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ABSTRACT

Longevity swaps have been one of the major success stories of pension scheme
de-risking in recent years. However, with some few exceptions, all of the trans-
actions to date have been bespoke longevity swaps based upon the mortality
experience of a portfolio of named lives. In order for this market to start to meet
its true potential, solutions will ultimately be needed that provide protection for
all types of members, are cost effective for large and smaller schemes, are trad-
able, and enable access to the wider capital markets. Index-based solutions have
the potential to meet this need; however, concerns remain with these solutions.
In particular, the basis risk emerging from the potential mismatch between the
underlying forces of mortality for the index reference portfolio and the pension
fund/annuity book being hedged is the principal issue that has, to date, pre-
vented many schemes progressing their consideration of index-based solutions.
Two-population stochastic mortality models offer an alternative to overcome
this obstacle as they allow market participants to compare and project the mor-
tality experience for the reference and target populations and thus assess the
amount of demographic basis risk involved in an index-based longevity hedge.
In this paper, we systematically assess the suitability of several multi-population
stochastic mortality models for assessing basis risks and provide guidelines on
how to use these models in practical situations paying particular attention to
the data requirements for the appropriate calibration and forecasting of such
models.
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1. INTRODUCTION

Recent years have seen a huge growth in longevity risk transfer, both in the
insurer to reinsurer market, and from pension schemes to the insurance market.
For example, in 2014, $36.6bn of longevity risk was transferred from pension
schemes to insurers and reinsurers via buy-ins, buy-outs and longevity swaps. Of
this, $25.4bn related to longevity only transactions (longevity swaps), more than
double the volume written in the preceding 3 years (Hymans Robertson LLP,
2015). An effective, growing market with sufficient capacity to meet demand
would be to the benefit of all participants, whether to enable business to be done,
or to manage risk.

To date, most transactions have been “bespoke” deals, with the payouts
linked directly to the actual experience or lifespans of the individuals being cov-
ered. But index-based solutions — where the payouts are linked to a longevity
index or metric based on an external reference population— are possible. They
have the potential to provide important benefits: lower costs, faster execution,
potential for liquidity and greater transparency.

In its simplest form, an index-based longevity swap involves a payment to
the pension scheme or insurer that is based on the longevity experience of a
reference index. An index-based swap provides a means to obtain (partial) pro-
tection from longevity risk both for pensioners but also deferred pensioners who
are generally not covered by the “bespoke” transactions. In the case of life insur-
ers, they offer a potentially flexible way to manage exposure to longevity risk, or
to facilitate a more capitally optimal balance between longevity and mortality
risk. However, index-based swaps do not provide a perfect risk reduction due
to the presence of basis risk, which arises from the differences in the mortality
experiences of the reference population of the index and of the target population
being hedged. As a result, the index-based payments will not exactly match the
actual annuity payments being made by the insurer or pension scheme.

There are three primary sources of basis risk driving the mismatch between
the insurer or pension scheme liabilities and the longevity index hedge (LLMA,
2012):

• Structuring risk due to the payoff of the hedging instruments being differ-
ent to that of the portfolio: for example, the hedging instrument making an-
nual payments whereas the portfolio pays annuities or pensions monthly, the
hedge may be of shorter duration than the liabilities or it may contain some
option-like features such as caps/floors or other non-linear payoff patterns.

• Sampling risk arising from the random outcomes in the mortality of the indi-
vidual lives within the portfolio and the index population meaning the actual
mortality experienced by the two populations will not be the same, other than
by chance. The impact of sampling risk may be aggravated by concentration
risk affecting the portfolio.

• Demographic risk owing to demographic and socio-economic differences
in the composition of the actual portfolio being hedged and the index
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population referenced in the hedge, leading to different underlying mortality
rates at the current moment — and in the future.

Well-established approaches for modelling the first two of these sources of
basis risk exist. Structuring risk can be assessed by simulating the cashflows
under the portfolio and the payoffs under the instrument, whilst sampling risk
can be modelled by simulating the outcomes for the respective populations.

In contrast, there is no well-established approach for assessing demographic
basis risk. Yet, it is this risk which worries (re)insurers and pension schemes
when they consider entering index-based longevity transactions (LLMA, 2012).
The absence of an appropriate approach for quantifying such risk makes it very
difficult to assess whether such a transaction looks good value for money, or
what impact the transaction would have on the insurer’s or pension scheme’s
overall risk profile and hence capital/funding requirements.

In the academic literature, there have been a few contributions setting
out possible approaches for quantifying longevity basis risk. Coughlan et al.
(2011) propose a comprehensive framework for assessing the effectiveness of a
longevity hedge, in which the first and key step entails a careful analysis of the
historical experiences of the reference and target population to get an informed
understanding of the mortality differences between the two populations. Li and
Hardy (2011) investigate the use of a number of multipopulation extensions of
the Lee–Carter model (Lee and Carter, 1992) for the assessment of basis risk
and use the augmented common factor model of Li and Lee (2005) to quantify
the hedge effectiveness of an index-based q-forward longevity hedge. Li et al.
(2015) propose a systematic approach for the construction of two-population
mortality models that can be used for the quantification of the population ba-
sis risk in a standardised longevity hedge. In addition, recent years have seen
a boom in the actuarial and demographic literature looking at the modelling
of mortality in two (or more) related populations (e.g. Li and Lee, 2005; Plat,
2009b; Cairns et al., 2011a; Dowd et al., 2011; Jarner and Kryger, 2011). These
two-population models, although not always proposed with the specific aim of
assessing longevity basis risk, have the potential for allowing market partici-
pants to compare and project the mortality experience for the reference and tar-
get populations and thus assess the amount of demographic basis risk involved
in an index-based longevity hedge. However, often the portfolio experience data
will be sparse, posing a challenge for the accurate calibration and projection of
the two-population model.

Our purpose in this paper is threefold. First, we provide a systematic and
structured overview of existing multipopulation mortality modelling method-
ologies (c.f. Figure 1) scattered within the actuarial, demographic and statistical
literature.

Our second goal is to summarise existing and formulate new criteria that a
two-populationmortality model should satisfy in order to be suitable for assess-
ing basis risk.
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Finally, our third goal is to systematically evaluate, contrast and select the
model(s) that satisfy these criteria. We have done that by using prototype pen-
sion schemes with different size, history length and socio-economic composi-
tion. To the best of our knowledge, such a comprehensive analysis covering
different characteristics of pension schemes and many alternative models have
not been performed before. Our main finding is that two-populations mortality
models are efficiently applied only if the scheme size exceeds 20,000–25,000 lives
and its history length is at least 8–10 years. Given these conditions are satisfied,
we found that the most appropriate models to be used for assessing basis risk
are M7–M5 and CAE+Cohorts (see Table 3).

We believe that providing such an overview and comparison is an important
contribution that will help researchers and industry practitioners interested in
longevity risk modelling. Furthermore, we have shaped the framework under
which basis risk assessment methodologies can reliably be used. Therefore, we
have offered market participants involved in longevity transactions an invalu-
able analytical tool.

The paper is structured as follows. In Section 2, we introduce some notation.
In Section 3, we provide an overview of the multipopulation mortality models
that have been proposed in the literature. Then, to facilitate the comparison of
models, we discuss in Section 4 a general modelling framework under which
most two-population mortality models can be accommodated. In Section 5, we
draw from the literature comparing single-population mortality models to in-
troduce a number of criteria that a good and practical two-population model
for basis risk assessment should satisfy. We use these criteria in Section 6 to sys-
tematically evaluate the appropriateness of the possible two-population models
for basis risk assessment. First, in Section 6.1, we evaluate the models against
those criteria which relate to the theoretical properties of a model and can be
evaluated without reference to a specific dataset. Then, in Section 6.2, we fo-
cus on those criteria which can only be evaluated after a model has been fitted
to data. This systematic evaluation of the models will allow us to identify the
main features of a good model for basis risk assessment and discuss the data
requirements for the appropriate calibration and forecasting of such a model.
Having identified some reasonable models for basis risk assessment, we examine
in Section 7 the performance of these models in some simple illustrative hedge-
effectiveness evaluation exercises, paying particular attention to the impact that
different volumes of data may have on the assessment of basis risk. Finally, we
conclude in Section 8 with a discussion of our main findings and future areas of
research.

2. NOTATION

We denote by R the reference population backing the hedging instrument and
by B the book population whose longevity risk is to be hedged. We assume
that for the reference population, the number of deaths at age x last birthday in
calendar year t, DR

xt, and the matching initial exposed to risk, ER
xt, are available.
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The corresponding 1-year death rate for an individual in the reference popula-
tion aged x last birthday and in calendar year t, denoted qRxt, can be estimated as
q̂ Rxt = DR

xt/E
R
xt . Similarly, the corresponding quantities for the book population

are denoted DB
xt, E

B
xt and q̂

B
xt = DB

xt/E
B
xt .We assume that these data are available

for a given set of ages and given numbers of years that can differ between the
reference and the book populations. More precisely, we assume that DR

xt, E
R
xt

are available for consecutive ages x = x1, . . . , xl and consecutive calendar years
t = t1, . . . , tnR, while in the book, they are available for ages x = x1, . . . , xm and
calendar years t = u1, . . . , unB . Typically, data for the reference population will
be available over a longer horizon than in the book, that is nR ≥ nB. Also, the
set of calendar years of data in the book may be a subset of the corresponding
calendar years in the reference population, i.e. we may find that unB �= tnR. Fur-
ther, the ages available within the book may be a subset of those available in the
reference population.

3. OVERVIEW OF AVAILABLE TWO-POPULATION MORTALITY MODELS

In order to be able to assess basis risk, we need a model that is able to capture
the mortality trends in the reference population backing the hedging instrument
and in the book population whose risk is to be hedged. That is to find a suit-
able two-population model for qRxt and q

B
xt which produces consistent stochastic

forecasts of future mortality.
Many models have been proposed in the literature to represent the mortal-

ity evolution of two or more related populations. The majority of such models
extend known single-population models by specifying the correlation and in-
teraction between the involved populations. Figure 1 contains a schematic rep-
resentation of the multi-population models currently available in the published
literature, broadly grouped according to three main categories, following the
single-population model they extend.

The first ideas for modelling multiple populations go back to the seminal
work of Carter and Lee (1992), who suggested three possible ways of extend-
ing their single-population model (Lee and Carter, 1992) in order to forecast
differentials in U.S. mortality between men and women. The first and simplest
approach suggested by Carter and Lee (1992) is to use independent Lee–Carter
models for each population, and, if desired, to study in a later stage the depen-
dence between the population-specific period effects. A second approach, the
Joint-κ model, assumes that a single-period component κt drives the mortal-
ity change for all the populations but assumes that the age-specific mortality
pattern and the age-specific responses to changes in the level of mortality are
population specific. The third approach estimates the populations jointly using
co-integration techniques.

Formally, the Joint-κ model assumes that the central death rate at time t for
age x in population i , mi

xt, is given by

logmi
xt = αix + β i

xκt. (1)
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FIGURE 1: Overview of the multipopulation mortality modelling literature.
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Several other models proposed in the literature can be thought of as re-
stricted versions of the Joint-κ model in Equation (1). These include the three-
way Lee–Carter model of Russolillo et al. (2011) which assumes that β i

x = βxλ
i ;

the common factor model introduced by Li and Lee (2005) where β i
x = βx; and

the stratified Lee–Carter model proposed in Butt and Haberman (2009) where
it is assumed that αix = αx + αi and β i

x = βx.
The structure of the Joint-κ model and of its restricted versions imply that

mortality improvements are perfectly correlated across populations. Moreover,
the common factor and stratified Lee–Carter models imply the same mortality
improvements for all population at all times. However, since this is an unrealistic
assumption for most datasets, Li and Lee (2005) have added a population spe-
cific factor to the common factor model, in the so-called augmented common
factor model:

logmi
xt = αix + βxκt + β i

xκ
i
t . (2)

In Equation (2), the term β i
xκ

i
t captures the deviations of the rate of mortality

change of population i from the long-term trend in mortality change implied by
the common factor, βxκt. In order to avoid divergence in the projectedmortality,
Li and Lee (2005) assume that the κ it factors can be modelled using stationary
processes such as a first-order autoregressive process, AR(1). Under this mod-
elling assumption, the mortality rates of the different populations may wander
apart in the short and medium terms, but tend to converge in the long run.
The Augmented Common Factor has spawned several variants and extensions.
Hyndman et al. (2013) have introduced the product-ratio method which extends
the Augmented CommonFactor model by adopting a functional data approach
and allowingmore than one period index for the modelling of both the common
factor and of the population-specific factors. Li (2012), who also considers mul-
tiple period indexes, uses a Poisson setting to estimate the parameters of the
augmented common factor model instead of the singular value decomposition
approach originally employed by Li and Lee (2005). Recently, Yang et al. (2016)
have extended the Poisson Augmented Common Factor to allow for possible
cohort effects. Villegas and Haberman (2014) have considered a similar cohort
variant of the Augmented Common Factor for the purpose of studying socio-
economic differences in mortality.

As discussed in Li andHardy (2011), to implement a two-population version
of the co-integrated Lee–Carter model suggested by Carter and Lee (1992), one
must first fit two independent single-population Lee–Carter models to each of
the populations,

logmi
xt = αix + β i

xκ
i
t , i = 1, 2, (3)

and then model jointly the period effects of the populations, κ1
t and κ2

t , with a
co-integrated bivariate process under the assumption of the existence of a com-
mon stochastic long-term trend linking the mortality of the two populations. In
the same vein, Yang and Wang (2013) fit independent single-population Lee–
Carter models to multiple populations and then model simultaneously the pe-
riod effects of the different populations using a Vector Error Correction Model
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(VECM). In order to impose further consistency in the forecast of the two pop-
ulations, Zhou et al. (2014) assume in (3) that both populations share the same
age-sensitivity term, i.e. β i

x = βx. For modelling the period indexes κ1
t and

κ2
t , Zhou et al. (2014) consider three methods: a random walk with drift for

κ1
t plus an AR(1) for κ2

t − κ1
t (abbreviated RWAR by the authors), a vector

autoregressive model (VAR); and a VECM. Similarly to Zhou et al. (2014),
Kleinow (2015) has proposed a multiple population Common-Age-Effect
model in which the age-sensitivity terms (age effects) are common to all the
populations.

Another alternative for modelling multi-population mortality is to extend
the widely used single-population Cairns–Blake–Dowd (CBD) model of mor-
tality (Cairns et al., 2006). This approach has recently been considered by Li
et al. (2015) who introduce two-population versions of the CBD model and its
variants. For instance, in a full two-population version of the M7 model (the
CBDmodel with cohort and quadratic effects proposed in Cairns et al. (2009)),
the 1-year death rate for a person aged x at time t in population i , qixt, is given
by

logit qixt = κ
(i,1)
t + (x− x̄)κ(i,2)

t + (
(x− x̄)2 − σ̂ 2

x

)
κ

(i,3)
t + γ i

t−x, i = 1, 2, (4)

where x̄ is the average age in the data and σ̂ 2
x is the average value of (x− x̄)2. Li

et al. (2015) also set out a systematic top-down procedure to evaluate if some
of the stochastic factors in the two-population model can be shared by the two
populations (e.g. by assuming in (4) that κ

(1, j)
t = κ

(2, j)
t for some j ∈ {1, 2, 3}

or that γ 1
t−x = γ 2

t−x). For model forecasting Li et al. (2015), consider the same
three approaches used by Zhou et al. (2014).

In two closely linked studies looking at the mortality dynamics of a pair
of related populations, Cairns et al. (2011a) and Dowd et al. (2011) have pro-
posed the use of a two-population version of the Age–Period–Cohort (APC)
model:

logmi
xt = αix + κ it + γ i

t−x, i = 1, 2. (5)

In both studies, the spreads between the state variables underlying the mortal-
ity models of each population are modelled as mean-reverting processes (e.g.
an AR(1)) allowing different short-run trends in the mortality rates, but paral-
lel long-run improvements. Cairns et al. (2011a) employ a Bayesian framework
permitting a single stage estimation of the unobservable state variables and the
parameters of the stochastic process driving them.Dowd et al. (2011) use a plan-
etary analogy in which the mortality of the two populations are attracted to
each other by a dynamic gravitational force dependent on the relative size of the
populations.

There are other studies examining the joint modelling of two populations
which do not lie under the category of pure extensions of theLee–Carter orCBD
models. Several of these studies pursue a relative approach whereby a single-
population model is first fitted to one of the populations and then a separate
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model is fitted to the ratio of the mortality rates in the two populations. For
instance, Jarner and Kryger (2011) have proposed a methodology for modelling
the mortality experience of a small population in conjunction with the mor-
tality experience of a much larger reference population. They assume that the
reference population follows a deterministic long-run trendwhich is shared with
the small population, and then model short-term deviations of the small popu-
lation from that trend using a multivariate stationary time series. Similarly, Wan
and Bertschi (2015) model the larger population using the multi-factor single-
populationmodel proposed by Plat (2009a), and thenmodel the spread between
the larger population and the smaller population with a three-factor Lee–Carter
model. In a related study, Plat (2009b) introduces amodel for forecasting portfo-
lio specific mortality alongside the relevant national population. In this model,
portfolio specific mortality forecasts are obtained by combining national mor-
tality projections derived from a standard single-population CBD model, with
forecasts of the ratio between portfolio mortality rates and national popula-
tion mortality rates. It is worth noting that Jarner and Kryger (2011), Wan and
Bertschi (2015) and Plat (2009b) adopt the same approach for modelling the
factors driving the dynamics of the mortality ratios and use a VAR model of
order 1, VAR(1), so to avoid any long-term divergence of the mortality in the
two populations.

Some authors have considered the use in a multipopulation setting of other
well-known single-population modelling approaches. For instance, Biatat and
Currie (2010) extend to two populations the P-spline methodology (Currie et
al., 2004) that has been successfully applied in the single-population case, while
Hatzopoulos and Haberman (2013) and Ahmadi and Li (2014) use the frame-
work of generalised linear models (GLM) to obtain coherent morality forecasts
for multiple populations.

4. MODELLING THE REFERENCE AND THE BOOK POPULATION: A GENERAL
FORMULATION

Along the same lines of the general formulation of single-population models
considered in Hunt and Blake (2015b) and Villegas et al. (2017), we have iden-
tified a general framework under which most two population models that have
been introduced in the literature can be accommodated. However, in order to
facilitate the comparison between models, the way such models are proposed
here may slightly differ from their original formulation.

As in Jarner and Kryger (2011), we choose a relative approach where the ref-
erence population is modelled first, and then the book mortality dynamics are
specified so as to incorporate features from the reference. This relative approach
allows a data mismatch between the reference and the book and is well suited to
the usual situation of the reference population being considerably larger than
the book population. Moreover, since single-population models for the refer-
ence population are readily available and extensively studied, it allows the focus
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of modelling to be on making an informed decision for the book part of the
model whilst retaining a good fit to the reference population.

4.1. Reference population

Following Villegas et al. (2017), a general model for the reference population
can be written as1

DR
xt ∼ Bin(ER

xt, q
R
xt),

logit qRxt = αR
x +

N∑
j=1

β( j,R)
x κ

( j,R)
t + γ R

t−x. (6)

In Equation (6), the term αR
x determines the reference mortality level for age

group x; the integer N indicates the number of age-period terms describing the
mortality trend for the reference population; each time index κ

( j,R)
t contributes

to specifying the reference mortality trend with each coefficient β
( j,R)
x dictating

how mortality in the corresponding age group x reacts to a change in the time
index κ

( j,R)
t ; and the term γ R

t−x accounts for the cohort effect in the reference
population.

4.2. Book population

Given the reference population model, the mortality of the book population is
then specified through

DB
xt ∼ Bin(EB

xt, q
B
xt),

logit qBxt − logit qRxt = αB
x +

M∑
j=1

β( j,B)
x κ

( j,B)
t + γ B

t−x. (7)

Note that we are modelling the difference in the (logit of) mortality in the book
and the reference populations. Therefore, in Equation (7), the term αB

x deter-
mines the mortality level differences of the book population compared to the
reference population for age group x with the mortality level in the book being
αR
x +αB

x ; the integer M (generally less than or equal to N) indicates the number
of age-period terms describing the mortality trend differences between the book
population and the reference population; each time index κ

( j,B)
t contributes in

shaping the difference in mortality trends with each coefficient β
( j,B)
x dictating

how mortality differences for age group x react to a change in the time index
κ

( j,B)
t ; and the term γ B

t−x accounts for the differences in cohort effect in the two
populations, with the cohort effect in the book being γ R

t−x + γ B
t−x.

Depending on how themodel is specified, identification constraintsmay have
to be added to (6) and (7) to ensure uniqueness of the parameter estimates. The
estimation of the parameters of the model can be performed using maximum
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likelihood in two stages whereby the reference population part of the model
is estimated in a first stage and then, conditional on the reference population
parameters, the book population part of the model is estimated in a second
stage.2

4.3. Time series dynamics

The modelling is completed by specifying the dynamics of the period indices
and the cohort terms which are needed for forecasting and simulating future
mortality. Although alternatives have been explored by some authors (see e.g.
Zhou et al., 2014) for the choice of the time series used in the dynamics, we stick
to those commonly used in the literature.

Starting with the reference population, we assume that the period index is
modelled as a multivariate random walk with drift (MRWD)

κR
t = d + κR

t−1 + ξ Rt , ξ Rt ∼ N(0, �R), κR
t =

(
κ

(1,R)
t , . . . , κ

(N,R)
t

)′
,

and that the cohort index is modelled as an integrated auto-regressive process
ARIMA(1, 1, 0)

	γ R
c = φ0 + φ1	γ R

c−1 + εRc , εRc ∼ N(0, σ 2
R),

where d is an N-dimensional vector of drift parameters; 	γ R
c denotes γ R

c −γ R
c−1

with c = t− x; φ0 and φ1 are the drift and autoregressive parameters associated
with the cohort effect γ R

c ; and �R is the N × N variance–covariance matrix of
the multivariate white noise ξ Rt .

As for the book population, we follow the assumption commonly made in
the literature (Li and Lee, 2005; Plat, 2009b; Cairns et al., 2011a; Jarner and
Kryger, 2011; Li and Hardy, 2011; Hyndman et al., 2013; Wan and Bertschi,
2015). More precisely, we assume that in the long run, the two populations ex-
perience similar mortality improvements and therefore model the spread in the
time indexes and cohort effects as stationary processes:

κ B
t = �0 + �1κ

B
t−1 + ξ Bt , ξ Bt ∼ N(0, �B), κ B

t =
(
κ

(1,B)
t , . . . , κ

(M,B)
t

)′
,

(8)
γ B
c = ψ0 + ψ1γ

B
c−1 + εBc , εBc ∼ N(0, σ 2

B),

where �0 and �1 are an M-dimensional vector and an M× Mmatrix of model
parameters; �B is the M× M variance–covariance matrix of the multivariate
white noise ξ Bt ; and ψ0 and ψ1 are parameters associated to the cohort spread
γ B
c . Thus

• the time indices κ B
t are modelled as a vector auto-regressive process of order

1 (VAR(1)), for which we assume that the eigenvalues of the matrix �1 are
smaller than 1 in absolute value;
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• the cohort difference γ B
c follows an AR(1) process for which we assume that

|ψ1| < 1;
• we are assuming independence of the time series determining the reference

population and those determining the difference between the reference and
the book populations.3

Overall, the time series dynamics approach considered here corresponds to
the RWAR approach discussed in Zhou et al. (2014) and Li et al. (2015).

5. MODEL SELECTION CRITERIA

With over 20 two-population models currently proposed in the literature (see
Figure 1), our main goal is to identify which model(s) are most likely to provide
a satisfactory solution for assessing basis risk. In order to support this analysis,
it is useful to test each model against certain criteria that a good and practi-
cal two-population model for basis risk assessment should satisfy. Building on
the literature comparing single-population models (e.g. Continuous Mortality
Investigation, 2007; Cairns et al., 2008, 2009, 2011b; Haberman and Renshaw,
2011), we consider the following criteria. The model should

1. produce a non-perfect correlation between mortality rates in the two pop-
ulations;

2. produce a non-perfect correlation between year-on-year changes in mortal-
ity at different ages;

3. permit the generation of sample paths and the calculation of prediction
intervals;

4. have a structure that allows the incorporation of parameter uncertainty
(PU) in simulations;

5. permit the consideration of a cohort effect if necessary;
6. be compatible with the data that are likely to be available when doing basis

risk exercises;
7. be straightforward to implement using standard statistical methods likely

to be available to practitioners;
8. be transparent enough so that the model assumptions, limitations and

outputs are understood by the users and can be easily explained to non-
experts;

9. show a reasonable goodness-of-fit to historical data in both the reference
population and the book population for a wide range of book populations;

10. show a reasonable goodness-of-fit formetrics involving the two populations
such as differences or ratios inmortality rates or life expectancies for awide
range of book populations;

11. be relatively parsimonious;
12. produce plausible and reasonable central projections of both single-

population and two-population metrics;
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13. produce plausible and reasonable forecast level of uncertainty in projections
of both single-population and two-population metrics, which are in line
with historical levels of variability;

14. produce parameter estimates and model forecasts that are robust relative
to the period of data and range of ages employed.

Most of the above criteria coincide with the criteria that a good single-
population model should satisfy; we thus refer the reader to Continuous Mor-
tality Investigation (2007, Section 8) and Cairns et al. (2008, Section 3) for a
detailed discussion of their relevance. By contrast, criteria 1, 10, 12 and 13, re-
ferring to correlations between the mortality rates in the two populations and to
the performance of the models in relation to two-population metrics, are new.
The latter criteria are of prime importance to the application of two-population
models in the assessment of basis risk in standardised longevity hedges. On the
one hand, if a model assumes a perfect correlation between mortality rates in
the two populations, then it will imply that the reference population provides a
perfect match for the book population, trivially leading to no (or very little) de-
mographic basis risk. On the other hand, since demographic basis risk emerges
from the mismatch in the mortality of the reference and the book population, it
is critical that the two-population model shows a good fit to metrics involving
the two populations, and that forecast levels of uncertainty and central trajec-
tories for these metrics are plausible and consistent with historical differences
between the populations.

We note however, that a two-population model which might not be suitable
for basis risk assessment, may be an appropriate model for other applications in
which some of the above criteria would be superfluous. For example, consider
the case of valuing the liabilities of a pension book with sparse data, where we
may consider a two-population model to borrow information from a larger ref-
erence population with the objective of improving the accuracy in the projec-
tions of the pension schemes’ mortality. In this situation, having a non-perfect
correlations between themortality of the two populations would be unnecessary
and the performance of the model relative to two-population metrics would be
of lesser importance.

6. IDENTIFYING AN APPROPRIATE TWO-POPULATION MODEL

Given the wealth of models available and the large number of criteria, we have
followed a two-stage filtering process to identify the model structures likely to
be suitable for basis risk assessment. In a first stage, we focus on criteria 1 to 8
which refer to theoretical properties of a model and can be evaluated without
reference to a specific dataset. Then, in a second stage, we focus on criteria 9
to 14 which can only be evaluated after a model has been fitted to data. More
specifically, in the second stage of filtering, we evaluate the goodness of fit, the
reasonableness of the output, the forecasting performance and the robustness
of those models which pass the first stage of filtering.
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6.1. Stage 1 of filtering: Criteria requiring no data to assess

We first evaluate all the candidate models against those criteria that can be as-
sessed independently of data or the actual fitting of the models. This process
permits the identification of a number of models which could be rejected, either
because their theoretical properties are not suitable for basis risk assessment or
because they are unlikely to be accessible to the wider industry.

6.1.1. Non-perfect correlation betweenmortality rates in the two populations. A
perfect correlation between the mortality rates qBxt and q

R
xt implies that the two

populations move in tandem, with changes in the mortality of the book popu-
lation matched by changes in the mortality of the reference population.4 This
will result in the model spuriously suggesting that there is no (or very little) de-
mographic basis risk. This is the case for those Lee–Carter-based models with a
single common period effect for both populations, leading us to view the strat-
ified Lee–Carter, the common factor model, the three-way Lee–Carter and the
Joint-κ model as inadequate models for assessing demographic basis risk.

6.1.2. Non-perfect correlation between year-on-year changes in mortality at dif-
ferent ages. This criterion refers to the correlation between qRx,t+1 − qRx,t and
qRy,t+1 − qRy,t (or between q

B
x,t+1 − qBx,t and q

B
y,t+1 − qBy,t) for x �= y. As noted by

Cairns et al. (2008), a model that assumes a perfect correlation between changes
in mortality at different ages would incorrectly suggest that holding a derivative
instrument linked to a single age would provide just as good a hedge as holding
several instruments linked to a range of different ages. Disregarding this issue
can result in a misassessment of the structuring basis risk underlying a longevity
hedge.

Lee–Carter type models with a single period effect and no cohort effect,
such as the co-integrated Lee–Carter and the Lee–Carter+VAR/VECM, have
a trivial age correlation structure. In addition, the two-population APC model
in Equation (5) implies that there is perfect correlation at all ages except at the
youngest ages, where there is potentially additional randomness arising from the
arrival of new cohorts with an unknown cohort effect (see Cairns et al., 2009).
In contrast, two-population extensions of the CBD model allow for imperfect
correlations between annual changes in mortality at different ages due to the
presence of multiple period factors.

We do not discard however any model due to its age correlation structure for
two reasons. In many instances, it may only be required to perform an indicative
assessment of the demographic basis risk associated with an index-based hedge,
without necessarily considering in detail the precise structuring of the hedge.
Further, in order to assess model risk, it may be useful to consider an alternative
model to the one used in structuring the hedge.

6.1.3. Generation of sample paths. Mortality sample paths are required for the
assessment of the uncertainty in the cash flows of a mortality-linked security as
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well as for the pricing and structuring of a longevity hedge. A distinguishing
feature of the P-Spline model of Biatat and Currie (2010) and of the multipopu-
lation GLM of Ahmadi and Li (2014) is that they assume that mortality follows
a deterministic time trend, meaning that these models cannot generate sample
paths. Hence, we do not consider these two models any further.

6.1.4. Parameter uncertainty. Given that in most cases the amount of data for
the book populations is limited, the parameters of the models may be subject
to significant estimation error. It is thus important to be able to consider the
impact that parameter risk can have on forecasts levels of uncertainty and on
hedge effectiveness. With the exception of the Bayesian two-population model
of Cairns et al. (2011a) which naturally accounts for PU, none of the studies we
have reviewed considers PU. Nevertheless, for most of the models, it is possible
to incorporate PU using bootstrapping techniques such as the ones proposed in
Brouhns et al. (2005), Koissi et al. (2006) and Renshaw and Haberman (2008).
We should mention however that, unlike the Bayesian framework, bootstrap-
ping is related to the effect of sampling variation in the data. Therefore, bymeans
of bootstrapping, it is not possible to assess the PU arising from the time series
processes, but rather only that due to sampling variation.

6.1.5. Cohort effect. For some countries, including England and Wales, it is
important that models allow for the now well-accepted cohort effect, separating
out general improvements over time to those specific to a given birth cohort.
Although not all the models include a cohort effect, they can in principle be
extended to include such an effect.

6.1.6. Compatibility with available data. The data requirements of some of the
models are incompatible with the likely available data. For instance, it is un-
likely that the book population will provide the same length of history as the
reference population, hindering the application of models which cannot easily
deal with such a scenario. In particular, this requirement leads to the rejection
of two further Lee–Carter-based models, namely the Lee–Carter VAR/VECM
and the co-integrated Lee–Carter.

6.1.7. Ease of implementation and transparency. Ease of implementation and
transparency are essential for a model to be of general use by practitioners. Ac-
cordingly, these two criteria lead to the rejection of several other models. In par-
ticular, themultipopulationGLMofHatzopoulos andHaberman (2013) is con-
sidered to be impractical for basis risk assessment as it is a complexmodel which
is computationally involved to implement and may be difficult to communicate
to non-experts. In addition, we disregard the Plat+Lee–Carter model of Wan
and Bertschi (2015) (apart from other reasons discussed later) because it com-
bines a parametric structure for the reference with a non-parametric structure
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for the book, and we believe that for the sake of interpretability of the parame-
ters both parts of the model should be within the same class of models. Finally,
although the Bayesian two-population APC model of Cairns et al. (2011a) is
particularly amenable to the short history and modest exposures sizes of most
book datasets, the implementation and transparency issues related to the un-
derlying Bayesian approach have led us to rule out this model. However, some
of the features of the approach of Cairns et al. (2011a) will still be investigated
subsequently in this paper through a maximum-likelihood implementation of
the two-population APC model.

6.2. Stage 2 of filtering: Criteria requiring data to assess

After carrying out the initial data-independent assessment, the following 10
models can be identified as candidates which are worth testing against the data
dependent criteria: the augmented common factor model and its cohort ex-
tension, the relative Lee–Carter model with cohorts, the Common Age Effect
model, the two-population APC (Gravity model), the two-population M5, the
two-population M6, the two-population M7, the Saint model, and the Plat rel-
ative model.

The second stage of filtering entails the evaluation of the historical goodness-
of-fit, the (subjective) evaluation of the reasonableness of the forecast level of
uncertainty produced by the models, and the evaluation of the forecasting per-
formance and robustness of the models.

6.2.1. Data. The evaluation of the criteria in this stage requires data formodel
fitting. We have used as the reference population data the England and Wales
male mortality experience as obtained from the Human Mortality Database
(2013). For the purposes of our analysis we have focused on a subset of these
data covering calendar years 1961–2010 and those older ages most relevant to
longevity hedging, namely ages 60–89.

For the book population, we use synthetic datasets generated based on Eng-
land mortality data by quintiles of the Index of Multiple Deprivation 2007
(IMD 2007)5 and the socio-economic composition observed within individual
occupational pension schemes of the Club Vita dataset.6 Specifically, the syn-
thetic datasets used throughout this paper have been generated by randomly
sampling from the national IMD data to obtain a dataset of exposure size, his-
tory length and IMD profile desired. The technical details of this data sampling
process are described in Appendix A. The use of synthetic data as opposed to
actual pension scheme data facilitates a more thorough assessment of the mod-
els. Concretely, synthetic datasets permit us to control some key characteristics
of the book population data while changing others. For instance, it allows us to
vary the history length and exposure size of the book data whilst keeping the
socio-economic and age composition constant. Moreover, synthetic datasets let
us rely on the longer history of the national IMD mortality data to perform
backtesting exercises such us those described in Section 6.2.7.
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TABLE 1

DESCRIPTION OF THE BOOK DATASETS USED FOR MODEL TESTING. Q1 REPRESENTS THE LEAST DEPRIVED
QUINTILE OF ENGLAND AND Q5 THE MOST DEPRIVED QUINTILE.

Percentage of Exposure
by IMD Quintile

Dataset Description Q1 Q2 Q3 Q4 Q5

Typical Lives This is the typical IMD split we
would expect to see in a book
population weighted by lives
(head count)

23% 22% 21% 20% 14%

Typical Amounts This uses the same split as the
typical (lives) but weighted by
individual pension amounts to
approximate the effect of a
typical portfolio’s liability
distribution among the IMDs

30% 25% 20% 15% 10%

Extreme Wealthy This reflects the split by IMD (on
an amounts weighted basis) that
we would expect to see in a very
affluent book population

45% 30% 20% 5% 0%

Extreme Deprived This reflects the split by IMD (on
a lives weighted basis) that we
would expect to see in a book
skewed toward lower
socio-economic groups

10% 15% 15% 25% 35%

For the assessment of the goodness-of-fit of themodels, we consider four dif-
ferent synthetic datasets to reflect the variety of socio-economic mixes observed
in real pension schemes and annuity books. In each case, the socio-economic
splits are motivated by the profiles seen within the Club Vita dataset. Table 1
describes the socio-economic profiles of these datasets. In all cases, we use sam-
ple books with historical exposures of 100,000 male lives per year, which we
believe is reasonable proxy for the largest exposure any pension scheme or in-
surer is likely to have. We also assume that book data are available for the pe-
riod 1981–2010 and ages 60 to 89. Finally, we use the age distribution of the
English population to split by age the total exposure of each of the sample
schemes.

Figure 2 depicts the ratio of the mortality in each of the four datasets to
the mortality in England and Wales. We note that the ordering of the ratios in
the four datasets is consistent with their socio-economic mixes: the “Extreme
Wealthy” dataset has below average mortality (ratio < 1), the “Extreme De-
prived” dataset has above average mortality (ratio > 1) and the “Typical Lives”
and “Typical Amounts” datasets exhibit a mortality ratio close to 1 due to the
similarity of their socio-economic mix with that of England andWales. It is also
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FIGURE 2: Ratio of the mortality in each of the four synthetic book datasets to the mortality in England and
Wales. The left graph shows this ratio by age while the one on the right presents the time evolution of this ratio.

worth noticing that none of the datasets shows any very marked increasing or
decreasing time trend in themortality ratios, albeit there is a slight upward trend
in the “Extreme Deprived” dataset. This is consistent with the slower mortal-
ity improvements for the two most deprived quintiles of England reported by
Villegas and Haberman (2014).

6.2.2. Model fitting. To facilitate the fitting of the 10 models that passed our
first-stage filtering, we have followed the generalmodelling framework described
in Section 4 whereby eachmodel can be viewed as amodel for the reference pop-
ulation combined with a model for the book population (or perhaps more accu-
rately, a model for the mortality ratio between reference and book). As such, the
fitting and the assessment of the goodness-of-fit of a model can be carried out
in two stages: fitting and assessing the goodness-of-fit of the reference model,
followed by the fitting and the assessment of the goodness-of-fit of the book
part of the model.7 We note that conclusions regarding the goodness-of-fit of
the model to the reference may lead us to slightly modifying the original formu-
lation of certain of the two-populationmodels before assessing the goodness-of-
fit of the book part of the model. The specific modifications for each particular
two-population model are described later in this section.

6.2.3. Selection of reference population. In order to identify an appropriate
model for the England and Wales reference population, we have carried out
an extensive evaluation of the goodness-of-fit of a number of candidate single-
population models. However, for the sake of brevity, we present here only the
conclusion of this evaluation, but details can be followed in Haberman et al.
(2014, Section 6.2.2.3).

Consistently with the existing literature which compares single-population
mortality models for the England and Wales population (see e.g. Cairns et al.,
2009 and Haberman and Renshaw, 2011), we have found that the three models
presented in Table 2 are appropriate for modelling the mortality in the reference
population. In Table 2, the model labelled LC+Cohorts is one of the Renshaw
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TABLE 2

MATHEMATICAL DESCRIPTION OF THE MODELS SELECTED FOR
THE REFERENCE POPULATION.

Model Formula

LC+Cohorts logit qRxt = αR
x + βR

x κR
t + γ R

t−x
APC logit qRxt = αR

x + κR
t + γ R

t−x

M7 logit qRxt = κ
(1,R)
t + (x− x̄)κ(2,R)

t + (
(x− x̄)2 − σ̂ 2

x

)
κ

(3,R)
t + γ R

t−x

andHaberman (2006) cohort extensions of the Lee-Cartermodel while theAPC
model is a special case of the LC+Cohorts where it is assumed that βR

x = 1.
Model M7 is an extension of the original CBD model and was proposed in
Cairns et al. (2009). A common characteristic of these three models is that they
all include a cohort term to capture the well-known effect of year-of-birth on
England and Wales mortality (Willets, 2004).

6.2.4. Goodness-of-fit for book population. In line with the models selected
for the reference population, we have adapted several of the candidate two-
population models before carrying out further goodness-of-fit assessments.
Specifically, we have made the following adaptations:

• The Common Age Effect model, as proposed in Kleinow (2015), does not
include a cohort effect. Therefore, given that there is strong evidence of a
cohort effect in England and Wales, in our testing, we extend this model to
include such an effect. The reference populationmodel is then a LC+Cohorts
model.

• Similarly, for the augmented common factor model, we should consider a
cohort effect, but doing so would turn the model into the relative Lee–Carter
model with cohorts. Consequently, the augmented common factor model is
not considered further in the analysis.

• In the two-population M5 and the two-population M6 models, we replace
the corresponding M5 and M6 models for the reference population with an
M7 model.

• For the relative Plat model, we assume an M7 model for the reference pop-
ulation as opposed to the M5 model originally assumed by Plat (2009b). In
addition, while Plat (2009b) models directly the mortality ratio between the
reference and the book population, qBxt/q

R
xt , we model the difference in logits

of mortality rates, logit qBxt − logit qRxt.• For the Saint model, instead of the frailty-type model considered originally
by Jarner and Kryger (2011), which we believe is too complex to be accessible
to practitioners and does not permit the generation of sample paths, we use
an M7 model for the reference population.
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For comparison purposes, in some of our additional goodness-of-fit and
reasonableness testing, we will consider the common factor model with
added cohorts. This model, which was previously deemed inappropriate as it
unrealistically implies zero basis risk, is useful for illustrating some of the unde-
sirable characteristics in a model for basis risk assessment.

Table 3 summarises the models whose goodness-of-fit will be investi-
gated further. The parameter constraints associated with these model struc-
tures are described in Appendix B. The common factor model with cohorts
(CF+Cohorts), the Common Age Effect model with cohorts (CAE+Cohorts)
and the relative Lee–Carter model with cohorts (RelLC+Cohorts) belong to the
Lee–Carter family of models. The CF+Cohorts only allows for level differences
between the reference and the book population, whilst the CAE+Cohorts and
the RelLC+Cohorts also allow for improvement differences. Nevertheless, the
latter two models differ in the specification of the age-modulating factor βB

x
accompanying the book-specific time index κB

t : in the RelLC+Cohorts, βB
x is

estimated directly from the observed logit difference of mortality between the
book and reference data, while in the CAE+Cohorts, βB

x is borrowed from the
reference population model, i.e. βB

x ≡ βR
x .

The Gravity model corresponds to a Binomial-logit version of the two-
population APC introduced in Equation (5).

Models M7–M5, M7–M6, M7–M7, M7–Saint and M7–Plat (which are the
implemented versions of the two-population CBD, the two-population M6, the
two-population M7, the Saint model and the relative Plat model, respectively)
all belong to the CBD family of models. These models differ in the type of dif-
ferences between the book and the reference population that are allowed for
in the parametric age functions: M7–M5 and M7–M6 allow only for level and
slope differences with M6 also allowing for cohort differences; M7–Saint, M7–
M7 allow for level, slope and curvature differences with M7 also allowing for
cohort differences; andM7–PLAT is a constrained version ofM7–M5 assuming
that at age 100, there is no difference between the reference and the book.

A good two-population model should show a reasonable fit to the historical
mortality rates in both the reference population and the book population. In
addition, the model should show a good fit to metrics involving the two popu-
lations such as differences or ratios of mortality rates. This last criterion is very
relevant as demographic basis risk emerges from the mismatch in the mortality
of the reference and the book population.

When assessing the quality of the fit of the models with respect to the book
population and with respect to two-population metrics, we have found that the
traditional graphical diagnostic of model residuals is not very informative. In
principle, this can be attributed to the fact that cohort and age patterns in the
book population residuals may be confounded with the sampling noise in the
book data. Alternatively, the examination of plots of fitted vs. observed period
survival probabilities in the book and the corresponding plots for ratios of pe-
riod survival probabilities in the book and the reference can give useful insight
into the goodness-of-fit of the models. As an illustration, Figure 3 depicts, for
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TABLE 3

MATHEMATICAL DESCRIPTION OF THE TWO-POPULATION MODELS CONSIDERED FOR GOODNESS-OF-FIT ASSESSMENT. CF+COHORTS = COMMON FACTOR MODEL
WITH COHORTS; CAE+COHORTS = COMMON AGE EFFECT MODEL WITH COHORTS; RELLC+COHORTS = RELATIVE LEE-CARTER MODEL WITH COHORTS; M7-X =

TWO-POPULATION MODEL WHERE THE REFERENCE POPULATION FOLLOWS AN M7 MODEL AND THE BOOK-REFERENCE DIFFERENCE IS SPECIFIED THROUGH A MODEL
OF TYPE X. SEE TABLE 2 FOR THE CORRESPONDING REFERENCE POPULATION MODELS.

Reference
Population

Original Model Model Name (See Table 2) Book-Reference Difference Formula logit qBxt − logit qRxt

Common Factor CF+Cohorts LC+Cohorts αB
x

Common Age Effect CAE+Cohorts LC+Cohorts αB
x + βR

x κB
t

Relative Lee–Carter with
Cohorts

RelLC+Cohorts LC+Cohorts αB
x + βB

x κB
t

Gravity Gravity (APC) APC αB
x + κB

t + γ B
t−x

Two-Population M5 M7–M5 M7 κ
(1,B)
t + (x− x̄)κ(2,B)

t

Two-Population M6 M7–M6 M7 κ
(1,B)
t + (x− x̄)κ(2,B)

t + γ B
t−x

Two-Population M7 M7–M7 M7 κ
(1,B)
t + (x− x̄)κ(2,B)

t + (
(x− x̄)2 − σ̂ 2

x

)
κ

(3,B)
t + γ B

t−x
Saint Model M7–Saint M7 κ

(1,B)
t + (x− x̄)κ(2,B)

t + (
(x− x̄)2 − σ̂ 2

x

)
κ

(3,B)
t

Plat Relative Model M7–Plat M7
100 − x
100 − x̄

κ
(1,B)
t
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FIGURE 3: Fitted vs. observed 30-year period survival probabilities at age 60 for the “Extreme Wealthy” and
the “Extreme Deprived” sample schemes. Left panel presents result for the book populations while the right
panel presents results the corresponding results for ratios with respect to the England and Wales reference

population. Dots in the graphs represent observed quantities.

a selection of models, the fitted and observed 30 years period survival proba-
bilities at age 60 for the “Extreme Wealthy” and the “Extreme Deprived” sam-
ple schemes as well as the corresponding fitted and observed ratios of period
survival probabilities between both sample schemes and the England andWales
reference. Figure 3 is representative of the detailed analyses we have carried out
and which have helped with our assessment of the performance of the different
models under consideration.

The left panel in Figure 3 shows that, with the exception of the M7–Plat
model which shows a slight underestimation in the later years when fitted to the
“ExtremeDeprived” scheme, all the othermodels show a similar and reasonable
fit to the period survival probabilities in the book. By contrast, when considering
ratios of survival probabilities, the models show very different performances. In
particular, from the right panel of Figure 3, we note the following:

• For the “Extreme Deprived” dataset, the M7–Plat model shows a stark bias
in the fitted ratios consistent with the underestimation seen in the period sur-
vival probabilities in the book population. In an attempt to improve the fit
of the M7–Plat model, instead of assuming that crossing of mortality be-
tween the reference and book population occurs at the prefixed age 100, we
have treated the age of crossing as an additional parameter that needs to be
estimated from the data. This has however not eliminated the bias issues sug-
gesting that the M7–Plat model might be too restrictive for some datasets.
Therefore, we do not consider the M7–Plat model further as a candidate for
basis risk assessment.

• The CF+Cohorts and the RelLC+Cohorts models produce very smooth ra-
tios of survival probabilities which seem to understate the observed volatility
in the ratios. Whilst the poor performance of the CF+Cohorts model was
expected due to the perfect correlation between populations assumed by this
model, the poor performance of RelLC+Cohorts was not.
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FIGURE 4: Fitted age modulating parameter βB
x for the RelLC+Cohorts fitted to the

“Extreme Wealthy” scheme.

• Further investigation of the parameters of the RelLC+Cohorts indicates that
the over-smoothed fitted ratios can be linked to the presence of a book-
specific non-parametric βB

x , which needs to be estimated from the book data.
The estimation of this term requires large amounts of data, and, hence, with
the relatively small population sizes of the book populations, the estimated
βB
x values tend to be erratic and lack precision. In particular, there exists the

possibility that βB
x fluctuates around 0 (see Figure 4) which results in mor-

tality differentials between the book and the reference cancelling out when
aggregated measures of mortality such as survival probabilities and life ex-
pectancies are calculated. Given that this over fitting of the βB

x may result
in an inappropriate perfect correlation between the reference and the book
populations, we consider that the RelLC+Cohorts is inadequate for basis risk
assessment. This conclusion extends to othermodels with non-parametric βB

x
parameters such as the augmented common factor model and the Plat+Lee–
Carter model.

The graphic testing of the goodness-of-fit of the models leaves us with
six potential candidate models for basis risk assessment. These models are
CAE+Cohorts, Gravity, M7–M5, M7–M6, M7–M7 and M7–Saint. The bal-
ance between goodness-of-fit and parsimony of these models is investigated in
Table 4, where we show the AIC values8 for the book part of each model when
applied to the four sample schemes, together with the corresponding ranking
across models (in brackets). From Table 4, we note the following:

• The CF+Cohorts, which is the simplest model among all the models fitted,
tops the AIC ranking for three out of four datasets. However, as noted before,
this model is not suitable for basis risk assessment since it assumes that the
reference and book populations are perfectly correlated. One may neverthe-
less consider this model for other applications where the correlation between
the populations is not important.
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TABLE 4

EFFECTIVE NUMBER OF PARAMETERS AND AIC FOR THE BOOK PART OF DIFFERENT TWO-POPULATION
MODELS FITTED TO THE FOUR TEST BOOKS.

Number of Number of
Reference Book Typical Typical Extreme Extreme

Model Parameters Parameters Lives Amounts Wealthy Deprived

CF+Cohorts 185 30 7,008 (1) 7,001 (1) 6,921 (1) 7,146 (4)
CAE+Cohorts 185 59 7,036 (2) 7,026 (2) 6,950 (2) 7,130 (3)
Gravity 156 116 7,090 (5) 7,077 (5) 7,010 (5) 7,182 (6)
M7–M5 226 60 7,043 (3) 7,049 (3) 6,971 (3) 7,102 (1)
M7–M6 226 117 7,106 (6) 7,099 (6) 7,033 (6) 7,166 (5)
M7–M7 226 146 7,123 (7) 7,128 (7) 7,052 (7) 7,188 (7)
M7–Saint 226 90 7,069 (4) 7,074 (4) 6,991 (4) 7,117 (2)

• Among all other models, the CAE+Cohort and M7–M5 show the best com-
promise between goodness-of-fit and parsimony, consistently ranking in the
top three places and with very similar performance.

• M7–Saint and M7–M7, which have a quadratic age term in the book model,
are always outperformed by theM7–M5model. This suggests that when con-
sidering models from the CBD-family, it is necessary to allow for differences
in level of mortality and a gradient by age, but that an additional parame-
ter for the curvature by age is not necessary, i.e. it is sufficient to inherit the
curvature from the reference population. Thus, we eliminate theM7–M7 and
M7–Saint models from our list of candidate models.

• The Gravity model, M7–M6 andM7–M7, which have a book-specific cohort
effect, have the worst trade-off between goodness-of-fit and parsimony. This
suggests that we should generally reject models with a book cohort effect on
grounds of parsimony. However, for the moment, we shall retain the Grav-
ity model (two-population APC) which, among models with book-specific
cohort effect, shows the best compromise between goodness-of-fit and parsi-
mony. This will enable us to investigate how forecasts levels of uncertainty and
hedge effectiveness may be impacted by allowing for a book-specific cohort
effect.

6.2.5. Plausibility of forecast central trends and levels of uncertainty. So far, we
have shortlisted theCAE+Cohorts, Gravity andM7–M5based on their theoret-
ical properties, practicality and goodness-of-fit performance. However, the out-
come of a basis risk assessment exercise will be strongly driven by the expected
level of uncertainty around the central forecast of the demographic and finan-
cial quantities underlying the index-based hedge. It is then crucial to check that
these models produce reasonable forecast for both single- and two-population
metrics. This entails judging whether or not the forecast central trajectories and
patterns of uncertainty look plausible and are in line with historical variability.
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Following Cairns et al. (2011b), we assess this property by examining fan
charts of the forecasts produced by the models. Fan charts allow us to exam-
ine any distinctive visual feature of the forecasts of the models, as well as the
differences between models. Each fan chart presents 95% prediction intervals
and depicts the forecast output from the stochastic mortality models by also
presenting 80% and 50% prediction intervals.

In producing the model simulations underlying the fan charts, we have con-
sidered the following two sources of uncertainty (risk): (i) process risk (PR) aris-
ing from the possible future trajectories of the time series of the period and
cohort indices and (ii) PU arising from the estimation of the parameters of the
model. PR is taken into account by simulating trajectories of the period and
cohort indices,9 while PU is allowed for by using a Binomial adaptation of the
residual bootstrapping approach proposed by Koissi et al. (2006).10 We note
that due to the considerable exposure of the England andWales population, we
deliberately ignore PU in the reference population.

Rather than analysing forecasts of mortality rates, we concentrate on the
forecast of life expectancies and survival rates. According to Coughlan et al.
(2011), these two aggregate quantities are more appropriate than individual
mortality rates for gaining insight into the basis risk associated with longevity
hedges. On the one hand, life expectancies and survival rates are more closely
related to the hedge effectiveness objective than mortality rates, as, for instance,
in a pensioner population, life expectancy corresponds to the number of years
over which a pension needs to be paid while survival rates correspond to the
number of pensioners who are still alive to receive pension. On the other hand,
these aggregate metrics smooth out a lot of the noise associated with individual
mortality rates.

Figure 5 presents fan charts of 30-year curtailed period life expectancies at
age 60,

↑
ei60,30(t) =

30∑
h=1

h−1∏
j=0

(1 − qi60+ j,t), i = R, B,

along with fan charts for the value of a cohort survivor index,

Si (65, t) =
t−1∏
j=0

(1 − qi65+ j,2011+ j ), i = R, B,

for the reference population (i = R) and for the “Extreme Wealthy” test
book (i = B). Figure 5 also shows matching fan charts of the difference be-
tween the period life expectancies in the book and the reference population,
↑
eB
60,30

(t) − ↑
eR
60,30

(t), and of the ratio of the book and reference population sur-

vivor indexes, SB(65, t)/SR(65, t). The survivor index, Si (65, t), i = R, B, mea-
sures the proportion from a group of males aged 65 at the start of 2011 who are
still alive at the start of year 2011 + t. We note that SR(65, t) and SB(65, t) do
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TABLE 5

FORECAST MEAN AND VARIANCE OF 30-YEAR PERIOD CURTAILED LIFE EXPECTANCY AT AGE 60 IN 2020
FOR THE ENGLAND AND WALES MALE REFERENCE POPULATION AND FOR THE “EXTREME WEALTHY” TEST

BOOK USING DIFFERENT MORTALITY MODELS. THE COLUMNS LABELLED “DIFFERENCE” PRESENT THE
MEAN AND VARIANCE OF THE DIFFERENCE IN LIFE EXPECTANCY BETWEEN THE REFERENCE AND THE BOOK

POPULATIONS.

Mean of Period Variance of Period
Life Expectancy Life Expectancy
at Age 60 in 2020 at Age 60 in 2020

Model Reference Book Difference Reference Book Difference

CF+Cohorts 22.82 23.68 0.86 0.2040 0.1718 0.0017
CAE+Cohorts 22.82 23.68 0.86 0.2040 0.1878 0.0135
Gravity 22.12 23.13 1.01 0.2251 0.2065 0.0206
M7–M5 22.33 23.19 0.86 0.2403 0.2230 0.0169

TABLE 6

FORECAST MEAN AND VARIANCE OF 25-YEAR COHORT CURTAILED LIFE EXPECTANCY FOR THE COHORT
AGED 65 IN 2011 FOR THE ENGLAND AND WALES MALE REFERENCE POPULATION AND FOR THE “EXTREME
WEALTHY” TEST BOOK USING DIFFERENT MORTALITY MODELS. THE COLUMNS LABELLED “DIFFERENCE”
PRESENT THE MEAN AND VARIANCE OF THE DIFFERENCE IN LIFE EXPECTANCY BETWEEN THE REFERENCE

AND THE BOOK POPULATIONS.

Mean of Cohort Variance of Cohort
Life Expectancy Life Expectancy

for the Cohort Aged 65 in 2011 for the Cohort Aged 65 in 2011

Model Reference Book Difference Reference Book Difference

CF+Cohorts 20.36 21.05 0.69 0.1229 0.1062 0.0008
CAE+Cohorts 20.36 21.06 0.70 0.1229 0.1066 0.0014
Gravity 19.47 20.34 0.87 0.1252 0.2027 0.0905
M7–M5 19.54 20.27 0.73 0.1830 0.1677 0.0015

not involve any forecasts of the cohort effects as the relevant cohort effects, γ R
1946

and γ B
1946 in the case of the Gravity model, are known at the start of 2011.

To assist in the assessment of the levels of uncertainty produced by the mod-
els, Table 5 presents the forecast variance of period life expectancies in 2020 at

age 60,
↑
eR
60,30

(2020) and
↑
eB
60,30

(2020), while Table 6 presents the forecast vari-
ance of the 25-year cohort life expectancy for someone aged 65 in 2011 in the
reference and book populations,

↗
e i65,25(2011) =

25∑
t=1

Si (65, t) =
25∑
t=1

t−1∏
j=0

(1 − qi65+ j,2011+ j ), i = R, B.

From Figure 5 and Tables 5 and 6, we can see the following:
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FIGURE 5: Fan charts of 30-year period curtailed life expectancy at age 60,
↑
ei
60,30

(t), i = R, B, and of the

cohort survivor index, Si (65, t), i = R, B, for the England and Wales reference population and the “Extreme
Wealthy” book using different mortality models.
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• For all the models, the central forecast and their levels of uncertainty for the
life expectancies and the survivor indexes in the reference and the book are
reasonable and consistent. We note however that there are noticeable differ-
ences between themodels with the CAE+cohorts andCF+cohorts projecting
longer life expectancies and higher survival probabilities with slightly smaller
uncertainty (narrower fan widths and smaller variances) than the other two
models. Notably, M7–M5 produces wider fans for the reference population
than the other threemodels. This reflects the existence ofmore randomperiod
effects in M7–M5 than in the CAE+cohorts, the CF+cohorts and the APC
(Gravity) model.

• The levels of uncertainty in the difference in life expectancy and in the ratio of
survivor indexes vary considerably acrossmodels. In particular, the unreason-
ably tight fan widths produced by the CF+cohorts for differences in period
life expectancy confirm the issues with models assuming a perfect correlation
between the reference and the book populations.

• The levels of uncertainty for the ratio of survivors in the book and reference
population produced by the Gravity (APC) model, which is the only model
that allows for a book specific cohort effect, are completely unreasonable.
This suggests that, unless there is strong reason to believe in the existence of
a different cohort effect in the book to the reference population, the PU in
fitting a book-specific cohort term will greatly outweigh any benefits in terms
of goodness-of-fit to historical experience.

• The close alignment between the fans of models CF+cohorts and
CAE+cohorts deserves further investigation. For these two models, which
share the same reference population model, we plot in Figure 6 the simulated
empirical cumulative distribution considering both PR and parameter risk

for the 30-year period curtailed life expectancy at age 60 in 2020,
↑
eB
60,30

(2020),
and for the 25-year cohort life expectancy for someone aged 65 in 2011 in

the book population,
↗
e B
65,25

(2011), together with the corresponding simu-
lated empirical cumulative distribution of the difference in period and co-
hort life expectancies between the book and the reference populations. While
for the book population the empirical distributions are practically indistin-
guishable, there are notable dissimilarities in the empirical distributions for
the difference in both period and cohort life expectancies, suggesting that
the uncertainty in the book survivor index is dominated by the uncertainty
in the reference part of the model. Furthermore, the discrepancies in the
mean and variances of the life expectancy for the book population forecast
by both models are immaterial. These results allow us to conclude that al-
though the CF+Cohorts model is unsuitable for basis risk assessment due
to its implicit perfect correlation between the book and reference popula-
tions, this model might be a reasonable alternative in applications where only
single-population metrics are of interest such as when valuing pension liabil-
ities or pricing annuities.
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FIGURE 6: Cumulative distribution function of the curtailed period and cohort life expectancy in the
“Extreme Wealthy” test book and cumulative distribution function of the corresponding difference in period

and cohort life expectancies between the book and reference populations. The cumulative distribution
functions account for both process and parameter risk. (a) 30- year curtailed period life expectancy at age 60

in 2020. (b) 25-year curtailed cohort life expectancy at age 65 in 2011.

Finally, in order to investigate the generalisability of our conclusion to the
other test datasets, we show in Figure 7 fan charts of the difference in period life
expectancies with respect to the England and Wales reference for the “Typical
Lives”, “Typical Amounts” and “Extreme Deprived” books. While the fore-
casts for the “Typical Lives” and “Typical Amounts” books look plausible, the
forecasts for the “Extreme Deprived” book look completely unreasonable, with
the models failing to project the increase in life expectancy differences observed
over the 1981–2010 period. Recalling Table 1, 60% of the “Extreme Deprived”
population belong to the two most deprived quintiles of England which have
seen a significant increase in relative mortality differentials with the respect to
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FIGURE 7: Fan charts of 30-year period curtailed life expectancy differences at age 60 between the different
test books and the reference population. (a) Typical lives. (b) Typical amounts. (c) Extreme deprived.

England and Wales (see Villegas and Haberman, 2014). This suggests that the
non-divergence assumption embedded in the (vector) autoregressive process of
order 1 used for forecasting the period index in the book κB

t (recall Equation
(8)) may be inappropriate for the “Extreme Deprived” book.

Overall, although all the models produce plausible trends and forecast levels
of uncertainty for single-population metrics, for two-population metrics, only
models CAE+Cohorts andM7–M5 produce plausible results. In addition, there
are big enough differences between themodels for us to acknowledgemodel risk
as an important issue.

6.2.6. Forecast levels of uncertainty by book size. The analysis of the plausibil-
ity of the forecast levels of uncertainty performed so far has been based on a
fairly large book population with 100,000 exposed lives per year between ages
60 and 89. However, for smaller exposures of the book population, the sam-
pling noise in the data is bigger, leading to more uncertainty in the estimates of
the parameters of the models. This additional variability arising from a smaller
population size can potentially have a material impact on the plausibility of
the forecast levels of uncertainty. To explore this phenomenon, we investigate
how the contribution of the different sources of uncertainty to the total level of
risk varies by population size. Figure 8 shows, for models CAE+Cohorts and
M7-M5 and the “Extreme Wealthy” test book, the variation by book size of

the variance of
↑
eB
60,30

(2020) and of
↑
eB
60,30

(2020) − ↑
eR
60,30

(2020) (top left and top

right plots), and the variance of
↗
e B
65,25

(2011) and of
↗
e B
65,25

(2011)− ↗
e R
65,25

(2011)
(bottom left and bottom right plots). From this figure, we can see how

• the differences in the levels of uncertainty produced by themodels are evident,
with the M7–M5 producing higher variance than the CAE+Cohorts. These
differences are particularly notable for cohort life expectancies in the book
population;
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FIGURE 8: Variance by population size of the curtailed period and cohort life expectancy in the “Extreme
Wealthy” test book and of the corresponding difference in period and cohort life expectancies between the
book and reference populations using different models and considering different sources of risk. (a) 30-year

curtailed period life expectancy at age 60 in 2020. (b) 25-year curtailed cohort life expectancy at age 65 in 2011.

• the magnitude of the variance of both period and cohort life expectancies
starts to stabilise around a book size of 25,000 lives. This is particularly no-
ticeable when considering only PR;

• For book sizes smaller than 15,000 lives, PR is unrealistic producing artifi-
cially high variances.

These observations suggest that to avoid a distorted assessment of the levels of
uncertainty, models CAE+Cohorts and M7–M5 should only be used when the
book exposure is higher than 20,000–25,000 lives. Furthermore, as we show in
Section 7, insisting on using the models with modest exposure numbers may
result in a misstated assessment of demographic basis risk.

6.2.7. Forecasting performance and robustness. A good mortality model
should not only produce forecasts that appear reasonable ex-ante, but should
also provide good ex-post forecast, that is forecasts that do not deviate
significantly from realised outcomes. In addition, these forecasts should be ro-
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bust relative to the choice of period for the data employed in producing the
forecasts. To assess the forecasting accuracy of the models, we first carry out a
backtesting exercise in the spirit of Booth et al. (2006) and Jarner and Kryger
(2011, Section 4). This exercise entails the fitting and forecasting of the models
using data for the period 1981 to 2010 for different history lengths, book sizes
and IMD compositions in the book population; and the evaluation of different
metrics of forecasting performance.

Specifically, the different models were fitted to history lengths ranging from
5 years to 20 years,11 book sizes ranging from 5,000 lives to 100,000 exposed
lives between ages 60 to 89 and the four test IMD compositions described be-
fore in Table 1. The forecasting performance of the models is evaluated by
comparing the actual 30-year curtailed period life expectancies at age 60 in

the book population,
↑
eB
60,30

(t), and the actual differences in 30-year curtailed
period life expectancies at age 60 between the book and the reference pop-

ulation,
↑
eB
60,30

(t) − ↑
eR
60,30

(t), with their corresponding predicted counterparts
over the rest of the period until 2010. Forecast bias (actual-fitted) is sum-
marised by averaging across years, book sizes and forecasting horizon. The
matching absolute errors are also averaged to provide a measure of forecast
accuracy.

The forecast bias (mean errors) and the forecast accuracy (mean absolute
error) for both period life expectancy in the book and differences in period life
expectancy between the book and the reference, plotted against history length
are shown in Figure 9. We note the following:

• Models CAE+cohorts and CF+Cohorts stand out as the best models for
forecasting period life expectancies in the book with the smallest bias and
with the smallest mean absolute error. The close alignment between the mean
errors andmean absolute errors of these twomodels reflects the fact that they
share the same reference population model.

• History length has a material impact on the out-of-sample performance of
the models. With the exception of model, CF+Cohorts which does not re-
quire the forecasting of any book-specific time index, the forecasting perfor-
mance of the models for history lengths shorter than 8 years is poor. The no-
ticeably poorer performance of modelM7–M5 for the shorter history lengths
is explained by the fact that this model has two period indices for the book,
implying a more complex and data demanding time series process for the
forecasting.

• For differences in life expectancies and when we have more than 8 years
of history, the models perform very similarly both in terms of bias and
accuracy.

• The bias in forecasting differences between the “Extreme Deprived” popula-
tion and the England and Wales reference population is considerably higher
than the bias for the other three test book compositions. This higher bias gives
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FIGURE 9: Mean error (actual-fitted) and mean absolute error in the forecast of 30-year period curtailed life
expectancy at age 60 in the book and in differences in 30-year period curtailed life expectancy at age 60

between the book and the reference. The results are averaged across years, book sizes and forecast horizons
ranging from 1 year to 15 years ahead.
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FIGURE 10: Forecast of the 30-year period curtailed life expectancy at age 60 in 2010 for the four different
book populations using different fitting periods. The stepping-off year is the final year used in fitting the

models. The realised life expectancy for 2010 is represented by a star.

further evidence for concluding that the non-divergence assumption may be
inadequate for the “Extreme Deprived” book.

In order to check the robustness of the models, we will examine the stability
of forecasts towards the inclusion of additional years at the right end of the
data window, using a contracting horizon backtest as proposed by Dowd et al.
(2010). Figure 10 shows plots of forecasts of the 30-year period curtailed life ex-

pectancy at age 60 in 2010,
↑
eB
60,30

(2010), for the four test book populations with
100,000 exposed lives, made in 1985, 1986, . . ., 2009. Equivalent plots for the dif-

ference between the book and reference population,
↑
eB
60,30

(2010)− ↑
eR
60,30

(2010),
are also included. For all book populations and models, we see that the fore-
casts for the book population are well-behaved, in the sense that they converge
in a stable manner towards the realised outcome. For forecasts of differences in
life expectancy, we see a similar stable behaviour, albeit the discrepancies in the
forecasts for the “Extreme Deprived” population are noticeable and consistent
with our previous findings regarding the unsuitability of the non-divergence as-
sumption for this book (recall Figure 7). Similar analysis for other book sizes
show that the models are robust, provided that the length of the fitting period
is longer than 10 years (i.e. for stepping off years after 1990).
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7. QUANTIFYING BASIS RISK

In this section, we examine the performance of the models when used for as-
sessing basis risk. We also discuss the impact that different volumes of data may
have on the PU and on the assessment of basis risk. In presenting the basis
risk analysis, we follow the five-step hedge effectiveness framework proposed in
Coughlan et al. (2011).

7.1. Steps 1 and 2: Hedging objectives and hedging instruments

Most hedging exercises either consider value hedges or cash flow hedge aiming,
respectively, to mitigate the variability of the cash flows or the variability of the
value of these cash flows.We consider thus two separate simple examples reflect-
ing the objectives of a value hedge and of a cash flow hedge:
Value hedge example. Noting that period life expectancy corresponds to an an-
nuity value using a zero percent interest rate and no mortality improvements,
for the value hedge case, we assume that the quantity at risk to be hedged is

the 30-year curtailed period life expectancy at age 60 in 2020,
↑
eB
60,30

(2020), i.e.
over a horizon of 10 years. The hedging instrument to reduce the liability risk
is the 30-year curtailed period life expectancy at age 60 in 2020 for the England

andWales population,
↑
eR
60,30

(2020). This exercise is similar in spirit to the hedge
effectiveness analysis performed in Cairns (2013) and Cairns et al. (2014).
Cash flow hedge example.To reflect a cash flow hedge situation, we consider that
the quantity at risk to be hedged is the 25-year curtailed cohort life expectancy

at age 65 in 2011,
↗
e B
65,25

(2011), which can be interpreted as the sum of the cash
flows payable for 25 years to a pensioner aged 65 in 2011, and who belongs to
a pension plan that pays $1 at the end of each year. The hedging instrument
to reduce the liability risk is the 25-year curtailed cohort life expectancy at age

65 in 2011 for the England and Wales population.
↗
e R
65,25

(2011). This exercise is
similar in spirit to the hedge effectiveness analysis performed in Li and Hardy
(2011).

Although very simple, these two examples should be informative of the per-
formance of the models for hedge effectiveness assessment while avoiding the
idiosyncrasies of specific pension benefit structures or more realistic hedging
instruments.

7.2. Step 3: Method for hedge effectiveness assessment

Following Li and Hardy (2011), Cairns (2013) and Cairns et al. (2014), we use
the variance as ourmeasure of risk. Alternatively, a tail-based riskmeasure such
as Value-at-Risk, as in Li and Hardy (2011) and Coughlan et al. (2011), or
expected shortfall could be considered. However, because our focus is on the
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comparison of competing models and for the sake of simplicity, we have imple-
mented the variance as a measure of hedge effectiveness. Therefore, if L denotes
the random unhedged liability and H represent the value of the index-linked
hedging instrument, we assume that the hedger wishes to minimise the variance
of L − hH, where h is the number of units (hedge ratio) held of the hedging
instrument. We define thus the relative risk reduction (hedge effectiveness) as
R2(h) = 1− var(L− hH)/ var(L) . It can be proved (see, for example, Cairns et
al. (2014)) that the optimal hedge ratio is h∗ = cov(L, H)/ var(H) with optimal
relative risk reduction R2(h∗) = 1− var(L− h∗H)/ var(L) = ρ2, where ρ is the
correlation coefficient between L and H.

For our examples, it will thus suffice to analyse the correlation between L

and H, i.e. the correlation between
↑
eB
60,30

(2020) and
↑
eR
60,30

(2020) for the value-

hedging example and the correlation between
↗
e B
65,25

(2011) and
↗
e R
65,25

(2011) for
the cash flow-hedging example.

7.3. Step 4: Calculation of hedge effectiveness

For each stochastic two-population model under consideration, we compute
the correlations between L and H based on 1,000 simulated mortality scenar-
ios. Our experience suggests that a higher number of simulations does not lead
to significant differences in the results. In the analysis that follows, we con-
template three cases concerning the sources of risks considered in the simula-
tions: (i) only PR; (ii) PR and PU (PR+PU) and (iii) PR, PU and sampling
risk (PR+PU+SR). PR and parameter risk are considered using the techniques
described before in Section 6.2.5, while sampling risk is considered by randomly
sampling the number of deaths from a Binomial distribution once PU and PR
have been taken into account.

Specifically, for the value-hedging example, we assume that the future expo-
sures EB

x,2010+t, t = 1, . . . , 10, are equal to the average age-specific book expo-
sure over the data period used in fitting the mortality model and then simulate
the number of deaths using the conditional Binomial assumption:

DB
x,2010+t|qBx,2010+t ∼ Bin(EB

x,2010+t, q
B
x,2010+t), t = 1, . . . , 10.

For the cash-flow hedge example, we take sampling risk into account by treating
the cohort of pensioners as a random survivorship group. Thus, if lx denotes the
number of pensioners who survive to age x and given a simulated mortality sce-
nario {qB65,2011, qB66,2012, . . . , qB89,2035}, we model sampling risk with the following
Binomial death process:

l65+t ∼ Bin(l65+t−1, 1 − qB65+t−1,2010+t), t = 1, . . . , 25,

with l65 equal to 5% of the total exposure in the book between ages 60 to 89 (e.g.
if the total book exposure is 100,000 lives, we take l65 = 5, 000). We have chosen

https://doi.org/10.1017/asb.2017.18 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.18


A COMPARATIVE STUDY OF TWO-POPULATION MODELS 667

FIGURE 11: Squared correlation, ρ2, between the liability L and the hedging instrument H, as a function of
book population size. All values correspond to the “Extreme Wealthy” socio-economic composition where
data for the period 1981–2010 have been used to fit the models. (a) Value hedge example: 30-year curtailed

period life expectancy at age 60 in 2020. (b) Cash flow hedge example: 25-year curtailed cohort life expectancy
at age 65 in 2011.

5% as from the total English male population aged 60 to 89 broadly 5% is aged
65.

7.4. Step 5: Interpretation of results

We concentrate on hedge effectiveness results for models CAE+Cohorts and
M7–M5 which have been identified as the best performing models after the sys-
tematic model assessment we have carried out in Section 6. However, in spite of
the implausible projections produced by models CF+Cohorts and APC (grav-
ity) model, we shall also compute hedge effectiveness metrics for these twomod-
els to illustrate the issues that may arise if we insist on using these models for
basis risk assessment.

7.4.1. Hedge effectiveness by book population size. As discussed in section
6.2.5, population size has amaterial impact in the PUof themodels. In addition,
it is expected that the higher sampling risk associated with smaller populations
will reduce the effectiveness of a standardised longevity hedge. To investigate
this phenomenon, we present in Figure 11 hedge effectiveness results for the
“Extreme Wealthy” test book considering population sizes ranging from 5,000
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to 100,000 exposed lives between ages 60 to 89, and considering different sources
of risk. In all cases, data for the period 1981–2010 (i.e. a history length of 30
years) is used for fitting the models. From Figure 11, we note the following:

• As expected, the inherent perfect correlation of the CF+Cohorts results in
an unrealistic zero or close to zero basis risk when sampling risk is ignored.

• The previously raised issues in relation to the PU in the estimation of book-
specific cohort parameters become evident, with the APC (Gravity) model
showing implausibly low hedge effectiveness once parameter risk is taken into
account. This is especially noticeable for the cash flow-hedge example which
involves cohort-type quantities. In this case, even for populations as big as
100,000 lives, the hedge effectiveness produced by the model are below 60%
while other models produce hedge effectiveness of more than 85%.

• For book sizes smaller than 15,000 lives, PR is unrealistically high (recall
Figure 8) distorting the assessment of basis risk and producing artificially
low hedge effectiveness for the value-hedge example.

• The impact of sampling risk on correlations is material, with hedge effec-
tiveness values for both the value-hedge and the cash flow-hedge falling
rapidly for populations below 10,000 lives. We also note that for the cash
flow-hedge example, sampling risk is the main determinant of basis risk. In
fact, the CF+Cohorts model which implies zero basis risk before account-
ing for sampling risk, results in virtually the same risk reductions as models
CAE+Cohort and M7–M5 once sampling risk is accounted for.

• Although models M7–M5 and CAE+Cohorts can give rather different mor-
tality forecasts, these differences seem to attenuate in applications, with the
two models producing very similar hedge effectiveness values once all risks
have been taken into account.

7.4.2. Hedge effectiveness by history length. We now investigate how the num-
ber of years of available data in the book population impacts the evaluation of
hedge effectiveness. Figure 12 presents hedge effectiveness results for the “Ex-
tremeWealthy” test book considering history lengths ranging from 5 years to 30
years, and considering different sources of risk. In all cases, a book population
size of 100,000 lives is used for fitting the models. In this figure, we can see how
history length has a significant impact on hedge effectiveness assessment. For
history lengths shorter than 10–12 years and once PU has been considered, risk
reductions fall rapidly for model CAE+Cohorts, M7–M5 and APC (Gravity).
This reinforces the previously discussed issues of fitting time series models when
historical data are scarce.

7.4.3. Interaction between book size and history length. We end this section by
investigating the interaction between book size and history length in the assess-
ment of hedge effectiveness. To do so, we have fitted the CAE+Cohort andM7–
M5 model to the “Extreme Wealthy” test book considering all possible combi-
nations between book sizes 5,000, 7,500, 10,000, 15,000, 20,000, 25,000, 30,000,
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FIGURE 12: Squared correlation, ρ2, between the liability L and the hedging instrument H, as a function of
history length of the book population data used to fit the models. All values correspond to the “Extreme

Wealthy” socio-economic composition with a book size of 100,000 annual exposed lives between ages 60 to
89. (a) Value hedge example: 30-year curtailed period life expectancy at age 60 in 2020. (b) Cash flow hedge

example: 25-year curtailed cohort life expectancy at age 65 in 2011.

40,000, 50,000, 75,000 and 100,000 and history lengths 5, 6, 7, 8, 9, 10, 12, 15,
20, 25 and 30 years. Figure 13 presents heatmaps depicting for both the value-
hedge and cash-flow hedge examples the resulting hedge effectiveness values
once all sources of risks have been considered. To ease the identification of pat-
terns, correlations have been smoothed along the book size and history length
dimensions.12 From Figure 13, we note the following:

• The interaction between history length and book size is minimal, with hedge
effectiveness falling rapidly for history lengths shorter than 10–12 years and
book sizes smaller than 15,000–25,000 exposed lives above age 60.

• While for model M7–M5, correlations start to fall significantly for history
length below 12 years, for the CAE+cohorts, correlations only start to show
a material decline for history length below 10 years. This suggest that when
historical data are limited, models with fewer book-specific period indexes
should be preferred over models with multiple period book specific period
terms. However, in all cases, the fitting of two-populations models should
only be pursued when book data exceeds 8–10 years of history.

• For a book size over 25,000 lives and history length above 12 years, the hedge
effectiveness reductions for both the value-hedge and the cash-flow hedge
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FIGURE 13: Smoothed squared correlation, ρ2, between the liability L and the hedging instrument H, as a
function of the book size and history length of the book population. All values correspond to the “Extreme
Wealthy” socio-economic composition. (a) Value hedge example: 30-year curtailed period life expectancy at
age 60 in 2020. (b) Cash flow hedge example: 25- year curtailed cohort life expectancy at age 65 in 2011.

examples are above 70%, suggesting that index-based hedges can be a mean-
ingful alternative for hedging-longevity risk.

8. DISCUSSION AND CONCLUSIONS

The main conclusions of our systematic assessment of the alternative two-
population mortality models for basis risk assessment can be summarised as
follows. First, as can be expected, none of the models satisfy all the desirable
practical criteria for assessing basis risk laid down in Section 5. However, M7–
M5 and CAE+Cohorts stand out as the models which provide the most suitable
balance between flexibility, simplicity, parsimony, goodness-of-fit to data and
forecasting performance. Both models produce reasonable best estimate pro-
jections with plausible levels of uncertainty, but with sufficient differences to
suggest that model risk should be recognised as an important issue.
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As our analysis suggests, the paucity of book data implies that it is difficult
to estimate the age modulating terms β

( j,B)
x without resulting in non-robust and

erratic parameter estimates. Thus, any parameter which moderates the sensi-
tivity of the book to time trends at different ages should be inherited from the
reference population (i.e. β( j,B)

x ≡ β
( j,R)
x ). Furthermore, unless there is a strong

reason to believe in the existence of a different cohort effect in the book than
in the reference population, the PU in fitting a (non-parametric) book-specific
cohort term will greatly outweigh any benefits in terms of goodness-of-fit to
historical experience.

The fitting of two-population models should in principle only be pursued
when two requirements are met. First, the book annual exposure should be over
20,000–25,000 lives, since for smaller exposures the impact of PU may result in
a biased estimate of basis risk. Second, there should be at least 8–10 years of
reliable book data, since for shorter history lengths the quality of the forecasts
is likely to be poor.

The above conclusions are underpinned by the analysis based on England
and Wales population data and the profile of sample schemes drawn from the
Club Vita database. We would expect many of the key conclusions to hold for
other populations, although specific results (such as AIC rankings) are neces-
sarily dependent on the choice of data.

We end this paper by making a number of general comments arising from
our investigations.

Our previous sections have suggested that M7–M5 or the CAE+cohorts are
appropriate models when undertaking the modelling of the mortality of the
reference and the book populations in a basis risk assessment exercise. How-
ever, this need not preclude the consideration of additional models. Indeed, the
modeller may wish to look at alternative models as part of sensitivity testing;
or in order to gain a better understanding of model risk; or to err on the side
of adding more features into the model than historic back testing alone might
suggest these features may be needed as part of a personal belief regarding the
complexity of mortality. Further, as time goes on, new models will enter the
actuarial literature and our work can help integrate those models into a basis
risk assessment. Therefore, we next provide some general guidelines for the con-
struction of two-population models for basis risk assessment.

When building a two-population model for assessing longevity basis risk, it
is usual to find that the reference population is considerably larger and has a
longer back history of data than the book population. It is therefore natural
to start by selecting an appropriate model for the reference population. Once
the reference population model is chosen, a reasonable approach would be to
select the book part of the model from within the same model family of the ref-
erence part. This will ensure a correspondence between the model parameters
in the book and the reference populations which facilitates interpretation of the
parameters of the models and makes the subsequent analysis more comprehen-
sive and consistent in both populations. Our research on different models has
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also identified the following facts: it is in general enough to include at most two
book-specific time-dependent terms; any parameter which moderates the sensi-
tivity of the book to these time trends at different ages should be inherited from
the reference book (i.e. β

( j,B)
x ≡ β

( j,R)
x ); finally, it is generally appropriate not

to include a book-specific cohort effect. In mathematical terms, if the preferred
reference population model is given by

logit qRxt = αR
x +

N∑
j=1

β( j,R)
x κ

( j,R)
t + γ R

t−x,

then a good starting point for the book model would in general be of the form:

logit qBxt − logit qRxt = αB
x +

M∑
j=1

β( j,R)
x κ

( j,B)
t .

We would usually expect M to be at most two as it is unlikely that the book
population can support more than two time series i.e. M ≤ min(2, N).13 By
way of example, if we choose to model the reference population using the single-
population model described in Börger et al. (2013),

logit qRxt = αR
x +κ

(1,R)
t +(x−x̄)κ(2,R)

t +(xyoung−x)+κ
(3,R)
t +(x−xold)+κ

(4,R)
t +γ R

t−x,

where xyoung and xold are predefined constant, then a suitable starting point for
the book model would be

logit qBxt − logit qRxt = αB
x + κ

(1,B)
t + (x− x̄)κ(2,B)

t .

Our systematic analysis of the two-population mortality literature has fo-
cused exclusively on the use of these models for the assessment of basis risk in
longevity hedges. Furthermore, we have implicitly assumed that the target book
population is a subset or is closely related to the reference population on which
the index is based. Hence, our conclusions may not necessarily extend directly
to other applications of two-population mortality models and the evaluation of
the suitability of a model will largely depend on the task at hand (e.g. whether it
is a basis risk assessment exercises or not) and on the nature of the relationship
between the two populations being modelled. As we have repeatedly discussed
in this paper, simpler models that are not suitable for basis risk assessment (e.g.
because of their implied perfect correlation between the populations) may be
suitable for other applications such us when valuing pension liabilities or pricing
annuities. In addition, the use of two-population mortality models for assessing
the basis risk in longevity hedges where the mortality in one country is hedged
with the mortality of another country14 would require a deep understanding
of the differences between the two countries’ mortality. Such differences may
not be captured by the structure of the two-population models we have pro-
posed and the relative approach we have pursued may have to be substituted
by a simultaneous modelling of the two countries’ mortality, for instance, along
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the lines of the work of Li et al. (2015) or the GLM modelling approach of
Hatzopoulos and Haberman (2013).

In all our mortality projections and simulations, we have employed the usual
assumption that the spread between the mortality in the reference and the book
will conform to the non-divergence hypothesis in the long run, i.e. that the ratio
of qBxt to q

R
xt will tend to a limiting distribution as t → ∞. We have captured this

non-divergence constraint via the use of a (vector) autoregressive process for the
time series indices (κB

t ) in the book part of the model, implying that in the long-
run, the spread between the logit of mortality for the book and the reference
population will revert from the current level to the historical mean. Although
the investigation of the appropriateness of this assumption is out of the scope
of this paper, the unsatisfactory results we have obtained when modelling the
“ExtremeDeprived” book population suggest that such an assumptionmay not
be appropriate in all cases. In addition, the non-divergence assumption implies
that the variance of the difference in (logit) mortality between the book and the
reference population is bounded, potentially understating demographic basis
risk and hence overstating the hedge effectiveness. We thus encourage further
research looking at alternative choices of times series model and at the implica-
tions that such choices may have on hedge effectiveness.

Our investigations indicate that the accurate calibration and projection of a
two-population model requires that the annual exposure in the book popula-
tion is over 20,000–25,000 lives and that there are at least 10–12 years of reliable
book data. However, in practice, a large proportion of pension scheme books
and life company portfolios will not meet these data requirements leaving open
the question of how to assess longevity basis risk and hedge effectiveness for
such populations. If book size is the main issue, then a Bayesian approach such
as those considered in Cairns et al. (2011a) and in Antonio et al. (2015) may
offer an alternative. But, if the problem is the lack of sufficiently long historical
data, indirect approaches where the book ismodelled indirectly by reference to a
bigger population with a more reliable and longer mortality experience could be
the way through. Such approaches have recently been considered in the “mix-
ing” approach proposed by Ahcan et al. (2014) and in the “characterisation”
approach introduced in Haberman et al. (2014), and we believe that this line of
research deserves further consideration.

Finally, althoughwe have only considered very stylised longevity hedges, our
hedge-effectiveness results show that index-based hedges have the potential to
provide an effective and flexible solution to mitigate longevity risk. We hope
that our research has shed light on the assessment of basis risk and contributes
to moving forward the market of standardised longevity transactions.
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NOTES

1. Here, we have chosen to work with 1-year death probabilities, qxt . Therefore, it is most natu-
ral to use the logit function and model deaths using a Binomial distribution. However, if interested
in central death rates, mxt , or the force of mortality, μxt , then the general modelling framework
can be easily reformulated using a log link function and a Poisson distribution. In addition, based
on our experience, no material differences are to be expected in the analysis if central death rates,
mxt , or the force of mortality, μxt , were considered instead.

2. An alternative approach would be to estimate simultaneously the parameters in the refer-
ence and book populations. This would in principle not materially change the fitted parameters
as it is expected that the book population has a small size relative to the reference population.
Furthermore, for some models such as the two-population APC, CBD, M5 and M7 where the
log-likelihood is separable, a two-stage estimation approach results in exactly the same parameter
estimates as a joint estimation approach.

3. Considering correlations between ξ Rt and ξ Bt or between εRc and εBc is in principle possible,
as has been done in Cairns et al. (2011a) and in Li et al. (2015). However, we refrain from con-
sidering this due to the fact that the estimation of the appropriate covariance matrix may not be
straightforward. This is the case when the models involve multiple period effects; for example, if
the two-population M7 model defined in Equation (4) is used, then the covariance matrix is par-
ticularly large, containing up to 21 distinct elements associated with six period factors (see Li et
al., 2015). In addition, the estimation of the covariance matrix would be further complicated in
the case when the time series for the reference and the book have different lengths, which is very
frequent in practice.

4. Note that the correlation between the mortality rates qBxt and qRxt may not be perfect, al-
though it will be close to one, even when correlation is perfect on the logit scale used by the models
introduced in Section 4. Also, note that having a perfect correlation between the populations does
not necessarily imply that the two populations experience exactly the same mortality improve-
ments. For instance, the Joint-κ and the three-way Lee–Carter models allow for improvement rate
differentials, but imply a perfect correlation between the populations.

5. A detailed analysis of themortality data used in this paper can be seen in Villegas andHaber-
man (2014) or in Lu et al. (2014). For further information on the Index of Multiple Deprivation,
see Noble et al. (2007).

6. Club Vita is an organisation which provides longevity analytics to pension schemes. The
schemes in the Club Vita dataset span a wide range of sizes including some of the largest DB
schemes in the UK and (as at September 2014) consists of nearly 6 million member records.

7. All the model fitting performed in this paper has been carried out using the R package
StMoMo (Villegas et al., 2017) which facilitates the implementation of stochastic mortality models
using the unifying framework of generalised (non-)linear models.

8. The AIC value is computed as AIC = 2νB − 2LB where LB is the Binomial log-likelihood
of the book part of the model under the assumption that the reference population is treated as a
known offset and νB is the number of book-specific parameters of the models.

9. To model process risk, we use a multivariate adaptation of Algorithm 2 in Haberman and
Renshaw (2009) without provision for parameter error.We note that Algorithm 2 inHaberman and
Renshaw (2009) is itself an adaptation of the prediction interval approach of Cairns et al. (2006).
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10. We note that in adapting the bootstrap, we follow Renshaw and Haberman (2008) and solve
for the observed numbered of deaths instead of the fitted number of deaths as done by Koissi et
al. (2006). The details of the residual bootstrapping approach under a Binomial framework are
described in Debón et al. (2010, Section 3).
11. For instance, when considering a history length of 5 years, the models were fitted using data

for the book population covering the periods 1981–1985, 1982–1986, 1983–1987,. . ., 2003–2007,
2004–2008, 2005–2009. In all cases, the reference population data were assumed to start in 1961
and end in the same year as the book population data.
12. Smoothing has been performed using a generalised additive model of the form logit ρ =

s(size) + s(length), where, s denotes a penalised spline. For smoothing, we have used R package
mgcv (Wood, 2015).
13. Note that the M7–M5 model and the CAE+cohorts can be derived from this form by ap-

plying the previous rules if we start by modelling the reference population using an M7 model or
a LC+Cohorts model, respectively.
14. An example of this is the Kortis bond where UK mortality is hedged using U.S. mortality,

see Hunt and Blake (2015a).
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APPENDIX A. GENERATION OF
SYNTHETIC DATA

In this appendix, we present a possible procedure for generating, based on a reference dataset,
synthetic mortality datasets which have a given exposure size with a given distribution of this
exposure across population subgroups.

Assume that we have a reference dataset containing observed number of deaths Dxtg in
year t for people age x in subgroup g with matching central exposures Extg and matching
death rates μxtg = Dxtg/Extg . Let C

′
t be the target total exposure for year t in the synthetic

dataset and (w
′
tg1

, . . . , w
′
tgm ) be a vector of weights adding to one which represents the desired

splitting in year t of this exposure among the subgroups.
The synthetic central exposures E

′
xtg in year t for people age x in subgroup g are obtained

as

E
′
xtg = C

′
t

∑
g Extg∑

x

∑
g Extg

w
′
tg = C

′
t

Ext

Et
w

′
tg,

where Ext = ∑
g Extg are the total exposed to risk at age x in year t across all groups and

Et = ∑
x

∑
g Extg are the total exposed to risk in year t across all groups and ages. Hence,

the exposure for the reference dataset is being used to obtain the split by age for a particular
year and group. The corresponding synthetic number of deaths D

′
xtg is generated by drawing

a random sample from a Poisson distribution with mean E
′
xtgμxtg. It should be mentioned

that the use of raw death rates may inflate the variability in the simulated numbers of deaths.
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TABLE A1

PARAMETER CONSTRAINTS FOR THE REFERENCE POPULATION MODELS.

Model Constraints

LC+Cohorts
∑

x βR
x = 1,

∑
t κ

R
t = 0,

∑
t−x γ R

t−x = 0,
∑

t−x(t − x)γ R
t−x = 0

APC
∑

t κ
R
t = 0,

∑
t−x γ R

t−x = 0,
∑

t−x(t − x)γ R
t−x = 0

M7
∑

t−x γ R
t−x = 0,

∑
t−x(t − x)γ R

t−x = 0,
∑

t−x(t − x)2γ R
t−x = 0

However, in the present application, based on the large UK population, the extent of this
additional variability is limited. Different applications based on smaller populations may
require the preliminary smoothing of death rates.

APPENDIX B. MODEL FITTING
CONSTRAINTS

Some of the models require parameter constraints to ensure identifiability of the parameters.
Table A1 presents the parameter constraints imposed to the reference population models and
Table A2 shows the parameter constraints imposed to the book part of the two-population
models. It is well known that cohort extensions of the Lee–Carter model have robustness and
stability issues with models being very sensitive to changes in the data or the fitting algorithm
(see e.g. Hunt and Villegas, 2015). Therefore, when implementing the LC+Cohorts model,
we follow the approach suggested in Hunt and Villegas (2015) which helps resolve many of
the stability issues.

TABLE A2

PARAMETER CONSTRAINTS FOR THE BOOK PART OF THE MODELS.

Model Constraints

CF+Cohorts –
CAE+Cohorts

∑
t κ

B
t = 0

RelLC+Cohorts
∑

x βB
x = 1,

∑
t κ

B
t = 0

Gravity (APC)
∑

t κ
B
t = 0,

∑
t−x γ B

t−x = 0,
∑

t−x(t − x)γ B
t−x = 0

M7–M5 –

M7–M6
∑

t−x γ B
t−x = 0,

∑
t−x(t − x)γ B

t−x = 0

M7–M7
∑

t−x γ B
t−x = 0,

∑
t−x(t − x)γ B

t−x = 0,
∑

t−x(t − x)2γ B
t−x = 0

M7–Saint –
M7–PLAT –
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