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Abstract

Suppose X is a multidimensional diffusion process. Assume that at time zero the state
of X is fully observed, but at time T > 0 only linear combinations of its components are
observed. That is, one only observes the vector LXT for a given matrix L. In this paper
we show how samples from the conditioned process can be generated. The main con-
tribution of this paper is to prove that guided proposals, introduced in [35], can be used
in a unified way for both uniformly elliptic and hypo-elliptic diffusions, even when L
is not the identity matrix. This is illustrated by excellent performance in two challeng-
ing cases: a partially observed twice-integrated diffusion with multiple wells and the
partially observed FitzHugh–Nagumo model.
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1. Introduction

Let X = (Xt, t ∈ [0, T]) be a d-dimensional diffusion process satisfying the stochastic
differential equation (SDE)

dXt = b(t, Xt) dt + σ (t, Xt) dWt, X0 = x0, t ∈ [0, T]. (1.1)

Here b : [0,∞) ×R
d →R

d, σ : [0,∞) ×R
d →R

d×d′
and W is a d′-dimensional Wiener pro-

cess with all components independent. Stochastic differential equations are widely used for
modelling in engineering, finance, and biology, to name a few fields of applications. In this
paper we will not only consider uniformly elliptic models, where it is assumed that there exists
an ε > 0 such that for all (t, x) ∈ [0, T] ×R

d and y ∈R
d we have ‖σ (t, x)′y‖2 ≥ ε‖y‖2, but

also hypo-elliptic models. These are models where the randomness spreads through all com-
ponents, ensuring the existence of smooth transition densities of the diffusion, even though the
diffusion is possibly not uniformly elliptic (for example because the Wiener noise only affects
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174 J. BIERKENS ET AL.

certain components). Such models appear frequently in application areas; many examples are
given in the introductory section of [9]. A rich subclass of non-linear hypo-elliptic diffusions
that is included in our set-up is specified by a drift of the form

b(t, x) = Bx + β(t, x), (1.2)

where

B =
[

0k×k′ Ik×k

0k′×k′ 0k′×k

]
, β(t, x) =

[
0k×1

β(t, x)

]
, σ =

[
0k×d′
σ (t)

]
, (1.3)

and σ : [0,∞) →R
k′×d′

, β : [0,∞) ×R
d →R

k′ , and k + k′ = d. This includes several forms
of integrated diffusions.

Suppose L is a m × d matrix with m ≤ d. We aim to simulate the process X, conditioned on
the random variable

V = LXT .

The conditional process is termed a diffusion bridge, although its paths do not necessarily end
at a fixed point but in the set {x : V = Lx}. Besides being an interesting mathematical problem in
its own right, simulation of such diffusion bridges is key to parameter estimation of diffusions
from discrete observations. If the process is observed at discrete times directly or through an
observation operator L, data-augmentation is routinely used to perform Bayesian inference
(see e.g. [16], [30], and [38]). Here, a key step consists of the simulation of the ‘missing’ data,
which amounts to simulation of diffusion bridges.

Another application is non-linear filtering, where at time t the state Xt was observed and
at time t + T a new observation LXt+T comes in. Interest then lies in sampling from the dis-
tribution on Xt+T , conditional on (Xt, LXt+T ). The simulation method developed in this paper
can then be used to construct efficient particle filters. We leave the application of our methods
to estimation and filtering to future research, although it is clear that our results can be used
directly within the algorithms given in [38]. Finally, rare-event simulation is a third application
area for which our results are useful.

We aim for a unified approach, by which we mean that the bridge simulation method applies
simultaneously to uniformly elliptic and hypo-elliptic models. This is important, as in the
aforementioned estimation problems either one of the two types of ellipticity may apply to
the data. While the sample paths of uniformly elliptic and hypo-elliptic diffusions are very dif-
ferent, the corresponding distributions of the observations can be very similar if the diffusion
coefficients are close. Algorithms which are invalid for hypo-elliptic diffusions will therefore
be numerically unstable if the model is close to being hypo-elliptic, and it may be a priori
unknown if this is the case.

1.1. Literature review

When the diffusion is uniformly elliptic and the endpoint is fully observed, i.e. L = I, the
problem has been studied extensively; see [10], [15], [4], [13], [5], [17], [21], [22], [3], [7],
[35], and [42].

Much less is known when either L 
= I or when the diffusion is not assumed to be uni-
formly elliptic. In [5] and [17] a Langevin MCMC sampler was constructed to sample
diffusion bridges when the drift is of the form b(x) = Bx + σσ ′∇V(x) and σ is constant,
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assuming uniform ellipticity. Subsequently, in [18], this approach was extended to hypo-
elliptic diffusions of the form[

Xt

Yt

]
=

[
Yt

f (Xt) − Yt

]
dt +

[
0

1

]
dWt.

However, no simulation results were included in the paper, as ‘these simulations proved pro-
hibitively slow and the resulting method does not seem like a useful approach to sampling’
[18, page 671].

We will shortly review in more detail the works [13], [27], and [40], as the present paper
builds upon these. The first of these papers includes some forms of hypo-elliptic diffusions,
whereas the latter two papers consider uniformly elliptic diffusions with L 
= I.

Stramer and Roberts [37] considered Bayesian estimation of non-linear continuous-time
autoregressive (NLCAR) processes using a data-augmentation scheme. This is a specific class
of hypo-elliptic models included by the specification (1.2)–(1.3). The method of imputation,
however, is different from that proposed here.

Estimation of discretely observed hypo-elliptic diffusions has been an active field over the
past 10 years. As we stated earlier, within the Bayesian approach a data-augmentation strategy
where diffusion bridges are imputed is natural. However, this is by no means the only way to
do estimation. Frequentist approaches to the estimation problem include [36], [14], [24], [11],
[33], [31], [9], and [28].

1.2. Review of [13] and [35]

To motivate and explain our approach, it is useful to review briefly the methods developed
by Delyon and Hu [13] and Schauer, van der Meulen, and van Zanten [35]. The method we
propose in this article builds on their papers. Both are restricted to the setting L = I (full obser-
vation of the diffusion at time T) and uniform ellipticity. Their common starting point is that
under mild conditions the diffusion bridge, obtained by conditioning on LXt = v, is itself a
diffusion process, governed by the SDE

dX�t = (b(t, X�t ) + a(t, X�t )r(t, X�t )) dt + σ (t, X�t ) dWt, X�0 = x0. (1.4)

Here a = σσ ′ and r(t, x) = ∇x log p(t, x; T, v). We have implicitly assumed the existence of
transition densities p such that

P
(t, x)(XT ∈ A) =

∫
A

p(t, x; T, ξ ) dξ

and r(t, x) is well-defined. The SDE for X� can be derived from Doob’s h-transform or the
theory of initial enlargement of the filtration. Unfortunately, the ‘guiding’ term a(t, X�t )r(t, X�t )
appearing in the drift of X� is intractable, as the transition densities p are not available in
closed form. Henceforth, as direct simulation of X� is infeasible, a common feature of both
[13] and [35] is to simulate a tractable process X◦ instead of X�, that resembles X�. Next,
the mismatch can be corrected for by a Metropolis–Hastings step or weighting. The proposal
X◦ (the terminology is inherited from X◦ being a proposal for a Metropolis–Hastings step) is
assumed to solve the SDE

dX◦
t = b◦(t, X◦

t ) dt + σ (t, X◦
t ) dWt, X◦

0 = x0, t ∈ [0, T], (1.5)
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where the drift b◦ is chosen such that the process X◦
t hits the correct endpoint (say v) at the

final time T . Delyon and Hu [13] proposed taking

b◦(t, x) = λb(t, x) + (v − x)/(T − t), (1.6)

where either λ= 0 or λ= 1, the choice λ= 1 requiring the drift b to be bounded. If λ= 0,
a popular discretisation of this SDE is the modified diffusion bridge introduced in [15]. A
drawback of this method is that the drift is not taken into account. Schauer, van der Meulen,
and van Zanten [35] proposed taking

b◦(t, x) = b(t, x) + a(t, x)r̃(t, x). (1.7)

Here r̃(t, x) = ∇x log p̃(t, x; T, v), where p̃(t, x) is the transition density of an auxiliary diffusion
process X̃ that has tractable transition densities. In this paper, we always assume X̃ to be a linear
process, i.e. a diffusion satisfying the SDE

dX̃t = b̃(t, X̃t) dt + σ̃ (t) dWt, where b̃(t, x) = B̃(t)x + β̃(t). (1.8)

The process X◦ obtained in this way will be referred to as a guided proposal.
We denote the laws of X, X�, and X◦ viewed as measures on the space C([0, t],Rd) of

continuous functions from [0,t] to R
d equipped with its Borel-σ -algebra by Pt, P�t , and P

◦
t

respectively. Delyon and Hu [13] provided sufficient conditions such that P�T is absolutely
continuous with respect to P

◦
T for the proposals derived from (1.6). Moreover, closed-form

expressions for the Radon–Nikodým derivative were derived. For the proposals derived from
(1.7), Schauer et al. [35] proved that the condition σ̃ (T)′σ̃ (T) = a(T, v) is necessary for abso-
lute continuity of P�T with respect to P

◦
T . We refer to this condition as the matching condition,

as the diffusivity of X and X̃ need to match at the conditioning point. Under that condition (and
some additional technical conditions), it was derived that

dP�T
dP◦

T
(X◦) = p̃(0, x0; T, v)

p(0, x0, T, v)
exp

( ∫ T

0
G(s, X◦

s ) ds

)
,

where G(s, x) is tractable. A great deal of work in the proof is concerned with proving that
‖X◦

t − v‖ → 0 at the ‘correct’ rate.

1.3. Approach

We aim to extend the results in [13] and [35] by lifting the restrictions of

(1) uniform ellipticity,

(2) L being the identity matrix.

1.3.1. Extending [13]. We first explain the difficulty in extending this approach beyond uni-
form ellipticity. To see the problem, we fix t< T . Absolute continuity of P�t with respect to P

◦
requires the existence of a mapping η(s, x) such that

σ (s, x)η(s, x) = b�(s, x) − b◦(s, x), s ∈ [0, t], x ∈R
d, (1.9)

which follows from Girsanov’s theorem [23, Section 7.6.4]. However, for the choice of [13]
(as given in equation (1.6)) this mapping η need not exist for λ= 0 and λ= 1. If λ= 1, then
we have

b�(s, x) − b◦(s, x) = v − x

T − s
,
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and therefore η(s, x) only exists if v − x is in the column space of σ (s, x). A similar argument
applies to the case λ= 0. From these considerations, it is not surprising that Delyon and Hu
[13] need additional assumptions on the form of the drift to deal with the hypo-elliptic case.
More specifically, they consider

dXt = (σ (t)h(t, Xt) + B(t)x + β(t)) dt + σ (t) dWt, (1.10)

with σ (t) admitting a left-inverse. Then they show that bridges can be obtained by simulating
bridges corresponding to this SDE with h ≡ 0, followed by correcting for the discrepancy by
weighting according to their likelihood ratio. Clearly, the form of the drift in the above display
is restrictive, but necessary for absolute continuity.

Whereas lifting the assumption of uniform ellipticity seems hard, lifting the assumption that
L = I is possible. Indeed, Marchand [27] showed in a clever way how this can be done by using
the guiding term

v(t, x) := a(t, x)L′(La(t, x)L′)−1 v − Lx

T − t
(1.11)

to be superimposed on the drift of the original diffusion. Hence, the proposal satisfies the SDE

dX�
t = b(t, X�

t ) dt + v(t, X�
t ) dt + σ (t, X�

t ) dWt, X�
0 = x0.

By applying Itô’s lemma to (T − t)−1(LX�(t) − v), followed by the law of the iterated
logarithm for Brownian motion, the rate at which LX�(t) converges to v can be derived.
Interestingly, the same guiding term as in (1.11) was used in a specific setting in [2], where the
guiding term was rewritten as σ (t, x)(Lσ (t, x))+(v − Lx)/(T − t), assuming that Lσ has linearly
independent rows. Here A+ denotes the Moore–Penrose inverse of the matrix A. The form of
the guiding term in (1.11) suggests that invertibility of La(t, x)L′ suffices, which, depending
on the precise form of L, would allow for some forms of hypo-ellipticity. However, we believe
there are fundamental problems when one wants to include for example integrated diffusions.
We return to this in the discussion in Section 7.

1.3.2. Extending [35]. When L is not the identity matrix, the conditioned diffusion also satis-
fies the SDE (1.4), albeit with an adjusted definition of r(t, x). To find the right form of r(t,
x), assume without loss of generality that rank L = m< d. Let (f1, . . . , fm) denote an orthonor-
mal basis of Col (L′), and let (fm+1, . . . , fd) denote an orthonormal basis of ker L. Then for
A ⊂R

m

P
(t,x)(XT ∈ A ×R

d−m) =
∫

A

( ∫
Rd−m

p

(
t, x; T,

d∑
i=1

ξifi

)
dξm+1, . . . , dξd

)
dξ1, . . . , dξm.

Suppose x = ∑d
i=1 ξifi is such that Lx = v. This is equivalent to

m∑
i=1

ξiLfi = v, (1.12)

since fm+1, . . . , fd ∈ ker L. Hence if ξ1, . . . , ξm are determined by (1.12) and if we define

ρ(t, x) =
∫
Rd−m

p

(
t, x; T,

d∑
i=1

ξifi

)
dξm+1, . . . , dξd,

then this is the density of XT | Xt, concentrated on the subspace LXT = v.
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When rank L = d, we can assume without loss of generality that L = I, which is the situation
of fully observing XT . Summarising, we define

ρ(t, x) =
{

p(t, x; T, v) if m = d,∫
Rd−m p(t, x; T,

∑d
i=1 ξifi) dξm+1, . . . , dξd if m< d,

and let r(t, x) = ∇xρ(t, x). The definition of guided proposals in the partially observed hypo-
elliptic case is then just as in the uniformly elliptic case with a full observation: replace the
intractable transition density p appearing in the definition of ρ by p̃ to yield ρ̃. Then define

r̃(t, x) = ∇x log ρ̃(t, x)

and let the process X◦ be defined by equation (1.5) with b◦(t, x) = b(t, x) + a(t, x)r̃(t, x). For
t< T , it is conceivable that P�t is absolutely continuous with respect to P

◦
t because clearly equa-

tion (1.9) is solved by η(s, x) = σ (s, x)(r(s, x) − r̃(s, x)). Contrary to the hypo-elliptic setting
in [13], no specific form of the drift needs to be imposed here. However, it is not clear whether

• ‖LX◦
t − v‖ tends to zero as t ↑ T ,

• P
�
T � P

◦
T .

The two main results of this paper (Proposition 2.2 and Theorem 2.6) provide conditions such
that this is indeed the case. Interestingly, in the hypo-elliptic case the necessary ‘matching con-
dition’ on the parameters of the auxiliary process X̃ involves not only its diffusion coefficient
σ̃ (t) but also its drift b̃(t, x). In particular, simply equating b̃ to zero makes the measures P

�
T

and P
◦
T mutually singular. To derive the rate at which ‖LX◦

t − v‖ decays we employ a com-
pletely different method of proof compared to the analogous result in [35], using techniques
detailed in [26]. While the proof of the absolute continuity result is along the lines of that in
[35], having a partial observation and hypo-ellipticity requires non-trivial adaptations of that
proof.

Put briefly, our results show that guided proposals can be defined for partially observed
hypo-elliptic diffusions exactly as in [35], if an extra restriction on the drift b̃ of the auxiliary
process X̃ is taken into account.

Whereas most of the results are derived for σ depending on the state x, the applicability
of our methods is mostly confined to the case where σ is only allowed to depend on t. The
difficulty lies in checking the fourth inequality of Assumption 2.4 appearing in Section 2. On
the other hand, numerical experiments can give insight as to whether the law of a particular
proposal process and the law of the conditional process are equivalent.

Examples of hypo-elliptic diffusion processes that fall into our set-up include:

(1) integrated diffusions, when either the rough, smooth, or both components are observed,

(2) higher-order integrated diffusions,

(3) NLCAR models,

(4) the class of hypo-elliptic diffusions considered in [18].

These examples are listed here for the sake of illustration. We stress that the derived results are
more general.

Whereas some examples that we discuss can be treated by the approach of [13] (which is
restricted to SDEs of the form (1.10)), our approach extends well beyond this class of models
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(see e.g. Example 3.8). Moreover, the hypo-elliptic bridges proposed in [13] are bridges of a
linear process, whereas the bridges we propose only use a linear process to derive the guid-
ing term that is superimposed on the true drift. This means that only our approach is able to
incorporate non-linearity in the drift of the proposal.

1.4. A toy problem

Here we first consider a two-dimensional uniformly elliptic diffusion with unit diffusion
coefficient, which is fully observed. Upon taking b̃ ≡ 0 and σ̃ = σ , we have

dX◦
t = b(t, X◦

t ) dt + v − X◦
t

T − t
dt + dWt.

The guiding term can be viewed as the distance left to be covered, v − X◦
t , divided by the

remaining time T − t. This simple expression is to be contrasted with a hypo-elliptic diffusion,
perhaps the simplest example being an integrated diffusion, with both components observed,
i.e. a diffusion with

b(t, x) =
[

0 1

0 0

]
x =: Bx and σ =

[
0

1

]
.

It follows from the results in this paper that using guided proposals we obtain an ‘exact’
proposal, i.e. X◦

t = X�t , upon taking B̃ = B, β̃ ≡ 0 and σ̃ = σ . The SDE for X◦ takes the form

dX◦
t =

[
0 1

0 0

]
X◦

t dt +
[

0

18(v1 − X◦
t,1)/(T − t)2 + (10v2 − 28X◦

t,2)/(T − t)

]
dt +

[
0

1

]
dWt,

where Xt,i and vi denote the ith component of Xt and v respectively. This is an elementary
consequence of the process being Gaussian, and follows for example directly as a special case
of either Lemma 2.1 or equation (1.10).

Even for this relatively simple case the guiding term’s behaviour is radically different com-
pared with the uniformly elliptic case. The pulling term only acts on the rough coordinate and
is no longer inversely proportional to the remaining time. This illustrates the inherent difficulty
of the problem and explains the centering and scaling of X◦ that we will introduce to study its
behaviour.

1.5. Outline

In Section 2 we present the main results of the paper. We illustrate the main theorems by
applying them to various forms of partially conditioned hypo-elliptic diffusions in Section 3.
In Section 4 we illustrate our work with simulation examples for the FitzHugh–Nagumo model
and a twice-integrated diffusion model. The proof of the proposition on the behaviour of X◦
near the endpoint is given in Section 5 and the proof of the theorem on absolute continuity
is given in Section 6. We end with a discussion in Section 7. Some technical and additional
results are gathered in the Appendix.

1.6. Frequently used notation

1.6.1. Inequalities. We use the following notation to compare two sequences {an} and {bn} of
positive real numbers: an � bn (or bn � an) means that there exists a constant C> 0 that is
independent of n and is such that an ≤ Cbn. As a combination of the two we write an � bn if
both an � bn and an � bn. We will also write an � bn to indicate that an/bn → ∞ as n → ∞.
By a ∨ b and a ∧ b we denote the maximum and minimum of two numbers a and b respectively.
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TABLE 1. Stochastic processes.

X original, unconditioned diffusion process, defined by (1.1) b σ Pt

X� corresponding bridge, conditioned on v, defined by (2.1) b� σ P
�
t

X◦ proposal process defined by (1.5) b◦ σ P
◦
t

X̃ linear process defined by (1.8) whose transition densities p̃
appear in the definition of X◦

b̃ σ̃ P̃t

1.6.2. Linear algebra. We denote the smallest and largest eigenvalue of a square matrix A by
λmin(A) and λmax(A) respectively. The p × p identity matrix is denoted by Ip. The p × q matrix
with all entries equal to zero is denoted by 0p×q. For matrices we use the spectral norm, which
equals the largest singular value of the matrix. The determinant of the matrix A is denoted by
|A| and the trace by tr(A).

1.6.3. Stochastic processes. For easy reference, Table 1 summarises the various processes
around. The rightmost three columns give the drift, diffusion coefficient, and measure on
C([0, t],Rd) respectively. We write

a(t, x) = σ (t, x)σ (t, x)′ and ã(t) = σ̃ (t)σ̃ (t)′.

The state-space of X, X�, and X◦ is R
d. The Wiener process lives on R

d′
. The observation is

determined by the m × d matrix L. Finally, the orthonormal basis {f1, . . . , fd} for Rd defined
in Section 1.3.2 is fixed throughout, as are the numbers ξ1, . . . , ξm defined via equation (1.12).

2. Main results

Throughout, we assume the following.

Assumption 2.1. Both b and σ are globally Lipschitz-continuous in both arguments.

This ensures that a strong solution to the SDE (1.1) exists. We define the conditioned
process, denoted by X�, to be a diffusion process satisfying the SDE

dX�t = b(t, X�t ) dt + a(t, X�t )r(t, X�t ) dt + σ (t, X�t ) dWt, X�0 = x0. (2.1)

Here r(t, x) = ∇x log ρ(t, x). A derivation is given in Appendix D.

Assumption 2.2. The process X has transition densities such that the mapping ρ : R+ ×R
d →

R is C∞,∞ and strictly positive for all s< T and x ∈R
d.

For fixed x ∈R
d, s, and t> s + ε, the mapping (t, y) → p(s, x; t, y) is continuous and

bounded.

In general Assumption 2.2 is established by verifying Hörmander’s hypo-ellipticity con-
ditions: see [43]. The assumption is satisfied in particular under suitable conditions for the
diffusion as described by equations (1.2) and (1.3). Note that the results in this paper are not
limited to this special case.

Proposition 2.1. Suppose that the matrix-valued function t, x �→ σ in the hypo-elliptic model
given by (1.2) and (1.3) has rank k’ for all (t, x). Furthermore, suppose that σ and β are
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infinitely often differentiable with respect to (t, x). Then the process (Xt) admits a smooth (i.e.
C∞) density which is also smooth with respect to the initial condition.

Proof. This is a special case of Proposition C.1 in Appendix C. �

2.1. Existence of guided proposals

The guiding term of X◦ involves r̃ : [0,∞) ×R
d →R. In the uniformly elliptic case it is

easily verified that this mapping is well-defined. This need not be the case in the hypo-elliptic
setting.

Let 
(t) denote the fundamental matrix solution of the ODE d
(t) = B̃(t)
(t) dt, 
(0) = I
and set 
(t, s) =
(t)
(s)−1. Define

L(t) := L
(T, t).

Assumption 2.3. The matrix ∫ T

t

(T, s)ã(s)
(T, s)′ ds

is strictly positive definite for t< T .

In the uniformly elliptic setting, this assumption is always satisfied. Under this assumption,
the matrix

M†(t) :=
∫ T

t
L(s)ã(s)L(s)′ ds

is also strictly positive definite for all t ∈ [0, T) and, in particular, invertible.

Lemma 2.1. If Assumption 2.3 holds, then

r̃(t, x) = L(t)′M(t)(v −μ(t) − L(t)x), t ∈ [0, T], (2.2)

where

μ(t) =
∫ T

t
L(s)β̃(s) ds

and
M(t) = [M†(t)]−1.

Proof. The solution to the SDE for X̃u is given by

X̃u =
(u, t)x +
∫ u

t

(u, s)β̃(s) ds +

∫ u

t

(u, s)σ̃ (s) dWs, u ≥ t, X̃t = x.

See [23, Theorem 4.10]. The result now follows directly upon taking u = T , multiplying both
sides by L, and using the definition of L(t). �

In Appendix A easily verifiable conditions for the existence of p̃ are given for the case L = I.
Since t �→μ(t) and t �→ M(t) are continuous and x �→ r̃(t, x) is linear in x for fixed t, the

process X◦ is well-defined on intervals bounded away from T .

Lemma 2.2. Under Assumptions 2.1 and 2.3 we have that for any t< T , the SDE for X◦ has
a unique strong solution on [0, t].
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Throughout, without explicitly stating it in lemmas and theorems, we will assume that
Assumptions 2.1, 2.2, and 2.3 hold true.

2.2. Behaviour of guided proposals near the endpoint

Let �(t) be an invertible m × m diagonal matrix-valued measurable function on [0,T).
Define

Z�,t =�(t)(v −μ(t) − L(t)X◦
t ) (2.3)

and

L�(t) =�(t)L(t), M�(t) =�(t)−1M(t)�(t)−1. (2.4)

Note that for t ≈ T we have 
(T, t) ≈ I and hence Z�,t ≈�(t)(v − LX◦
t ). The matrix �(t) is a

scaling matrix which in the hypo-elliptic case incorporates the difference in rate of convergence
for smooth and rough components of LX◦

t to v, when t ↑ T . In the uniformly elliptic case, we
can always take �(t) = Im.

The following assumption is of key importance.

Assumption 2.4. There exists an invertible m × m diagonal matrix-valued function �(t),
which is measurable on [0,T), a t0 < T , α ∈ (0, 1] and positive constants c, c, c1, c2, and c3
such that, for all t ∈ [t0, T),

c (T − t)−1 ≤ λmin(M�(t)) ≤ λmax(M�(t)) ≤ c (T − t)−1,

‖L�(t)(b̃(t, x) − b(t, x))‖ ≤ c1,

tr(L�(t) a(t, x) L�(t)′) ≤ c2,

‖L�(t)(ã(t) − a(t, x))L�(t)′‖ ≤ c3(T − t)α . (2.5)

Proposition 2.2. Under Assumption 2.4, there exists a positive number C such that

lim sup
t↑T

‖Z�,t‖√
(T − t) log (1/(T − t))

≤ C a.s.

Remark 2.1. If σ is state-dependent, it is particularly difficult to ensure that the fourth inequal-
ity in (2.5) is satisfied. There is at least one non-trivial example where this inequality can be
assured (see Example 2.1). In Section 7 we further discuss the case of state-dependent dif-
fusivity. In the simpler case where σ only depends on t, we can always take σ̃ (t) = σ (t) and
then the fourth inequality is trivially satisfied. In Section 3 we verify (2.5) for a wide range of
examples. As a prelude: for the SDE system specified by (1.2) and (1.3) one takes B̃ = B and
σ̃ = σ . Then�(t) can be chosen such that the first inequality is satisfied. The second condition
of (2.5) encapsulates a matching condition on the drift which induces some restrictions on β̃
and β. The third inequality is then usually satisfied automatically.

The uniformly elliptic case is particularly simple.

Corollary 2.1. (Uniformly elliptic case.) Assume that either (i) the diffusivity σ is constant
and σ̃ = σ or (ii) σ depends on t and σ̃ (t) = σ (t). Assume a is strictly positive definite and that
b(t, x) − b̃(t, x) is bounded on [0, T] ×R

d. Then the conclusion of Proposition 2.2 holds true
with �(t) = Im.
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Remark 2.2. The behaviour of ‖Z�,t‖ that we obtain agrees with the results of [35]. That
paper is confined to L = I and the uniformly elliptic case, but includes the case of state-
dependent diffusion coefficient. Under this assumption, it suffices that σ̃ (T)′σ̃ (T) = a(T, v),
a condition that can always be satisfied.

The proofs of Theorem 2.2 and Corollary 2.1 are given in Section 5.
In Section 3 we give a set of tractable hypo-elliptic models for which the conclusion of

Theorem 2.2 is valid. The appropriate choice of the scaling matrix �(t) is really problem-
specific. Moreover, the assumptions on the auxiliary process depend on the choice of L.

In most cases it will not be possible to satisfy the fourth inequality of Assumption 2.4 when
the diffusion coefficient is state-dependent. The following example shows an exception.

Example 2.1. Suppose the diffusion is uniformly elliptic and L = [L 0m×k′ ], where L ∈R
m×k

and d = k + k′. Now suppose a(t, x) is of block form

a(t, x) =
[

a11(t) 0k×k′
0k′×k a22(t, x)

]
,

and that we take ã to be of the same block form. Upon taking B̃ = 0d×d and �(t) = Id, we see
that L�(t) = L and hence

L�(t)(ã(t) − a(t, x))L�(t)′ = L(ã11(t) − a11(t))L′.

Therefore, if we choose ã11(t) to be equal to a11(t) the fourth inequality in Assumption 2.4 is
trivially satisfied.

Empirically, however, it appears that Assumption 2.4 is stronger than needed for valid
guided proposals; see Example 4.4.

2.3. Absolute continuity

The following theorem gives sufficient conditions for absolute continuity of P�T with respect
to P

◦
T . First we introduce an assumption.

Assumption 2.5. There exists a constant C such that

p(s, x; t, y) ≤ Cp̃(s, x; t, y), 0 ≤ s< t< T

for all x, y ∈R
d.

Theorem 2.6. Assume there exists a positive δ such that |�(t)|� (T − t)−δ . If Assumptions 2.4
and 2.5 hold true, then

dP�T
dP◦

T
(X◦) = ρ̃(0, x0)

ρ(0, x0)
�T (X◦),

where

�t(X
◦) = exp

( ∫ t

0
G(s, X◦

s ) ds

)
, (2.6)

G(s, x) = (b(s, x) − b̃(s, x))′r̃(s, x) − 1

2
tr([a(s, x) − ã(s)][H̃(s) − r̃(s, x)r̃(s, x)′]),

and H̃(s) = L(s)′M(s)L(s).
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The proof is given in Section 6.

Remark 2.3. The expression for the Radon–Nikodým derivative depends on the intractable
transition densities p via the term ρ(0, x0). This is a multiplicative term that only shows up
in the denominator and therefore cancels in the acceptance probability for sampling diffusion
bridges using the Metropolis–Hastings algorithm.

The following lemma is useful for verifying Assumption 2.5. Its proof is located in
Section 6.

Lemma 2.3. Assume η(s, x) satisfies the equation

σ (s, x)η(s, x) = b(s, x) − b̃(s, x)

and that η is bounded. Then there exists a constant C such that

p(s, x; t, y) ≤ Cp̃(s, x; t, y)

for all x, y ∈R
d and 0 ≤ s< t ≤ T .

3. Tractable hypo-elliptic models

In this section we give several examples of hypo-elliptic models that satisfy Assumption 2.4.
In the following we write Xt = [Xt,1 · · · Xt,d]′.

In each of the examples we choose an appropriate scaling matrix �(t) and verify the condi-
tions of Assumption 2.4. For this, we need to evaluate L�(t) and M�(t). The computations are
somewhat tedious by hand (though straightforward), and for that reason we used the computer
algebra system Maple R© for this. Ideally, instead of the conditions appearing in Assumption 2.4,
one would like to have conditions only containing b, b̃, σ , and σ̃ . This, however, seems hard
to obtain and maybe a bit too much to ask for, given the wide diversity in behaviour of hypo-
elliptic diffusions and the generality of the matrix L. In each of the examples, we state the
model and the conditions on b̃ and σ̃ such that Assumption 2.4 is satisfied.

Example 3.1. (Integrated diffusion, fully observed.) Suppose

dXt,1 = Xt,2 dt,

dXt,2 = β(t, Xt) dt + γ dWt,

where β : [0, T] ×R
2 →R is bounded and globally Lipschitz in both arguments. If L = I2, and

the coefficients of the auxiliary process X̃ satisfy

B̃(t) =
[

0 1

0 0

]
, β̃1(t) = 0, σ̃ =

[
0

γ

]
,

then Assumption 2.4 is satisfied.

Proof. As we expect the rate of the first component, which is smooth, to converge to the
endpoint one order faster than the second component, which is rough, we take

�(t) =
[

(T − t)−1 0

0 1

]
.
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We have

b(t, x) − b̃(t, x) =
[

0

β(t, x)

]
.

By choice of B̃ and � we get

L�(t) =�(t)L
(T, t) =�(t)
(T, t) =
[

1/(T − t) 1

0 1

]
and

M(t) = 1

γ 2

[
12/(T − t)3 6/(T − t)2

6/(T − t)2 4/(T − t)

]
=⇒ M�(t) = 1

γ 2
(T − t)−1

[
12 6

6 4

]
.

Now it is trivial to verify that Assumption 2.4 is satisfied.

Example 3.2. (Integrated diffusion, smooth component observed.) Consider the same setting
as in the previous example, but now with L = [1 0]. That is, only the smooth (integrated)
component is observed. Then Assumption 2.4 is satisfied.

Proof. Upon taking �(t) = (T − t)−1, we get

M�(t) = 3γ−2(T − t)−1 and L�(t) = [1/(T − t) 1], (3.1)

from which the claim easily follows.

Example 3.3. (Integrated diffusion, rough component observed.) Consider the same setting
as in Example 3.1, but now with L = [0 1]. That is, only the rough component is observed.
Then Assumption 2.4 is satisfied.

Proof. Taking �(t) = 1 we get M�(t) = γ−2(T − t)−1 and L�(t) = [0 1], from which the
claim easily follows.

The guiding term is completely independent of the first component. This is not surprising,
as this example is equivalent to fully observing a one-dimensional uniformly elliptic diffusion
(described by the second component).

Example 3.4. (NLCAR(p)-model.) The integrated diffusion model is a special case of the class
of continuous-time non-linear autoregressive models (see [37]). The real-valued process Y is
called a pth-order NLCAR model if it solves the pth-order SDE

dY (p−1)
t = β(t, Yt) dt + γ dWt.

We assume β : [0, T] ×R
2 →R is bounded and globally Lipschitz in both arguments. This

example corresponds to the model specified by (1.2)–(1.3) with d = p, d′ = 1, and k = p − 1.
Integrated diffusions correspond to p = 2. Observing only the smoothest component means
that we have L = [1 01×d−1]. This class of models includes in particular continuous-time
autoregressive and continuous-time threshold autoregressive models, as defined in [8].

We consider the NCLAR(3)-model more specifically, which can be written explicitly as a
diffusion in R

3 with

b(t, x) =
⎡⎢⎣0 1 0

0 0 1

0 0 0

⎤⎥⎦ x +
⎡⎢⎣ 0

0

β(t, x)

⎤⎥⎦ , σ =
⎡⎢⎣0

0

γ

⎤⎥⎦ .
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If either L = I3 or L = [1 0 0], Assumption 2.4 is satisfied if the coefficients of the auxiliary
process X̃ satisfy

B̃(t) =
⎡⎢⎣0 1 0

0 0 1

0 0 0

⎤⎥⎦ , β̃1(t) = β̃2(t) = 0, σ̃ =
⎡⎢⎣0

0

γ

⎤⎥⎦ . (3.2)

Proof. If L = I3, we take the scaling matrix

�(t) =
⎡⎢⎣(T − t)−2 0 0

0 (T − t)−1 0

0 0 1

⎤⎥⎦
to account for the different degrees of smoothness of the paths of the diffusion. Then, defining
w(t) = (T − t)−1, we obtain

M�(t) = 3w(t)

γ 2

⎡⎢⎣ 240 −120 20

−120 64 −12

20 −12 3

⎤⎥⎦ and L�(t) =
⎡⎢⎣w(t)2 w(t) 1/2

0 w(t) 1

0 0 1

⎤⎥⎦,
from which the claim is easily verified.

For L = [1 0 0] we take �(t) = (T − t)−2, and since

M�(t) = 20

γ 2
(T − t)−1 and L�(t) = [(T − t)−2 (T − t)−1 1/2],

Assumption 2.4 is satisfied. See Example 4.1 for a numerical illustration of this example.

Example 3.5. Assume the following model for FM-demodulation:

d

⎡⎢⎣Xt,1

Xt,2

Xt,2

⎤⎥⎦ =
⎡⎢⎣ Xt,2

−αXt,2√
2γ sin (ωt + Xt,1)

⎤⎥⎦ dt +
⎡⎢⎣ 0 0√

2γα 0

0 ψ

⎤⎥⎦ d

[
Wt,1

Wt,2

]
.

Here, the observation is determined by L = [0 0 1]. Motivated by this example, we check our
results for a diffusion with coefficients

b(t, x) = Bx +
⎡⎢⎣ 0

β
2
(t, x)

β
3
(t, x)

⎤⎥⎦ , B =
⎡⎢⎣0 1 0

0 −α 0

0 0 0

⎤⎥⎦ , σ =
⎡⎢⎣ 0 0

γ1 γ2

γ3 γ4

⎤⎥⎦ .

Note that this is a slight generalisation of the FM-demodulation model. We will assume that
γ 2

3 + γ 2
4 
= 0 and β

3
are bounded. If B̃(t) = B and σ̃ = σ , then Assumption 2.4 is satisfied.

Proof. As the observation is on the rough component, we choose �(t) = 1. We have

M�(t) = (T − t)−1(γ 2
3 + γ 2

4 )−1

and L�(t) = [0 0 1]. Hence L�(t)(b̃(t) − b(t, x)) = β̃3(t) − β
3
(t, x) and the other conditions

are easily verified.
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Example 3.6. Assume [Xt,1 Xt,2]′ gives the position in the plane of a particle at time t.
Suppose the velocity vector of the particle at time t, denoted by [Xt,3 Xt,4]′, satisfies an SDE
driven by a two-dimensional Wiener process. The evolution of Xt = [Xt,1 Xt,2 Xt,3 Xt,4]′ is
then described by the SDE

dXt,1 = Xt,3 dt,

dXt,2 = Xt,4 dt,

d

[
Xt,3

Xt,4

]
=

[
β

3
(t, Xt)

β
4
(t, Xt)

]
dt + γ dWt,

where Wt ∈R
2. This example corresponds to the case d = 4, d′ = 2, and k = 2 in the model

specified by (1.2)–(1.3). Observing only the location corresponds to

L =
[

1 0 0 0

0 1 0 0

]
.

In matrix–vector notation the drift of the diffusion is given by b(t, x) = Bx + β(t, x),
where

B =

⎡⎢⎢⎢⎣
0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎦ and β(t, x) =

⎡⎢⎢⎢⎣
0

0

β
3
(t, Xt)

β
4
(t, Xt)

⎤⎥⎥⎥⎦ .

We will assume diffusion coefficient

σ =
[

0 0 γ1 γ3

0 0 γ2 γ4

]′
,

where γ1γ4 − γ2γ3 
= 0. If β̃1(t) = β̃2(t) = 0, B̃(t) = B, and σ̃ = σ , then Assumption 2.4 is
satisfied.

Proof. As we observed the first two coordinates, which are both smooth, we take �(t) =
(T − t)−1I2. The claim now follows from

M�(t) = (T − t)−1 3

(γ1γ4 − γ2γ3)2

[
−γ 2

3 − γ 2
4 γ1γ3 + γ2γ4

γ1γ3 + γ2γ4 −γ 2
1 − γ 2

2 .

]

and

L�(t) =
[

(T − t)−1 0 1 0

0 (T − t)−1 0 1

]
.

Example 3.7. Hairer, Stuart, and Voss [18] consider SDEs of the form

dXt =
[

0 1

0 θ

]
Xt dt +

[
0

β(t, Xt)

]
dt +

[
0

γ

]
dWt,
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where Xt = [Xt,1 Xt,2]′, θ > 0 and the conditioning is specified by L = [1 0]. As explained in
[18], the solution to this SDE can be viewed as the time evolution of the state of a mechani-
cal system with friction under the influence of noise. Assume (t, x) �→ β(t, x) is bounded and
Lipschitz in both arguments. Note that this hypo-elliptic SDE is not of the form given in (1.2)
and (1.3). However, if

B̃(t) = Bθ =
[

0 1

0 θ

]
, β̃1(t) = 0, σ̃ =

[
0

γ

]
,

then Assumption 2.4 is satisfied.

Proof. Upon taking �(t) = (T − t)−1, we find that

lim
t↑T

(T − t)M�(t) = 3γ−2 and L�(t) =
[

1

T − t

eθ(T−t) − 1

θ (T − t)

]
.

This is to be compared with the expressions in (3.1). We conclude as in Example 3.2 that the
conditions in Assumption 2.4 are satisfied.

Example 3.8. This is an example to illustrate that our approach applies beyond equations of
the form (1.10). We assume

dXt = BXt dt +
[

0

β(t, Xt)

]
dt +

[
1

1

]
dWt,

with β : [0, T] ×R
2 →R bounded and globally Lipschitz in both arguments. Suppose L =

[1 0]. If

B̃ = B :=
[

0 1

0 0

]
, β̃ =

[
0

0

]
, σ̃ =

[
1

1

]
,

then Assumption 2.4 holds.

Proof. Using �(t) = 1, we have L�(t) = [1 T − t], limt↑T (T − t)M�(t) = 1 and the claim
follows as in the previous examples.

4. Numerical illustrations

In this section we will discuss implementational aspects of our sampling method, and we
will illustrate the method by some representative numerical examples. We implemented the
examples in our software package Bridge [34], written in the programming language Julia [6].
The corresponding code is available in [41].

To compute the guiding term and likelihood ratio, we have the following backward ordinary
differential equations:

dL(t) = −L(t)B̃(t) dt, L(T) = L,

dM†(t) = −L(t)ã(t)L(t)′ dt, M†(T) = 0m×m,

dμ(t) = −L(t)β̃(t) dt, μ(T) = 0m×1,
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where t ∈ [0, T]. These are easily derived: see [39, Lemma 2.4]. These backward differential
equations need only be solved once. Next, Algorithm 1 from [38] can be applied. This algo-
rithm describes a Metropolis–Hastings sampler for simulating diffusion bridges using guided
proposals. We briefly recap the steps of this algorithm; more details can be found in [38].
As we assume X◦ to be a strong solution to the SDE specified by (1.5) and (1.7), there is a

measurable mapping GP such that X◦ = GP(x0,W), where x0 is the starting point and W a Rd′
-

valued Wiener process (GP stands for ‘guided proposal’). As x0 is fixed, we will write, with
slight abuse of notation, X◦ = GP(W). The algorithm requires us to choose a tuning parameter
ρ ∈ [0, 1) and proceeds according to the following steps.

(1) Draw a Wiener process Z on [0, T]. Set X = g(Z).

(2) Propose a Wiener process W on [0, T]. Set

Z◦ = ρZ +
√

1 − ρ2W (4.1)

and X◦ = GP(Z◦).

(3) Compute A =�T (X◦)/�T (X) (where �T is as defined in (2.6)). Sample U ∼
Uniform(0, 1). If U < A then set Z = Z◦ and X = X◦.

(4) Repeat steps (2) and (3).

The invariant distribution of this chain is precisely P
�
T . If the guided proposal is good, then we

may use ρ = 0, which yields an independence sampler. However, for difficult bridge simulation
schemes, possibly caused by a large value of T or strong non-linearity in the drift or diffusion
coefficient, a value of ρ close to 1 may be required. The proposal in (4.1) is precisely the pCN
method; see e.g. [12].

In the implementation we use a fine equidistant grid, which is transformed by the mapping
τ : [0, T] → [0, T] given by τ (s) = s(2 − s/T). Motivation for this choice is given in Section 5
of [38]. Intuitively, the guiding term gets stronger near T , and therefore we use a finer grid the
closer we get to T . The guided proposal is simulated on this grid, and using the values obtained,
�T (X◦) is approximated by Riemann approximation. Furthermore, for numerical stability we
solve the equation for M†(t) using M†(T) = 10−10Im×m instead of M†(T) = 0m×m.

Example 4.1. Assume the NCLAR(3)-model, as described in Example 3.4 with β(t, x) =
−6 sin (2πx) and x0 = [0 0 0]′. We first condition the process on hitting

v = [1/32 1/4 1]′

at time T = 0.5, assuming L = I3 (full observation at time T). The idea of this example is
that sample paths of the rough component are mean-reverting at levels k ∈Z, with occasional
noise-driven shifts from one level to another. The given conditioning then forces the process
to move halfway along the interval (at about time 0.25) from level 0 to level 1, remaining at
approximately level 1 up to time T . Such paths are rare events and obtaining these by forward
simulation is computationally extremely intensive.

We constructed guided proposals according to (3.2) with β̃3(t) = 0. Iterates of the sampler
using ρ = 0.85 are shown in Figure 1. The average Metropolis–Hastings acceptance percentage
was 43%. We need a value of ρ close to 1 as we cannot easily incorporate the strong non-
linearity into the guiding term of the guided proposal. We repeated the simulation, this time
only conditioning on LXT = 1/32, where L = [1 0 0]. We again took ρ = 0.95, leading to an
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FIGURE 1. Sampled guided diffusion bridges when conditioning on XT = [1/32 1/4 1]′ in Example 4.1.

average Metropolis–Hastings acceptance percentage of 24%. The results are shown in Figure 2.
The distribution of bridges turns out to be bimodal. The latter is confirmed by extensive forward
simulation and only keeping those paths which approximately satisfy the conditioning.

Example 4.2. Ditlevsen and Samson [14] consider the stochastic hypo-elliptic FitzHugh–
Nagumo model, which is specified by the SDE

dXt =
[

1/ε −1/ε
γ −1

]
Xt dt +

[−X3
t,1/ε+ s/ε
β

]
dt +

[
0
σ

]
dWt, X0 = x(0). (4.2)

Only the first component is observed, hence L = [1 0]. We consider the same parameter values
as in [14]:

[ε s γ β σ ] = [0.1 0 1.5 0.8 0.3]. (4.3)

A realisation of a sample path on [0, 10] is given in Figure 3.
While this example formally does not fall into our set-up, the conditions of Assumption 2.4

strongly suggest that the component of the drift with smooth path, i.e. the first component of b,
certainly needs to match at the observed endpoint. We construct guided proposals by linearising
the drift term Xt,1 at the observed endpoint v. Hence, using −x3 ≈ 2a3 − 3a2x for x near a, we
take

B̃(t) =
[

1/ε− 3v2/ε −1/ε
γ −1

]
, β̃(t) =

[
2v3/ε+ s/ε

β

]
, σ̃ =

[
0
σ

]
.

To illustrate the performance of our method, we take a rather challenging, strongly
non-linear problem. We consider bridges over the time-interval [0, T] with T = 2, starting
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FIGURE 2. Sampled guided diffusion bridges when conditioning on LXT = 1/32 with L = [1 0 0]′ in
Example 4.1.
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FIGURE 3. A realisation of a sample path of the FitzHugh–Nagumo model as specified in (4.2), with
parameter values as in (4.3).

at x(0) = [− 0.5 − 0.6]. In Figure 4 we forward-simulated 100 paths, to access the behaviour
of the process. Next, we consider two cases.

(a) Conditioning on the first coordinate at the endpoint of a ‘typical’ path; we took v = −1.

(b) 2. Conditioning on the first coordinate at the endpoint of an ‘extreme’ path; we took
v = 1.1.
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FIGURE 4. Realisations of 100 forward-sampled paths for the FitzHugh–Nagumo model as specified in
(4.2), with parameter values as in (4.3).
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FIGURE 5. Sampled guided diffusion bridges when conditioning on v = −1 (typical case).

We ran the sampler for 50 000 iterations, using ρ = 0 and ρ = 0.9 in cases (a) and (b)
respectively. The percentage of accepted proposals in the Metropolis–Hastings step equals
64% and 21% respectively. In Figures 5 and 6 we plotted every 1000th sampled path out of
the 50 000 iterations for the ‘typical’ and ‘extreme’ cases respectively. Figure 5 immediately
demonstrates that for a typical path, guided proposals very closely resemble true bridges (using
Figure 4 as comparison). To assess whether in the ‘extreme’ case the sampled bridges resemble
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FIGURE 6. Sampled guided diffusion bridges when conditioning on v = 1.1 (extreme case). The
‘outlying’ green curve corresponds to the initialisation of the algorithm.
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FIGURE 7. Realisations of 30 forward-sampled paths for the FitzHugh–Nagumo model as specified in
(4.2), with parameter values as in (4.3). Only those paths are kept for which |LxT − v|< 0.01, where
v = 1.1 (the conditioning for the ‘extreme’ case).

true bridges, we also forward-simulated the process, only keeping those paths for which |LxT −
v|< 0.01. The resulting paths are shown in Figure 7 and resemble those in Figure 6 quite well.

This example is extremely challenging in the sense that we take a rather long time horizon
(T = 2), the noise-level on the second coordinate is small, and the drift of the diffusion is
highly non-linear. As a result, the true distribution of bridges is multimodal. Even in much
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simpler settings, sampling from a multimodal distribution using MCMC constitutes a difficult
problem. Here, the multimodality is recovered remarkably well by our method, as can be seen
in Figure 6.

Remark 4.1. We have chosen 50 000 iterations in the examples. However, qualitatively the
same figures of simulating bridges can be obtained by reducing the number of iterations to
approximately 10 000.

4.1. Numerical checks on the validity of guided proposals

In this section we first investigate the quality of guided proposals over long time spans.
Next, we empirically demonstrate that the conditions of our main theorem, especially
Assumption 2.4, are stronger than actually needed. In each numerical experiment we compare
two histogram estimators for v �→ ρ(0, x0; T, v). The first estimator is obtained by making a
histogram of a large number of forward simulations of the unconditioned diffusion process. Let
{Ak} denote the bins of this histogram. A second estimator is obtained by using the equality

ρ(0, x0; T, v) = ρ̃(0, x0; T, v)E[�T (X◦,T,v)],

which is a direct consequence of Theorem 2.6. Note that we extended the notation to highlight
that ρ, ρ̃, and X◦ depend on T and v. We use the relation in the previous display as follows: for
each bin Ak, ∫

Ak

ρ(0, x0; T, v) dv =E

[
1Ak (Ṽ)

ρ̃(0, x0; T, Ṽ)

q(Ṽ)
�T (XT,Ṽ,◦)

]
,

where Ṽ is sampled from the density q. Hence,
∫

Ak
ρ(0, x0; T, v) dv can be approximated using

importance sampling, where repeatedly first the endpoint v is sampled from q and subsequently
a guided proposal is simulated that is conditioned to hit v at time T . In our experiments we
took the importance sampling density q to be the Gaussian density with mean and covariance
obtained from the unconditioned forward-simulated endpoint values.

Note that the set-up is such that this is feasible, at least when estimating the entire histogram,
but of course it would be prohibitively expensive to use forward sampling to compute the
density in a single small bin or at a single point.

Example 4.3. Consider the non-linear hypo-elliptic two-dimensional system determined by
drift b(t, x) = Bx + β(t) + [0; 1

2 sin (x2)] with B = 1
10 [ − 1 1; 0 −1], β(t) = [0 1

2 sin (t/4)],
and dispersion σ ≡ [0; 2] (with a semicolon separating matrix rows). Starting at X0 =
[0; −π/2], we expect to observe V = LXT + Z with L = [1 1], Z ∼ N(0, 10−6). We consider
both T = 4π and T = 40π , the latter to check how guided proposals perform over a very long
time span. We take guided proposals derived from b̃(t, x) = Bx + β(t) and σ̃ = σ .

In Figure 8 the two histograms are contrasted. Interestingly, the results show no degradation
in performance when increasing T by an order. For the simulations we took K = 70 bins and
100 000 samples of V respective draws from Ṽ (thus on average approximately 1500 draws
per bin) and time grid ti = si(2 − si/T) with si = h i, h = 0.01, therefore decreasing step-size
towards T while keeping the number of grid points equal to T/h, as suggested in [38]. The
implementation is based on our Julia package [29] with package co-author Marcin Mider.
The figures also serve to verify the correctness of the implementation.

Example 4.4. It is interesting to ask if – numerically speaking – the change of measure is
successful in cases where σ depends on x and the fourth inequality of Assumption 2.4 cannot
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FIGURE 8. Dark orange: histogram baseline estimate of the density of observation V = LXT + Z,
Z ∼ N(0, 10−6) from forward simulation. Dashed blue: observation density estimate using weighted
histogram of points Ṽ sampled from Gaussian distribution weighted with importance weights from
guided proposals steered towards those points. Top: T = 4π . Bottom: T = 40π . Pink: difference between
histograms.

be verified. For that purpose, we slightly adjust the setting of the previous example by now
taking L = [1 0] and σ (t, x) = [0; 2 + 1

2 cos (x2)] and repeating the experiment. In this case
we chose σ̃ = σ (0, [0; 0]). As the problem is more difficult, we took fewer bins (K = 50)
and set h = 0.005 (otherwise keeping our previous choices). The resulting Figure 9 shows
no indication of lack of absolute continuity or loss of probability mass. This strongly indicates
that guided proposals can perform perfectly well for the present complex setting that includes
state-dependent diffusion coefficient and hypo-ellipticity.

However, care is needed. In Figure 10 we show the result for the same experiment but
with L changed to L = [1 1]. Here, the loss of probability mass indicates violation of absolute
continuity. We conjecture that La(T, v)L′ = Lã(T)L′ may be the ‘right’ restriction on choosing
ã(T). To obtain empirical evidence, we redid the experiment with L = [1 1] but now σ (t, x) =
[0; 2 + 1

2 cos (Lx)]. In this case one can match the diffusivity at time T by taking σ̃ = [0; 2 +
1
2 cos (v)]. The resulting figure (Figure 11) indicates no loss of absolute continuity, supporting
the conjecture.
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FIGURE 9. As Figure 8, but estimates for the model with observation operator L = [1 0] and σ (t, x) =
[0; 2 + 1

2 cos (x2)], at T = 4π .
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FIGURE 10. As Figure 8, but estimates for the model with observation operator L = [1 1] and σ (t, x) =
[0; 2 + 1

2 cos (x2)], at T = 4π . Note the loss of probability mass indicating lack of absolute continuity.

5. Proofs of Proposition 2.2 and Corollary 2.1

In this section we give proofs of the results from Section 2.2 on the behaviour of guided
proposals near the conditioning point. For clarity, the proof of Proposition 2.2 is split up over
Sections 5.1, 5.2, and 5.3. The proof of Corollary 2.1 is in Section 5.4.

5.1. Centering and scaling of the guided proposal

To reduce notational overheads, we write at ≡ a(t, X◦
t ). Then b̃t, bt, and σt are defined

similarly. Our starting point is the expression for r̃ in (2.2).

Lemma 5.1. If we define

Zt = v −μ(t) − L(t)X◦
t ,
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FIGURE 11. As Figure 8, but estimates for the model with observation operator L = [1 1] and σ (t, x) =
[0; 2 + 1

2 cos (x1 + x2)], at T = 4π .

then
dZt = L(t)(b̃t − bt) dt + L(t)σt dWt − L(t)atL(t)′M(t)Zt dt.

Proof. We have

dZt = −
(

d

dt
L(t)

)
X◦

t dt − d

dt
μ(t) − L(t) dX◦

t .

The results now follow because the first two terms on the right-hand side together equal
L(t)b̃(t, X◦

t ). �

Lemma 5.2. We have

1

2
d(Z′

tM(t)Zt) = 1

2
Z′

tM(t)L(t)(ã(t) − at)L(t)′M(t)Zt dt

+ Z′
tM(t)L(t)(b̃t − bt) dt

+ Z′
tM(t)L(t)σt dWt − 1

2
Z′

tM(t)L(t)atL(t)′M(t)Zt dt

+ tr(L(t)atL(t)′M(t)) dt.

Proof. By Itô’s lemma,

1

2
d(Z′

tM(t)Zt) = 1

2
Z′

t
dM(t)

dt
Zt dt + Z′

tM(t) dZt + tr(L(t)atL(t)′M(t)) dt.

Next, substitute the SDE for Zt from Lemma 5.1 and use

dM(t)

dt
= −M(t)

dM(t)−1

dt
M(t) = M(t)L(t)ã(t)L(t)′M(t).

The final equality follows from the fact that M†(t) = M(t)−1 satisfies the ordinary differential
equation dM†(t) = −L(t)ã(t)L(t)′ dt. The result follows upon reorganising terms. �
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Whereas in the uniformly elliptic case all elements of Zt and M(t) behave in the same way
as a function of T − t, this is not so in the hypo-elliptic case. For this reason, we introduce a
diagonal scaling matrix �(t).

Lemma 5.3. Let �(t) be an invertible m × m diagonal matrix. If Z�,t, L�(t) and M�(t) are as
defined in (2.3) and (2.4), then

1

2
d(Z′

�,tM�(t)Z�,t) = 1

2
Z′
�,tM�(t)L�(t)(ã(t) − at)L�(t)′M�(t)Z�,t dt

+ Z′
�,tM�(t)L�(t)(b̃t − bt) dt

+ Z′
�,tM�(t)L�(t)σt dWt − 1

2
Z′
�,tM�(t)L�(t)atL�(t)′M�(t)Z�,t dt

+ tr(L�(t)atL�(t)′M�(t)) dt. (5.1)

Moreover,
r̃(t, X◦

t ) = L�(t)′M�(t)Z�,t. (5.2)

Proof. This is a straightforward consequence of Lemma 5.2. The expression for r̃ follows
from equation (2.2). �

5.2. Recap on notation and results

For clarity we summarise our notation, some of which was already defined in Section 1.6.
The auxiliary process is defined by the SDE dX̃t = (B̃(t)X̃t + β̃(t)) dt + σ̃ (t) dWt. The matrix

(t) satisfies the ODE d
(t) = B̃(t)
(t) dt and we set 
(T, t) =
(T)
(t)−1. A realisation v
of V = LXT is observed. The scaled process is defined by

Z�,t =�(t)

(
v −

∫ T

t
L(τ )β̃(τ ) dτ − L(t)X◦

t

)
,

where L(t) = L
(T, t) and L�(t) =�(t)L(t). Furthermore, we defined

M(t) =
( ∫ T

t
L(τ )ã(τ )L(τ )′ dτ

)−1

and M�(t) =�(t)−1M(t)�(t)−1,

where ã(t) = σ̃ (t)σ̃ (t)′. Finally, the guiding term in the SDE for the guided proposal X◦
t is given

by a(t, X◦
t )L�(t)′M�(t)Z�,t. The process t �→ Z�,t is the key object to be studied in this section.

5.3. Proof of Proposition 2.2

The line of proof is exactly as suggested in [25, page 341], as follows.

(1) Start with the Lyapunov function V(t, Z�,t) = 1
2 Z�,t′M�(t)Z�,t.

(2) Apply Itô’s lemma to V(t, Z�,t).

(3) Use martingale inequalities to bound the stochastic integral.

(4) Apply a Gronwall-type inequality.

We bound all terms appearing in equation (5.1). Note that the first term on the right-hand
side vanishes. We start with the Wiener integral term. To this end, fix t0 ∈ [0, T) and let

Nt =
∫ t

t0
Z�,s

′M�(s)L�(s)σ dWs.

https://doi.org/10.1017/apr.2019.54 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.54


Simulation of elliptic and hypo-elliptic conditional diffusions 199

Then∫ t

t0
Z�,s

′M�(s)L�(s)σs dWs − 1

2

∫ t

t0
Z�,s

′M�(s)L�(s) as L�(s)′M�(s)Z�,s ds = Nt − 1

2
[N]t.

Now Nt can be bounded using an exponential martingale inequality. Let {γn} be a sequence of
positive numbers. For n ∈N, define tn = T − 1/n and

En =
{

sup
0≤t≤tn+1

(
Nt − 1

2
[N]t

)
> γn

}
.

By the exponential martingale inequality of [26, Theorem 1.7.4], we obtain that P(En) ≤ e−γn .
If we assume

∑∞
n=1 e−γn <∞, then by the Borel–Cantelli lemma P( lim supn→∞ En) = 0.

Hence, for almost all ω, there exists n0(ω) such that, for all n ≥ n0(ω),

sup
t0≤t≤tn+1

(
Nt − 1

2

∫ t

0
[N]t

)
≤ γn. (5.3)

Let ε > 0. Upon taking γn = (1 + 2ε) log n, we get

∞∑
n=1

e−γn =
∞∑

n=1

n−1−2ε <∞.

Since M�(t) is strictly positive definite,

λmin(M�(t))‖Z�,t‖2 ≤ Z′
�,tM�(t)Z�,t.

Assume t0 < t< tn+1. Combining the inequality of the above display with Lemma 5.3 and
substituting the bound in (5.3), we obtain, for any ε > 0,

1

2
λmin(M�(t))‖Z�,t‖2 ≤ 1

2
Z�,t0 M�(t0)Z�,t0

+
∫ t

t0
‖Z�,s‖‖M�(s)‖‖L�(s)(b̃s − bs)‖ ds

+ γn +
∫ t

t0
tr(L�(s) as L�(s)′M�(s)) ds

+ 1

2

∫ t

t0
Z�,s

′M�(s)L�(s)(ã(s) − as)L�(s)′M�(s)Z�,s ds.

Recall that for positive semidefinite matrices A and C we have

|tr(AC)| ≤ tr(A)tr(C) ≤ tr(A)pλmax(C)

if C ∈R
p×p. Hence

tr(L�(s) as L�(s)′M�(s)) ≤ tr(L�(s) as L�(s)′)mλmax(M�(s)). (5.4)

Furthermore, as
‖M�(s)‖ =

√
λmax(M�(s)2) = λmax(M�(s)), (5.5)
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we can combine the preceding three inequalities to obtain

1

2
λmin(M�(t))‖Z�,t‖2 ≤ 1

2
Z�,t0 M�(t0)Z�,t0

+
∫ t

t0
‖Z�,s‖λmax(M�(s))‖L�(s)(b̃s − bs)‖ ds

+ γn + m
∫ t

t0
tr(L�(s) as L�(s)′)λmax(M�(s)) ds

+ 1

2

∫ t

t0
Z�,s

′M�(s)L�(s)(ã(s) − as)L�(s)′M�(s)Z�,s ds.

Upon substituting the bounds in (2.5), for certain positive constants C0, C1, C2, C3, and C4
we obtain

(T − t)−1‖Z�,t‖2 ≤ C0 + C1

∫ t

t0
‖Z�,s‖(T − s)−1 ds

+ C2γn + C3

∫ t

t0
(T − s)−1 d + C4

∫ t

t0
‖Z�,s‖2(T − s)α−2. (5.6)

If we define ξt = (T − t)−1‖Z�,t‖2, then this inequality can be rewritten as

ξt ≤ C0 + C2γn + C3 log

(
T − t0
T − t

)
+ C1

∫ t

t0
(T − s)−1/2

√
ξs ds + C4

∫ t

t0
(T − s)α−1ξs ds.

By Lemma B.1 in the Appendix this implies

ξt ≤
(√

C0 + C2γn + C3 log

(
T − t0
T − t

)
+ 1

2
C1

(√
T − t0 − √

T − t
))2

exp

(
C4

∫ t

t0
(T − s)α−1

)
.

Now divide both sides of this inequality by log (1/(T − t)) and consider tn < t< tn+1. Then
log n ≤ log (1/(T − t)). It then follows that

lim sup
t↑T

‖Z�,t‖2

(T − t) log (1/(T − t))
≤ C2(1 + 2ε) + C3.

Now let ε ↓ 0.

5.4. Proof of Corollary 2.1

As �(t) = Im it is easy to see that M(t) = O(1/(T − t) and L�(t) = O(1). This behaviour of
M(t) is also contained in the first inequality of [35, Lemma 8] (in that paper, H̃ corresponds to
M as defined here). Now it is easy to see that the conditions of Theorem 2.2 are satisfied.
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6. Absolute continuity with respect to the guided proposal distribution

6.1. Proof of Theorem 2.6

We start with a result that gives the Radon–Nikodým derivative of P
�
t relative to P

◦
t for

t< T .

Proposition 6.1. For t< T we have

dP�t
dP◦

t
(X◦) = ρ̃(0, x0)

ρ(0, x0)

ρ(t, X◦
t )

ρ̃(t, X◦
t )
�t(X

◦),

where �t is defined in (2.6).

Proof. Although this result is not a special case of [35, Proposition 1] (where it is assumed
that L = I and that the diffusion is uniformly elliptic), the arguments for deriving the likelihood
ratio of P�t with respect to P

◦
t are the same and therefore omitted. The only thing that needs to be

checked is that ρ̃(t, x) satisfies the Kolmogorov backward equation associated with X̃. This can
be proved along the lines of Lemma 3.4 and Corollary 3.5 of [40]. Let F̃t = σ (X̃s, 0 ≤ s ≤ t)
and set Ỹt = ρ̃(t, X̃t). Now

E[Ỹt | F̃s] =
∫
Rd
ρ̃(t, x)p̃(s, X̃s; t, x) dx

=
∫
Rd

p̃(s, X̃s; t, x)
∫
Rd−m

(
p̃t, x; T,

d∑
j=1

ξjfj

)
dξm+1, . . . , dξd

=
∫
Rd−m

p̃

(
s, X̃s; T,

d∑
j=1

ξjfj

)
dξm+1, . . . , dξd = ρ̃(s, X̃s) = Ỹs.

That is, (Ỹt, F̃t) is a martingale. If L̃ denotes the infinitesimal generator of X̃t, then K=
∂/(∂t) + L̃ is the infinitesimal generator of the space–time process (t, Ỹt). Since Ỹt is a
martingale, the mapping (t, x) �→ ρ̃(t, x) is space–time harmonic. Then by Proposition 1.7
in Chapter VII of [32], Kρ̃(t, x) = 0. That is, ρ̃(t, x) satisfies Kolmogorov’s backward
equation. �

This absolute continuity result is only useful for simulating conditioned diffusions if it
can be shown to hold in the limit t ↑ T as well. The main line of proof is the same as in
the proof of [35, Theorem 1], where at various places p and p̃ need to be replaced with ρ
and ρ̃. However, some of the auxiliary results that are used require new arguments in the
present setting. Moreover, the assumed Aronson-type bounds are not suitable for hypo-elliptic
diffusions.

6.2. Proof of Theorem 2.6

We start by introducing some notation. Define the mapping g� : [0,∞) ×R
d →R

m by

g�(t, x) =�(t)(v −μ(t) − L(t)x)

and note that Z�,t = g�(t, X◦
t ). For a diffusion process Y we define the stopping time

σk(Y) = T ∧ inf
t∈[0,T]

{‖g�(t, Yt)‖ ≥ k
√

(T − t) log (1/(T − t))
}
,
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where k ∈N. We write

σ ◦
k = σk(X◦) σk = σk(X) σ�k = σk(X�).

Define ρ̄ = ρ̃(0, x0)/ρ(0, x0). By Proposition 6.1, for any t< T and bounded, Ft-
measurable f , we have

E

[
f (X�)

ρ̃(t, X�t )

ρ(t, X�t )

]
=E[f (X◦)ρ̄ �t(X

◦)]. (6.1)

By taking ft(x) = 1{t ≤ σk(x)}, we get

ρ̄ E[�t(X
◦)1{t ≤ σ ◦

k }] =E

[
ρ̃(t, X�t )

ρ(t, X�t )
1{t ≤ σ�k }

]
. (6.2)

Next, we take limk→∞ limt↑T on both sides. We start with the left-hand side. By Lemma 6.1,
for each k ∈N, sup0≤t≤T �t(X◦) is uniformly bounded on the event {T = σ ◦

k }. Hence, by the
dominated convergence theorem we obtain

lim
k→∞ lim

t↑T
E[�t(X

◦)1{t ≤ σ ◦
k }] = lim

k→∞E[�T (X◦)1{T ≤ σ ◦
k }].

Since by definition σ ◦
k ≤ T , we have {T ≤ σ ◦

k } = {T = σ ◦
k }. Furthermore,

1{T = σ ◦
k } = 1

{‖Z◦
�,t‖ ≤ k

√
(T − t) log (1/(T − t))

} ↑ 1 as k → ∞,

by Proposition 2.2. Therefore, by monotone convergence,

lim
k→∞ lim

t↑T
E[�t(X

◦)1{t ≤ σ ◦
k }] =E[�T (X◦)].

It remains to show that the right-hand side of (6.2) tends to 1. We write

ρ(0, x0)E

[
ρ̃(t, X�t )

ρ(t, X�t )
1{t ≤ σ�k }

]
=E[ρ̃(t, Xt)1{t ≤ σk}]

=E[ρ̃(t, Xt)] −E[ρ̃(t, Xt)1{t>σk}].
By Lemma 6.3 the first of the terms on the right-hand side tends to ρ(0, x0) when t ↑ T . The
second term tends to zero by Lemma 6.4.

To complete the proof we note that by equation (6.1) and Lemma 6.3 we have
ρ̄ E[�t(X◦)] → 1 as t ↑ T . In view of the preceding and Scheffé’s lemma this implies that
�t(X◦) →�T (X◦) in the L1-sense as t ↑ T . Hence for s< T and a bounded, Fs-measurable,
continuous functional g,

E[g(X◦)ρ̄�T (X◦)] = lim
t↑T

E

[
g(X�)

ρ̃(t, X�t )

ρ(t, X�t )

]
.

By Lemma 6.3 this converges to E g(X�) as t ↑ T and we find that E g(X◦)ρ̄�T (X◦) =E g(X�).

Lemma 6.1. Under Assumption 2.4 there exists a positive constant K (not depending on k)
such that

�t(X
◦)1t≤σ ◦

m
≤ exp (Kk2).
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Proof. To bound �t(X◦), we will first rewrite G(s, X◦) in terms of Z�,t, L�(t) and M�(t), as
defined in (2.3) and (2.4). By (5.2), we have

r̃(t, X◦
t ) = L�(t)′M�(t)Z�,t and H̃(t) = L�(t)′M�(t)L�(t).

Here, the expression for H̃(t) was obtained from

H̃(t) = − DL(t)′M(t)(v −μ(t) − L(t)x) = D(L(t)′M(t)L(t)x) = L(t)′M(t)L(t).

Hence

G(s, X◦
s ) = (b(s, X◦

s ) − b̃(s, X◦
s ))′L�(s)′M�(s)Z�,s

− 1

2
tr([as − ã(s)]L�(s)′M�(s)L�(s))

+ 1

2
Z�,s

′M�(s)L�(s)[as − ã(s)]L�(s)′M�(s)Z�,s.

On the event {t ≤ σ ◦
k } we have

‖Z�,t‖ ≤ k
√

(T − t) log (1/(T − t)).

The absolute value of the first term of G can be bounded by

‖M�(s)‖‖L�(s)(b̃(s, X◦
s ) − b(s, X◦

s ))‖‖Z�,s‖
≤ (T − s)−1‖Z�,s‖
≤ c1m(T − s)−1/2

√
log (1/(T − s)).

Here we bounded ‖M�(t)‖ ≤ λmax(M�(t)), as in (5.5). The absolute value of twice the second
term of G can be bounded by

tr(L�(s)(as − ã(s))L�(s)′)kλmax(M�(s)),

just as in (5.4). As for a p × p matrix A we have tr(A) ≤ pλmax(A) = p‖A‖2 (recall we assume
the spectral norm on matrices throughout), this can be bounded by

m‖L�(s)(as − ã(s))L�(s)′‖2mλmax(M�(s)) ≤ m2c3c̄(T − s)2α−1.

The absolute value of twice the third term of G can be bounded by

‖Z�,s‖2‖M�(s)‖2‖L�(s)(a(s) − ã(s))L�(s)′‖
≤ k2(T − s) log (1/(T − s))c̄2(T − s)−2c3(T − s)α

≤ k2c̄2c3(T − s)α−1 log (1/(T − s)).

We conclude that all three terms in G are integrable on [0, T]. �
Lemma 6.2. For all bounded, continuous f : [0, T] ×R

d →R,

lim
t↑T

∫
f (t, x)p̃(t, x; T, v) dx = f (T, v).
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Proof. The proof is just as in Lemma 7 of [35]. �

Lemma 6.3. If Assumption 2.5 holds true, 0< t1 < t2 < · · ·< tN < t< T , and g ∈ Cb(RNd),
then

lim
t↑T

E

[
g(X�t1 , . . . , X�tN )

ρ̃(t, X�t )

ρ(t, X�t )

]
=E[g(X�t1 , . . . , X�tN )].

Proof. The joint density q of (Xt1 , . . . , XtN ), conditional on Xt0 = x0, is given by

q(x1, . . . , xN) =
N∏

i=1

p(ti−1, xi−1; ti, xi).

Hence

E

[
g(X�t1 , . . . , X�tN )

ρ̃(t, X�t )

ρ(t, X�t )

]
=

∫
g(x1, . . . , xN)

ρ̃(t, x)

ρ(t, x)
q(x1, . . . , xN)

p(tN, xN ; t, x)ρ(t, x)

ρ(0, x0)
dx1 . . . dxN dx

= 1

ρ(0, x0)

∫
g(x1, . . . , xN)q(x1, . . . , xN)F(t; tN, xN) dx1 . . . dxN, (6.3)

where for tN < t< T

F(t; tN, xN) =
∫

p(tN, xN ; t, x)ρ̃(t, x) dx.

We can assume t ≥ (T + tN)/2. For fixed tN and xN , the mapping (t, x) �→ p(tN, xN ; t, x)
is continuous and bounded, for t bounded away from tN . By Lemma 6.2 it follows that
F(t; tN, xN) → ρ(tN, xN) when t ↑ T . The argument is finished by taking the limit t ↑ T on
both sides of equation (6.3), interchanging limit and integral on the right-hand side and noting
that the limit on the right-hand side coincides with E[g(X�t1, . . . , X�tN )].

The interchange is permitted by dominated convergence. To see this, first note that g is
assumed to be bounded. Next,∫ (

n∏
i=1

p(ti−1, xi−1; ti, xi)

)
p(tN, xN ; t, x)ρ̃(t, x) dx dx1 . . . dxN ≤ CN+1ρ̃(t0, x0),

which follows from repeated application of Assumption 2.5. �

Lemma 6.4. Assume that there exists a positive δ such that |�(t)|� (T − t)−δ . If
Assumption 2.5 holds true, then

lim
k→∞ lim

t↑T
E[ρ̃(t, Xt)1{t>σk}].

Proof. As in the proof of [35, Lemma 5], it suffices to show that

lim
k→∞ lim

t↑T
E

[
1{t>σk}

∫
p(σk, Xσk ; t, z)ρ̃(t, z) dz

]
= 0.

Applying Assumption 2.5 and using the Chapman–Kolmogorov relations, we obtain∫
p(σk, Xσk ; t, z)ρ̃(t, z) dz ≤ Cρ̃(σk, Xσk ).
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Define Z̃t = v −μ(t) − L(t)X̃t. If we denote its transition density by q̃, then

ρ̃(t, y) = q̃(t, v −μ(t) − L(t)y; T, 0), y ∈R
d and t ∈ [0, T),

since r̃(t, x) depends on x only via L(t)x. Define the set

Ak = {(t, y) ∈ [0, T) ×R
d : ‖�(t)(v −μ(t) − L(t)y)‖ = kη(t)},

where η(t) = √
(T − t) log (1/(T − t)). Then

E

[
1{t>σk}

∫
p(σk, Xσk ; t, z)ρ̃(t, z) dz

]
≤E

[
sup

(t,y)∈Ak

ρ̃(t, y)

]
,

since by definition of σk, ‖�(σk)(v −μ(σk) − L(σk)Xσk )‖ = kη(σk). The expectation on the
right-hand side is now superfluous. It is easily derived that Z̃t satisfies the SDE

dZ̃t = L(t)σ̃ (t) dWt

and hence for x ∈R
m

q̃(t, x; T, 0) = φm(0; x,M†(t)),

where we denote the density of the multivariate normal distribution in R
m with mean vec-

tor ν and covariance matrix ϒ , evaluated in u by φm(u; ν, ϒ). Hence, stitching the previous
derivations together we obtain

E

[
1{t>σk}

∫
p(σk, Xσk ; t, z)ρ̃(t, z) dz

]
≤ sup

(t,y)∈Ak

φm(0; x,M†(t)).

The right-hand side multiplied by (2π )m/2 equals

|M(t)|1/2 exp

(
− 1

2
(v −μ(t) − L(t)y)′M(t)(v −μ(t) − L(t)y)

)
,

which can be further bounded by

sup
(t,y)∈Ak

|�(t)||M�(t)|1/2 exp

(
− 1

2
(v −μ(t) − L(t)y)′�(t)M�(t)�(t)(v −μ(t) − L(t)y)

)

≤ sup
(t,y)∈Ak

|�(t)|(λmax(M�(t))m/2 exp

(
− 1

2
‖�(t)(v −μ(t) − L(t)y))‖2λmin(M�(t))

)

≤ sup
t∈[0,T)

|�(t)|
(

c̄

T − t

)m/2

exp

(
− ck2η(t)2

2(T − t)

)

� sup
t∈[0,T)

(T − t)−δ−m/2 exp

(
− ck2η(t)2

2(T − t)

)
.

Next, the maximum can be bounded, followed by taking the limit k → ∞, to see that this tends
to zero. This is exactly as in the proof of [35, Lemma 5]. �
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6.3. Proof of Lemma 2.3

By absolute continuity of the laws of X̃ and X and the abstract Bayes’ formula, for bounded
FT -measurable f we have

E[f (X) | XT = v] = p̃(0, x0; T, v)

p(0, x0; T, v)
E

[
f (X̃)

dPT

dP̃T
(X̃)

∣∣∣∣ X̃T = v

]
.

Hence, upon taking f ≡ 1 and applying Girsanov’s theorem, we get

p(0, x0; T, v) = p̃(0, x0; T, v)E

[
exp

( ∫ T

0
η(X̃s)

′ dWs − 1

2

∫ T

0
‖η(X̃s)‖2 ds

) ∣∣∣∣ X̃T = v

]
.

Since η is bounded, this implies

p(0, x0; T, v) ∝ p̃(0, x0; T, v)E

[
exp

( ∫ T

0
η(X̃s)′ dWs

) ∣∣∣∣ X̃T = v

]
.

Upon defining τj =
∫ T

0 ηj(X̃s)2 ds, the Dambis–Dubins–Schwarz theorem implies that the
expectation on the right-hand side equals

E
[
e− ∑d

′
j=1

∫ T
0 ηj(X̃s) dWj

s | X̃T = v
] =E

[
e
∑d

′
j=1 Wj

τj | X̃T = v
]
.

By boundedness of η there exist constants {Kj}d′
j=1 such that τj ≤ Kj. Hence the right-hand side

of the above display can be bounded by

E
[
e
∑d

′
j=1 sup0≤s≤Kj

Wj
s | X̃T = v

] =E
[
e
∑d

′
j=1 sup0≤s≤Kj

Wj
s] =

d′∏
j=1

E[e
sup0≤s≤Kj

Wj
s ],

where the final equality follows from the components of W̄ being independent. The expec-
tation on the right-hand side is finite, the constant only depending on T . To see this,
if Bt is a one-dimensional Brownian motion, then B̄t = sup0≤s≤t Bs has density fB̄t

(x) =√
2/(π t)e−x2/(2t)1[0,∞)(x), which implies that E[exp (B̄t)]<∞.
The statement of the theorem now follows by considering the processes X and X̃ started in x

at time s and noting that the derived constant only depends on T .

7. Discussion

7.1. Extending the approach in [27] to hypo-elliptic diffusions

A potential advantage of the approach of Marchand [27] is that, at least in the uniformly
elliptic case, there is no matching condition for the diffusion coefficient to be satisfied.
Inspecting the guiding term in (1.11), it can be seen that it is also well-defined when
ker(σ (t, x)′L′) = {0}, since this ensures that the inverse of La(t, x)L′ exists for all t ≥ 0 and
x ∈R

d. Unfortunately, this excludes, for example, the case where the smooth component of an
integrated diffusion process is observed (Example 3.2). Here, the guiding term is given by

guid1(t, x) := aL(t)′
( ∫ T

t
L(τ )ãL(τ )′ dτ

)−1

(v − L(t)x).
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Now it is tempting to adjust the proposals of [27] in (1.11) in the same way as was done for
guided proposals, by replacing L with L(t). This leads to the guiding term

guid2(t, x) := aL(t)′(L(t)aL(t)′)−1 v − L(t)x

T − t
.

This guiding term will not give correct bridges, though. To see this, if β ≡ 0 then X◦ = X�,
but

guid2(t, x) = 1

3
guid1(t, x) with guid1(t, x) =

[
0

3(v − x1 − (T − t)x2)/(T − t)2

]
(here xi denotes the ith component of the vector x). We stress that guid2(t, x) was never pro-
posed in [27] and that the guiding term in (1.11) is perfectly valid in the uniformly elliptic case.
The point we make here is that it is far from straightforward to generalise the work of [27] to
the hypo-elliptic setting. Possibly, the correct generalisation of [27] to the hypo-elliptic case is
to take the guiding term of the form

a(t, X◦
t )L(t)′

( ∫ T

t
L(τ )a(τ, X◦

τ )L(τ )′ dτ

)−1

(v − L(t)X◦
t ).

This term, however, is unattractive from a computational point of view.

7.2. State-dependent diffusion coefficient

We have formulated our results for state-dependent diffusion coefficients σ . The main dif-
ficulty, however, resides in checking the fourth inequality of Assumption 2.4. We conjecture
that the ‘right’ way to deal with this term is to bound

‖L�(t)(ã(t) − a(t, X◦
t ))L�(t)′‖� ‖Z�,t‖.

Then the final term in inequality (5.6) would be replaced with C4
∫ t

t0
(T − s)−2‖Z�,s‖3 ds.

The conjecture is motivated by the proof of [35, Theorem 2]. Obtaining such an inequality
is not straightforward, as is the corresponding Gronwall-type argument. We postpone such
investigations to future research.

Appendix A. Existence of r̃ if L = I

When L = I, the existence problem of transition densities has been studied in control theory
as well.

Definition A.1. The pair (B̃, σ̃ ) is called completely controllable at s if, for any t> s and
x, y ∈R

d, there exists a function v ∈ L2[s, t] and corresponding solution Y of

dY(u) = (B̃(u)Y(u) + σ̃ (u)v(u)) du, Y(s) = x

such that Y(t) = y.

The following lemma is proved in [19].
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Lemma A.1. The following are equivalent:

(1) (B̃, σ̃ ) is completely controllable at s,

(2) non-degenerate Gaussian transition densities p̃(s, x; t, y) exist,

(3) for arbitrary Gaussian initial data X̃s, the random vector X̃t is non-degenerate Gaussian
for t> s.

If B̃, σ̃ in (1.8) are constant matrices, complete controllability is equivalent to rank(C) = d,
where the controllability matrix C is defined by

C := [σ̃ , B̃σ̃ , . . . , B̃d−1σ̃ ]

(see [19, page 74] or [20, Proposition 6.5]). This provides an easily verifiable condition for
complete controllability.

Appendix B. Gronwall-type inequality

In the proof of Theorem 2.2 we used the following Gronwall-type inequality.

Lemma B.1. Assume t �→ ζ (t) is continuously differentiable and non-negative on [t0, t1).
Assume t �→ f1(t) and t �→ f2(t) are continuous and non-negative on [t0, t1). Suppose t �→ u(t)
is a continuous and non-negative function on [t0, t1) satisfying the inequality

u(t) ≤ ζ (t) +
∫ t

t0
f1(s)

√
u(s) ds +

∫ t

t0
f2(s)u(s) ds, t ∈ [t0, t1).

Then

u(t) ≤
(√

ζ (t0) +
∫ t

t0
|ζ ′(s)| ds + 1

2

∫ t

t0
f1(s) ds

)2

exp

( ∫ t

t0
f2(s) ds

)
.

Proof. This is a special case of [1, Theorem 2.1]. In their notation, we have n = 2, w1(x) =√
x, W1(x) = 2

√
x (taking u1 = 0), w2(x) = x, W2(x) = log x (taking u2 = 1). �

Appendix C. Hypo-ellipticity

Proposition C.1. Consider the diffusion (1.1) with b(t, x) = Bx + β(t, x) for B ∈R
d×d and

β ∈ C∞([0, T] ×R
d,Rd), and with σ ∈ C∞([0, T] ×R

d,Rd×d′
). Suppose that, for all (t, x) ∈

(0, T) ×R
d, the pair (B, σ (t, x)) is controllable, that is, the rank of the matrix concatenation

[σ (t, x) Bσ (t, x) · · · Bd−1σ (t, x)]

is equal to d. Further, suppose that for all (t, x) ∈ (0, T) ×R
d and all tuples (n0, n1, . . . , nd) ∈

{0, 1, . . . , d − 1}d+1,

(∂t)
n0

d∏
i=1

(∂xi)
niβ(t, x) ∈ Col σ (t, x)

and

Col

(
(∂t)

n0

d∏
i=1

(∂xi)
niσ (t, x)

)
⊂ Col σ (t, x),
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that is, the column spaces of all partial derivatives of β(t, x) and σ (t, x), including β(t, x)
itself, belong to the column space of σ (t, x). Finally, suppose there exists at most one strong
solution to (1.1) (which is the case if, for example, β and σ satisfy a linear growth condition).
Then, for all initial conditions x0 and all t ≥ 0, the distribution of Xt admits a density function
p(t, x, y):

Ex0 [f (Xt)] =
∫
Rd

p(t, x0, y)f (y) dy, f ∈ C0(Rd),

and p is a smooth (infinitely often continuously differentiable) function on (0,∞) ×R
d ×R

d.

Proof. Write (σj)d′
j=1 for the columns of σ so that

σ (t, x) = [σ1(t, x) · · · σd′(t, x)].

The Stratonovich form of (1.1) is given by

dXt = b̃(t, Xt) dt + σ (t, Xt) ◦ dWt, X0 = x0, t ∈ [0, T],

where b̃(t, x) = Bx + β̃(t, x) with coordinates of β̃ given by

β̃ i(t, x) = β i(t, x) − 1

2

d′∑
j=1

d∑
l=1

σ l
j (∂lσ

i
j )(t, x).

Observe that β̃(t, x) ∈ Col σ (t, x), just like β(t, x).
In particular, the generator of the diffusion (1.1) can be given in terms of the first-order

differential operators

A0 f (t, x) = ∂tf (t, x) + 〈̃b(t, x),∇x f (t, x)〉, Aj f (t, x) = 〈σj(t, x),∇x f (t, x)〉, j = 1, . . . , d′,

as L=A0 + 1
2

∑d′
j=1 A2

j . In this proof, without further comment, we will use (i) Einstein’s
summation convention, and (ii) the canonical identification of first-order partial differen-
tial operators A= ai∂i = a0(t, x)∂t + ∑d

i=1 ai(x)∂xi (acting on functions f : [0,∞) ×R
d →

R) with vector fields [a0(t, x) a1(t, x) · · · ad(t, x)]T ∈ C∞([0,∞) ×R
d; R×R

d). The
commutator [U1, U2] of two vector fields U1, U2 is as usual defined by

[U1, U2]f (t, x) = U1U2f (t, x) − U2U1f (t, x).

For l = 0, . . . , d − 1, write

Vl := Col [σ (t, x) Bσ (t, x) · · · Blσ (t, x)].

Write [·,A0]l for taking the Lie bracket with A0 repeatedly, that is, recursively we define

[U ,A0]0f = U f and [U ,A0]l+1 = [[U ,A0]l,A0], l = 0, 1, 2, . . . .

We first compute

[Aj,A0]f = σ k
j Bi

k∂if − (∂tσ
k
j )∂kf − Bi

lx
l(∂iσ

k
j )∂kf − β̃ i(∂iσ

k
j )∂kf + σ k

j (∂kβ̃
i)∂if .
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Observe that the first term represents the operator 〈Bσj,∇f 〉, and the remaining terms assume
values in V0 = Col σ (t, x). By iterating we obtain [Aj,A0]l = Blσ + U , where U (t, x) ∈ Vl−1

for all (t, x). By the controllability assumption on B and σ , the vectors

{[Aj,A0]l(t, x) : l = 1, . . . , d − 1, j = 1, . . . , d′}
span R

d for all (t, x). Adding A0 to the collection of vectors gives that

span{A0, [Aj,A0]l(t, x) : l = 1, . . . , d − 1, j = 1, . . . , d′}
has dimension d + 1, for all (t, x) ∈ (0, T) ×R

d. The result now follows from Hörmander’s
theorem lifted to (0, T) ×R

d, for example [43, Corollary 5.8]. �

Appendix D. Derivation of the conditioned process

The SDE for the conditioned process, given in (2.1), can be derived using Doob’s
h-transform.

Assumption D.1. The mapping ρ : R+ ×R
d →R is C1,2 and strictly positive.

Suppose 0 ≤ s< t< T . By the Chapman–Kolmogorov equations, for a compactly supported
C∞-function f : Rd →R we have

E[f (Xt) | Xs = x, LXT = v] =
∫

f (y)p(s, x; t, y)
ρ(t, y)

ρ(s, x)
dy.

Define g(t, x) = f (x)ρ(t, x). Using the above display we find that the infinitesimal generator of
the conditioned process, say L�, equals

L�f (x) = lim
�↓0

�−1(E[f (Xs+�) | Xs = x, LXT = v] − f (x))

= 1

ρ(s, x)
lim
�↓0

�−1
( ∫

g(s +�, y)p(s, x; s +�, y) dy − g(s, x)

)
= 1

ρ(s, x)
lim
�↓0

�−1(E[g(s +�, Xs+�) | Xs = x] − g(s, x)).

By Assumption D.1, g is a compactly supported C∞-function in the domain of the infinitesimal
generator K of the space–time process (t, Xt). Therefore

L�f (x) = 1

ρ(s, x)
(Kg)(s, x),

where

Kφ(s, x) = ∂

∂s
φ(s, x) +

∑
i

bi(s, x) Diφ(s, x) + 1

2

∑
i,j

aij(s, x) D2
ijφ(s, x).

Here (and in the following) all summations run over 1, . . . , d:

Di = ∂

∂xi
and D2

ij =
∂2

∂xi∂xj
.
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Using the definition of g, we get

L�f (x) =
∑

i

(
bi(s, x) +

∑
j

aij(s, x)
Djρ(s, x)

ρ(s, x)

)
Dif (x)

+ 1

2

∑
i,j

aij(s, x) D2
ijf (x) + f (x)

ρ(s, x)
(Kρ)(s, x).

We claim (Kρ)(s, x) = 0 (i.e. ρ(t, x) satisfies Kolmogorov’s backward equation). The drift and
diffusion coefficients of the conditioned process can then be identified from the infinitesimal
generator L�. To verify the claim, first note that Zt = ρ(t, Xt) defines a martingale: if Fs is the
natural filtration of X, then

E[Zt |Fs] =
∫

p(s, Xs; t, x)ρ(t, x) dx = Zs,

where we used the Chapman–Kolmogorov equations. Therefore (t, x) �→ ρ(t, x) is space–time
harmonic and then the claim follows from [32, Proposition 1.7, Chapter VII].
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