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Aided Inertial Navigation Systems (INS) systems are commonly implemented in land vehicles
for a variety of applications. Several methods have been reported in the literature for
evaluating aided INS performance. Yet, the INS error-state-model dependency on time and
trajectory implies that no closed-form solutions exist for such evaluation. In this paper, we
derive analytical solutions to evaluate the fusion performance. We show that the derived
analytical solutions manage to predict the error covariance behavior of the full aided INS
error model. These solutions bring insight into the effect of the various parameters involved in
the fusion of the INS and an aiding sensor.
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1. INTRODUCTION. A low cost continuous and accurate navigation
solution is imperative for a variety of applications (e.g. emergency services, intelligent
transportation systems, and services or military applications). Therefore, in-vehicle
navigation solutions for real-time accurate location of vehicles have been receiving
increasing attention, with a rapid commercial market growth. Typically, to meet the
requirements of low-cost continuous and accurate navigation, Inertial Navigation
Systems (INSs) are fused with other sensors (Groves, 2008). Such systems contain
Inertial Measurement Units (IMUs) which measure the platform’s acceleration and
angular velocities, thus making the INS a self-contained system which is not affected
by jamming or blockage. While INSs are characterized by high bandwidth rates
and insensitivity to the working environment (urban, underground, underwater, and
indoor), their accuracy degrades with time due to measurement noise, which
permeates into the navigation equations and drifts the navigation solution.
To circumvent the drift, INS measurements are regularly fused with other sensors or

data, e.g. GPS (Groves, 2008), odometers (Stephen and Lachapelle, 2001), magnetic
sensors (Godha et al., 2005) or vehicle constraints (Klein et al., 2010). Fusion is
carried out largely by comparing one or more of the INS outputs against measured
quantities derived from the aiding sensor during the Kalman filter estimation process.
The performance of such fusion (between INS and other sensors) is evaluated during
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the early stages of design and system specification, aiming to examine and verify the
ability of the navigation system to meet its accuracy level. Such evolution is carried out
using such methods as the Monte-Carlo simulation (Lin, 1991) and covariance
analysis (Zarchan et al., 2005). Nonetheless, due to the INS error-state-model
dependency on time and vehicle dynamics, no closed-form solution exists to evaluate
the aided INS navigation performance.
The aim of our research is to find means for gaining analytical insight into the

parameters involved in a typical land vehicle aided INS scenario. To that end,
we derive two simplified time-invariant INS error models. For those models, we solve
analytically the corresponding Algebraic Riccati Equations (ARE) to obtain closed
form solutions to the continuous steady-state error covariance matrix.
In that manner, the number of parameters involved in an aided INS scenario was

reduced to contain only two (for position aiding) or three (for position and velocity
aiding) parameters enabling direct and immediate insight to the fusion scenario.
We evaluate the proposed approach in small fraction of the Schuler period (up to

8 minutes [Jekeli, 2005]), in which the Schuler feedback has relatively little effect on
the growth of the navigation errors. We verify the driven analytic solution against data
collected in field experiments, and show that the analytical solution of the ARE of the
simplified time-invariant error models are equivalent to those obtained solving
numerically the classical time-variant 15 error state model (Farrel, 2008).
The rest of the paper is organized as follows: Section 2 introduces the fundamental

principles of INS error model and Kalman filtering; Section 3 presents the derivation
of the simplified aided INS error models; Section 4 demonstrates the application
of the proposed models with analysis; and Section 5 presents conclusions of this
research.

2. PROBLEM FORMULATION. The INS motion equations can be
expressed in any reference frame. We employ here the navigation frame (n-frame)
which has its origin fixed at the Earth’s surface at the initial latitude/longitude position
of the vehicle, x-axis points towards the geodetic north, z-axis is on the local vertical
pointing down and y-axis completes a right-handed orthogonal frame. Thus the
motion equations (Titterton et al., 2004) are given by:
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where:
rn=[ϕ λ h]T is the vehicle position, ϕ is the latitude.
λ is the longitude and h is the height above the Earth’s surface.
vn=[vN vE vD]

T is the vehicle velocity.
T b�n and T n�b are the transformation matrices from the b-frame to the n-frame

and vice-versa, respectively.
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f b is the measured specific force vector.
ωie
n is the Earth turn rate vector expressed in the n-frame.

ωen
n is the turn rate vector of the n-frame with respect to the Earth.

g1
n is the local gravity vector,M and N are the radii of curvature in the meridian and

prime vertical respectively.
Ωnb
b is the skew-symmetric form of the body rate vector with respect to the n-frame

given by:

ωb
nb = ωb

ib − Tn�b ωn
ie + ωn

en

( ) (3)
The motion Equation (1), aka the INS mechanization equations, does not provide a

direct connection to the errors in the system states caused by the noisy IMU
measurements. Therefore, solving them directly with noisy measurements leads to an
erroneous solution. Several models (e.g. Titterton et al., 2004; Jekeli, 2000) were
developed to link the error-states and the measurements noise. Among them is the
classical perturbation analysis, in which navigation parameters are perturbed with
respect to their actual values. Perturbation is implemented via a first-order Taylor
series expansion of the states in Equation (1). A complete derivation of this model can
be found in Britting, (1971).
The error state vector δx=[δrn δvn εn δba δbg]

T, δx[R15 consists of position
error, velocity and attitude errors, and accelerometer and gyro bias/drift. A detailed
description of the parameters of the corresponding state-space model can be found in
Farrel (2008). The error model is used in the navigation filter for the fusion process
between the INS and the aiding sensor. To demonstrate the proposed approach we use
here the continuous Kalman filter (detailed in Annex A). Of particular relevance in
our study is the steady-state solution of the covariance, P, which is the solution for the
ARE by:

FP+ PFT + ΓQΓT − PHTR−1HP = 0 (4)
where:
F is the system dynamics matrix defined by the type of error model employed.
Γ is the noise coefficient matrix.
Q is the process noise covariance matrix.
H is the measurement matrix.
R is the measurement covariance matrix.

3. SIMPLIFIED AIDED INS MODELS. We derive two simplified time-
invariant aided INS error-models, which are based on the full time-variant 15 state-
space error model. For each model, we derive closed form expressions of the steady
state estimation error covariance enabling the evaluation of the aided INS
performance. Two types of aidings are considered:

(i) position measurement aiding.
(ii) position and velocity measurements aiding.

As the ARE solution exists only when the system-dynamics-matrix is time-
invariant, both simplified error-models consist of a constant dynamics matrix. The
first error-model considers a single accelerometer in each axis and can be regarded as
the simplest model with a constant dynamics matrix. The second error-model relates
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to a single channel, consisting of a single accelerometer and gyro in each axis, and
corresponds to the most comprehensive model with a constant dynamics matrix.
As the ARE solution of the Single Channel (SC) model is cumbersome, no insight

into the core structure of solution is gained. Therefore, we derive a link between the SC
and Single Accelerometer (SA) models.

3.1. Aided Single Accelerometer Error Model. We derive closed form expressions
for the covariance and gain of the SA error model for the position and position-and-
velocity aiding types. Prior to that, the actual SA error-model equations are derived.

3.1.1. Error Model Equations. Motion equations which are based on the
acceleration of the system have the following form:

ṗ(t) = v(t)
v̇(t) = a(t) (5)

where p(t), v(t), and a(t) are the actual position, velocity, and acceleration,
respectively.
Considering a biased accelerometer, the acceleration measurement becomes:

ũ(t) = a(t) + b(t) (6)
where b(t) is a random walk process, described by the following differential equation:

ḃ(t) = wb(t) (7)
where wb, is a white Gaussian noise with a known spectral density Q=σωb

2 [(m/sec3)2/
Hz].
The navigation equations are:

ˆ̇p(t) = v̂(t)
ˆ̇v(t) = ũ(t) (8)

where the hat symbol stands for the estimated value of a variable (e.g., x̂ for x) and the
tilde for its measured value (e.g., x̃ for x).
The dynamics equations for the error states, δp = p− p̂ and δv = v− v̂, can be

written as:

δẋ = FSAδx+ ΓSAwSA (9)
where:

δẋ =
δp
δv
δb





,FSA =

0 1 0
0 0 1
0 0 0





,ΓSA =

0
0
1





 (10)

and:
δp is the position error [m].
δv is velocity error [m/sec].
δb is the accelerometer bias [m/sec2].
wSA represents the accelerometer measurement error [m/sec3].
The state space model in Equation (9) can be described by the block-diagram

(Figure 1), where δpo, δvo and δbo are the initial position, velocity, and accelerometer
measurement errors, respectively. Notice that the SA INS error model matrices
(Equation 10) are identical to the Constant Acceleration (CA) three-state target-
tracking problem model (Singer, 1970) where position, velocity, and acceleration of
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the tracked target were used as the state vector, and the target acceleration was
modeled as a random walk process (Fitzgerald, 1981).

3.1.2. Position Aiding. The SA error-model (Equation 9) with position aiding is
given by:

δẋ =FSAδx+ ΓSAwSA

δz =HPδx+ vP
(11)

where Hp=[1 0 0], and vp is the position measurement noise [m].
The measurement and process noise-covariances are given by:

E w(t)wT (t′){ } = Qδ(t− t′) = qδ(t− t′)
E v(t)vT (t′){ } = Rδ(t− t′) = r0δ(t− t′) (12)

where q is the spectral density of the acceleration’s random walk [(m/sec3)2/Hz] and
r0, is the spectral density of the position measurement noise [m2/Hz].
As the model in Equation (11) is similar to that of (Fitzgerald, 1981) for target

tracking purposes (only with different state vectors), the corresponding ARE solution
is identical, thus:

PSA−PM = r0
2ω0 2ω2

0 ω3
0

2ω2
0 3ω3

0 2ω4
0

ω3
0 2ω4

0 2ω5
0





;ω0 =

���
q
r0

6

√
rad
sec

[ ]
(13)

and the corresponding gains are:

KSA−PM = 2ω0 2ω2
0 ω3

0

[ ]T (14)

Notice that the covariance and gain depend on two parameters only: the IMU
quality (q) and the position aiding variance (r0). Thus, the problem of aiding the full 15
state error-model with position measurement, which inherently involves many
parameters, has been reduced into a two parameter problem that can be evaluated
analytically (Equations 13 and 14).

3.1.3. Position and Velocity Aiding. The SA error-model (Equation 11) with
position and velocity aiding is given by:

δẋ =FSAδx+ ΓSAwSA

δz =HPVδx+ vPV
(15)

p

0p

v

0v
0b

b
B

p

0p

v

0v
0b

b
B

Figure 1. Three state single axis accelerometer flow chart.
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where:

HPV = 1 0 0
0 1 0

[ ]
, vPV = vP 0

0 vV

[ ]
(16)

and:
vP and vV are the position [m] and velocity [m/sec] measurement noise, respectively.
The measurement noise covariance is given by:

E v(t)vT (t′){ } = Rδ(t− t′) = r0 0
0 rd

[ ]
δ(t− t′) (17)

where:
r0 is the spectral density of the position measurement noise [m2/Hz].
rd, is the spectral density of the velocity measurement noise [(m/sec)2/Hz].
We directly solve the ARE (Equation 4) by substituting the appropriate matrices in

Equation (15) to obtain six nonlinear equations whose parameters are that of the
covariance matrix, P. The solution for the set of six nonlinear algebraic equations is
derived in Klein et al. (2010) and given, in terms of the normalized covariance
elements, by:

Π13 = 1
w+ 1

Π33 = Π13Π12 + Π23Π22

3r

Π11 = 1
2

r 1− Π2
13

( )[ ]1/2
Π12 = 1

2
r 1− Π13( )

Π23 = Π11 Π22 = 1
3
r Π13 − 4Π11Π12( )

2Π12 − r

(18)

where:

w = 1
r

��
β

√
+ 1

r
− β + 2��

β
√

[ ]1/2[ ]
(19)

β = 1
3r

1+ α1/3

2
+ 2

α1/3

[ ]
(20)

α = 4 2+ 3r( )3+
������������������
4+ 3r( )3[ ]

3r( )3
√[ ]

, r = rd����
qr20

3
√ (21)

Their relation to the un-normalized elements is given in Annex B.
The normalized steady-state gain matrix may be easily obtained by substituting

Equation (18) into Equation (A.4), leading to:

Γ11 = Π11 Γ12 = Π12

Γ21 = Π12 Γ22 = Π22

Γ31 = Π13 Γ32 = Π23 = Π11

(22)

The covariance and gain depend only on three parameters representing the IMU
quality (q) and the position and velocity aiding noise (r0, rd). Thus, the full 15 state
error-model aided by position and velocity measurements has been reduced into a
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three parameter problem that can be evaluated analytically using Equations (18)
and (22).

3.2. Aided Single Channel Error Model. The aided SC is the second error model
addressed here. Following the derivation of the error model equations, the solution to
the aided SC model is derived by linking it to the aided SA model.

3.2.1. Error Model Equations. A simplified SC INS error dynamics is given by
(Farrell, 2008):

δṗ
δv̇
δε̇





 =

0 1 0
0 0 g
0 −1/Re 0





 δp

δv
δε





+

0
0
1





wg (23)

where:

δp is the position error [m].
δv is velocity error [m/sec].
δε is the attitude error [rad].
wg the gyro measurement error [rad/sec].

We use a first-order Gauss-Markov (GM) process (as in the full 15 state error model)
to model the INS error propagation due to accelerometer and gyro noise:

ḃ t( ) = − 1
τc
b t( ) + w t( ) (24)

where:

b(t) is the random process.
τc is the correlation time.
w(t) is the process white noise.

The SC model is obtained by augmenting the accelerometer and gyro biases in their
GM process representation (Equation 24) with the INS error model (Equation 23):

δṗ
δv̇
δε̇
δḃa
δḃg





 =

0 1 0 0 0
0 0 g 1 0
0 −1/Re 0 0 1
0 0 0 −1/τa 0
0 0 0 0 −1/τg







δp
δv
δε
δba
δbg





+

0 0
0 0
0 0
1 0
0 1







wa

wg

[ ]
(25)

where:
τa is the accelerometer correlation time [sec].
τg is the gyro correlation time [sec].
wa is the driving noise for the accelerometer bias [m/sec3] with spectral density of

WA=σWa
2 [(m/sec3)2/Hz].

wg is the driving noise for the gyro bias [rad/sec] with spectral density of
WG=σWg

2 [(rad/sec)2/Hz].
3.2.2. A Semi-Analytical Solution for The Aided Error Model. The explicit

closed form solution of the aided SC INS error model either with position-and-
velocity measurements or with position measurements only is cumbersome and does
not enable gaining an insight into the heart of the solution.
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As the system matrix for both models is time invariant (Equations 9 and 25), we can
adopt the following approach, to use the aided SA INS error-model covariance
solution, denoted PSA, as a core solution and present the aided SC INS error model
solution, denoted PSC, in the following layout:

PSC[ ]ij= κ2ij PSA[ ]ij, i, j = 1, 2, 3. (26)
where [P]ik is the covariance matrix (Equation 34) and κij

2 are correction factors.
The correction factors of Equation (18), linking between the SA and SC models, are

a function of the error state covariances. Thus, they depend on the IMU quality,
aiding type (position or position-and-velocity) and their measurement noise level only.
Consequently, the correction factors should be evaluated only once for a certain IMU.

4. ANALYSIS AND RESULTS. The closed form analytical solution of the
simplified INS error models are evaluated here using data collected from three field
experiments. We elaborate on the analysis of one trajectory, and then apply it to the
other two. The actual covariances for the collected data of the full 15 error-state model
have been numerically calculated and are compared to the analytically derived SA and
SC covariances. Data were collected with MEMS INS/GPS while driving in an urban
environment. The vehicle was equipped with a Microbotics MIDG II [15] INS/GPS
system.
In the examined trajectory (Figure 2), the stationary vehicle accelerated to v=60

[km/h], and then kept the velocity in the range between 60 and 80 [km/h]. In the
examined experiment the height variations were about *15 [m] along the trajectory.

4.1. Aided Single Accelerometer Error Model. The SA INS error model with
position and velocity aiding is addressed first. The evaluation results are presented
in Figure 3, comparing the analytical and computed square-root of the error

Figure 2. Examined Trajectory 1.
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covariances. Computed values are derived numerically from the error covariances
of the full 15-state model while the analytical values are obtained from Equation (18).
As Figure 3 shows, the analytical position components match the numerical ones.
The analytical expression also manages to predict the altitude velocity component
but not the actual north and east velocity components. This behavior can be explained
by the coupling of the north and east channels in the full 15 state model, which is
not compensated for in the SA model. The altitude channel covariance is evaluated
correctly by the closed form expressions as it is weakly affected by the other
two channels and acts similarly to the SA in the full 15 state model.
Compared to the position and velocity aiding, the covariance values for the position

aiding only (Figure 4) matches the approximation of the vertical channel covariances
of the complete model, while the north and east channel covariances are not predicted
correctly due to the coupling between the channels.
Evaluating the two aidings (position and position-and-velocity) for the SA model,

it is can be seen that the addition of a velocity measurement enables an exact
analytical prediction of the position components of the full 15 state model by only
three parameters. Additionally, with both aiding types the analytical evaluation of the
position and velocity components’ height channel was similar to the full 15 state error
model. This result is attributed to the fact that in the complete 15 state model the
altitude channel performs like the SA model and that even use of the position aiding is
sufficient for observing the altitude position and velocity states.

4.2. Aided Single Channel Error Model. We then evaluate the SC error model
covariances. Covariance values are obtained by multiplying the SA analytical
expressions for the square-root error covariance (Equation 18) by the correction
factors which link the SA and SC models (Equation 26).
The correction factors are a function of the IMU, the aiding type (position or

position-and-velocity), and the corresponding measurement noise level. As the IMU

Figure 3. Position (LLH) and velocity (NED) components of the SA error model with position and
velocity aiding. Red (straight lines) and blue lines represents the analytical and computed square
root of the error covariance, respectively.
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and aiding type can be assumed constant per a given system/scenario, we calculate the
correction factors required for the specific IMU used in our field experiments as a
function of the measurement noise level of the aiding sensor only.
We use the analytical SA (Equation 18) and the numerical aided SC (Equation 25)

error model expressions and insert them into Equation (26) in order to obtain the
correction factors. Figure 5 presents the correction factors for the SA error model with
position-and-velocity aiding. They are plotted against the position-measurement-
noise-level and for various velocity noise-level magnitudes. κpos, which is equivalent to
κ11 in Equation (26), is the correction factor for the position error state and κvel, which
is equivalent to κ22 in Equation (26), is the correction factor for the velocity error state.
When the velocity aiding measurement noise is smaller than 0·1[m/s], the correction

factors for both velocity and position are constant regardless of the amount of the

Figure 4. Position (LLH) and velocity (NED) components of the SA error model with position
aiding. Red (straight lines) and blue lines represents the analytical and computed square root of the
error covariance, respectively.

Figure 5. SA error model correction factors for position and velocity measurements aiding
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position measurement noise. For higher velocity-measurement-noise values, both
correction factors (position and velocity) converge to a constant value. That is, the
correction factors can be considered constants regardless of the measurement noise
and used incessantly with the SA error-model. This result was expected, as the filter
gives lower weight to the measurement due to the amount of high measurement noise.
Figure 6 presents the position aiding correction factors as a function of the position

measurement noise (computed in a similar fashion as for Figure 5). The velocity
correction factors increase as the amount of measurement noise increases, while the
position-correction-factor convergences to a constant value.
Following the computation of the correction factors, results for position and

velocity aiding are presented in Figure 7. There, the position and velocity components
of the square-root of the error covariance of the full 15-state model (which was
calculated numerically) match exactly the SC analytical expressions for the square-
root of the error covariance (Equation 26). This result was achieved, although the SC
model has constant time dynamics and no coupling between its three orthogonal
axes, in contrast to the full error model. Thus, we evaluate the results of the 15 error
state aided INS model covariances by the semi-analytical expressions, making the
numerical evaluation unnecessary.
The covariance values for the position aiding are presented in Figure 8. The position

and velocity components of the square root of the error covariance of the full aided
INS 15 error state model, which was calculated numerically, match exactly the SC
semi-analytical expressions for the square-root of the error covariance. Thus, in the
aided SC model, position measurement is sufficient to predict the position and velocity
states despite of the fact that it has constant time dynamics and no coupling between
its three orthogonal axes. Consequently, using only four variables of the INS quality,
aiding value, and position and velocity correction factors, the covariances are
evaluated.
Comparing the SC and SA aided models performance, shows that the SC model

outperforms the SA model in predicting the full aided INS 15 error state model. This

Figure 6. SA error model correction factors for position measurement aiding.
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result was anticipated as the SC model is more accurate (because of the gyro and GM
error-states) relative to the full-model rather than the SA model.

4.3. Application to Additional Trajectories. Application of the model to two
additional trajectories with different characteristics shows the same prediction ability
as with the analyzed trajectory. In this trajectory, the stationary vehicle accelerated to

Figure 7. Position (LLH) and velocity (NED) components of the SC error model with position and
velocity aiding. Red (straight lines) and blue lines represents the analytical and computed square
root of the error covariance, respectively.

Figure 8. Position (LLH) and velocity (NED) components of the SC error model with position
aiding. Red (straight lines) and blue lines represents the analytical and computed square root of the
error covariance, respectively.
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v=60[km/h], and then kept a velocity in the range of 60–80 [km/h]. The vehicle climbed
along this trajectory *100 [m] in elevation. In the second trajectory, the stationary
vehicle accelerated to 40[km/h], and then kept a velocity in the range of 40–60 [km/h].
In order to evaluate the proposed approach in different noise levels, we used for the

second trajectory a noise-measurement-covariance which was five times bigger than

Figure 9. Position (LLH) and velocity (NED) components of the SA error model with position and
velocity aiding. Red (straight lines) and blue lines represents the analytical and computed square
root of the error covariance, respectively.

Figure 10. Position (LLH) and velocity (NED) components of the SC error model with position
and velocity aiding. Red (straight lines) and blue lines represent the analytical and computed square
root of the error covariance, respectively.
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the one used in trajectory 1, for both aidings and aided INS simplified error models.
However, only the results for position and velocity aiding are presented here. As can
be observed in Figures 9 and 10, for both SA and SC error models and both aiding
types, a similar behavior to the first trajectory was obtained even with the different
measurement noise level. That is, with the SA model and for both aiding types, the

Figure 11. Position (LLH) and velocity (NED) components of the SA error model with position
and velocity aiding. Red (straight lines) and blue lines represent the analytical and computed square
root of the error covariance, respectively.

Figure 12. Position (LLH) and velocity (NED) components of the SC error model with position
and velocity aiding. Red (straight lines) and blue lines represents the analytical and computed
square root of the error covariance, respectively.
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analytical evaluation of the height channel’s position and velocity components was
similar to the full 15 state error model, while the addition of velocity measurement
enabled the complete position vector to be evaluated analytically. With the SC model,
the position aiding was sufficient to predict the position and velocity states of the full
15 state model.
In order to evaluate the proposed approach in different noise levels, we used a one

hundred times bigger process noise covariance for the GM states for the third
trajectory. This was conducted for both aidings and both aided INS simplified error
models. However only the results for position and velocity aiding are presented here,
in Figures 11 and 12. As can be observed, the same performance as with the previous
trajectories was obtained even with the different measurement noise level. With the
SA model and for both aiding types the analytical evaluation of the height channel’s
position and velocity components was similar to the full error model, while the
addition of velocity measurement enabled the whole position vector to be evaluated
analytically. With the SC model, both aidings enabled prediction of the position and
velocity states of the full 15 state model.

5. CONCLUSIONS. Land navigation with aided-INS is needed for a variety of
applications. Evaluation of the navigation system in early stages of design and system
implementation enables the navigation system performance to be examined relative to
desired navigation accuracy. In this paper, an analytical insight into the parameters
involved in the fusion between INS and an aiding sensor was gained. To that end, two
simplified time-invariant aided-INS error models were employed. Using both models,
closed form solutions in terms of the continuous steady-state estimation error
covariance matrix were derived for evaluating the fusion performance. The closed
form expressions of the simplified error models were compared to numerical results
obtained from data collected in a field experiment, using the full 15 state error
model. Results show that the derived closed form expressions managed to predict the
error covariance behavior of the full error model. Even though these closed-from
expressions are valid only for small fractions of the Schuler period, they bring insight
into the effect of the various parameters involved in the fusion between the INS and
an aiding sensor. They may help the navigation system designer to better evaluate and
understand the connection of the parameters concerned in the fusion process. Future
work will examine the effect of a Schuler feedback loop when evaluating the closed
form expressions in medium and long term time periods. Additionally, since GPS is the
main aiding sensor for the INS derivation of closed form expressions, the non-linear
tightly coupled approach is another potential expansion of the presented models.

ANNEX A.THE CONTINUOUS KALMAN FILTER.
We consider here the linear stochastic system:

δẋ t( ) = F t( )δx t( ) + Γ t( )w t( ), δx t0( ) = δx0
δz t( ) = H t( )δx t( ) + v t( ) (A.1)

where:

δx(t) is the error state vector.
δz(t) is the measurement residual.
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w(t) and v(t) are the white Gaussian stochastic processes representing the system
driving noise and the measurement noise, respectively.

δx(t0) is a Gaussian random vector.

and:

E[xo] = xo,E[w(t)] = 0,E[v(t)] = 0,

E[w(t)w(t′)T ] = Qδ(t− t′),E[v(t)v(t′)T ] = Rδ(t− t′),
E[w(t)v(t′)T ] = 0,E[w(t)xTo ] = 0,E[v(t)xTo ] = 0,

E[(xo − E(xo))(xo − E(xo)T ] = Po.

(A.2)

All vectors and matrices are of appropriate dimensions. The Kalman filter (Zarchan
et al., 2005) is:

δ ˙̂x t( ) = F t( )δx̂ t( ) + K t( ) δz t( ) −H t( )δx̂ t( )[ ], δx̂ t0( ) = δx0 (A.3)
K t( ) = P t( )HT t( )R−1 (A.4)

Ṗ t( ) = F t( )P t( ) + P t( )FT t( ) + ΓQΓT − P t( )HTR−1HP t( ), P t0( ) = P0 (A.5)
The steady-state solution of the covariance, P, is the solution of the ARE:

0 = FP+ PFT + ΓQΓT − PHTR−1HP. (A.6)
With the steady-state solution obtained from Equation (9), we have the explicit

solution (Rusnak, 1998):

P(t) = P+ Φ(t, t0) P0 − P
( )

I +
∫t
t0

ΦT (τ, t0)HTR−1HΦ(τ, t0) P0 − P
( )

dτ







−1

ΦT (t, t0)

Φ̇(t, t0) = F − PHTR−1H
[ ]

Φ(t, t0)
(A.7)

ANNEX B. RELATIONSHIP OF NONLINEAR ALGEBRAIC
EQUATIONS IN TERMS OF THE NORMALIZED AND NON-
NORMALIZED COVARIANCES ELEMENTS.
The connection between the normalized and non-normalized steady-state error
covariance terms is given by:

Π11 = P11

2r0ω0
Π22 = P22

3r0ω3
0

Π12 = P12

2r0ω2
0

Π23 = P23

2r0ω4
0

Π13 = P13

r0ω3
0

Π33 = P33

2r0ω5
0

(B.1)
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The connection between the normalized and non-normalized steady-state gain
terms is given by:

Γ11 = K11

2ω0
Γ12 = K12r

2ω2
0

Γ21 = K21

2ω2
0

Γ22 = K22r
3ω3

0

Γ31 = K13

ω3
0

Γ32 = K32r
2ω4

0

(B.2)
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