

trivial.
If C is irreducible and ρ is abelian, it follows from [15] that the classical Alexander

modules of an irreducible curve complement determine the twisted ones. So the
claim follows in this case from [13].

Assume now that the line at infinity L is transversal to the curve C, and let
d = deg(C). Let S3

∞ ⊂ C2 be a sphere of sufficiently large radius. Then the link
of C at infinity, K∞ = S3

∞ ∩ C, is the Hopf link on d components, as described
in § 2.2.1. (Indeed, there exists a deformation of C to a union of d lines passing
through the origin of C2, so the transversality at infinity assumption holds for all
curves appearing during the deformation.) Let i : S3

∞\K∞ ↪→ U denote the inclusion
map. Then by [13, lemma 5.2], the induced homomorphism

π1(S3
∞ \ K∞) ∼= 〈x0, x1, . . . , xd | xdxd−1 · · ·x1x

−1
0 , x0xix

−1
0 x−1

i , i = 1, . . . , d〉
i#−→ π1(U)

is surjective. Moreover, as in [13, § 7], the groups π1(U) and π1(S3
∞ \ K∞) have the

same generators, while the relations in π1(U) are those of π1(S3
∞\K∞) together with

relations describing the monodromy about exceptional lines by using the Zariski–
van Kampen method. Therefore, ε ◦ i# = ε and ρ ◦ i# = ρ (as this can be checked
on generators).
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Up to homotopy, U is obtained from S3
∞ \ K∞ by attaching cells of dimension

� 2. So the homomorphism

Hε,ρ
k (S3

∞ \ K∞, F[t±1]) → Hε,ρ
k (U , F[t±1])

induced by the inclusion map i is an isomorphism for k = 0, and an epimorphism
for k = 1. Here, Hε,ρ

k (S3
∞ \ K∞, F[t±1]) is defined with respect to the pair (ε ◦ i# =

ε, ρ ◦ i# = ρ) induced by the inclusion map i. As a consequence, in order to conclude
that Hε,ρ

1 (U , F[t±1]) is an F[t±1]-torsion module, it suffices to prove the torsion
property for the F[t±1]-module Hε,ρ

1 (S3
∞ \ K∞, F[t±1]). Hence, by proposition 2.9,

it suffices to show that ε ◦ i#(x0) = ε(x0) = 0.
We have the following commutative diagram:

π1(S3
∞ \ K∞)

ab

��

i# �� π1(U) ε ��

ab

��

Z

H1(S3
∞ \ K∞, Z)

i∗ �� H1(U , Z)

ψ

������������

So, ε ◦ i# = ψ ◦ i∗ ◦ ab, and thus it is enough to understand the maps ab and i∗.
Recall that the Hopf link complement S3

∞ \ K∞ is homotopy equivalent to the
complement C2 \ A of a central line arrangement A of d lines in C2. So

H1(S3
∞ \ K∞, Z) ∼= Zd = 〈µ1, . . . , µd〉,

where µk is the homology class of the meridian about the line lk ⊂ A. Moreover,
ab(xk) = µk for k = 1, . . . , d, and hence

ab(x0) = µ1 + · · · + µd.

On the other hand, H1(U , Z) = Zr, generated by the homology classes νl of the
meridians about each irreducible component of Ca. Since A is defined by the homo-
geneous part of the defining equation of Ca, it is clear that i∗ takes each µk to one
of the νl. In fact, exactly dl of the µk are mapped by i∗ to νl, where dl is the degree
of the component Cl of C. Finally, since ψ(νl) = nl, for all k � 1 we have that
ε ◦ i#(xk) = nlj for some lj , and

ε ◦ i#(x0) = ψ ◦ i∗(µ1 + · · · + µd) =
r∑

l=1

dlnl > 0.

This concludes the proof that Hε,ρ
1 (U , F[t±1]) is a finitely generated F[t±1]-torsion

module.

Remark 3.2. The above result will be generalized to arbitrary hypersurfaces in
theorem 4.1. The reason for stating it in this section is our study of splitting fields
containing the roots of the associated twisted Alexander polynomials (see theo-
rem 3.5).

As a consequence of theorem 3.1 and proposition 2.9, we obtain the following.
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Corollary 3.3. If C is a reduced curve of degree d in general position at infinity,
then the first twisted Alexander polynomial ∆ε,ρ

1,U (t) of U divides the product

(det(t
∑r

l=1 dlnlρ(x0) − Id))d−2

· gcd(det(t
∑r

l=1 dlnlρ(x0) − Id), det(tnl1 ρ(x1) − Id), . . . ,det(tnld−1 ρ(xd−1) − Id)).

In particular, if ε = lk, then ∆ρ
1,U (t) divides

(det(tdρ(x0)−Id))d−2·gcd(det(tdρ(x0)−Id), det(tρ(x1)−Id), . . . ,det(tρ(xd−1)−Id)).

Remark 3.4. For curves in general position at infinity, corollary 3.3 generalizes
Libgober’s divisibility result [13, theorem 2], which states that the Alexander poly-
nomial ∆1,U (t) := ∆lk,triv

1,U (t) of C divides the Alexander polynomial of the link at
infinity, which is given by (t − 1)(td − 1)d−2.

3.2. Roots of twisted Alexander polynomials

In [15, theorem 5.4], Libgober used Hodge theory to show that for an irreducible
plane curve C, and for ρ a unitary representation, the roots of the first twisted
Alexander polynomial of C are in a cyclotomic extension of the field generated
by the rationals and the eigenvalues of ρ(γ), where γ is a meridian about C at a
non-singular point. Libgober’s result does not touch upon the extension degree.

In this section, we give a topological proof of Libgober’s result, and identify such
a cyclotomic extension explicitly.

Theorem 3.5. Let C be a reduced projective plane curve of degree d and in gen-
eral position at infinity, and assume that ε = lk : π1(U) → Z is the linking num-
ber homomorphism. Suppose F = C, and let ρ : π1(U) → GL�(C) be an arbitrary
representation. Denote by x0 the (homotopy class of the) meridian about the line
H at infinity, and let λ1, . . . , λ� be the eigenvalues of ρ(x0)−1. Then the roots of
∆ρ

1,U (t) lie in the splitting field S of
∏�

i=1(t
d − λi) over Q, which is cyclotomic over

K = Q(λ1, . . . , λ�).

Proof. Using the notation from the proof of theorem 3.1, we denote by x1, . . . , xd

the (homotopy classes of) meridians about the components of the link of C at
infinity (see also remark 2.8).

If there is no common eigenvalue for all of ρ(x1), . . . , ρ(xd), then corollary 3.3
yields that ∆ρ

1,U (t) divides (det(tdρ(x0) − Id))d−2. In particular, the prime factors
of ∆ρ

1,U (t) are among the prime factors of det(tdρ(x0) − Id). Let p(t) be the char-
acteristic polynomial of ρ(x0)−1. Then

det(tdρ(x0)−Id) = (−1)r det(ρ(x0))·p(td) = (−1)r det(ρ(x0))·(td−λ1) · · · (td−λ�).

Therefore, the roots of ∆ρ
1,U (t) are contained in the splitting field S of

∏�
i=1(t

d − λi)
over Q.

If α is a common eigenvalue of all matrices ρ(x1), . . . , ρ(xd), then one of the eigen-
values of ρ(x0) = ρ(xd)ρ(xd−1) · · · ρ(x1) is αd. Without loss of generality, assume
that αd = λ−1

1 . Then α ∈ S.
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4. Twisted Alexander invariants of complex hypersurface complements

In this section, we generalize the above results to the context of complex hypersur-
faces with arbitrary singularities. We study the torsion properties of the associated
twisted Alexander modules, and estimate their corresponding twisted Alexander
polynomials in terms of local topological data encoded by the singularities.

4.1. Definitions

Let V be a (globally defined) degree-d hypersurface in CP
n+1 (n � 1) and let H

be a hyperplane in CP
n+1, called the ‘hyperplane at infinity’. Let

U := CP
n+1 \ (V ∪ H) = Cn+1 \ V a,

where V a ⊂ Cn+1 = CP
n+1 \ H denotes the affine part of V . Alternatively, we can

start with a degree-d polynomial f(z1, . . . , zn+1) : Cn+1 → C, and take V a = {f =
0}, with V ⊂ CP

n+1 the projectivization of V a, and H given by z0 = 0. (Here,
z0, z1, . . . , zn+1 denote the homogeneous coordinates on CP

n+1.)
Assume that the underlying reduced hypersurface Vred of V has r irreducible

components V1, . . . , Vr, with di = deg(Vi) for i = 1, . . . , r. Then

H1(U , Z) ∼= Zr,

generated by the homology classes νi of meridians γi about the irreducible compo-
nents Vi of Vred (see, for example, [3, (4.1.3), (4.1.4)]). Moreover, if γ∞ denotes the
meridian loop in U about the hyperplane H at infinity, with homology class ν∞,
then the following relation holds in H1(U , Z):

ν∞ +
r∑

i=1

diνi = 0. (4.1)

Let ni be r positive integers with gcd(n1, . . . , nr) = 1, and define the positive
epimorphism ε : π1(U) → Z by the composition

ε : π1(U) ab−→ H1(U , Z) νi �→ni−−−−→ Z.

Note that if the defining equation f of the affine hypersurface V a has an irreducible
decomposition given by f = fn1

1 · · · fnr
r , then ε coincides with the homomorphism

f# : π1(U) → π1(C∗) ∼= Z induced by the restriction of f to U , or, equivalently,
with the total linking number homomorphism (see [3, pp. 76–77])

lk : π1(U)
[α]→lk(α,V ∪−dH)−−−−−−−−−−−−→ Z.

Fix a finite �-dimensional F-vector space V endowed with a linear represen-
tation ρ : π1(U) → GL(V). As in § 2.1, the F[t±1]-modules Hε,ρ

i (U , F[t±1]) and
Hi

ε,ρ(U , F[t±1]) are defined for any i � 0, and are called the ith (co)homological
twisted Alexander modules of V with respect to the hyperplane at infinity, H. The
twisted Alexander modules H lk,ρ

i (U , F[t±1]) associated with the total linking num-
ber homomorphism lk are denoted by

Hρ
i (U , F[t±1]),
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and similarly for their cohomology counterparts Hi
ρ(U , F[t±1]). In the case of the

trivial representation, these further reduce to the classical Alexander modules, as
studied, for example, in [4, 17,19].

Note that, since U is the complement of a complex n-dimensional affine hyper-
surface, it is an (n + 1)-dimensional affine variety, and hence has the homotopy
type of a finite CW-complex of real dimension n + 1 (see, for example, [11, 20],
or [3, (1.6.7), (1.6.8)]). Therefore, Hε,ρ

i (U , F[t±1]) = 0 for i � n+1, Hε,ρ
n+1(U , F[t±1])

is a free F[t±1]-module, and the F[t±1]-modules Hε,ρ
i (U , F[t±1]) are of finite type

for 0 � i � n. In the following subsections, we investigate the torsion properties of
the latter.

4.2. Torsion properties

In the notation of the previous subsection, we say that the hypersurface V ⊂
CP

n+1 is in general position (with respect to the hyperplane H) at infinity if the
reduced hypersurface Vred underlying V is transversal to H in the stratified sense.

The main result of this section is the following high-dimensional generalization
of theorem 3.1.

Theorem 4.1. Let V ⊂ CP
n+1 be a hypersurface in general position at infinity,

let ε : π1(U) → Z be a positive epimorphism and let ρ : π1(U) → GL(V) be an
arbitrary representation. Then the twisted Alexander modules Hε,ρ

i (U , F[t±1]) are
torsion F[t±1]-modules for any 0 � i � n.

In order to prove theorem 4.1, we introduce the following notation and develop
some prerequisites.

Let S2n+1
∞ be a (2n + 1)-sphere in Cn+1 of sufficiently large radius (that is,

the boundary of a small tubular neighbourhood in CP
n+1 of the hyperplane H at

infinity). Denote by
K∞ = S2n+1

∞ ∩ V a

the link of V a at infinity, and by

U∞ = S2n+1
∞ \ K∞

its complement in S2n+1
∞ . Note that U∞ is homotopy equivalent to T (H)\ (V ∪H),

where T (H) is the tubular neighbourhood of H in CP
n+1 for which S2n+1

∞ is the
boundary. Then a classical argument based on the Lefschetz hyperplane theorem
yields that the homomorphism

πi(U∞) → πi(U)

induced by inclusion is an isomorphism for i < n and it is surjective for i = n
(see [4, § 4.1] for more details). It follows that

πi(U ,U∞) = 0 for all i � n, (4.2)

and hence U has the homotopy type of a CW complex obtained from U∞ by adding
cells of dimension � n + 1.

We denote by (ε∞, ρ∞) the epimorphism and representation on π1(U∞) induced
by composing (ε, ρ) with the homomorphism π1(U∞) → π1(U). Hence, the twisted
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Alexander modules of V at infinity, Hε∞,ρ∞
i (U∞, F[t±1]), can be defined (and sim-

ilarly for the corresponding cohomology modules). Then (4.2) and the fact that
twisted Alexander modules are homotopy invariants yield the following.

Proposition 4.2. The inclusion map U∞ ↪→ U induces the F[t±1]-module isomor-
phisms

Hε∞,ρ∞
i (U∞, F[t±1])

∼=−→ Hε,ρ
i (U , F[t±1])

for any i < n, and an epimorphism of the F[t±1]-modules

Hε∞,ρ∞
n (U∞, F[t±1]) � Hε,ρ

n (U , F[t±1]).

Corollary 4.3. For any 0 � i � n, if Hε∞,ρ∞
i (U∞, F[t±1]) is a torsion F[t±1]-

module, then so is Hε,ρ
i (U , F[t±1]).

Let us now assume that the complex projective hypersurface V is in general
position at infinity, i.e. Vred is transversal in the stratified sense to the hyperplane at
infinity, H. Then the complement of the link at infinity U∞ is a circle fibration over
H \ (V ∩H), which is homotopy equivalent to the complement in Cn+1 to the affine
cone over the projective hypersurface V ∩ H ⊂ H = CP

n (for a similar argument
see [4, § 4.1]). Hence, by the Milnor fibration theorem (see, for example, [3, (3.1.9),
(3.1.11)]), U∞ fibres over C∗ � S1, with fibre homotopy equivalent to a finite n-
dimensional CW-complex. Moreover, it is known that this fibre is also homotopy
equivalent to the infinite cyclic cover of U∞ defined by the kernel of the total linking
number homomorphism defined with respect to V a.

We can now complete the proof of theorem 4.1.

Proof. By corollary 4.3, it suffices to prove that, for any 0 � i � n, the F[t±1]-
module Hε∞,ρ∞

i (U∞, F[t±1]) is torsion. The idea is to replace V a by another affine
hypersurface X with the same underlying reduced structure, and hence also the
same complement U , so that ε becomes the homomorphism defined by the total
linking number with X.

Let f1 · · · fr = 0 be a square-free polynomial equation defining V a
red, the reduced

affine hypersurface underlying V a = V \ H. Recall that if γi is the meridian about
the irreducible component fi = 0, then by definition we have that ε([γi]) = ni.
Let us now consider the polynomial g = fn1

1 · · · fnr
r on Cn+1 defining an affine

hypersurface
X = {g = 0},

and replace V by the projective hypersurface X̄ defined by the homogenization of
g. Clearly, the underlying reduced hypersurface Xred coincides with V a

red, so X and
V a have the same complement:

U := Cn \ V a = Cn \ X.

Moreover, the given homomorphism ε : π1(U) → Z (hence also ε∞ : π1(U∞) → Z)
coincides with the total linking number homomorphism defined with respect to
X (see [3, pp. 76–77]). Finally, since V is in general position at infinity, so is X̄,
and the corresponding complements of the links at infinity coincide. Therefore (as
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explained in the paragraph before the proof of theorem 4.1), the complement U∞

of the link at infinity admits a locally trivial topological fibration

F ↪→ U∞ → C∗

whose fibre F has the homotopy type of a finite n-dimensional CW-complex, and
is also homotopy equivalent to the infinite cyclic cover of U∞ defined by the kernel
of the linking number with respect to X (i.e. by ker(ε∞)).

Altogether, for any 0 � i � n, we have

Hε∞,ρ∞
i (U∞, F[t±1]) ∼= Hi(F, Vρ∞),

which is a finite-dimensional F-vector space, hence a torsion F[t±1]-module.

As an immediate consequence of theorem 4.1, we have the following.

Corollary 4.4. Using the notation and assumptions of theorem 4.1, we have

rankF[t±1] H
ε,ρ
n+1(U , F[t±1]) = (−1)n+1 · � · χ(U),

with � the rank of the representation ρ.

By applying theorem 4.1 to the dual representation ρ∗, we deduce from (2.1) the
following.

Corollary 4.5. Let V ⊂ CP
n+1 be a hypersurface in general position at infin-

ity, let ε : π1(U) → Z be a positive epimorphism and let ρ : π1(U) → GL(V) be
an arbitrary representation. Then the cohomological twisted Alexander modules
Hi

ε,ρ(U , F[t±1]) are torsion F[t±1]-modules for any 0 � i � n.

Remark 4.6. If V is in general position at infinity, and dimC Sing(V ) � n − 2
(in which case V is already irreducible), then π1(U) ∼= Z (see, for example, [14,
lemma 1.5]). So, in this case, the representation ρ is abelian, and the twisted Alexan-
der invariants of U are determined by the classical ones (studied in [4,17,19]). The
results of this paper are particularly interesting for hypersurfaces with singularities
in codimension 1 (e.g. hyperplane arrangements) and non-abelian representations.

4.3. Local twisted Alexander invariants

For each point x ∈ V , consider the local complement

Ux := U ∩ Bx,

for Bx a small open ball about x in CP
n+1 chosen so that (V, x) has a conic structure

in B̄x. Let

εx : π1(Ux)
(ix)#−−−→ π1(U) ε−→ Z

and
ρx : π1(Ux)

(ix)#−−−→ π1(U)
ρ−→ GL(V) = GL�(F)

be induced by the inclusion ix : Ux ↪→ U . Then we can consider the local (co)homo-
logical twisted Alexander modules Hεx,ρx

k (Ux, F[t±1]) and Hk
εx,ρx

(Ux, F[t±1]) for
k ∈ Z.
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Remark 4.7. Note that εx is not necessarily onto, so the infinite cyclic cover of Ux

defined by ker(εx) may be disconnected.

Definition 4.8. We say that (ε, ρ) is acyclic at x ∈ V if (εx, ρx) is acyclic in the
sense of definition 2.3, i.e. if Hεx,ρx

k (Ux, F[t±1]) are torsion F[t±1]-modules for all
k ∈ Z. We say that (ε, ρ) is locally acyclic along a subset Y ⊆ V if (ε, ρ) is acyclic
at any point x ∈ Y .

The next result provides one important geometric example of local acyclicity.

Proposition 4.9. Let V ⊂ CP
n+1 be a degree-d projective hypersurface in general

position at infinity. Then (ε, ρ) is locally acyclic along V for any positive epimor-
phism ε : π1(U) → Z and any representation ρ : π1(U) → GL(V).

Proof. As in the proof of theorem 4.1, after changing V a (respectively, V ) by an
affine hypersurface X (respectively, by its projectivization X̄) with the same under-
lying reduced structure, and hence also preserving the (local) complements, we can
assume without loss of generality (and without changing the notation) that ε is the
total linking number homomorphism lk. Therefore, for any x ∈ V , the local homo-
morphism εx becomes lkx := lk ◦(ix)#. Denote by Ux,∞ the infinite cyclic cover of
Ux defined by ker(lkx).

Let U ′ = CP
n+1 \V , and for any point x ∈ V let U ′

x := U ′ ∩Bx, for Bx denoting,
as before, a small open ball about x in CP

n+1 for which (V, x) has a conic structure
in B̄x. Let Sx := ∂B̄x, with Kx := V ∩Sx denoting the corresponding link of (V, x).
Note that U ′

x is homotopy equivalent to the link complement Sx \ Kx. Moreover,
since Kx is an algebraic link, the Milnor fibration theorem (see, for example, [3,
ch. 3] and the references therein) implies that the complement Sx \Kx fibres over a
circle, with (Milnor) fibre Fx homotopy equivalent to a finite CW-complex. It is also
known that Fx is homotopy equivalent to the infinite cyclic cover of Sx \Kx defined
by the linking number with respect to Kx. For future reference, let us denote by
lk′

x the epimorphism on π1(Sx \ Kx) ∼= π1(U ′
x) defined by the total linking number

with Kx.
If x ∈ V \ H, then Ux = U ′

x � Sx \ Kx, so in this case

Hεx,ρx

k (Ux, F[t±1]) = H lkx,ρx

k (Ux, F[t±1]) ∼= Hk(Ux,∞, Vρx) ∼= Hk(Fx, Vρx)

is a finite-dimensional F-vector space, and hence a torsion F[t±1]-module for any
k ∈ Z.

If x ∈ V ∩ H, then by the transversality assumption we have that Ux � U ′
x × S1,

with the restrictions of lkx to the factors of this product described as follows: on
π1(U ′

x), lkx restricts to the homomorphism lk′
x defined by the linking number with

Kx (this is, of course, the same as lkx′ at a nearby point x′ ∈ V \ H in the same
stratum as x), while on π1(S1) it can be seen from (4.1) that lkx acts by sending
the generator (which coincides with the homotopy class of the meridian loop γ∞
about H) to −d. The acyclicity at x ∈ V ∩H then follows by the Künneth formula,
since the homotopy factors of Ux, endowed with the corresponding homomorphisms
and representations induced from the pair (lkx, ρx), are acyclic.
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By applying proposition 4.9 to the dual representation ρ∗, we deduce from (2.1)
the following (which shall be referred to below as the local cohomological acyclicity
along V ).

Corollary 4.10. Let V ⊂ CP
n+1 be a hypersurface in general position at infin-

ity, let ε : π1(U) → Z be a positive epimorphism and let ρ : π1(U) → GL(V) be
an arbitrary representation. Then, for any x ∈ V , the local cohomological twisted
Alexander modules Hk

εx,ρx
(Ux, F[t±1]) are torsion F[t±1]-modules for any k ∈ Z.

(Here (εx, ρx) is induced as above from (ε, ρ) via the inclusion ix : Ux ↪→ U .)

4.4. Sheaf (co)homology interpretation of twisted Alexander modules

In the remainder of the paper, we employ the language of perverse sheaves and
homological algebra techniques to relate the local and global properties of twisted
Alexander invariants. For this purpose, we first rephrase the definition of twisted
Alexander modules as the (co)homology of a certain local system defined on the
complement U .

Let L be the local system of F[t±1]-modules on U , with stalk F[t±1] ⊗F V, and
action of the fundamental group corresponding to the right F[π]-module structure
of the stalk, i.e.

π1(U) → Aut(F[t±1] ⊗F V) ∼= GL�(F[t±1]),

[α] 	→ (p ⊗ v 	→ (p ⊗ v) · α = ptε(α) ⊗ vρ(α)).

(Here � denotes, as before, the rank of the representation ρ, and we regard the
elements of V ∼= F� as row vectors.) Then it is clear from the definition of the
(co)homological twisted Alexander modules that we have the following isomor-
phisms of F[t±1]-modules (see, for example, [1, p. 355]):

Hε,ρ
i (U , F[t±1]) ∼= Hi(U ,L) and Hi

ε,ρ(U , F[t±1]) ∼= Hi(U ,L). (4.3)

If x ∈ V , let ix : Ux := U ∩ Bx ↪→ U denote the inclusion of the local complement
at x, with corresponding induced local pair (εx, ρx) as in § 4.3. Let

Lx := i∗xL = L|Ux

be the restriction of the local system L to Ux, i.e. Lx is defined via the action of
(εx, ρx). Then, for any k ∈ Z, it follows, as above, that the local kth (co)homological
twisted Alexander modules at x can be described by

Hεx,ρx

k (Ux, F[t±1]) ∼= Hk(Ux,Lx) and Hk
εx,ρx

(Ux, F[t±1]) ∼= Hk(Ux,Lx).

4.5. Local-to-global analysis: divisibility results

In this section, we assume that the projective hypersurface V is in general posi-
tion at infinity. By theorem 4.1 and corollary 4.5, for ε : π1(U) → Z a positive epi-
morphism and ρ : π1(U) → GL(V) an arbitrary representation, the (co)homological
twisted Alexander modules Hε,ρ

i (U , F[t±1]) and Hi
ε,ρ(U , F[t±1]), respectively, are

torsion F[t±1]-modules for any 0 � i � n. Following definition 2.5, we denote the
corresponding twisted Alexander polynomials by ∆ε,ρ

i,U (t) and ∆i
ε,ρ,U (t), respectively,

with 0 � i � n.
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The sheaf theoretic realization of twisted Alexander modules in § 4.4 allows us
to use the language of perverse sheaves (or intersection homology), which, when
coupled with homological algebra techniques, gives a concise relationship between
the global twisted Alexander invariants of complex hypersurface complements and
the corresponding local ones at singular points (respectively, at infinity). For sim-
plicity, we formulate our results in this section in cohomological terms (but see also
remark 4.15). Our approach is similar to [5, § 3].

We work with sheaves of F[t±1]-modules. For a topological space Y , we denote
by Db

c(Y ; F[t±1]) the bounded derived category of complexes of sheaves of F[t±1]-
modules on Y with constructible cohomology, and we let Perv(Y ) be the abelian
category of perverse sheaves of F[t±1]-modules on Y .

The first result in this section singles out the contribution of the meridian ‘at
infinity’, γ∞, to the global twisted Alexander invariants, and it can be regarded as a
high-dimensional generalization (for arbitrary singularities) of corollary 3.3, where
γ∞ plays the role of x0.

Theorem 4.11. Let V ⊂ CP
n+1 be a projective hypersurface in general position

(with respect to the hyperplane H) at infinity, with complement U = CP
n+1\(V ∪H).

Fix a positive epimorphism ε : π1(U) → Z and a rank-� representation ρ : π1(U) →
GL(V). Then, for any 0 � i � n, the zeros of the global cohomological Alexander
polynomial ∆i

ε,ρ,U (t) are among those of the order of the cokernel of the endo-
morphism t−ε(γ∞) ⊗ ρ(γ∞)−1 − Id ∈ End(F[t±1] ⊗F V). (Here we use the left Z[π]-
module structure on F[t±1] ⊗F V, as dictated by the use of cohomological invariants,
as in definition 2.1.)

Proof. Let Cn+1 = CP
n+1\H, and denote by u : U ↪→ Cn+1 and v : Cn+1 ↪→ CP

n+1

the two inclusions. Since U is smooth and (n+1) dimensional, and L is a local system
on U , it follows that L[n + 1] ∈ Perv(U). Moreover, since u is a quasi-finite affine
morphism, we also have that

F• := Ru∗(L[n + 1]) ∈ Perv(Cn+1)

(see, for example, [24, theorem 6.0.4]). But Cn+1 is an affine (n + 1)-dimensional
variety, so by Artin’s vanishing theorem for perverse sheaves (see, for example, [24,
corollary 6.0.4]) we obtain that

Hk(Cn+1,F•) = 0 for all k > 0 (4.4)

and

Hk
c (Cn+1,F•) = 0 for all k < 0. (4.5)

Let a : CP
n+1 → point be the constant map. Then

Hk(Cn+1,F•) ∼= Hk+n+1(U ,L) ∼= Hk(Ra∗Rv∗F•). (4.6)

Similarly,
Hk

c (Cn+1,F•) ∼= Hk(Ra!Rv!F•), (4.7)

where the last equality follows since a is a proper map; hence, Ra! = Ra∗.
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Consider the canonical morphism Rv!F• → Rv∗F•, and extend it to the distin-
guished triangle:

Rv!F• → Rv∗F• → G• [1]−→ (4.8)

in Db
c(CP

n+1; F[t±1]). Since v∗Rv! ∼= id ∼= v∗Rv∗, after applying v∗ to the above
triangle we get that v∗G ∼= 0 or, equivalently, G is supported on H. Next, we
apply Ra! = Ra∗ to the distinguished triangle (4.8) to obtain a new triangle in
Db

c(point; F[t±1]):

Ra!Rv!F• → Ra∗Rv∗F• → Ra∗G• [1]−→ . (4.9)

Upon applying the cohomology functor to the distinguished triangle (4.9), and using
the vanishing from (4.4) and (4.5) together with the identifications (4.6) and (4.7),
we obtain that

Hk+n+1(U ,L) ∼= Hk(CP
n+1,G•) ∼= Hk(H, G•) for k < −1,

and Hn(U ,L) is a submodule of the F[t±1]-module H−1(H, G•). So in order to prove
the theorem, it remains to show that the F[t±1]-modules Hk(H, G•) are torsion for
k � −1, and the zeros of their corresponding orders are among those of the order
of the cokernel of t−ε(γ∞) ⊗ ρ(γ∞)−1 − Id ∈ End(F[t±1] ⊗F V).

Note that Hk(H, G•) is the abutment of a hypercohomology spectral sequence
with the E2-term defined by

Ep,q
2 = Hp(H, Hq(G•)). (4.10)

This prompts us to investigate the stalk cohomology of G• at points along H.
For x ∈ H, let us, as before, denote by Ux = U ∩Bx the local complement at x for

Bx a small ball in CP
n+1 centred at x. Then we have the following identification:

Hq(G•)x
∼= Hq+n+1(Ux,Lx), (4.11)

where Lx is the restriction of L to Ux. Indeed, the following isomorphisms of F[t±1]-
modules hold:

Hq(G•)x
∼= Hq(Rv∗F•)x

∼= Hq+n+1(Rv∗Ru∗L)x

∼= Hq+n+1(Bx, R(v ◦ u)∗L)
∼= Hq+n+1(Ux,Lx).

If x ∈ H \ V , then Ux is homotopy equivalent to S1, and the corresponding
local system Lx is defined by the action of γ∞, i.e. by the right multiplication
by tε(γ∞) ⊗ ρ(γ∞) on F[t±1] ⊗F V. In particular, H∗(Ux,Lx) is the cohomology of
the co-chain complex of F[t±1]-modules:

0 ←− F[t±1] ⊗F V
t−ε(γ∞)⊗ρ(γ∞)−1−Id←−−−−−−−−−−−−−− F[t±1] ⊗F V ←− 0,

i.e.

Hk(Ux,Lx) =

{
Coker(t−ε(γ∞) ⊗ ρ(γ∞)−1), k = 1,

0, k = 1.
(4.12)
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If x ∈ H ∩ V , then we know by corollary 4.10 that the local cohomological twisted
Alexander modules Hk(Ux,Lx) are F[t±1]-torsion modules for all k ∈ Z. Moreover,
in the notation of proposition 4.9, we have that Ux � U ′

x ×S1, and the local system
Lx is an external tensor product, the second factor being defined by the action of
γ∞ as in the previous case. So, it follows from the Künneth formula that the zeros
of the local cohomological twisted Alexander polynomials at points in H ∩ V are
among those of the order of the cokernel of t−ε(γ∞) ⊗ ρ(γ∞)−1 ∈ End(F[t±1] ⊗F V).

By (4.11) and the above calculations, it then follows that the F[t±1]-modules
Hq(G•)x∈H are torsion, and the zeros of their associated orders are among those
of the order of the cokernel of t−ε(γ∞) ⊗ ρ(γ∞)−1 − Id ∈ End(F[t±1] ⊗F V). Hence,
using the spectral sequence (4.10), each hypercohomology group Hk(H, G•) is a
torsion F[t±1]-module, and the zeros of its associated order are among those of the
order of the cokernel of t−ε(γ∞) ⊗ ρ(γ∞)−1 − Id ∈ End(F[t±1] ⊗F V). This ends the
proof of our theorem.

Remark 4.12. If F = C and ε = lk is the total linking number homomorphism,
theorem 4.11 implies that any root λ of ∆i

ρ,U (t), i � n, must satisfy the condi-
tion that λd is an eigenvalue of ρ(γ∞), where d =

∑r
i=1 nidi is the degree of V . If,

in addition, ρ = triv is the trivial representation, the statement of theorem 4.11
reduces to the fact that the zeros of the classical cohomological Alexander poly-
nomials ∆i

U (t), i � n, are roots of unity of order d = deg(V ), a fact also shown
in [4, 17,19] in the reduced case.

In the next theorem, we assume for simplicity of exposition that V is a reduced
hypersurface. Recall from §§ 4.3 and 4.4 that for any point x in V with local comple-
ment Ux = U ∩Bx we get from (ε, ρ) an induced pair (εx, ρx) via the inclusion map
ix : Ux ↪→ U . Moreover, the local twisted Alexander modules have a sheaf description
in terms of the local system Lx := i∗xL, namely Hεx,ρx

k (Ux, F[t±1]) ∼= Hk(Ux,Lx) and
Hk

εx,ρx
(Ux, F[t±1]) ∼= Hk(Ux,Lx) for all k ∈ Z. We define by

∆k,x(t) := ∆εx,ρx

k,Ux
(t) and ∆k

x(t) := ∆k
εx,ρx,Ux

(t)

the local (co)homological twisted Alexander polynomials at x.
Let us now assume also that V is in general position at infinity. Then if x ∈ V ∩H,

in the notation of proposition 4.9 there is a homotopy equivalence Ux � U ′
x × S1,

where U ′
x = Bx \ V and with the S1-factor corresponding to the meridian loop

about the hyperplane at infinity, H. On the other hand, U ′
x is homeomorphic to

any local complement Ux′ at a point x′ ∈ V \H in the same stratum with x. So, by
the Künneth formula, the zeros of the local twisted Alexander polynomials ∆k

x(t) of
(Ux, εx, ρx) are among those associated with (Ux′ , εx′ , ρx′), for x′ ∈ V \ H a nearby
point in the same stratum of V as x. For brevity, points of V a = V \ H will be
referred to as affine points of V .

The next result shows that the zeros of the global twisted Alexander polynomials
can be estimated from those of the local twisted Alexander polynomials at (affine)
points along some irreducible component of V .

Theorem 4.13. Let V ⊂ CP
n+1 be a reduced hypersurface in general position at

infinity, with complement U = CP
n+1 \ (V ∪ H), and let V1 be a fixed irreducible

component of V . Fix a positive epimorphism ε : π1(U) → Z, a rank � representation
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ρ : π1(U) → GL(V) and a non-negative integer σ. If λ ∈ F is not a root of the ith
local twisted Alexander polynomial ∆i

x(t) for any i < n + 1 − σ and any (affine)
point x ∈ V1 \ H, then λ is not a root of the global twisted Alexander polynomial
∆i

ε,ρ,U (t) for any i < n + 1 − σ.

Proof. First, note that by the transversality assumption and the Künneth formula
it follows by the above considerations that the hypothesis on local twisted Alexan-
der polynomials implies that λ is not a root of the ith local twisted Alexander
polynomial ∆i

x(t) for any i < n + 1 − σ and any point x ∈ V1 (including points in
V1 ∩ H).

As in the proof of theorem 4.11, after replacing Cn+1 by U1 = CP
n+1 \ V1, it

follows that, for k � −1, Hk+n+1(U ,L) is a submodule of Hk(CP
n+1,G•), where

G• is now a complex of sheaves of F[t±1]-modules supported on V1. It thus suffices
to show that Hk(CP

n+1,G•), k < −σ, is a torsion F[t±1]-module whose order does
not vanish at λ.

As in (4.11), the cohomology stalks of G• at any x ∈ V1 are given by

Hq(G•)x
∼= Hq+n+1(Ux,Lx),

and these are all torsion F[t±1]-modules by corollary 4.10. Therefore, for a fixed
x ∈ V1 the fact that λ is not a root of ∆i

x(t) for any i < n + 1 − σ is equivalent
to the assertion that the order of Hq(G•)x does not vanish at λ for all i < −σ.
The desired claim now follows by using the hypercohomology spectral sequence
with the E2-term defined by Ep,q

2 = Hp(V1,Hq(G•)), which computes the groups
Hk(V1,G•) ∼= Hk(CP

n+1,G•).

Remark 4.14. Note that the proofs of theorems 4.11 and 4.13 indicate that we
can give a more general condition than transversality with respect to H in order to
conclude that the global cohomological twisted Alexander modules Hi

ε,ρ(U ; F[t±1])
are torsion for all i � n. Indeed, it suffices to assume that the pair (ε, ρ) is locally
cohomologically acyclic along V ∩H (or even V1∩H, in the context of theorem 4.13),
i.e. the corresponding local cohomological twisted Alexander modules are torsion
at points in V ∩ H (or V1 ∩ H). Of course this assumption is satisfied if V is in
general position at infinity, as proposition 4.9 and corollary 4.10 show. But there
are other instances when it is satisfied, such as in the examples discussed in § 2.2.

Remark 4.15. Let us conclude with a few observations about other possible ap-
proaches for studying twisted Alexander-type invariants of hypersurface comple-
ments.

If F = C, one can argue as in [4] if similar divisibility results are desired for
the homological twisted Alexander polynomials. In more detail, the study of such
twisted homological invariants is reduced via a twisted version of the Milnor se-
quence to studying the vanishing (except in the middle degree) of the homology
groups Hk(U ,Lλ ⊗ Vρ) (or equivalently, of cohomology groups Hk(U ,Lλ ⊗ Vρ)),
where Lλ is the rank-1 C-local system on U defined by the character

π1(U) ε−→ Z
1 �→λ−−−→ C∗.
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The language of C-perverse sheaves can then be employed as in the proofs of theo-
rems 4.11 and 4.13 to get the desired vanishing, thus providing a twisted general-
ization of results from [4,19].

Alternatively, one can use the approach from [18,19] to study the (co)homological
twisted Alexander invariants by using the associated residue complex R• of U , which
is defined as the cone of the natural morphism Rj!L → Rj∗L for j : U ↪→ CP

n+1

the inclusion map.
Lastly, such results can also be derived by using more elementary techniques, as

follows:

• by transversality and a Lefschetz-type argument one can reduce, as in [14],
the study of the twisted Alexander modules of U to those of a regular neigh-
bourhood N in Cn+1 of the affine part V a of V ;

• Alexander-type invariants of N can be computed via the Mayer–Vietoris spec-
tral sequence for the induced stratification of such a neighbourhood.

We leave the details and precise formulations as an exercise for the interested
reader.
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