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Accurate modeling and optimization of
microwave circuits and devices using
adaptive neuro-fuzzy inference system

youssef harkouss

In this paper, an accurate neuro-fuzzy-based model is proposed for efficient computer-aided design (CAD) modeling and
optimization of microwave circuits and devices. The adaptive neuro-fuzzy inference system (ANFIS) approach is used to
determine the scattering parameters of a microstrip filter and is applied to the optimization design of this microstrip filter.
The ANFIS has the advantages of expert knowledge of fuzzy inference system and learning capability of artificial neural net-
works. The neuro-fuzzy model has been trained and tested with different sets of input/output data. Finally, different results,
which confirm the validity of the proposed model, are reported.
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I . I N T R O D U C T I O N

The microstrip transmission line is the basic component of
microstrip technology. The microstrip line theory has been
developed and may be found in standard references [1, 2].
The multiplicity of restrictions and the difficulty of represent-
ing the scattering parameters of passive devices by an analyti-
cal function reduced the choice to the black-box models. A
black-box model describes any system (static or dynamic),
and the problem is to find the model that suits.

Recently, several techniques have been developed for passive
device modeling. Typical approaches for the realization of this
crucial method for accurate and fast circuit simulation have
included table-based models with various interpolation tech-
niques, polynomial curve-fit techniques, and an electrical analy-
sis tool such as electromagnetic (EM) simulation techniques
[3]. Table look-up techniques have been used to reduce the
CPU time of circuit simulation. These techniques are fast, but
the table size grows exponentially with the addition of each
variable and becomes the limiting factor in the modeling accu-
racy; hence, the memory requirements are large. Polynomial
representations are generally capable of handling only mild
nonlinearity with a few variables. However, EM simulation
techniques, while very accurate, suffer from the large
run-time memory requirements of simulation and are not prac-
tical for interactive computer aided design (CAD) environment
and optimization techniques.

Several techniques based on fuzzy systems [4], space
mapping [5], and neural networks [6, 7] have been developed
to model microwave devices and circuits, and have been found
to be useful tools of the above described problems.

Fuzzy systems are expert systems, meaning they are
modeled on the expert experience of real people. The impor-
tant step in the construction procedure of a fuzzy system is to
incorporate such experience in defining the rule-base. The
rule-base is a set of fuzzy If–Then rules. The key components
in a fuzzy system are fuzzy rules and fuzzy inference
system(FIS). The choice of these elements critically affects
the performance of fuzzy systems.

Space mapping assumes the existence of “fine” and “coarse”
models. The “fine” model may be a high fidelity CPU-intensive
EM simulator, undesirable for direct statistical analysis and
design. The “coarse” model can be a simplified representation
such as an equivalent circuit with empirical formulas. The
standard space-mapping modeling methodology is based on
setting up the surrogate model using a small amount of fine-
model data. Extraction of the model parameters is performed
over the whole set of these data. This methodology is simple
and gives reasonable accuracy, which, however, may not be
sufficient for some applications. To improve modeling per-
formance, additional fine model information needs to be
involved. Unfortunately, this approach to space mapping is
not able to effectively harness a large amount of data, i.e.,
increasing the number of base points does not help if the
number of space-mapping parameters (model flexibility)
remains unchanged. Space-mapping modeling with variable
weight coefficients is aimed at overcoming these limitations.
It indeed provides much better accuracy than the standard
method, however, at the expense of significant increase of
the evaluation time, which is due to a separate parameter
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extraction required for each evaluation of the surrogate model.
This limits potential applications of the method.

Neural approaches offer accurate neural models whose
complexity is less sensitive to the input dimension. But
these models offer significant drawbacks, which are:

1) The building process of the neural model is very time con-
suming, since the optimal number of hidden neurons is
not known in advance and it must be determined by trial
and error.

2) The learning process of the neural model is slow compar-
ing to the learning technique used for the model proposed
in this paper.

New modeling approaches that are accurate in nature and
cost-effective, from both time and monetary point of view, are
in demand.

This paper describes a new and accurate model for
efficient CAD modeling of microwave devices. This model is
inspired by both the FIS and artificial neural networks
(ANNs) theory [8, 9]. The adaptive neuro-fuzzy inference
system (ANFIS) combines the benefits of ANNs and FISs in
a single model. It can be trained with no need for the expert
knowledge usually required for the standard fuzzy logic
design. The ANFIS modeling technique is presented in
Section II. Results with neuro-fuzzy modeling method for
microstrip filter are listed in Section III. Section IV presents
the results of the optimization process of microstrip filter
using neuro-fuzzy model. Finally, conclusions are presented
in Section V.

I I . A D A P T I V E N E U R A O - F U Z Z Y
I N F E R E N C E S Y S T E M

In this section, we describe ANFIS structural issues to
better understand what neuro-fuzzy networks are and
why they have the ability to represent microwave device
behaviors.

A) ANFIS for microwave modeling
Component modeling is one of the most important areas of
microwave CAD. The efficiency of CAD tools depends
largely on speed and accuracy of the component models.

Let X be a vector containing physical/geometrical
parameters of a microwave component. Let O be a vector
containing the responses of the component under

consideration (S-parameter). The physics/EM relationship
between X and O can be represented as O ¼ f(X). The theor-
etical model for f(X) may be computationally too expensive
for online microwave design and repetitive optimization
(3D full-wave EM analysis inside a Monte Carlo statistical
design loop). The objective now is to develop a fast model
that will accurately represent the original X–O relationship.
Since neuro-fuzzy networks are efficient computational
tools that can easily handle nonlinear and multidimensional
problems, they become good candidates to replace the orig-
inal EM models during microwave design. The ANFIS
model for the component is given by: OANFIS ¼ fANFIS(X, P)
where P is the vector containing all the parameters represent-
ing the ANFIS model. The ANFIS approach is a new type
of modeling approach where the ANFIS model can be
developed by learning from accurate data of the microwave
components. After training, the ANFIS model becomes a
fast and accurate model representing the original component
behaviors. ANFIS models can be used in circuit design and
optimization.

B) ANFIS structure
ANFIS is a FIS implemented in the framework of an adaptive
fuzzy neural network, and is a very powerful approach for
building complex and nonlinear relationship between a set
of input and output data [10–15]. It combines the explicit
knowledge representation of FIS with the learning power of
ANNs. ANFIS is a multilayer feedforward network which
implements fuzzy decision rules and reveals its decision
criterion.

A typical architecture of ANFIS with two inputs and one
output is shown in Fig. 1. It consists of five layers: fuzzy
layer (layer 1), product layer (layer 2), normalized layer
(layer 3), de-fuzzy layer (layer 4), and summation layer
(layer 5).

In this paper, the rule base would contain many fuzzy if–
then rules of Takagi and Sugeno’s type [6]. A common rule
set with two fuzzy if–then rules can be expressed as:

Rule1: if (x is A1 and y is B1), then z1 = p1x + q1y + r1,

Rule2: if (x is A2 and y is B2), then z2 = p2x + q2y + r2,

where Ai and Bi are labels of fuzzy sets, and pi, qi, and ri are the
design parameters that are determined during the training
process. As in Fig. 1, the ANFIS consists of five layers:

Layer 1: This layer implements fuzzy decision rules by
means of membership functions (MFs):

O1
Ai
= mAi

(x), (1)

O1
Bi
= mBi

(y), i = 1, 2 (2)

OAi

1 (OBi

1) specifies the degree to which the input x (y)
satisfies the quantifier Ai (Bi) by means of MF mAi

(x) (mBi

(y)). In this work, the following generalized Gaussian MF is
used:

Ø(input) = e−(input−cj)
2/zs2

j , (3)

where input ¼ x or y and {cj, sj} are the parameter set that

Fig. 1. Architecture of ANFIS.
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changes the shape of the jth MF of the input x or y. Parameters
in this layer are named as the premise parameters.

Layer 2: Every node i in this layer calculates the firing
strength of a rule via multiplication:

O2
i = vi = O1

Ai
× O1

Bi
(i = 1, 2). (4)

Layer 3: Each node i of this layer calculates the normalized
firing strength:

O3
i = �vi =

vi

S
2
k=1vk

= vi

v1 + v2
(i = 1, 2). (5)

Layer 4: Every node i in this layer is an adaptive node:

O4
i = �vi × zi = �vi × (pix + qiy + ri) (i = 1, 2). (6)

Parameters in this layer are referred to as the consequent
parameters.

Layer 5: The single node in this layer computes the overall
output as the summation of all incoming signals:

O5
1 = S

2
i=1�vi × zi. (7)

The output O1
5 is a real number. It is evident that this

formula is much easier to compute than numerically solving
theoretical EM or physics equations. This is the reason why
ANFIS models are much faster than numerical models of
microwave devices. The hybrid learning (HL) algorithm [8]
combining the least square method (LSM) and backpropaga-
tion (BP) algorithm is used to fast train and adapt the ANFIS.
This algorithm converges much faster since it reduces the
dimension of the search space of the BP algorithm. During
the learning process, premise parameters in layer 1 and conse-
quent parameters in layer 4 are tuned until the desired
response of FIS is achieved. The HL algorithm has a
two-step process. First, while holding the premise parameters
fixed, the functional signals are propagated forward to layer 4,
where the consequent parameters are identified by the LSM.
Then, the consequent parameters are held fixed while the
error signals, the derivative of the error measure with
respect to each node output, are propagated from the output
end to the input end, and the premise parameters are
updated by the standard BP algorithm.

I I I . M O D E L I N G O F M I C R O S T R I P
B A N D P A S S E D G E - C O U P L E D F I L T E R

The ANFIS approach described in the previous section is
applied to accurately model the scattering parameters of the
edge-coupled 2.4 GHz microstrip filter. The schematic of
this filter is shown in Fig. 2. The filter uses four CPLO
(coupled parallel lines with open ends) elements to form the
two-port filter circuit. Figure 3 shows the coupled microstrip
lines structure. Because the filter is symmetrical, its inner
and outer CPLO pairs take identical microstrip line width
(W ), spacing between the coupling lines (S) and coupling
length (P) values. W, S, and P for the outer pair of CPLOs
are parameterized as W1, S1, and P1; for the inner pair, as
W2, S2, and P2. The responses of each passive device used
in the circuit simulation consisted of the complex value of
Sij scattering parameters at the specified frequencies.

A) Neuro-fuzzy CPLO model
Each passive element of the filter shown in Fig. 2 is modeled
by a black box for which Sij scattering parameters are evalu-
ated through four neuro-fuzzy networks for each CPLO
(S11 ¼ S22 and S12 ¼ S21). The input vector for each Sij neuro-
fuzzy network consists of four parameters: conductor width
W, conductor length P, spacing S, and frequency Freq. The
output vector of the block containing the four neuro-fuzzy
networks, as shown in Fig. 4, consists of scattering parameters
(S-parameters): Re(S11), Im(S11), Re(S12), and Im(S12).

B) Training and test data sets
The S-parameters used to train and test each neuro-fuzzy
network are obtained through repeated off-line simulation,
using an accurate simulation technique such as the EM simu-
lations technique. The training data set (or the test data set)

Fig. 2. Structure of edge-coupled microstrip filter.

Fig. 3. Structure of coupled microstrip lines.

Fig. 4. Global neuro-fuzzy CPLO model.
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can also be obtained as a collection of data from actual
measurements. The strength of the neuro-fuzzy approach
is that only a minimum number of EM simulations of
passive devices are required to capture critical input–output
relationships (S-parameters), and the neuro-fuzzy networks,
once constructed, operate in an interactive CAD application
with a computation time that is negligible compared to
the EM simulation techniques. A neuro-fuzzy network
that is designed to generalize well will produce a correct
input–output mapping, even when the input is slightly differ-
ent from the examples used in the training set. We give here
the training and test data sets used, and the results obtained
for the CPLO.

In this case, 6375 examples (5 × 5 × 5 × 51), that we refer
to as the training data, are used for training neuro-fuzzy net-
works whose input vector is X ¼ (W, P, S, Freq)T (training
example ¼ (X, d) where d is the desired output of the neuro-
fuzzy network). The obtained networks are tested on another
set of simulation data that we refer to as the test data set. This
test set consisted of 918 examples (2 × 3 × 3 × 51). Training
and test data sets are generated using Serenade SV simulator
[16]. Testing identified neuro-fuzzy networks on a set of
‘fresh’ data is called validation process. It is a commonly
used method for evaluating the performance of identified
neuro-fuzzy networks. Table 1 lists the input parameters
and their ranges used to generate the training and test data
sets.

C) Building process of neuro-fuzzy networks
The overall model architecture of each CPLO is composed of
four ANFISs (Fig. 4). All the FIS structures generated are

based on the grid partitioning method. Each of the
neuro-fuzzy networks uses Gaussian-type input MFs and a
linear-type output MF.

To start the training, we need a FIS structure that specifies
the structure and initial parameters of the FIS for learning.
Figure 5 shows the initial MFs of the Re(S11) ANFIS.
INiMFj denotes the jth ( j¼ 1, 2, 3) MF of the input i (i¼ 1,
2, 3, 4) of the Re(S11) ANFIS. The number of if–then rules
is then 81 (3 × 3 × 3 × 3) as in the following equations:

Rule 1: if (W is IN1MF1 and P is IN2MF1 and S is IN3MF1
and Freq is IN4MF1), then

Z1 = q11W + q12P + q13S + q14 Freq + r1.

Table 1. Input parameters ranges.

Parameter Symbol Range

Line width W [50, 110 mils]
Physical length P [450, 850 mils]
Spacing S [25, 215 mils]
Frequency Freq [1.2, 3.2 GHz]

Fig. 5. Initial MFS of the Re(S11) ANFIS.

Fig. 6. Re(S11) ANFIS model structure.
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Rule 2: if (W is IN1MF1 and P is IN2MF1 and S is IN3MF1
and Freq is IN4MF2), then

Z2 = q21W + q22P + q23S + q24 Freq + r2.

Rule 3: if (W is IN1MF1 and P is IN2MF1 and S is IN3MF1
and Freq is IN4MF3), then

Z3 = q31W + q32P + q33S + q34 Freq + r3.

Rule 4: if (W is IN1MF1 and P is IN2MF1 and S is IN3MF2
and Freq is IN4MF1), then

Z4 = q41W + q42P + q43S + q44 Freq + r4.

· · · ·
· · · ·
· · · ·

Rule 81: if (W is IN1MF3 and P is IN2MF3 and S is
IN3MF3 and Freq is IN4MF3), then

Z81 = q(81)1W + q(81)2P + q(81)3S + q(81)4 Freq + r(81).

Therefore, ANFIS models used here contain a total of 429
fitting parameters, of which 24 (3 × 2 + 3 × 2 + 3 × 2 +
3 × 2 ¼ 24) are the premise parameters and 405 (81 × 5 ¼
405) are the consequent parameters. Figure 6 shows the struc-
ture of the Re(S11) ANFIS model.

The HL algorithm combining the LSM and the BP algor-
ithm is used to train and adapt the ANFIS. During the training
process, the premise parameters and the consequent par-
ameters are tuned until the desired response of the FIS is
achieved. Figure 7 shows the final MFs of the Re(S11) ANFIS
(NF1) used in the global neuro-fuzzy model of CPLO.

In Fig. 8, the root mean squared error RMSE of this neuro-
fuzzy network is plotted as a function of the number of
epochs. At each epoch, the RMSE is calculated by

RMSE =
����������������������
(1/N)SN

i=1(oi − di)
2

√
, where N is the number of

examples in the data set (N ¼ 6375 for the training data set
and N ¼ 915 for the test data set), di is the ith desired
output of the neuro-fuzzy network, and si is the ith neuro-
fuzzy network output. Table 2 shows the results obtained
for the CPLO after the learning and test procedures. In this
table we list the RMSE of all the networks of the CPLO on
the training data set (RMSEtrain) as well as on the test data
set (RMSEtest).

Fig. 7. Final MFs of the Re(S11) ANFIS.

Fig. 8. RMSE as a function of the number of epochs.

Table 2. RMSE of different ANFIS models.

Neuro-fuzzy network RMSEtrain RMSEtest

NF1 0.0048 0.00891
NF2 0.0058 0.0095
NF3 0.00365 0.00621
NF4 0.00315 0.00601

Fig. 9. Scattering parameters (Re(S11)) of the CPLO (EM versus ANFIS) for
W ¼ 95 mils, S ¼ 25 mils, and all values of P (∗ : Serenade; –: ANFIS).
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Fig. 11. Scattering parameters (Re(S12)) of the CPLO (EM versus ANFIS) for
W ¼ 95 mils, S ¼ 25 mils, and all values of P (∗ : Serenade; –: ANFIS).

Fig. 14. Obtained results (lm (S11)) with CPLO test data (EM versus ANFIS)
for W ¼ 60 mils, S ¼ 130 mils, and P ¼ {460 mils, 560 mils, 660 mils}
(∗ : Serenade; –: ANFIS).

Fig. 10. Scattering parameters (Im(S11)) of the CPLO (EM versus ANFIS) for
W ¼ 95 mils, S ¼ 25 mils, and all values of P (∗ : Serenade; –: ANFIS).

Fig. 12. Scattering parameters (lm (S12)) of the CPLO (EM versus ANFIS) for
W ¼ 95 mils, S ¼ 25 mils, and all values of P (∗ : Serenade; –: ANFIS).

Fig. 13. Obtained results (Re (S11)) with CPLO test data (EM versus ANFIS)
for W ¼ 60 mils, S ¼ 130 mils, and P ¼ {460 mils, 560 mils, 660 mils}
(∗ : Serenade; –: ANFIS).

Fig. 15. Obtained results (Re (S12)) with CPLO test data (EM versus ANFIS)
for W ¼ 60 mils, S ¼ 130 mils, and P ¼ {460 mils, 560 mils, 660 mils}
(∗ : Serenade; –: ANFIS).
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D) Results
Figures 9–12 show scatter plots of EM-simulated and ANFIS
computed values from the training data set for the S11 and S12

scattering parameters of the CPLO. Figures 13–16 show
the results obtained with the test data set that indicate the
ability of the ANFIS model to generalize and to predict
the output network for inputs never used in the training
data set. The results of the ANFIS model are compared with
the results of serenade simulator.

The neuro-fuzzy models of the CPLOs are used to simulate
the edge-coupled microstrip filter shown in Fig. 2. The calcu-
lation of the S-parameters of the microstrip filter is done using
the scattering transfer parameters (T-parameters) of this filter.
If the T-parameter matrix of the first CPLO is [T1] and the
T-parameter matrix of the second CPLO is [T2], then the
T-parameter matrix of the microstrip filter is given by

[T] = [T1][T2][T2][T1]. (8)

The following equations will provide conversion between S
and T parameters for two-ports networks. From S to T:

[T] = T11 T12

T21 T22

( )
=

− S11S22−S12S21
S21

S11
S21

− S22
S21

1
S21

( )
. (9)

From T to S:

[S] = S11 S12

S21 S22

( )
=

T12
T22

T11T22−T12T21
T22

1
T22

−T21
T22

( )
. (10)

The results obtained (Fig. 17) by the ANFIS models totally
agree with the EM-simulated values. These results are a
further indication of the ANFIS’s capability to capture the
complex nonlinear microstrip passive devices’ responses.

I V . O P T I M I Z A T I O N O F M I C R O S T R I P
B A N D P A S S E D G E - C O U P L E D F I L T E R

In this section, the ANFIS approach is applied to the optimiz-
ation design of microstrip filter. The Serenade’s optimizer is
used. The optimizable parameters are S1, S2, W1, and W2.
We have constrained the optimizable parameters by stating
their minimum, nominal (starting) and maximum values
(Table 3). The values of P1 and P2 are: P1 ¼ 671.82 mils and
P2 ¼ 657.32 mils.

For this filter we defined three optimization goals: a fre-
quency range ([2.25–2.45 GHz]) across which we want the
filter to exhibit a gain of greater than 21 dB (MAG (S12)
. 21 dB), and two frequency ranges ([1.2–2.17 GHz and

Fig. 17. Compared results obtained with the microstrip filter for W1 ¼ 58.53
mils, S1 ¼ 37 mils, P1 ¼ 671.82 mils, W2 ¼ 95.44 mils, S1 ¼ 200 mils, and P2 ¼

657.32 mils (∗ : Serenade, –: ANFIS).

Table 3. Specifications of S1, S2, W1, and W2.

Variables Minimum (mils) Nominal (mils) Maximum (mils)

S1 25 37 215
S2 25 200 215
W1 50 58,53 110
W2 50 95.44 110

Fig. 16. Obtained results (lm (S12)) with CPLO test data (EM versus ANFIS)
for W ¼ 60 mils, S ¼ 130 mils, and P ¼ {460 mils, 560 mils, 660 mils}
(∗ : Serenade; –: ANFIS).
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[2.53–3.2 GHz]) across which we want the filter to exhibit a
gain of less than 29 dB (MAG (S12) , 29 dB). Serenade’s
optimizer will attempt to adjust S1, S2, W1, and W2 to meet
these goals. Based on the optimization method (i.e. gradient
search method), we adjust continuously the input of the
ANFIS models, and then the optimized microstrip line can

Fig. 18. Optimized gain and input match for the microstrip edge-coupled
filter (∗ : Serenade; –: ANFIS).

Fig. 19. The error curve of edge-coupled filter MAG (S11) between Serenade
and ANFIS after optimization.

Fig. 20. The error curve of edge-coupled filter MAG (S12) between Serenade
and ANFIS after optimization.

Fig. 21. Smith chart of the edge-coupled filter S11.

Fig. 22. Smith chart of the edge-coupled filter S12.
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be acquired as follows:

S1 = 26.77 mils, S2 = 65.44 mils,

W1 = 59.42 mils, andW2 = 97.75 mils.

The results of the optimized bandpass filter MAG (S12) and
MAG (S11) using ANFIS and Serenade are shown in Fig. 18.
The error curves of the ANFIS and Serenade are shown in
Figs 19 and 20 respectively. From these figures we can know
the good agreement between the ANFIS and Serenade optim-
ization result. The Smith chart of filters S11 and S12 are shown
in Figs 21 and 22.

As mentioned above, the major advantages of using an
ANFIS model for the filter design optimization is a vast
reduction in required CPU time. The Serenade simulator
(EM model) has used about 8 s on a PC (2 GHz CPU and 1
GB RAM ) to perform the design optimization of the filter,
but the ANFIS model has only required 0.602 s to perform
the same task on the same computer. The number of iterations
used in the optimization process is 10. The comparison clearly
shows that the proposed method is significantly faster than the
EM method, enabling fast design and optimization. On the
other hand, the simulation of the microstrip filter required
approximately 4 MB of memory to run in the Serenade simu-
lator. With the ANFIS models, the memory size required for
the filter simulation is approximately 0.23 MB. These results
show that the ANFIS model will be very efficient for the
circuit optimization if the circuit under study contains large
number of microwave components.

V . C O N C L U S I O N

In this paper, ANFIS were used in device and circuit modeling
and optimization problems. An accurate linear passive device
model based on neuro-fuzzy network representation of its
scattering parameters has been developed. The results pre-
sented in this paper have demonstrated the efficiency and
the ability of using a neuro-fuzzy network model for CAD
modeling of microstrip devices, and proved that the ANFIS
global approximation and optimization is able to generalize.
The efficient neuro-fuzzy models, once constructed, operate
with a computation time which is negligible compared to
the traditional techniques, such as EM simulation, and are
suited for utilization in interactive CAD applications. In
addition, using the ANFIS approach in interactive CAD appli-
cations makes the memory size requirements of the simu-
lation significantly lower than using traditional techniques
such as EM simulations or table-based models. The ANFIS
model trained by the HL algorithm can easily be applied to
other microwave problems. The ANFIS is a very powerful
approach for building complex and nonlinear relationship
between a set of input and output data. Accurate, fast, and
reliable ANFIS models can be developed from measured/
simulated microwave data.

R E F E R E N C E S

[1] Hoffmann, R.K.: Handbook of Microwave Integrated Circuits,
Artech House, Nonvood, MA, USA, 1987.

[2] Gupta, K.C.; Garg, R.; Bahl, I.J.: Microstrip Lines and Slot-lines, 2nd
ed., Artech House, Nonvood, MA, USA, 1996.

[3] Djordjevic, A.R.; Harrington, R.F.; Sarkar, T.K.: Matrix Parameters
of Multiconductor Transmissions Lines, Artech House, Nonvood,
MA, USA, 1989.

[4] Miraftab, V.; Mansour, R. R.: Computer-aided tuning of microwave
filters using fuzzy logic, in IEEE MTT-S Digest, 2002, 1117–1120.

[5] Koziel, S.; Bandler, J.W.: A space-mapping approach to microwave
device modeling exploiting fuzzy systems. IEEE Trans. Microw.
Theory Tech., 55(12) (2007), 2539–2547.

[6] Harkouss, Y.; Ngoya, E.; Rousset, J.; Argollo, D.: Accurate radial
wavelet neural-network model for efficient CAD modeling of
microstrip discontinuities. IEE Proc. – Microw. Antennas
Propag., 147(4) (2000), 277–283.

[7] Zhang, Q.J.; Gupta, K.C.; Devabhaktuni, V. K.: Artificial neural net-
works for RF and microwave design – from theory to practice. IEEE
Trans. Microw. Theory Tech., 51(4) (2003), 1339–1350.

[8] Jang, J.-S.R.: ANFIS: adaptative-network-based fuzzy inference
system. IEEE Trans. Syst. Man Cybern., 23(3) (1993), 665–685.

[9] Jang, J.-S.R.; Sun, C.T.; Mizutani, E.: Neuro-Fuzzy and Soft
Computing: A Computational Approach to Learning and
Machine Intelligence, Prentice-Hall, Upper Saddle River, NJ, 1997.

[10] Yildiz, C.; Guney, K.; Turkmen, M.; Kaya, S.: Analysis of conductor-
backed coplanar waveguides using adaptive-network-based fuzzy
inference system models. Microw. Opt. Technol. Lett., 51(2)
(2009), 439–455.

[11] Ubeyli, E.D.; Guler, I.: Adaptive neuro-fuzzy inference system to
compute quasi-TEM characteristic parameters of microshield lines
with practical cavity sidewall profiles. Neurocomputing, 70(1–3)
(2006), 196–204.

[12] Rahouyi, E.B.; Hinojosa, J.; Garrigos, J.: Neuro-fuzzy modeling tech-
niques for microwave components, IEEE Microw. Wirel. Compo.
Lett. 16(2) (2006), 72–74.

[13] Hinojosa, J.; Dome’nech-Asensi, G.: Space-mapped neuro-fuzzy
optimization for microwave device modeling. Microw. Opt.
Technol. Lett., 49(6) (2007), 1328–1334.

[14] Yildiz, C.; Guney, K.; Turkmen, M.; Kaya, S.: Adaptive neuro-fuzzy
models for the quasi-static analysis of microstrip line. Microw. Opt.
Technol. Lett., 50(5) (2008), 1191–1196.

[15] Gaoua, S.L.; Ji Cheng, Z.; Mohammadi, F.A.; Yagoub, M.C.E.: Fuzzy
neural-based approaches for efficient RF/microwave transistor
modeling. Int. J. RF Microw. CAE, 19(1) (2009), 128–139.

[16] Serenade SV, Ansoft Corporation, version 8.5, Pittsburgh.

Youssef Harkouss received the Ph.D.
degree in electronics from the University
of Limoges, France, in 1998. From 1999
to 2000, he was Research Engineer at the
CNRS, France. He joined the Lebanese
University in 2001 as an Associate
Professor. His research interests include
advanced fuzzy neural networks soft-
ware development, fuzzy neural network

modeling and optimization for microwave devices and
circuits, CAD of passive devices, and fuzzy neural networks
for controlling dynamic systems.

modeling and optimization of microwave circuits and devices 645

https://doi.org/10.1017/S1759078711000651 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078711000651



