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Abstract

Based on the work of Mauldin and Williams [‘On the Hausdorff dimension of some graphs’, Trans. Amer.
Math. Soc. 298(2) (1986), 793–803] on convex Lipschitz functions, we prove that fractal interpolation
functions belong to the space of convex Lipschitz functions under certain conditions. Using this, we obtain
some dimension results for fractal functions. We also give some bounds on the fractal dimension of fractal
functions with the help of oscillation spaces.
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1. Introduction and preliminaries

The fractal dimension is one of the major themes in Fractal Geometry. Estimation
of the fractal dimension of sets and graphs has received much attention (see [5, 6,
10]). The study of dimensions of graphs began with the Hausdorff dimension of
Weierstrass-type functions (see [12, 17]). In [17], Mauldin and Williams considered
such a function,

Wb(x) =
∞∑

n=−∞
b−αn[Φ(bnx + θn) − Φ(θn)],

where b > 1, 0 < α < 1, Φ has period one and θn is an arbitrary number, and
established results on the Hausdorff dimension when the function satisfies a
convex-Lipschitz condition. This is the major motivation for our work. By using the
definition of a convex Lipschitz function, we introduce the convex-Lipschitz space and
estimate the Hausdorff dimension and box dimension of a general fractal interpolation
function (FIF).

The concept of FIF was introduced by Barnsley [5] using the notion of an iterated
function system (IFS). Recent related work on dimension theory can be seen in
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[3, 4]. In [3], Bárány et al. applied a result of Hochman [11] on self-similar sets with
overlaps, to compute the Hausdorff dimension of self-affine sets. They also studied the
dimension theory of diagonally homogeneous triangular planar self-affine sets in [4].

1.1. Fractal interpolation functions. We outline the construction of FIF and refer
to [5, 6] for the details.

Assume that {(xn, yn) : n = 1, 2, . . . , N} is a set of interpolation points. We write
I = [x1, xN] and J = {1, 2, . . . , N − 1}, and let Ij = [xj, xj+1] for j ∈ J. Let Lj : I → Ij,
j ∈ J, be contractive homeomorphisms with

Lj(x1) = xj, Lj(xN) = xj+1, j ∈ J.

Let Fj : I × R→ R be a mapping satisfying, for j ∈ J, rj ∈ [0, 1):

(i) Fj(x1, y1) = yj, Fj(xN , yN) = yj+1;
(ii) |Fj(x, y) − Fj(x, y′)| ≤ rj|y − y′| for all x ∈ I and y, y′ ∈ R.

We consider

Lj(x) = ajx + bj, Fj(x, y) = αjy + qj(x).

Here, aj and bj can be determined by using the conditions Lj(x1) = xj, Lj(xN) = xj+1.
The scaling factor αj satisfies −1 < αj < 1 and we set |αj|∞ = maxj{αj}. The ‘join-up
conditions’, which are imposed on the maps Fj, are given by qj(x1) = yj − αjy1 and
qj(xN) = yj+1 − αjyN for all j ∈ J for suitable continuous functions qj : I → R. Let us
define Wj : I × R→ I × R for j ∈ J by

Wj(x, y) = (Lj(x), Fj(x, y)).

Then I := {I × R; W1, W2, . . . , WN−1} is the IFS. Barnsley [5] proved that I has a
unique invariant set which is the graph of a continuous function f : I → R, referred
to as a FIF, and that it satisfies the self-referential equation

f (x) = αj f (L−1
j (x)) + qj(L−1

j (x)), x ∈ Ij, j ∈ J.

There are various approaches to fractal dimensions of fractal functions. These
include the use of the mass-distribution principle, potential theory, Fourier transforms
and positive operators to compute or estimate the Hausdorff dimension of a set
[10, 18, 24]. Using the potential theoretic approach, Barnsley [5] gave results on the
Hausdorff dimension of an affine FIF. Falconer [10] also gave estimates for the
Hausdorff dimension of an affine FIF. Results on the Hausdorff dimension using
the positive operators approach are given in [18, 24]. This approach is used to discuss
the continuity of the Hausdorff dimension of the invariant set in [20].

Pandey et al. [19] considered the fractal dimension for set valued mappings using
the δ-covering method. Jha and Verma [13] gave results for the fractal dimensions
of fractal functions and some invariant sets. They estimated fractal dimensions for a
class of FIFs, known as α-fractal functions. Agrawal and Som [1, 2] gave results for
α-fractal functions on Sierpiński gaskets. Sahu and Priyadarshi [23] estimated the box
dimension of the graph of harmonic functions on Sierpiński gaskets.
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Ruan et al. [21] estimated the box dimension of a new class of linear FIFs by using
the δ-covering method. Additionally, they established a relationship between the order
of a fractional integral and box dimensions of two linear FIFs. Estimates of the box
dimension of bilinear fractal interpolation surfaces are given in [14]. A recurrent FIF
is the generalisation of a linear FIF and the graph of a recurrent FIF is the invariant
set of a recurrent IFS. Ruan et al. [22] gave the construction of a recurrent FIF under
certain assumptions and estimated the box dimension of the self-affine recurrent FIFs.

Work on the fractal dimension of fractional integrals can be seen as a connection
between fractal geometry and fractional calculus. The bounded variation property
of a continuous function plays a significant role in estimating the box dimension.
Using this approach, Liang [15] gave interesting results on the box dimension of the
Riemann–Liouville fractional integral. He proved that if a function f is continuous
and of bounded variation on [0, 1], then dimB( f ) = 1 and the box dimension of the
Riemann–Liouville fractional integral corresponding to f is also = 1 [16]. Liang
estimated the exact box dimension of the Riemann–Liouville fractional integral of
one-dimensional continuous functions. We gave the fractal dimension of the mixed
Riemann–Liouville fractional integral on a rectangular region in [8] and estimated
fractal dimensions for various choices of continuous functions such as Hölder
continuous function, functions having box dimension two and unbounded variational
continuous functions.

In Sections 2 and 3, we give dimension results on convex-Lipschitz space and
oscillation space, respectively.

1.2. Definitions. We complete Section 1 with some definitions and terminologies.
For further definitions related to the fractal dimension, we refer to [10].

Let F � ∅ be a subset of Rn. The diameter of F is given by

|F| = sup{‖x − y‖2 : x, y ∈ F}.

If {Fi} is a countable (or finite) collection of sets having diameter at most δwhich cover
the set E ⊆ Rn, then we say that {Fi} is a δ-cover of E. For δ > 0 and a nonnegative real
number s, we define

Hs
δ(E) = inf

{ ∞∑
i=1

|Fi|s : {Fi} is a δ-cover of E
}
. (1.1)

DEFINITION 1.1. The s-dimensional Hausdorff measure of E is Hs(E) = limδ→0 Hs
δ(E).

DEFINITION 1.2 (Hausdorff dimension). Let s ≥ 0 and E ⊆ Rn. The Hausdorff dimen-
sion of E is defined as

dimH(E) = inf{s : Hs(E) = 0} = sup{s : Hs(E) = ∞}.

DEFINITION 1.3 (Box dimension). Let E ⊆ Rn be bounded and nonempty and let
Nδ(E) be the smallest number of sets of diameter at most δ which cover E. The lower
box dimension of E is
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dimB(E) = lim inf
δ→0

log Nδ(E)
− log δ

and the upper box dimension of E is

dimB(E) = lim sup
δ→0

log Nδ(E)
− log δ

.

If both, lower and upper box dimensions are the same, then that quantity is called the
box dimension of E and it is given by

dimB(E) = lim
δ→0

log Nδ(E)
− log δ

.

2. Convex-Lipschitz space

In this section, first we show that fractal functions associated with some IFS belong
to the class of convex Lipschitz functions. Then we estimate the Hausdorff dimension
and the box dimension of fractal functions in this class.

DEFINITION 2.1 [17]. Let θ : R+ → R+. A function f is called convex Lipschitz of
order θ on an interval [a, b] provided there exists a constant M such that

|Δ(x, y, δ)| := | f (x + δy) − (δ f (x + y) + (1 − δ) f (x))| ≤ Mθ(y),

for a ≤ x < x + y ≤ b and 0 ≤ δ ≤ 1. The convex-Lipschitz space of order θ is

Vθ(I) = { f : I → R : f is convex Lipschitz of order θ}.
It can be seen that Vθ is a vector space over the field R. For f ∈ Vθ(I), we define

‖ f ‖Vθ = ‖ f ‖∞ + [ f ]∗, where

[ f ]∗ = sup
a≤x<x+y≤b

| f (x + δy) − (δ f (x + y) + (1 − δ) f (x))|
θ(y)

.

It is easy to check that ‖·‖Vθ defines a norm on Vθ(I).

LEMMA 2.2. If f : I → R and ( fk) is a sequence of continuous functions which
converges uniformly to f, then [ fn − f ]∗ ≤ lim infk→∞[ fn − fk]∗.

PROOF. By using the triangle inequality,
| fn(x + δy) − f (x + δy) − [δ fn(x + y) − δ f (x + y) + (1 − δ) fn(x) − (1 − δ) f (x)]|

θ(y)

= lim
k→∞

1
θ(y)
{| fn(x + δy) − fk(x + δy)

− [δ fn(x + y) − δ fk(x + y) + (1 − δ) fn(x) − (1 − δ) fk(x)]|}

≤ lim inf
k→∞

sup
a≤x<x+y≤b

1
θ(y)
{| fn(x + δy) − fk(x + δy)

− [δ fn(x + y) − δ fk(x + y) + (1 − δ) fn(x) − (1 − δ) fk(x)]|}.
This completes the proof. �
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THEOREM 2.3. The space (Vθ(I), ‖·‖Vθ ) is a Banach space.

PROOF. Let ( fn) be a Cauchy sequence with respect to ‖·‖Vθ in Vθ(I). This means that
for any ε > 0, there exists a natural number n0 such that ‖ fn − fk‖Vθ < ε for all n, k ≥ n0.

From the definition of the norm ‖·‖Vθ , it follows that ‖ fn − fk‖∞ < ε for all n, k ≥ n0.
Because (C(I), ‖·‖∞) is a Banach space, there is a continuous function f such that
‖ fn − f ‖∞ → 0 as n→ ∞. We claim that f ∈ Vθ(I) and ‖ fn − f ‖Vθ → 0 as n→ ∞.

Let n ≥ n0. In view of Lemma 2.2,

‖ fn − f ‖Vθ = ‖ fn − f ‖∞ + [ fn − f ]∗ ≤ lim inf
k→∞

{‖ fn − fk‖∞ + [ fn − fk]∗}

≤ sup
k≥n0

‖ fn − fk‖vθ ≤ ε.

Hence, we obtain f − fn0 ∈ Vθ(I). Consequently, f = f − fn0 + fn0 ∈ Vθ(I) and we
have ‖ fn − f ‖Vθ ≤ ε for all n ≥ n0. This completes the proof. �

DEFINITION 2.4 [10, Section 2.5]. Let E ⊂ Rn and suppose that the dimension
function θ : R+ → R+ is increasing and continuous. Analogously to (1.1), we define

Hθδ(E) = inf
{∑

θ(|Fi|) : {Fi} is a δ-cover of E
}
.

This leads to a measure, by taking Hθ(E) = limδ→0 Hθδ(E). If θ(t) = ts, it is the usual
definition of an s-dimensional Hausdorff measure.

THEOREM 2.5 [17]. Let θ : R+ → R+ be a continuous map such that:

(i) θ(t) > 0 for t > 0;
(ii) lim supt→0 t/θ(t) < ∞ and
(iii) there is a β ≥ 0 such that limt→0 θ(ct)/θ(t) = cβ for all c > 0.

If f is a continuous map on [0, 1] and also convex Lipschitz of order θ, then f has
σ-finite h measure, where h(y) = y2/θ(y).

THEOREM 2.6. Under the hypotheses of the above theorem:

• if θ(y) = yα then dimH(Graph( f )) ≤ dimB(Graph( f )) ≤ 2 − α;
• if θ(y) = y ln(1/y) then dimH(Graph( f )) = dimB(Graph( f )) = 1.

PROOF. The results follow from Theorem 2.5 and the definitions of the Hausdorff
measure and Hausdorff dimension. �

THEOREM 2.7. Let qj ∈ Vθ(I) and αj ∈ (−1, 1). Then the associated fractal interpola-
tion function f is in Vθ(I) provided that max{|αj|∞, maxj |αj|θ(Y)/θ(ajY)} < 1.

PROOF. We first define Vθ∗ (I) := { f ∈ Vθ : f (x1) = y1, f (xN) = yN}. Since Vθ∗ (I) is a
closed subset of Vθ(I), it follows that Vθ∗ (I) is a complete metric space with respect to
the metric induced by the norm ‖ · ‖Vθ . Let us define a map T : Vθ∗ (I)→ Vθ∗ (I) by

(T f )(x) = αj f (L−1
j (x)) + qj(L−1

j (x)), x ∈ Ij, j ∈ J.
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Here, Lj(x) = ajx + bj and L−1
j (x) = x/aj − bj. Set X = x/aj − bj and Y = y/aj. The

mapping T is well defined and, for f , g ∈ Vθ∗ (I),

‖T f − Tg‖Vθ = ‖T f − Tg‖∞ + [T f − Tg]∗

≤ |αj|∞‖ f (X) − g(X)‖∞ +max
j

sup
a≤aj(X+bj)<aj(X+Y+bj)≤b

|αj||( f − g)(X + δY) − (δ( f − g)(X + Y) + (1 − δ)( f − g)(X)|
θ(Y)

× θ(Y)
θ(ajY)

≤ |αj|∞‖ f − g‖∞ +max
j
|αj|
θ(Y)
θ(ajY)

[ f − g]∗

≤ max
{
|αj|∞, max

j
|αj|
θ(Y)
θ(ajY)

}
‖ f − g‖Vθ .

Since max{|αj|∞, maxj |αj|θ(Y)/θ(ajY)} < 1, the mapping T is a contraction on Vθ∗ (I).
From the Banach fixed point theorem, T has a unique fixed point f ∈ Vθ∗ (I). From
T( f ) = f , we can write

f (Lj(x)) = αj f (Lj(x)) + qj(x) for x ∈ I, j ∈ J. (2.1)

For j ∈ J := {1, 2, 3, . . . , N − 1}, let us define Wj : I × R→ I × R by

Wj(x, y) = (Lj(x),αjy + qj(x)). (2.2)

We have shown above that the graph of f is an attractor of the IFS {I × R; Wj, j ∈ J}. By
using the proof of Theorem 1 in [5], we can show that the attractor associated with this
IFS is the graph of f. In fact, it is the graph of the fractal perturbation of f. To see this,
we take the functional equation (2.1), the definition of Wj from (2.2) and I =

⋃
j∈J Lj(I),

and get
⋃
j∈J

Wj(Graph( f )) =
⋃
j∈J
{(Lj(x), f (Lj(x))) : x ∈ I}

=
⋃
j∈J
{(x, f (x)) : x ∈ Lj(I)} = Graph( f ),

completing the proof. �

By combining Theorems 2.6 and 2.7, we can estimate the fractal dimension of
certain fractal interpolation functions.

THEOREM 2.8. Let qj ∈ Vθ(I) and αj ∈ (−1, 1) be such that

max{|αj|∞, maxj |αj|θ(Y)/θ(ajY)} < 1.

Then we have the following bounds for the fractal dimension of the graph of the
associated fractal interpolation function f.
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• If θ(y) = yα, then dimH(Graph( f )) ≤ dimB(Graph( f )) ≤ 2 − α.
• If θ(y) = y ln(1/y), then dimH(Graph( f )) = dimB(Graph( f )) = 1.

EXAMPLE 2.9 (Weierstrass-type function). For more details on this example, we refer
to [17]. Let Φ : R→ R be a bounded function which is convex Lipschitz of order 1.
For b > 1, 0 < α < 1, define

f (x) =
∞∑

n=0

b−αnΦ(bnx + θn).

Then f is convex Lipschitz of order α. Consequently, dimH(Graph( f )) ≤ 2 − α. If
α = 1, then dimH(Graph( f )) = 1.

REMARK 2.10. Note that any continuous function f : [a, b]→ R satisfies the
convex-Lipschitz condition with θ(y) = constant. For any continuous function f, we
have 1 ≤ dim(Graph( f )) ≤ 2. So, for constant θ, we cannot conclude any nontrivial
dimension estimates.

3. Oscillation spaces

We refer to [7, 9] for more details on oscillation spaces. Let Q ⊂ [0, 1] be a p-adic
subinterval, that is, Q = [ jp−m, (j + 1)p−m] for some integers j and m with m ≥ 0 and
0 ≤ j < p−m. The oscillation of a continuous function g : [0, 1]→ R over Q is given by

Rg(Q) = sup
x1,x2∈Q

|g(x1) − g(x2)| = sup
x1∈Q

g(x1) − inf
x2∈Q

g(x2),

and the total oscillation of order m is given by

Osc(m, g) =
∑
|Q|=p−m

Rg(Q),

where the sum is taken over all p-adic intervals Q ⊂ [0, 1] having length |Q| = p−m.
The oscillation space Vβ(I), β ∈ R, is defined by

Vβ(I) =
{
g ∈ C(I) : sup

m∈N

Osc(m, g)
pm(1−β) < ∞

}
.

We also define

Vβ−(I) = {g ∈ C(I) : g ∈ Vβ−ε(I) for all ε > 0}
and

Vβ+(I) = {g ∈ C(I) : g � Vβ+ε(I) for all ε > 0}.
THEOREM 3.1 [7, Theorem 4.1]; see also [9]. For a real-valued continuous function g
which is defined on I and 0 < β ≤ 1,

dimB(Graph(g)) ≤ 2 − β if and only if g ∈ Vβ−(I)

and

dimB(Graph(g)) ≥ 2 − β if and only if g ∈ Vβ+(I).
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FIGURE 1. Plot for α = 0.0.

THEOREM 3.2. Let qj ∈ Vβ(I), αj ∈ (−1, 1) and max{|αj|∞,
∑

j∈J |αj|∞} < 1. Then the
fractal interpolation function f ∈ Vβ(I). Moreover, dimB(Graph( f )) ≤ 2 − β.

PROOF. Let Vβ∗ (I) = { f ∈ Vβ(I) : f (x1) = y1, f (xN) = yN}. It can be seen that the space
Vβ∗ is a closed subset of Vβ(I). It follows that Vβ∗ (I) is a complete metric space with
respect to the metric induced by the norm ‖ · ‖Vβ . Let us define a map T : Vβ∗ (I)→ Vβ∗ (I)
by

(T f )(x) = αj f (L−1
j (x)) + qj(L−1

j (x)), x ∈ Ij, j ∈ J.

Set X = x/aj − bj, so that L−1
j (x) = X. Then T is well defined and, for g, h ∈ Vβ∗ (I),

‖T f − Tg‖Vβ = ‖T f − Tg‖∞ + sup
m∈N

Osc(m, T f − Tg)
pm(1−β)

≤ |αj|∞‖ f (X) − g(X)‖∞ +
∑
j∈J
|αj|∞ sup

m∈N

Osc(m, f (X) − g(X))
pm(1−β)

≤ max
{
|αj|∞,

∑
j∈J
|αj|∞
}
‖ f − g‖Vβ .

Since max{|αj|∞,
∑

j∈J |αj|∞} < 1, the mapping T is a contraction on Vβ∗ (I). From the
Banach fixed point principle, T has a unique fixed point f ∈ Vβ∗ (I), completing the
proof. �

3.1. Graphs of fractal interpolation functions. Figures 1–4 give approximate
graphs of some fractal interpolation functions.
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FIGURE 2. Plot for α = 0.3.
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FIGURE 3. Plot for α = 0.6.

For this example, let g = 19 + 8 cos(3x) and q(x) = (1 − α(1 + x2 − x)) · g(x),
x ∈ [0, 1]. We show the graphs of the fractal interpolation function f for scaling
factors α = 0.0, 0.3, 0.6, 0.9 in Figures 1–4 respectively.
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