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New light is shed on morphological features of water–propylene glycol sessile droplets
evaporating into ambient air at not too high relative humidity. Such droplets adopt a
Marangoni-contracted shape even on perfectly wetting substrates, an effect well known
since Cira et al. (Nature, 519, 2015). We here highlight a strong separation of scales
normally occurring for such droplets. Namely, there is a narrow high-curvature zone
localized at the foot of the droplet, where the apparent contact angle is formed, while
the core of the droplet merely adheres to the classical (capillary–gravity) static shape.
Experimentally, we rely upon interferometry to discern such fine key details. We detect a
maximum of the droplet slope profile in the foot region, which amounts to the apparent
contact angle. Theoretically, a local description of the foot region is devised. We indicate
a crucial role of convective mixing by the solutal Marangoni flow, here accounted for
by the Taylor dispersion, which proves to underlie the separation of scales and ensure
self-consistency of the local model. Migration of such droplets in a humidity gradient is
also approached within the same experimental and theoretical framework. It is considered
that the resulting back–front asymmetry of the apparent contact angles drives the motion
similarly to a wettability gradient, although the drag (‘Cox–Voinov’) factor is here found
to be different. The predictions, comparing well with the measurements (our own and
from the literature), are based on rigorous models, isothermal and as reduced as possible,
without any fitting parameters or microphysics effects.
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J. Charlier and others

1. Introduction

Evaporation of a sessile droplet, a simple object comprising all the complexities of
the phenomena such as wettability, contact-line dynamics, Marangoni flows, deposition
patterns, phase change, etc., has attracted considerable attention over the last few decades
(Lohse & Zhang 2020) because of its connection with a wide variety of applications such
as inkjet printing (Tekin, de Gans & Schubert 2004; Singh et al. 2010; Siregar, Kuerten
& van der Geld 2013), spray cooling (Kim 2007), thin film deposition (Kim et al. 2006),
DNA control (Jing et al. 1998; Dugas, Broutin & Souteyrand 2005), disease diagnostic
tool (Yakhno et al. 2003) and control of motion of small quantities of liquids (Cira,
Benusiglio & Prakash 2015). Evaporative cooling can lead to Marangoni flows due to
temperature gradients (Savino, Paterna & Favaloro 2002; Hu & Larson 2005; Xu & Luo
2007; Barmi & Meinhart 2014), affecting the droplet shape (Xu et al. 1984; Tsoumpas
et al. 2015). When dealing with multicomponent droplets, especially not highly volatile,
control is rather assumed by the solutal Marangoni stresses (Cira et al. 2015), arising due
to non-uniform vaporization of the components. Depending on their direction (towards the
contact line or towards the apex of the droplet), they can either enhance spreading (Carles
& Cazabat 1989; Cira et al. 2015; Keiser et al. 2017; Parimalanathan et al. 2021), or make
for a quasi-steady ‘contracted’ droplet (Cira et al. 2015; Karpitschka, Liebig & Riegler
2017; Benusiglio, Cira & Prakash 2018; Parimalanathan et al. 2021) similar to what was
observed with a thermal Marangoni effect (Tsoumpas et al. 2015). For instance, a droplet
of water and propylene glycol (PG) mixture on a high energy surface and at a not so large
ambient humidity manifests a contracted shape with an apparent contact angle roughly
of the order of 10◦ (Cira et al. 2015; Karpitschka et al. 2017; Benusiglio et al. 2018),
while droplets of pure water or pure PG would totally spread (perfect wetting). Indeed,
the higher volatility of water makes for a relative water depletion near the contact line
(where the liquid film is thinner and the evaporation rate is higher). Such depletion was
directly measured by Kim & Stone (2018). As a consequence, the surface tension is lower
at the contact line (water possessing higher surface tension than PG). Therefore, the solutal
Marangoni stresses pump towards the apex, hence a contracted droplet (cf. figure 1). It is
also principally due to the solutal Marangoni effect that such sessile droplets are set into
motion in the direction of an ambient humidity gradient (Cira et al. 2015).

Cira et al. (2015) and Benusiglio et al. (2018) were the first to put into evidence
and measure the apparent contact angles of such water–PG droplets, which are also
the subject of the present paper. They built an heuristic model of the phenomenon. For
droplets of a larger volume, a comprehensive amount of measurement data for a number
of water–diol pairs (including water–PG) is due to Karpitschka et al. (2017). All data
were captured by means of a universal modelling-assisted fit in the form of a power law
for the relative humidity deviation from its equilibrium value, the prefactor depending on
the diol mass fraction in the liquid. Their more rigorous and comprehensive modelling
highlights most notably PG segregation and a consequent regularization of an otherwise
diverging evaporation flux towards the contact line. However, in our understanding,
Karpitschka et al. (2017) did not attempt a direct quantitative comparison of their theory
with experiment. We were unable to find the material properties such as the viscosity
and diffusion coefficient used in the computations. Their species transport equation does
not contain what we here refer to as the mixing in the droplet by means of the solutal
Marangoni flow, the importance of which was pointed out by Charlier et al. (2019)
and Charlier (2020). We have recently become aware of a study by Ramírez-Soto &
Karpitschka (2021) essentially incorporating the Marangoni mixing into a model akin
to Karpitschka et al. (2017). Similarly to Charlier et al. (2019) and Charlier (2020), this
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Water–PG sessile droplet: Marangoni mixing and scale separation

z

z

r

cwater+

cwater–

x = R – r

R
r

Water + PG
Marangoni

mixing

Inflection point

Slope

profile

Evaporation

γ

γ

θmax

θmax

θmic

θmic

Figure 1. Sketch of the phenomenon. Going from darker (blue) to lighter (tints of cyan) shading symbolizes a
decrease in water content.

is accomplished by means of the Taylor dispersion. Ramírez-Soto & Karpitschka (2021)
also provide a direct experimental measurement of the solutal Marangoni flow, which is
directed towards the centre at the droplet surface as expected.

In the present paper, we expose a specific morphology consisting of the existence of a
distinguished narrow region at the foot of the droplet and relate it to the apparent contact
angles and Marangoni mixing. On the experimental side (§ 2), our interferometric methods
(Dehaeck, Tsoumpas & Colinet 2015; Dehaeck & Colinet 2016) enable us to resolve the
slope and height profiles of the droplet in the foot region. There, we clearly disclose a
maximum-slope (shape-inflection) point in a close vicinity of the contact line (cf. figure 1),
the maximum slope values being associated with the apparent contact angles. A series of
measurements are carried out at various droplet compositions (PG fractions) and ambient
relative humidity values.

On the theoretical side (§ 3), we go straight to a local modelling of the foot region
and the apparent contact angles of a solutal Marangoni nature generated therein. This is
accomplished on the premise of a scale separation between the foot region and the core
of the droplet (the latter supposed to adhere to the classical static shape, Allen (2003)),
which is supported by the observation. The Marangoni mixing in the liquid is accounted
for in the model, by means of the Taylor dispersion. We start from a particularly simple
model, reducing to a system of ordinary differential equations (ODEs), but capturing
the essence of the phenomenon and highlighting the scales and the dependence on the
material properties. In particular, we thereby observe a crucial role of the Marangoni
mixing for the scale separation and self-consistency of the local approach. One further
step of generalization, still in the framework of a local approach in the foot region, is
undertaken at the end of § 3. This is required for a better comparison with experiment, in
a wider parameter range. Such a comparison, with our own experimental results as well
as those by Cira et al. (2015), Benusiglio et al. (2018) and Karpitschka et al. (2017), is
discussed more thoroughly in § 4.

Finally, the developed experimental and theoretical tools are applied to study the
attraction of droplets by a nearby humidity source (§ 5). Thus, the interferometry permits
us to disclose the associated induced asymmetry of the sessile droplet; the contact
angles calculated as a function of the ambient humidity (among other parameters)
permit us to deal with the droplet behaviour in a humidity gradient from the source.
Certain mathematical details are relegated to appendices. The conclusions are summarized
in § 6.
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J. Charlier and others

2. Experimental

Binary-liquid sessile droplets of distilled water and PG (‘AMRESCO’ high purity grade
PG) of a volume ∼0.5 μL, prepared at different volume fractions using a ‘VWR Signature
EHP Pipettor’ pipette, were deposited at room temperature in the ambient atmosphere
on a glass slide (76 mm × 26 mm × 1 mm). Before first use, slides were washed using
ethanol, acetone and distilled water, which was followed by plasma cleaning (four minutes
with ‘CUTE FEMTO SCIENCE’ V2.0). After first use, glass slides were washed only
with distilled water before plasma cleaning. Ambient temperature and relative humidity
were measured using a ‘Lufft OPUS 20’ weather station. The relative humidity values we
worked at were either due to weather conditions, or (for higher values) were achieved by
boiling water in the laboratory. We here study the quasi-steady contracted shapes, with
finite apparent contact angles θapp, the droplets attain shortly after the deposition in spite
of perfect wetting of each of the components. (For pure water droplets, small finite contact
angles (�3◦, generally well smaller than θapp here) could nonetheless be observed, which
we attribute to the evaporation-induced contact angle (cf. e.g. Poulard et al. 2005; Pham
et al. 2010; Colinet & Rednikov 2011; Morris 2014; Rednikov & Colinet 2019, 2020),
and not the Young’s angle.) The runs with any detected pinning of the contact line were
discarded. A Mach–Zehnder interferometer, using a helium–neon laser, allows us to extract
the local slopes of the droplet at every point (Dehaeck et al. 2015; Dehaeck & Colinet 2016)
starting from interferometric images as outlined in figure 2. To complete this procedure,
refractive indexes of the binary liquid of different volume fractions were preliminarily
measured using an ‘ATAGO’ refractometer DRA1 (see Appendix A).

The thereby measured slope profiles are illustrated in figure 3. An interesting feature
of the slope profiles is that they reach a maximum value θmax (the inflection point of
the height profile) generally very close to the contact line (of the order of tens of μm in
the most drastic cases). Then the slope is seen to decrease again, apparently to meet the
surface at a microscopic contact angle θmic, although we here do not claim any reliable
measurement of θmic in view of a possible loss of resolution and do not pursue this issue
any further. The classical static shapes (Allen 2003)

h = θapplc

I0

(
R
lc

)
− I0

(
r
lc

)

I1

(
R
lc

) , V = πθapplcR2
I2

(
R
lc

)

I1

(
R
lc

) , (2.1a,b)

with h the liquid thickness, r the radial coordinate, R the droplet contact radius, V the
droplet volume, lc = √

γ /ρlg the capillary length, γ the surface tension, ρl the liquid
density, g the gravity acceleration, I0 , I1 and I2 the modified Bessel functions, represent
well the main part of the droplet (solid lines of figure 3). For the droplet sizes considered
here (R < lc), they are close to just the spherical caps h = (θapp/2R)(R2 − r2) (with
V = π

4 θappR3). However, they fail to predict the narrow high-curvature zone of the foot
of the droplet around the maximum-slope (shape-inflection) point. Obviously, in view of
the narrowness of that zone,

θapp ≈ θmax, (2.2)

although distinctions between various possible finer definitions of θapp as well as a finer
distinction between θapp and θmax can in principle be drawn. One of such finer distinctions
will be required at a later stage, but they are disregarded for the moment.

One can already notice in figure 3 a non-monotonic dependence of θmax on PG
concentration, which tendency can be observed in figure 4 in a more global context.
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Water–PG sessile droplet: Marangoni mixing and scale separation
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Figure 2. (a) Typical interference pattern of a water–PG droplet before treatment. Circles on the drop are
aliasing artefacts. Only the interference pattern centred on the droplet is physical. (b) Same figure after
treatment. Colour is linked to the local slope in degrees. The red solid line is the single slice we consider to
obtain the slope profile below. (c) Extracted slope profile. The lengths are in pixels (2.6 μm per pixel). Droplet
volume V = 0.5 μL, contact radius R = 1.55 mm, ambient relative humidity 54 % (RH = 0.54), temperature
T = 20 ◦C, 50 % PG volume fraction in the liquid (cm ≈ 0.5).

In this latter figure, the measured angles θmax are shown with symbols as a function
of PG concentration for different ambient relative humidity values together with some
other similar results from the literature, which are seen to agree well with our

933 A45-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1030


J. Charlier and others

PG volume fraction

40 %

10 %

θmax
70 %

16

12

8

4

Radial distance r (mm)

D
ro

p
le

t 
lo

ca
l 

sl
o
p
e 

(d
eg

.)

0.4 0.8 1.2 1.6

Figure 3. Examples of measured droplet slope profiles. Classical static shape fits over the core of the droplet
(solid lines). V = 0.4 ± 0.07 μL, relative humidity 51 % (RH = 0.51), T = 20 ◦C, 10 %, 40 % and 70 % PG
volume fractions in the liquid (cm ≈ 0.9, 0.6 and 0.3, respectively).
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Figure 4. Contact angle results for ∼0.5 μL droplets. Experimental data from Cira et al. (2015) and Benusiglio
et al. (2018) (unfilled symbols) and our own θmax data (filled symbols) at ∼20 ◦C. Ultimate predictions of θmax
by our model (solid lines), cf. the rectified local model later on.

own measurements. The curves correspond to theoretical results that will be explained
in the following sections. At a given humidity, the largest values of θmax are attained for
intermediate PG concentrations. The angles decrease both towards the pure water limit
and towards what appears as the equilibrium concentration (corresponding to the liquid
water content in equilibrium with the vapour at a given ambient humidity, see also later
on). These tendencies go along with the expected key roles of both the solutal Marangoni
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Water–PG sessile droplet: Marangoni mixing and scale separation

effect (vanishing for pure water) and the evaporation (vanishing at the equilibrium
concentration). Furthermore, the angles are seen to decrease with the humidity, which is
understandable in view of the expected similar tendency for the evaporation rates. Beyond
the equilibrium concentration, the droplet enters into a spreading regime (replacing the
contraction one studied here), but this is already outside the scope of the present paper.

3. Theoretical

3.1. Basic assumptions
The theoretical approach is based on the following premises.

We consider a sessile droplet composed of water and PG and evaporating into ambient
air at a relative humidity RH. The problem is axisymmetric (although this assumption will
partly be overridden in § 5 by considering a gradient of RH).

As the contact angles and film slopes are here not large (<20◦), we rely upon the
lubrication approximation in the liquid phase (inside the droplet). The composition
variation across the droplet is neglected.

The experimental results (figure 3) permit us to conjecture that, shape-wise, the solutal
Marangoni action is immediately essential just in a small vicinity of the contact line (foot
region), setting off the apparent contact angle for the classical static shape (2.1a) in the
core of the droplet. Accordingly, assuming such a separation of scales, we here advance a
local approach/model intended to be valid in the foot region and match (2.1a).

We further conjecture (to be verified a posteriori) that, for such a strong localization in
the foot region, there must be a good solutal-Marangoni mixing inside the droplet, which
will smooth out concentration gradients in the core of the droplet and (to a lesser extent)
in the foot region. Accordingly, we assume that the water mass fraction c(r) deviates
everywhere only slightly from its (spatially quasi-constant) value cm in the core of the
droplet:

c = cm + c′(r) (c′ � 1). (3.1)

The mixing will here be treated by means of the Taylor dispersion (Taylor 1953, 1954)
in the framework of the lubrication approximation.

Only quasi-steady regimes are considered. In particular, an initial fast-spreading stage
(upon the droplet deposition) is assumed to be over. The strong mixing and localization
also favour fast attaining a quasi-steady state from the viewpoint of concentration
distribution, so that the composition cm has not yet changed significantly due to
evaporation, as compared with the initial one upon the droplet deposition. (In fact, one
can refer to figure 1(c) of a recent preprint by Ramírez-Soto & Karpitschka (2021) to
appreciate how fast the quasi-steadiness is really reached (in less than 1 s).) Thus, cm is
here treated as an input parameter, identified with the initial composition. The other input
parameters (apart from the material properties) are the droplet size (represented by either
the droplet contact radius R, or the droplet volume V) and the ambient relative humidity
RH (expressed either in fraction terms or in per cent as evident from the context).

A direct contribution of evaporation into the flow inside the droplet is neglected with
respect to the solutal Marangoni flow. The apparent contact angles are assumed to be
entirely associated with the latter.

The material properties of the liquid such as the surface tension γ (c), (dγ /dc)(c),
diffusion coefficient Dl(c) and dynamic viscosity η(c) are all functions of the composition.
These dependencies are fully accounted for in the present paper using results from the
literature (cf. Appendix A). However, by virtue of the ansatz (3.1), they are here evaluated
at c = cm and otherwise treated as constants.
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J. Charlier and others

In view of close densities of water and PG, we shall adopt an approximate constant value
of the liquid density throughout, ρl ≈ 1015 kg m−3, also implying no distinction between
the mass and volume fractions. The PG volume fraction (used in figure 4) is then (1 −
cm)× 100 %. Neglecting the natural convection inside the droplet is, notwithstanding, a
separate assumption, adopted in view of small contact angles (cf. Diddens, Li & Lohse
2021).

The volatility of PG is neglected. As for water, Raoult’s law is assumed at any liquid
composition, which use is supported by data from Verlinde, Verbeeck & Thun (2010) and
Karpitschka et al. (2017, figure S2).

Droplet evaporation is controlled by vapour diffusion in the gas. The vapour is dilute
(hence no Stefan flow), given that the saturation pressure of water is much smaller than
the atmospheric pressure at the temperatures considered (∼20 ◦C). In view of the small
slopes, the droplet is approximated by a flat disk from the viewpoint of the vapour diffusion
problem in the gas. By virtue of the ansatz (3.1), the distribution of the evaporation flux
density j(r) (in kg m−2 s−1) along the droplet diameter is assumed to be the one for a
droplet of a uniform composition c = cm, neglecting a feedback from c′(r). This gives rise
to a well known expression (e.g. Popov 2005)

j(r) = 2Dgρsat(χm − RH)

π
√

R2 − r2
(3.2)

with Dg = 2.55 × 10−5 m2 s−1 the water vapour diffusivity and ρsat = 0.017 kg m−3 (at
20 ◦C) the saturation density of water vapour, except that it is here modified by a prefactor
(χm − RH) accounting for Raoult’s law and the ambient humidity. The molar fraction of
water in the liquid χ is related to c by

χ = Mpgc
Mpgc + Mw(1 − c)

, χm = Mpgcm

Mpgcm + Mw(1 − cm)
(3.3a,b)

(likewise for χm versus cm), where Mw = 18 g mol−1 and Mpg = 76 g mol−1 are the
molar masses of water and PG, respectively. The prefactor and the evaporation flux
(3.2) both vanish at equilibrium. The equilibrium relative humidity RHeq for a given
liquid composition χm is then obviously RHeq = χm. Inversely, for a given RH the
equilibrium composition χm,eq corresponds to χm,eq = RH. In the present paper, we study
the case χm > RH (in other words, χm > χm,eq, or RH < RHeq), when, as argued in
§ 1, the evaporation and the solutal Marangoni stresses due to the ensuing composition
inhomogeneity make for a contraction regime of the droplet. Note in (3.2) a well known
integrable divergence of the evaporation flux at the contact line (as r → R).

In the narrow foot region near the contact line, for which our local model will be
developed, the evaporation flux (density) distribution can be established as the edge
behaviour (x ≡ R − r, x � R) within (3.2):

j(x) =
√

2Dgρsat

π

1√
Rx
(χm − RH). (3.4)

The local model based upon (3.4) and thus neglecting a feedback between j(x) and
c′(x) (cf. above (3.2)) will be referred to as the ‘non-rectified’ local model. In contrast,
the ‘rectified’ local model will be the one fully accounting for the mentioned feedback
(‘rectification’) and yielding a substitute to (3.4) to be considered later on. Regardless,
even in the latter case, it will still be assumed that the ‘non-rectified’ expression (3.2) is
valid, although just in the core of the droplet (excluding the foot region). This is justified by
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Water–PG sessile droplet: Marangoni mixing and scale separation

an expected higher degree of mixing and composition uniformity in the core of the droplet
and a higher degree of water depletion (larger values of −c′) in the foot region. Thus, the
rectification will thereby just stay confined to the local problem in the foot region.

The rationale behind considering the non-rectified local model (despite the eventual
availability of a more general, rectified one here) is its incomparable simplicity, which
will permit us to probe the essence of the phenomenon in a more subtle and clear way.
Furthermore, the non-rectified approach can already prove sufficient at least in certain
cases. For instance, one can expect it to work for droplets with a large water content, when
close to the pure-water case. At the same time, it will prepare ground for passing to the
rectified local model should the need arise. In the remainder of the present section, the
developments of §§ 3.2, 3.3 and 3.6 equally apply to both local models. The consideration
in §§ 3.4, 3.5, 3.7 and 3.8 is based on the non-rectified approach, although the discussion in
§§ 3.5 and 3.7 is deemed to be pertinent regardless of the model type. Finally, the rectified
local model is tackled in § 3.9.

3.2. Formulation
We now focus on the liquid film in the foot region. Within the lubrication approximation,
the problem is described by two dependent variables, which are the height h(x) and
concentration c′(x) distributions along the film (Cartesian coordinate x > 0 with x = 0
chosen at the contact line). Therefore, two equations need to be formulated (momentum
and species conservation), which are considered in the following two paragraphs.

With no slip at the substrate (z = 0) and the solutal Marangoni stress at the free surface
z = h, the solution of the momentum equation 0 = −∂xp + η∂zzu for the velocity field
component parallel to the substrate in the lubrication approximation is

u = η−1(∂xp)
(

1
2

z2 − hz
)

+ η−1 dγ
dc
(∂xc′)z, (3.5)

a sum of the (half-) Poiseuille and linear shear flows. Here z is the Cartesian coordinate
across the film, and p = −γ ∂xxh the Laplace pressure (gravity being negligible in this
small region). With the evaporation-related flow neglected as stated in § 3.1, a quasi-steady
lubrication equation merely reduces to

∫ h
0 u dz = 0, and hence

γ h∂xxxh + 3
2

dγ
dc
∂xc′ = 0. (3.6)

According to (3.6), the film is shaped by the solutal Marangoni effect moderated by the
capillary pressure.

We next turn to an equation for c′(x). We recall (cf. § 3.1) that the dependence of
c′ on z is neglected to leading approximation assuming a good levelling by molecular
diffusion in our thin droplet, hence c′ = c′(x). The water species balance in any element
dx of the film consists of a diffusion influx hρlDeff ∂xc′|x+dx

x , convective suction influx
jcm dx (here neglecting c′ against cm, cf. § 3.1) due to the overall evaporation flux j(x) (in
kg m−2 s−1), and losses (−jw dx) due to water evaporation flux jw(x) (in kg m−2 s−1). In
a quasi-steady state, the sum of the three must vanish. As water is considered as the only
volatile component in a water–PG mixture, and hence jw = j, we arrive at the following
equation:

∂x(hDeff ∂xc′)− j(1 − cm)/ρl = 0, (3.7)

according to which the concentration profile is a result of the competition between the
evaporation and diffusion. A more general outlook on (3.6) and (3.7) can be found in
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Appendix B. Here Deff is the effective diffusion coefficient resulting from the Taylor
dispersion (Taylor 1953, 1954; Van den Broeck 1990). The idea behind this is that the
combination of molecular diffusion Dl along z and a flow u(z) with

∫ h
0 u dz = 0 (as

here) results in an additional diffusion-like smearing of the profile c′(x). Hence the
form Deff = Dl(1 + BPe2), where B is a numerical coefficient and Pe a Péclet number.
Proceeding in a standard way, one can obtain BPe2 = (D2

l h)−1 ∫ h
0 (
∫ z

0 u(z′) dz′)2 dz. Using
u(z) from (3.5) and using (3.6) as a constraint, one finally arrives at

Deff = Dl

[
1 + 1

1680

(
1

Dlη

dγ
dc

h2∂xc′
)2
]
. (3.8)

For a closure, one still requires j(x), which is given by (3.4) for the non-rectified local
model and will be considered in § 3.9 for the rectified one.

3.3. Rescaling
Rescaling in accordance with

x∗ = x
δ
, h∗ = h

εδ
, θ∗

app = θapp

ε
, θ∗

max = θmax

ε
, c′∗ = c′

ζ
, j∗ = j

ψ
, (3.9a–f )

ε =

⎛
⎜⎝37/4351/4(1 − cm)Dg

dγ
dc
η1/2ρsat(χm − RH)

πD1/2
l R1/2γ 3/2ρl

⎞
⎟⎠

1/5

, (3.10)

ζ = 2γ
3dγ /dc

ε2, δ = 6
√

105
Dlη

γ
ε−4, ψ =

√
2Dgρsat

π

1√
Rδ
(χm − RH) (3.11a–c)

enables us to get rid of all the prefactors in the formulated system of equations. Here δ is the
length scale defining the longitudinal extent of the foot region, ε is the scale of film slopes
and apparent contact angles (in radians), ζ is the scale of mass fraction variations and ψ
is the scale of the evaporation flux density (3.4) in the foot region. For the typical values
(apart from already listed) γ ∼ 50 mN m−1, dγ /dc ∼ 20 mN m−1, η ∼ 0.01 Pa s, Dl ∼
0.3 mm2 s−1, RH ∼ 0.3, cm ∼ 0.5 and R ∼ 1 mm, one obtains ε ∼ 0.18 � 1 (ε ∼ 10◦),
ζ ∼ 0.05 � cm and δ ∼ 3 μm � R. These are quite in agreement with the assumptions
made, such as small slopes (lubrication approximation), small composition non-uniformity
(3.1) and length scale separation (narrowness of the foot region), respectively (cf. § 3.1).

3.4. Solution within the non-rectified local model
The system of ODEs thereby becomes

h∗∂x∗x∗x∗h∗ + ∂x∗c′∗ = 0, (3.12)

∂x∗
[
(1 + h∗4(∂x∗c′∗)2)h∗∂x∗c′∗

]
= j∗, (3.13)

j∗ = 1√
x∗ , (3.14)

which is defined in the interval 0 < x∗ < +∞ (the infinity formally representing the core
of the droplet in the framework of our local approach). At the contact line (x∗ = 0), we
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Water–PG sessile droplet: Marangoni mixing and scale separation

impose the boundary conditions

h∗ = 0, ∂x∗h∗ = 0, c′∗ < ∞ at x∗ = 0, (3.15a–c)

where for definiteness we have chosen θmic = 0, for its value is anyway unknown and
besides only weakly affects the sought final result (cf. Appendix C). At the opposite end of
the interval, in accordance with the present local approach, we wish to satisfy the boundary
conditions

∂x∗x∗h∗ = 0, c′∗ = 0 as x∗ → +∞ (3.16a,b)

(small, negligible curvature and ‘full mixing’ in the core of the droplet as compared with
the foot region). The system of ODEs (3.12) and (3.13) is of the fifth order and there
are formally five boundary conditions in (3.15) and (3.16). However, both x∗ = 0 and
x∗ = +∞ are singular points. Therefore, an additional exploration by means of coordinate
expansions can be helpful, which we carry out following the next paragraph.

On account of (3.14), (3.13) can be integrated once to yield

(1 + h∗4(∂x∗c′∗)2)h∗∂x∗c′∗ = 2
√

x∗, (3.17)

where the integration constant was set equal to zero on the premise of no diffusion flux
(h∗∂x∗c′∗ in dimensionless terms) at the contact line (as x∗ → 0), or alternatively, in order
to ensure compatibility with the boundary conditions (3.15).

The solution of (3.12) and (3.17) with (3.15) can be found to start off as

h∗ ∼ 6
(

2
35

)1/3
x∗7/6 + Kx∗α + · · · as x∗ → 0, (3.18)

c′∗ ∼ c′∗
0 +

(
35
2

)1/3
x∗1/3 + · · · as x∗ → 0, (3.19)

where α = 2.134 is the largest root of the cubic equation α(α − 1)(α − 2) = 35
108 . Here K

and c′∗
0 are free parameters that can be used to shoot for the conditions (3.16). The latter

conditions can be seen to be compatible with (3.12) and (3.17), implying the behaviour

h∗ ∼ θ∗
appx∗ − 8 × 21/3

3θ∗8/3
app

x∗1/2 − 32 × 22/3

9θ∗19/3
app

ln x∗ + C + · · · as x∗ → +∞, (3.20)

c′∗ ∼ − 24/3

θ
∗5/3
app

x∗−1/2 + · · · as x∗ → +∞. (3.21)

Here the value of θ∗
app (a free parameter of the expansion) is to be found together with the

overall solution. It is interpreted as a rescaled apparent contact angle as seen from a larger
scale (core of the droplet), the true (non-rescaled) one then being θapp = θ∗

appε, cf. (3.9c)
and (3.10). Here C is another free parameter. We note that the order of the system of ODEs
(3.12) and (3.17) is four, and there are accordingly just four free parameters K, c′∗

0 , θ∗
app and

C in the coordinate expansions (3.18), (3.19), (3.20) and (3.21) . We also note that (3.12)
can be integrated once, on account of (3.18) and (3.19), to yield h∗∂x∗x∗h∗ − 1

2(∂x∗h∗)2 +
c′∗ − c′∗

0 = 0. Using (3.20) and (3.21) in here, one can deduce

c′∗
0 = −1

2θ
∗2
app (3.22)

for the rescaled water mass fraction deficit at the contact line, the true (non-rescaled) one
then being c′

0 = c′∗
0 ζ , cf. (3.9e), (3.10) and (3.11a).

933 A45-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1030


J. Charlier and others

∂x∗h∗
h∗(x∗)

c′∗ (x∗)

θ∗
app

x∗
0.5 1.0 1.5 2.0

–2

2

4

Figure 5. Dimensionless/rescaled height h∗, slope ∂x∗ h∗ and water mass fraction deviation c′∗ profiles (solid
lines) and apparent contact angle θ∗

app = ∂x∗ h∗|x∗→+∞ (dashed line) within the non-rectified local model
(3.12)–(3.16) in the foot region. The scales for the quantities with an asterisk are defined in (3.9), (3.10) and
(3.11).

The dimensionless problem is parameter free and only needs to be solved once and for
all. The computation yields a unique solution, satisfying all boundary conditions, with the
profiles shown in figure 5 as well as the values of the free parameters of the coordinate
expansions such as

θ∗
app = 2.40 =⇒ θapp = 2.4ε (3.23)

and c′∗
0 = −2.87 (marked by a point in figure 5 and compatible with (3.22) and (3.23)).

This wraps up the local solution in the foot region. To return to the original, dimensional
variables, one just needs to use (3.9)–(3.11).

3.5. Discussion
The very fact that it is possible to find a local solution satisfying the far-field boundary
conditions (3.16) with the behaviours (3.20) and (3.21) is of primary importance here.
It constitutes a mathematical expression of the localizability of the narrow foot region
as a distinguished region in its own right, such that the local solution is matchable to a
(Marangoni-free) classical static shape (2.1a) in the core of the droplet. The matching is
realized by means of the apparent contact angle θapp, confirming that it is the same quantity
in (2.1) on the one hand and in (3.20) and (3.23) on the other hand.

It is also important to realize that such a localizability of the foot region would not be
possible without the Marangoni mixing (Taylor dispersion). The crucial role of the latter
in the separation of scales could already be seen on the scaling basis in (3.9)–(3.11), where
the definitive scales such as the foot-region size δ (such that δ � R) could only result
from balancing the Taylor dispersion contribution. This goes along with the fact that, as
one can readily establish, omitting the Taylor dispersion term in (3.13) and (3.17) would
merely result in the behaviours like (3.18) and (3.19) spanning throughout any narrow foot
region (now for any x∗ and not just as x∗ → 0). This would not satisfy at least the far-field
condition (3.16b), which would become incompatible with the equations, and eventually
attaining the behaviours like (3.20) and (3.21) would not be possible. In other words,
from the asymptotic viewpoint, the foot region would not exist as a region distinguished
from the core of the droplet. Any solution development in the foot region would merely
amount to building a coordinate expansion near the contact line within a single region
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Water–PG sessile droplet: Marangoni mixing and scale separation

representing the whole droplet. This is also an indication that the core of the droplet could
no longer be represented by the classical static shape and would be subject to a significant
Marangoni distortion (at least for θmic = 0 assumed here in (3.15b)). In many of these
regards, the present case without the Taylor dispersion would become qualitatively similar
to the thermal-Marangoni case studied by Tsoumpas et al. (2015).

It is also worthwhile noting that with (3.20) and (3.21), the effective diffusion coefficient
diverges as Deff /Dl ∝ x∗ as x∗ → +∞, meaning that values of Deff much greater than
merely Dl must be attained in the core of the droplet. This does not only go along with the
already mentioned high degree of Marangoni mixing and classical static shape there. This
is also deemed to be a key for the explanation of why the droplets attain a quasi-steady
state so fast upon their deposition (much faster than merely the molecular diffusion time
R2/Dl), which was observed both in the present experiments and by Karpitschka et al.
(2017).

3.6. Calculation of θmax by composite expansions
The local solution is only valid in the foot region, whereas the classical static shape just
in the core of the droplet. One can build therefrom a uniformly valid ‘composite’ solution
for the overall droplet profile by summing up the local solution h(x) (as in figure 5) and
the classical static shape h(r), given by (2.1a) with r = R − x, and then subtracting their
‘common’ part θappx. This will also permit us to obtain θmax from the maximum slope of
the composite profile, thus drawing a finer distinction between θapp and θmax as announced
following (2.2). In the present paper, however, we shall limit ourselves to a lighter and
even more approximate version of this procedure. Namely, we just represent the composite
profile in a vicinity of the maximum slope point (which is also the inflection point,
cf. figure 1) by the first two terms of the asymptotics (3.20) plus a curvature contribution
−1

2κ
∗x∗2, where κ = −∂rrh|r=R > 0 is the first curvature of the classical static shape

(2.1a) at the contact line and κ∗ = (δ/ε)κ . One can then readily deduce

θ∗
max ≈ θ∗

app − 28/931/3κ∗1/3

θ
∗16/9
app

, θmax = θ∗
maxε, (3.24a,b)

κ∗ = θ∗
app
δ

R

⎛
⎜⎜⎝R

lc

I0

(
R
lc

)

I1

(
R
lc

) − 1

⎞
⎟⎟⎠ , (3.25)

where note that θmax is slightly smaller than θapp, their difference being small to the extent
the curvature in the core of the droplet is small on the scale of the foot region (i.e. to
the extent κ∗ � 1). Note also that (3.25) yields κ∗ = θ∗

app(δ/R) in the spherical cap limit
(R � lc). At the same time with (3.24a), one obtains the location of the maximum slope
(inflection) point at x∗ = 28/9/(32/3θ

∗16/9
app κ∗2/3). This corresponds to x∗ = O(R/δ)2/3,

and thus we see that the maximum slope point actually belongs to an intermediate zone
between the foot region x∗ = O(1) and the core of the droplet x∗ = O(R/δ) The interest of
the result (3.24) lies in the fact that our experimental measurements correspond exactly to
θmax, and not to any other possible version of the apparent contact angle, the same being
deemed true as far as the reflectometric measurements by Cira et al. (2015) and Benusiglio
et al. (2018) are concerned.
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3.7. Verification by a non-rectified global model
To cross-check the various points raised in §§ 3.5 and 3.6 on the basis of the local
approach in the foot region, we also carry out some test computations formulated for the
entire droplet (‘global model’, in contrast with the local model used elsewhere in § 3). In
doing so, non-rectified (‘Popov’) expressions for the evaporation flux j are still used. The
computation details are relegated to Appendix D. Some key results are illustrated here in
figure 6, where note the additional definitions

r∗ = r
δ
, R∗ = R

δ
, l∗c = lc

δ
(3.26a–c)

and the fact that the problem now depends on two dimensionless parameters R∗ and R/lc
(unlike a parameter-free local formulation). We see that disregarding the Taylor dispersion
would have noticeable negative consequences upon the results along several lines. For
instance, the localization in the foot region would be smeared (mathematically, it would
cease to exist as a distinguished region, along the arguments advanced in § 3.5), and it
would be impossible to capture the sharp experimental slope profiles shown in figure 3.
Larger θmax values would be predicted, which would generally deteriorate the agreement
with experiment as one will be able to appreciate later on (and a similar point was recently
indicated by Ramírez-Soto & Karpitschka 2021). The mass fraction variation inside the
droplet would have a tendency to be much greater, including a significant variation that
would take place not only near the foot, but also in the core of the droplet. We note that
the calculations in the absence of the Taylor dispersion in figure 6 were undertaken just
for tendency illustration purposes, for a number of assumptions used here such as the
ansatz (3.1) or quasi-steadiness are more likely to break down for such a case. As for
other aspects manifest in figure 6, we notice a significant multifold enhancement of the
effective diffusion relative to the molecular one, quite in agreement with the tendency
earlier established with the help of the local model and also in agreement with the
corresponding recent calculation by Ramírez-Soto & Karpitschka (2021). Finally, the
composite-expansion formula (3.24) for θmax (short solid lines) has thereby been put to
test and confirmed to work well (within ∼1 % in the studied R∗ range).

3.8. Non-rectified local model: parametric study of contact angles
To recapitulate, the result for θapp within the non-rectified local model is given (in radians)
by (3.23) on account of (3.10), while the result for θmax by (3.24) on account of (3.10),
(3.23) and (3.25). In the present subsection, we carry out a parametric study by plotting
these results in the same format and for the same parameters as the experimental data
shown in figure 4. However, to reduce figure cluttering, they are plotted in a separate
figure 7 and the intermediate humidity case is omitted. Note that the above mentioned
formulae are explicit in the droplet contact radius R, but not in the droplet volume V ,
whereas it is V that is presumed fixed in figure 4 (and hence in figure 7). Therefore, an
additional algebraic resolution using (2.1b) is herewith implied.

The results for θapp and θmax are shown in figure 7 by the dotted and dot–dashed curves,
respectively. We see that the difference between θapp and θmax is expectedly subtle yet
not unnoticeable, justifying a finer distinction (3.24) as compared with merely (2.2). The
dashed and solid curves will be explained in § 3.9 later on and can be ignored in substance
for the moment. However, in form, the solid curves can be used in figure 7 as a guide for
the eye, representing fairly well the experimental results in figure 4.

In this way, we see that for large water contents (small PG contents, roughly �20 %),
the agreement with experiment (i.e. between the dot–dashed curves and roughly the
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Figure 6. Dimensionless/rescaled slope −∂r∗ h∗, water mass fraction deviation c′∗ and effective diffusivity
Deff profiles for sessile droplets of R∗ = 10, 30 and 50 at R � lc (a,c,e) and R/lc = 3 (b,d, f ) within the
non-rectified global model, cf. § 3.7. Solid curves are results with Taylor dispersion (Marangoni mixing) as
considered in the present paper. Dot–dashed curves are results ignoring the Taylor dispersion, for comparison.
Short solid lines are θ∗

max levels in accordance with the composite-expansion formula (3.24a) with (3.23) and
(3.25) for corresponding R∗ = R/δ and R/lc. Dashed line is θ∗

app level (3.23) given by the non-rectified local
model. The scales for the quantities with an asterisk are defined in (3.9)–(3.11) and (3.26).

corresponding solid curves) appears to be rather good. In this case, the use of the
present simple, non-rectified approach proves to be well justified, as hypothesized in § 3.1.
However, an appreciable overestimation is observed for larger PG contents. Clearly, a key
reason can be traced back to using the expression (3.4) throughout the foot region. It
is exactly valid for constant concentration in the liquid and hence disregards possible
local rectification of the evaporation flux due to a relatively significant local water
depletion (c′ < 0) in the foot region. The assumption of merely c′ � cm or ζ � 1 (implied
throughout the present paper) generally proves to be insufficient to neglect the rectification,
as described in the following subsection.

933 A45-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1030


J. Charlier and others

25

θmax (non-rectified)

θapp (rectified)

θmax (rectified)

20

15

10

C
o
n
ta

ct
 a

n
g
le

 (
de

g.
)

5

0 20 40

Propylene glycol volume fraction (%) ≈ (1 – cm) × 100 %

60 80 100

θapp (non-rectified)

40 %

75 %

Relative humidity

Figure 7. Contact angle modelling results for the same parameters and in the same format as in figure 4
(excluding the intermediate humidity for space reasons), and the solid lines are also the same. Dotted and
dot–dashed lines are predictions for θapp and θmax, respectively, using the non-rectified local model, cf. § 3.8.
Dashed and solid lines are similar predictions using the rectified local model, cf. § 3.9.

3.9. Rectified local model
The details of such a rectified local model are provided in Appendix E (still without any
fitting parameters), and a good fit of the corresponding numerical solution is given by

θ∗
app = 2.4(1 + 1.93β)−0.182, θapp = θ∗

appε, (3.27a,b)

β = π√
2

Mw

Mpg[
cm + Mw

Mpg
(1 − cm)

]2

√
R
δ

ζ

χm − RH
, (3.28)

where the previous, non-rectified result (3.23) is recovered at β � 1. The latter is indeed
seen to be a stronger inequality than merely c′ � cm (or ζ � 1 for that matter) principally
due to the presence of another small parameter,

√
δ/R � 1, by which ζ is actually divided

in (3.28). This originates from the typical scale of local vapour concentration variation in
the gas around the foot region, which is just O(

√
δ/R) of the absolute value of vapour

concentration (cf. Appendix E). For the rectification to be negligible, ζ need actually
be small with respect to

√
δ/R, and not just unity. The typical values of the parameter

β defined in (3.28) are represented in figure 8, confirming indeed the importance of
the rectification for smaller water (larger PG) contents. The rectified evaporation flux
profiles at various β are shown in figure 9. One can notice a progressive reduction of
the evaporation rate spike near the contact line as β is increased; given that β generally
increases with the PG content (cf. figure 8), this result is qualitatively similar to the one
obtained by Karpitschka et al. (2017). It is also worthwhile to note that the result (3.22)
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β

Figure 8. The rectification parameter β defined in (3.28) as a function of the liquid composition and relative
humidity for a droplet with R = 1 mm at 20 ◦C. The evaporation-flux rectification can be ignored (and the
non-rectified local model applied) inasmuch as β � 1.

j∗

x∗

β = 5
β = 2

β = 1

β = 0.5

β = 0

1 2 3 4 5 6 70

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 9. Dimensionless evaporation flux density profiles j∗(x∗) in the foot region within the rectified local
model for a number of non-vanishing values of the rectification parameter β defined in (3.28) (solid lines,
for all of which j∗ = 0 at x∗ = 0 – partial regularization – even if not always well discernible in the graph).
The corresponding non-rectified profile (3.14) used within the non-rectified local model (dashed line, formally
β = 0), which is asymptotically attained by all profiles at large x∗. The scales for the quantities with an asterisk
are defined in (3.9)–(3.11).

holds irrespective of the rectification, and hence c′∗
0 within the rectified local model can be

calculated therefrom upon the substitution of (3.27a).
Using now the rectified result (3.27) with (3.28) instead of the non-rectified one (3.23)

when plotting the contact angle θmax in the way described in the beginning of § 3.8,
we obtain the solid lines shown both in figure 4 and in figure 7. The agreement with
experiment is seen to drastically improve with respect to the non-rectified approach,
confirming the importance of the rectification where required (i.e. at larger PG contents).
For comparison, instead of θmax as above, we have also plotted just directly θapp, giving
rise to the dashed lines in figure 7. The dashed lines are seen to agree with experiment
slightly less well than the solid ones (cf. figures 4 and 7), which seems reasonable given
that it is θmax and not any other possible θapp that is represented by the measurements.

4. Further results and discussion

Thus, the ultimate modelling result is given in the present paper by the rectified local
model. For θapp, it is represented (in radians) by (3.27) on account of (3.10), (3.11a,b) and
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(3.28). For θmax, it is given by (3.24) on account of the above mentioned equations and
(3.25). The angles θapp and θmax are thereby explicitly expressed as functions of R, RH,
cm (χm related to cm by means of (3.3b)) and the material properties (many of which in
turn depend on cm – cf. Appendix A). A simplified version in the form of the non-rectified
local model, when (3.27) is replaced with (3.23), is appropriate at small PG contents in
the droplet.

One need also bear in mind (2.1b) for the cases when V is specified rather than R. In such
a case, at a given V , a (numerical) resolution of the algebraic system of two equations for
the two unknowns θapp and R is yet required. One of these equations is the above mentioned
explicit formula for θapp in terms of R, while the other is just (2.1b). The thereby obtained
values of θapp and R are then used in (3.24) to obtain θmax. The results have already been
plotted in figures 4 and 7 and discussed in §§ 3.8 and 3.9. A finer distinction between θapp
and θmax by means of (3.24) in contrast with merely (2.2) has permitted us to improve the
agreement with experiment.

As it is made, our approach is destined to deal with finite contact angles of contracted
droplets, predicting them fairly well. However, we do not expect it to equally well
capture the behaviour of vanishing θapp and θmax in the limit of an equilibrium
humidity–composition state, as (χm − RH) → 0. Indeed, our very concept of scale
separation between the foot region and the core of the droplet breaks down in this limit
as the value of δ becomes too large – cf. (3.11b). Nonetheless, for (χm − RH) in a range
between ∼0.05 and ∼0.2 (small, but not too small) and given liquid composition χm and
volume V , our result for θmax can be seen to agree reasonably well with the overall scaling
representation θmax ∼ (χm − RH)1/3 put forth by Karpitschka et al. (2017). Namely, the
exponents we find (using for definiteness the same droplet volume of 10 μL as used by
Karpitschka et al. (2017), but disregarding the fact of slightly different temperatures: 20 ◦C
here and 21 ◦C there) vary between ∼0.28 and ∼ 0.35 depending on χm, which are indeed
close to 1/3. At larger (χm − RH) values, however, our exponents somewhat decrease (to
meet those for θapp, which within the rectified local model can be seen to range between
∼0.22 and ∼0.25). This is in no a priori contradiction with Karpitschka et al. (2017) either
in view of the scattering of the data.

A full version of the mentioned scaling representation by Karpitschka et al. (2017) can
be written in our present notations as θmax = A × (χm − RH)1/3, where A = A(1 − cm) is
a function of the PG mass fraction specified by their figure 3(a). In our understanding,
this representation should be viewed as a modelling-assisted fit into a huge amount of
measured data spanning several water–carbon diol pairs simultaneously (water–PG among
them) for droplets of a volume of 10 μL at ∼21 ◦C. This cannot be directly compared with
our experiments and those by Cira et al. (2015) and Benusiglio et al. (2018), carried out
for much smaller droplets (∼0.5 μL) – cf. figure 4. However, a comparison with the θmax
results of the present rectified local model is illustrated in figure 10, where the agreement is
seen to be rather modest for smaller PG contents, but appreciably improves for larger ones.
Curiously enough, if we adopt in our calculations the same constant value of dγ /dc =
20 mN m−1 throughout as used by Karpitschka et al. (2017) (in lieu of the more accurate
values (dγ /dc)(c) specified in Appendix A, which are actually several times larger than
20 mN m−1 for small PG contents, e.g. 3.7 times for 10 % PG, and 2.7 times for 20 % PG),
the agreement becomes excellent – cf. figure 10. At the same time, this can serve as an
illustration of how strongly a multifold change in dγ /dc can affect the final result. The
effect is actually seen to be relatively weak, which can be attributed to the slope scale ε
behaving as (dγ /dc)1/5 – cf. (3.10).
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Figure 10. Contact angle results for 10 μL droplets at ≈20 ◦C and various relative humidities (0 % and 50 %).
Computation-assisted consolidated fit A(1 − cm)× (χm − RH)1/3 into experimental data by Karpitschka et al.
(2017) (thick solid lines), θmax results from the present rectified local model with the material properties
including dγ /dc defined in Appendix A (thin solid lines) and idem by artificially choosing dγ /dc =
20 mN m−1 throughout (dot–dashed lines).

Comparison with a more concrete experimental data by Karpitschka et al. (2017),
borrowed from their figure 2(b) (for water–PG droplets), is shown in figure 11. Note
that the equilibrium RH values appearing in figure 2(b) of Karpitschka et al. (2017) are
slightly different from RH = χm given by Raoult’s law implied here. Not willing to distort
an essential contact-angle comparison or to slip into a discussion of whether these are
really deviations from Raoult’s law, we merely applied the corresponding corrective shifts
−0.037 (−3.7 %), −0.056 (−5.6 %) and 0.046 (4.6 %) to the RH variable when plotting
our present results for PG fractions 5 %, 60 % and 90 %, respectively. Once again, the
agreement is good for larger PG contents (60 % and 90 %), but still poorer (overestimation)
for the small one (5 %). However, even the latter looks now better than earlier in figure 10,
since A × (χm − RH)1/3 in turn underestimates the experimental result. The reason why
the agreement is more problematic just at smaller PG contents in figures 10 and 11 is not
very clear, other than this case being closer to pure water, more prone to contamination
and possible consequent Marangoni flow obstruction than many other liquids (Hack et al.
(2021) measured an appreciable retardation of the flow in a water–diol droplet for a diol
with a significant surfactant-like behaviour). However, in figure 4, this case does not seem
to stand out against a background of others.

We have also made a comparison for the parameter values of the simulation shown in
figure 1(c) of Ramírez-Soto & Karpitschka (2021), corresponding in our terms to cm = 0.8
and RH = 33 %. We assumed a droplet volume of 1 μL. Our rectified local model yields
θmax = 16◦, somewhat higher than their prediction (≈14◦) and quite in agreement with
their experimental result. Note that the material property values they use in the simulation
may be somewhat different from ours (provided in Appendix A).

5. Droplets moving in a humidity gradient

Water–PG droplets are known to migrate under humidity gradients towards the regions of
higher humidity, as directed by the resulting solutal Marangoni stresses (Cira et al. 2015).
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Figure 11. Contact angle results for 10 μL droplets at ≈20 ◦C and various mass fractions (cm =
0.95, 0.4 and 0.1). Experimental data (symbols) and A(1 − cm)× (χm − RH)1/3 (dashed lines) by Karpitschka
et al. (2017) and θmax predictions of the present rectified local model (solid lines).

We here explore this phenomenon in the framework of our experimental and theoretical
approaches.

In experiments, we now use two glass slides (the same as before, cf. § 2), which we place
immediately next to and level with one another by their larger sides. On one of them, as a
source of humidity, we create a thin water puddle of the same width as the slide (the puddle
pinned to the corresponding edges), but somewhat shorter in length (∼5 cm). A water–PG
sessile droplet is deposited on top of the other slide (treated as described in § 2) close to the
edge adjacent to the source in the middle. The essentials of the configuration are shown in
figure 12(a,b). Let L denote the distance to the source, viz. to the edge of the puddle, along
the slide surface. The position of the droplet will be characterized by L of its centre. The
puddle being of a considerable size and (water) vapour lighter than air, Grashof number
estimations (∼430, see Appendix F) reveal that the vapour cloud from the source does
not merely spread by means of pure diffusion. Rather, an essential buoyancy convection
in the form of a rising plume develops (cf. also Dehaeck, Rednikov & Colinet 2014),
which eventually affects the source-induced humidity distribution along the slide surface
that drives the droplet. Computations carried out in COMSOL Multiphysics (assuming
for simplicity a two-dimensional planar geometry as given by the side view, isothermal
formulation, dilute vapour in the air and the Boussinesq approximation, no gap between
the slides) gave, in particular, rise to the results shown in figure 12(b,c). In experiments,
interferometry revealed a slight asymmetry of the droplet as represented in figure 12(d)
by the measured difference (denoted as Δθnet, cf. below) between the right- and leftmost
angles θmax. The measured velocity U of droplet migration (attraction) towards the source
is plotted in figure 12(e). Both turn out to be decreasing functions of L: the closer to
the source, the stronger these effects are normally expected to be. The droplet remained
practically circular roughly down to L ∼ 1.5 mm, below which distortions became clearly
apparent and the measured U(L) somewhat deviates from the mentioned monotonic trend.
Also shown in figure 12(d,e) are theoretical results (curves) to which we proceed next.

As we saw in the previous sections, the dynamic action on the droplet shape here largely
reduces to the solutal Marangoni apparent contact angles, the main part of the droplet
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Figure 12. Attraction of a water–PG sessile droplet (0.3 μL, 20 % PG volume fraction, i.e. cm ≈ 0.8) to a water
vapour source at 48 % ambient humidity (RH = 0.48) and 22.7 ◦C. (a) Top view sketch. (b) Side view with a
source vapour cloud two-dimensional simulation, the colour bar between 0 (ambient humidity) and 1 (saturation
concentration). (c–e) Various quantities versus the distance to the source L. (c) Computed RH along the surface
of the droplet-carrying slide. (d) Computed Δθ due to the RH gradient without motion contribution (solid
curve) and the measured (net) Δθ of a droplet thereby set in motion (symbols), the sketch inset illustrating the
Δθ definition as a (right–left) contact-angle difference. (e) Measured (symbols) and computed (curves) droplet
velocity towards the humidity source.

assuming a classical static shape. Then a key ansatz used in the present consideration is
that the humidity gradient action just reduces to a non-uniformity of such angles along the
droplet contour similar to Young’s angle non-uniformity owing to a wettability gradient
(such an ansatz was already used by Sadafi et al. (2019) in relation to non-uniform
evaporation-induced contact angles). As for other approximations used, we shall treat
any gradient-induced asymmetry as a correction upon the basic axisymmetric state (i.e.
the one considered in the previous sections, the ambient relative humidity being the one
at the position L) and apply corresponding linearizations as appropriate. On the other
hand, we shall approximately treat all gradients as spatially constant (‘small-droplet’
approximation).

In accordance with this scheme, let θapp be the angle in the basic axisymmetric
state, given by (3.27) with (3.10), (3.11a,b), (3.28) evaluated at RH = RH(L). The latter
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dependence is specified by figure 12(c). Herewith, for a given droplet volume V, the
L-dependence shows up not only immediately through RH, but also through R evaluated
as R = R(L) in accordance with (2.1b) as soon as RH = RH(L). Next, let Δθgrad be the
difference between the right- and leftmost solutal Marangoni apparent contact angles due
to the humidity gradient. It can naively be thought of as the difference between θapp
evaluated at RH = RH(L + R) and the one at RH = RH(L − R), which in linearized form
yields (∂θapp/∂RH)(dRH/dL)2R. However, as pointed out by Sadafi et al. (2019, page 5
of supplementary information), an additional prefactor ‘2’ is actually due here owing to a
non-local (modal) nature of the ambient humidity gradient effect. Thus, we arrive at

Δθgrad = 4
∂θapp

∂RH
dRH
dL

R (5.1)

evaluated at RH = RH(L) (and at R = R(L) for a given droplet volume) as just described
for θapp. Note that the partial derivative ∂θapp/∂RH is calculated from (3.27) with (3.10),
(3.11a,b), (3.28) at all constant other parameters (including R). The thereby obtained
theoretical result for Δθgrad as a function of L is shown in figure 12(d). We note that
the experimentally determined angle difference Δθnet is not the same quantity as (and
must not anyhow coincide with) the theoretical angle difference Δθgrad: the latter is
due to the gradient contribution only, whereas the former is the net result, comprising
both the gradient and the motion contributions. Furthermore, it is somehow comforting
to our picture of the phenomenon that Δθgrad turned out to be much larger than Δθnet,
cf. figure 12(d): the motion contribution (adding up to the left, advancing contact angle,
while reducing the right, receding contact angle) is expected to largely offset the gradient
contribution (reducing the left contact angle and augmenting the right contact angle)
within Δθnet.

The droplet velocity U (here defined as positive when to the left, i.e. towards the
humidity source) is then given by a known equation resulting from a balance between
the viscous drag on a spherical cap and the capillary force (Brochard 1989; De Gennes,
Brochard-Wyart & Quèrè 2004; Sadafi et al. 2019), which we write as

U(L) = γ θ2
appΔθgrad

6nηln
, (5.2)

where n is a coefficient and ln is a logarithmic factor appearing due to the well known
moving contact line singularity and relying on a cutoff at a microscopic scale. In the
classical case of viscous bending, implied in the above cited references, one just has n = 1.
In our present case, however, the motion at a velocity U also affects the Taylor dispersion,
which in turn affects the concentration distribution and the solutal Marangoni stresses.
The overall effect thereof turns out to be of the same kind as the viscous bending, just
reinforcing the latter. Analysis yields (see Appendix G for further details)

n = 8
3
, ln ≈ ln

R
δ

+ 1
n
θ∗2

appb1, (5.3a,b)

where b1 is calculated from the problem for the motion correction upon the previously
considered foot-region solution. For simplicity, b1 was calculated just within the
non-rectified local model,

b1 = 4.3, (5.4)

all the more so that this model was seen to work quite satisfactorily against the rectified
one in figure 4 for low PG fractions such as 20 % considered in the present moving-droplet
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experiments (cf. figure 12). Still proceeding for consistency in the framework of the
non-rectified local model, we use (3.23) in (5.2) upon the substitution of (5.1), (5.3) and
(5.4) and on further account of (3.10), (3.11b) and (2.1b). The thereby obtained theoretical
result for U(L) can be represented analytically in the limit of relatively small droplets, as
the ones considered in the present experiment, when the classical static shape (2.1) reduces
to a spherical cap. We obtain

U = 1.49
ln

(
(1 − cm)Dgγ

5/16 dγ
dc ρsatV7/16

D1/2
l η21/16ρl(χm − RH)13/16

)16/29

∇RH, (5.5)

ln = 22
29

ln

(
0.4 × 104(1 − cm)Dg

dγ
dc ρsat(χm − RH)V3/11

D20/11
l γ 2/11η9/11ρl

)
. (5.6)

For the sake of generality, the result (5.5) has been written in a vector form.
In our case, the gradient ∇RH reduces to dRH/dL, while U to (−U), where also recall

that RH = RH(L) as in figure 12(c), dRH/dL is evaluated at L as well (i.e. in the centre
of the droplet) and the liquid properties are evaluated at the composition cm. The result is
represented in figure 12(e). We see that it captures well the experimental result at not so
small distances L, which supports the picture of the phenomenon and overall theoretical
approach adopted here.

6. Conclusions

We have contributed to disclosing the essentials of the shape impact of solutal Marangoni
flows arising in water–PG droplets sitting on a high-energy solid surface (perfect
wetting) at room temperature and evaporating into ambient air at relative humidities
below the critical ones. The interferometric measurements confirmed that the droplet
adopted the classical static shape (as determined by gravity and capillarity) with a finite
apparent contact angle �15◦. More importantly, however, they permitted us to discern an
exceedingly narrow (unless the humidity approached the critical one) foot-region structure
in an immediate proximity of the contact line where such a finite contact angle was
formed. They clearly revealed a point with a maximum film slope θmax therein, the slope
decreasing further towards the contact line. A series of measurements of the maximum
slope, identified with the apparent contact angle θapp ≈ θmax to a first approximation, was
carried out as a function of the liquid composition and relative humidity for ∼0.5 μL
droplets. A rigorous model with a precise account of the material properties and without
fitting parameters was developed, which was compared with these (our own) as well as
other measurements of apparent contact angles of water–PG droplets available in the
literature, such as by Cira et al. (2015) and Benusiglio et al. (2018) for droplets of roughly
the same volume as here, and by Karpitschka et al. (2017) for larger (10 μL) droplets.
Except for droplets of relatively high water content in the latter case (Karpitschka et al.
2017) where a certain more noticeable mismatch was found, the agreement between theory
and experiment generally turned out to be fairly good.

A key feature fed into the present model is the mixing by the solutal Marangoni
flow, which greatly enhances the species transport inside the droplet. From the technical
viewpoint, it was accounted for by means of the Taylor dispersion within the lubrication
approximation. A tangible consequence of the Marangoni mixing is the localization of
the apparent contact angle formation to a narrow foot region, in agreement with the
observation. The foot region thereby proves to be a distinguished one, for which a
closed-form local analysis could be carried out in its own right yielding the apparent
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contact angle value as an output. This situation turns out to be quite similar to how things
work with the evaporation-induced apparent contact angles (cf. Pham et al. 2010; Colinet
& Rednikov 2011; Morris 2014; Rednikov & Colinet 2019, 2020). However, an important
difference is of course that, there, the dynamic effect giving rise to a finite apparent
contact angle is an evaporation-induced flow in the liquid, whereas, here it is the solutal
Marangoni flow (against which the evaporation-induced flow was in fact neglected, even if
the solutal Marangoni effect itself arose owing to evaporation). Beyond the foot region,
the droplet adopts the classical static shape. Should the Taylor dispersion (Marangoni
mixing) in the droplet be ignored and only the molecular diffusion accounted for,
estimations showed that such a drastic degree of localization, conformal with experiment,
would not be achieved, and the droplet shape would rather resemble more the one
obtained in the thermal Marangoni case studied by Tsoumpas et al. (2015). Besides, the
apparent contact angle/maximum slope would be well prone to overprediction as compared
with experiment. Another tangible consequence of the Marangoni mixing (and Taylor
dispersion) is rendering the mass-fraction variation inside the droplet (especially in its
core, beyond the foot region) and the time to achieve the quasi-steadiness drastically
smaller than they would otherwise be, which also conforms with the observations. All
this confirms the importance of the Marangoni mixing in the considered physical system
and the rightness of its incorporation into the model.

The model was developed in a number of steps. First, we considered a particularly
simple, non-rectified model, which works well at high water contents, when the
evaporation flux density can be prescribed neglecting the water mass fraction variation
along the droplet (the Marangoni mixing favouring this approximation). In this case, a
well known ‘Popov’ expression could be used for the evaporation flux density (as for a
pure-water droplet, just amended by a uniform prefactor in view of Raoult’s law). The
film equations get thereby decoupled from the vapour diffusion problem in the gas and the
analysis reduces to a boundary-value problem for a system of ODEs. In application to the
local problem in the foot region, an effective rescaling/non-dimensionalization (3.9)–(3.11)
permitted to render the formulation parameter-free, so that it needed to be solved just once
and for all, yielding in particular the result (3.23) for the apparent contact angle θapp.
(Note that the unknown microscopic contact angle θmic was shown to only slightly affect
the result for θapp and the problem was actually solved assuming θmic = 0.) For smaller
water contents, however, the evaporation flux density (and vapour diffusion in the gas) did
need to be coupled with the water mass fraction variation in the liquid, primarily just in
the foot region but not really so in the droplet core (in view of a more efficient Marangoni
mixing in the latter). In this way, the local approach for the foot region became doubly
natural: not only it covered the apparent contact angle formation, but also the zone where
a non-trivial coupling with the vapour diffusion was really required. Thus, as another step,
the non-rectified local model was generalized to a rectified one, fully accounting for the
mentioned coupling. The rescaled/dimensionless version of the latter model depended on
one parameter (3.28), unlike the parameter-free former one. This dependence could be
captured by a simple fit (3.27) of the numerical data for θapp, which generalized (3.23).
We also made allowance for a finer difference between θapp and the maximum slope
θmax of the droplet. This small difference constitutes in essence a finite-droplet-size effect
(with respect to the foot region), which was here taken care of by means of a composite
expansion to yield (3.24). The interest is that it is θmax that was actually measured in
experiments (at least in our own, and to the best of our understanding elsewhere too).
Apart from an improvement of the agreement with experiment, such a refinement from
θapp to θmax permitted us to reconcile our contact-angle results with the representation
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∝ (RHeq − RH)1/3 by Karpitschka et al. (2017), although our model did not reveal such a
scaling as any fundamental.

In the final part of the work, we contributed to the study of the behaviour of a water–PG
sessile droplet in a humidity gradient, putting our approaches to test in this situation.
As a humidity source, a large pure-water puddle was used, next to which the droplet
was placed. Quite as expected (cf. Cira et al. (2015), and § 1 here), droplet migration
towards the source (i.e. towards higher ambient relative humidity) was detected. Apart
from recording the velocity as a function of the distance to the source, our interferometric
measurements permitted us to disclose an asymmetry of the droplet shape, the angle θmax
being slightly smaller closer to the source. From the theoretical viewpoint, the analysis
was carried out under the approximation of a locally constant humidity gradient treated
as a perturbation. The humidity gradient over the droplet was computed accounting
for an evaporative composition-related buoyancy convection from the puddle (the latter
being of a large size and the water vapour lighter than air). The conception of a narrow
foot region and the apparent contact angle formed therein, substantiated earlier in this
work, gave rise to the following view of the force driving the droplet migration. Namely,
non-uniformity of the apparent contact angle θapp resulting from the humidity gradient
here acts similarly to a wettability gradient elsewhere (a similar approach was used by
Sadafi et al. (2019) in application to evaporation-induced contact angles of pure-liquid
droplets). We note that the calculated variation of θapp along the droplet perimeter turned
out to be much larger than the earlier mentioned measured variation of θmax. Such a result
is deemed to be normal in view of the fact that the calculated variation comprised only the
humidity-gradient contribution, whereas the measured one inevitably included in addition
the motion contribution, due to the droplet migration, opposing (and hence offsetting) the
former. The drag coefficient was here found to be different (greater) than the classical
one for a moving spherical-cap droplet, the effect owing itself to a contribution of the
motion into the Taylor dispersion alongside of the solutal Marangoni flow. We note also
that no ad hoc value was assumed for the logarithmic divergence factor arising in the
drag coefficient due to the hydrodynamic singularity at the contact line, but it was rather
evaluated from first principles. The agreement between experiment and theory was found
to be good as far as the droplet migration velocity is concerned, thus reaffirming our
picture of the phenomenon.

Finally, let us mention that the approach put forth in the present work can be used
in possible future studies of evaporating binary-liquid droplets and menisci. It can be
extended to cases when both components (and not only one as here) are volatile, to
the spreading (and not just contraction) regimes, certain simplifying but not essential
assumptions can be lifted.
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PG volume % 10 20 30 40 50 60 70 80 90

Refractive index 1.343 1.355 1.366 1.377 1.388 1.399 1.408 1.416 1.424

Table 1. Water–PG refractive index measurements.

Appendix A. Further properties of water–PG mixture

The measured refractive index at various compositions appears in table 1. The
evaporation-related composition non-uniformity emerging in the droplet after the
deposition was ignored from the optical viewpoint, which is justified both by an
eventually weak composition dependence of the refractive index and by an expected strong
Marangoni mixing.

Properties at 20 ◦C are here used in the calculations throughout (except for Dl,
cf. below) even if some of the experiments were performed at a slightly different
(higher) temperature. Some properties have already been mentioned in the main text
(§ 3.1), while the remainder is provided here. We use the fit η(χ)[10−3 Pa s] = 57.58χ4 −
139.31χ3 + 150.53χ2 − 125.39χ + 57.58 over the 20 ◦C data provided by Khattab et al.
(2012). For γ (c), similarly to Cira et al. (2015), we use the data by Karpitschka
& Riegler (2010), although we fit them by means of γ (c)[10−3 N m−1] = 73 ×
(1 + 135(1 − c)+ 64.5(1 − c)2)/(1 + 141.5(1 − c)+ 270(1 − c)2), deemed to yield a
more accurate result than a fourth-order polynomial fit elsewhere, all the more so that
(dγ /dc)(c) is calculated therefrom. For Dl(χ), we were only able to find data at 30 ◦C:
Dl(χ)[10−9 m2 s−1] = 3.36χ4 − 4.05χ3 + 1.92χ2 − 0.31χ + 0.23 (Wang et al. 2010),
which we eventually use.

Appendix B. More general outlook on (3.6) and (3.7)

With q ≡ ∫ h
0 u(z) dz, we have the volume (mass) conservation equation

∂th + ∂xq = −j/ρl, (B1)

where t is the time, and the species (water) conservation equation

∂t(ch)+ ∂x(cq) = ∂x(hDeff ∂xc)− j/ρl, (B2)

where it is assumed that water is the only volatile component. Making use of (B1), (B2)
can rather be rendered in the form

h∂tc + q∂xc = ∂x(hDeff ∂xc)− j(1 − c)/ρl. (B3)

Now in a quasi-steady state (∂/∂t ≈ 0), (B1) reduces to q = 0, i.e. to (3.6), once the
evaporation flux is neglected against the different parts inside q. At the same time, (B3)
reduces to (3.7) under the ansatz (3.1). Here note that the term q∂xc can only be neglected
under the mentioned ansatz, together with (1 − c) on the right-hand side of (B3) becoming
(1 − cm).

Appendix C. Dependence on θmic within the non-rectified local model

Equations (3.12) and (3.13) were solved subject at x∗ = 0 to boundary conditions (3.15),
with a zero microscopic contact angle, giving rise to the result (3.23) for the apparent
contact angle. If rather than (3.15b) we use ∂x∗h∗ = θ∗

mic, with a finite microscopic angle,
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Water–PG sessile droplet: Marangoni mixing and scale separation

θ∗ ap
p 

= 
θ ap

p/
ε

θ∗
mic = θmic/ε

0.5 1.0 1.5 2.0 2.5

0.5

1.0

1.5

2.0

2.5

3.0

Figure 13. Dependence of θapp on θmic within the non-rectified local model.

the results are shown in figure 13. We see that the computed θapp values are only slightly
affected by finite θmic values as long as θmic keeps sufficiently smaller than θapp. Thus, we
conclude that inasmuch as the study of θmic is left beyond the scope of the present paper,
it is reasonable to merely use θmic = 0.

Furthermore, it may be that θmic = 0 is not merely a reasonable computational setting,
but rather an essential physical result. Indeed, the liquids are perfectly wetting and a
finite θmic can then be expected from an evaporation-induced contact angle (cf. e.g.
Morris (2014), Rednikov & Colinet (2020) and references therein). However, as the
evaporation-flux singularity at the contact line here turns out to be removed due to the local
water depletion and the rectification of the evaporation flux j (cf. figure 9), it may really
be that the evaporation-induced contact angle is vanishing, a question that we eventually
leave for future studies.

Appendix D. Non-rectified global model

The axisymmetric counterparts of the local equations (3.6)–(3.8) now written down for the
entire droplet (0 < r < R), on account of p = −γ (∂rrh + (1/r)∂rh)+ ρlgh and still under
the quasi-steadiness assumption, are

γ h∂r

(
∂rrh + 1

r
∂rh − 1

l2c
h
)

+ 3
2

dγ
dc
∂rc′ = 0, (D1)

h
dcm

dt
= 1

r
∂r(rhDeff ∂rc′)− j(1 − cm)

ρl
, (D2)

Deff = Dl + 1
1680η2Dl

(
dγ
dc

)2

h4(∂rc′)2, (D3)

where j is defined by (3.2), implying a non-rectified approach (cf. § 3.1). These equations
are solved subject to the same boundary conditions at the contact line as before, now
written as h = ∂rh = 0 at r = R, whereas (symmetry at the axis) ∂rh = 0 at r = 0. For
the form of (D2), cf. (B3) with the ansatz (3.1). The value of a spatial constant dcm/dt in
(D2) is adjusted so as to render the zero flux conditions, h∂rc′ → 0 (c′ < ∞) as r → R
and ∂rc′ = 0 at r = 0, compatible with one another. This is evidently compatible with the
obvious global relations d(Vcm)/dt = −J/ρl and dV/dt = −J/ρl as it can be verified by
multiplying (D2) by 2πr and integrating from r = 0 until r = R, where V = 2π

∫ R
0 rh dr
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is droplet volume and J = 2π
∫ R

0 rj dr = 4DgρsatR(χm − RH) the global evaporation rate
(in kg s−1). The problem is rendered dimensionless using (3.9)–(3.11), to which we can
now add (3.26). The thereby obtained dimensionless problem (not rewritten here for the
sake of brevity), counterpart of (3.12)–(3.16), depends on two dimensionless parameters,
say R/lc = R∗/l∗c and R∗. We note that we shall be interested in large values of R∗ in
the present context, when the droplet size R is much greater than the foot-region length
scale δ. Typical computation results are represented in figure 6 (the level c′∗ = 0 formally
chosen in the droplet centre) and discussed in § 3.7. The results corresponding to no Taylor
dispersion (no Marangoni mixing) are obtained from the same formulation as here just by
omitting the last term on the right-hand side of (D3).

Appendix E. Further details on the rectified local model

To proceed, one needs to go into the details of the vapour field and vapour diffusion in
the immediate proximity of the foot of the droplet. We shall start by recalling the vapour
field behind the (non-rectified) evaporation-flux result (3.4), used in the non-rectified local
model.

Let {r, ϕ} be the polar coordinates centred at the contact line in the plane orthogonal
to the latter (see figure 14 for a sketch; expecting no confusion to the reader, the radial
coordinate r used here has nothing to do with the one used elsewhere in the paper).
The liquid–gas interface is located for simplicity at ϕ = 0, neglecting a finite liquid film
thickness at the scale of the gas phase, which is consistent with the thin-film approximation
ε � 1. Note that r ≡ x at ϕ = 0. Let ρv be the partial vapour density. Then the vapour field
ρv(r, ϕ) associated with (3.4) by virtue of

j = −Dg
1
r
∂ϕρv|ϕ=0 (E1)

is

ρv ∼ ρsatχm − 2
√

2π−1R−1/2ρsat(χm − RH)r1/2 sin
ϕ

2
. (E2)

It satisfies the steady diffusion (Laplace) equation,

∇2ρv = 0, (E3)

an impermeability condition at the bare part of the substrate,

∂ϕρv = 0 at ϕ = π, (E4)

and a local equilibrium condition (Raoult’s law) at the liquid film,

ρv = ρsatχ at ϕ = 0, (E5)

provided that χ = χm. Such a ‘corner’ solution (E2) is in essence an edge asymptotics of
the Popov solution (Popov 2005) in the case of an infinitely thin sessile droplet (assuming
here ρv = ρsatχm at the droplet surface and ρv = ρsatRH in the ambient atmosphere), or,
what is the same, of the Weber solution for a disk as pointed out by Morris (2014) by
making use of an electrostatic analogy.

Now, we assume that the gas phase still sees a (quasi-)constant value χ = χm in the
core of the droplet, justified by the Marangoni mixing (cf. § 3.1). However, we shall be
interested in relaxing such an assumption in the foot region, where a more significant
deviation of χ from χm takes place (cf. figures 5 and 6 for c′∗, where one can keep in
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Water–PG sessile droplet: Marangoni mixing and scale separation

x

r

ϕ  

Solid

Air + vapour
Liquid (χ or c)

ϕ = π ϕ = 0

ρv (r, ϕ)

Figure 14. Vapour diffusion domain sketch within the rectified local model.

mind (3.3), the ansatz (3.1) and the rescaling (3.9e)). This will change the results for j and
ρv (rectification), although the old ones (3.4) and (E2) will still hold in an intermediate
zone between the foot region proximity and the global domain (cf. also Morris (2014), for
a more detailed discussion in a similar context). Thus, in the framework of the rectified
local model in the foot region, the vapour field (E2) will rather be posed as an asymptotic
behaviour at r → +∞. Apart from this asymptotic condition, the newly sought vapour
field ρv(r, ϕ) satisfies (E3)–(E5), where a coupling with the liquid film is realized by
means of χ in (E5), now attaining χm only as r → +∞, and by means of j in (E1). This
completes the vapour problem formulation in principle. We shall still make certain details
more precise and recapitulate the formulation below, although already in dimensionless
terms.

We represent
ρv = ρsatχm + ρ′

v (E6)

and χ = χm + χ ′, conformal to the ansatz (3.1), in accordance with which we linearize
(3.3a) in order to relate χ ′ to c′ (it is the latter that is eventually used in the formulation).
In addition to (3.9)–(3.11), we non-dimensionalize

r∗ = r
δ
, ρ′∗

v = ρ′
v√

2π−1ρsatR−1/2(χm − RH)δ1/2
, (E7a,b)

using for ρ′
v a local variation scale as imposed by (E2) at r ∼ δ. Now the dimensionless

problem for ρ′∗
v can be written as (keep in mind that r∗ ≡ x∗ at ϕ = 0)

∂r∗r∗ρ′∗
v + 1

r∗ ∂r∗ρ′∗
v + 1

r∗2 ∂ϕϕρ
′∗
v = 0, (E8)

ρ′∗
v ∼ −2r∗1/2 sin

ϕ

2
as r∗ → +∞, (E9)

ρ′∗
v = βc′∗, j∗ = − 1

x∗ ∂ϕρ
′∗
v at ϕ = 0, (E10a,b)

∂ϕρ
′∗
v = 0 at ϕ = π. (E11)

The only parameter of the dimensionless problem, β, is defined in (3.28). In general,
β = O(1) (cf. figure 8), and we have a coupled problem in the liquid film (3.12), (3.13),
(3.15) and (3.16) and in the gas phase (E8)–(E11). This completes the formulation in the
framework of the rectified local model. As compared with the non-rectified local model,
the difference reduces to a non-rectified j∗ expression (3.14) being replaced by a block
(E8)–(E11) ultimately serving to yield j∗ as well, albeit now as a more cumbersome
functional attaining (3.14) only at x∗ → +∞. Clearly, as already mentioned in the main
text, the non-rectified local model is recovered from the rectified one in the limit β � 1
(physically, the variation of ρ′∗

v at the interface in (E10a) becomes much smaller than in the
bulk of the gas phase in (E9), and hence the right-hand side of (E9) becomes the solution
of the overall problem for ρ′∗

v ).
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We note that the coordinate expansions at infinity, (3.20) and (3.21), developed within
the non-rectified local model still hold, up to the terms retained, in the framework of the
rectified local model (hence the result (3.24) with (3.25) is equally applicable with both
models). This is quite in line with the earlier advanced view that the rectification does
not much concern what happens at x∗ � 1. However, it does affect what happens near
the contact line, and the expansions (3.18) and (3.19) are no longer valid. By trial and
error, quite similarly to Rednikov & Colinet (2019, 2020), we were able, rather, to find the
following outset for an expansion within the rectified local model,

h∗ ∼ 2
√

2√
3

C1/2
1 x∗3/2 −

√
2√

3C1
C2x∗5/2 + · · · as x∗ → 0, (E12)

c′∗ = c′∗
0 + C1x∗ + C2x∗2 + · · · as x∗ → 0, (E13)

ρ′∗
v ∼ βc′∗

0 + βC1r∗ cosϕ − 2
√

2√
3

C3/2
1 r∗3/2 sin

(
3
2
ϕ

)

+βC2r∗2 cos(2ϕ)+ · · · as r∗ → 0, (E14)

j∗ ∼
√

6C3/2
1 x∗1/2 as x∗ → 0, (E15)

where c′∗
0 , C1 and C2 are free coefficients. A noteworthy feature of (E12)–(E15) is a partial

regularization of the evaporation flux at the contact line, which no longer diverges but
rather vanishes there, cf. (E15).

The problem formulated within the rectified local model was solved, once again, quite
similarly to Rednikov & Colinet (2019, 2020), by discretizing by finite differences at a
uniform grid in the domain of ξ = ln r∗ = ln x∗ (change of variable) and ϕ. Sufficiently
large negative and positive values of ξ were chosen as the numerical domain boundaries,
where the boundary conditions were approximated by patching to the asymptotics like
(3.20), (3.21), (E9) and (E12)–(E15). The resulting system of nonlinear algebraic equations
for the dependent variable values at the grid points (using typically 1000 × 200 points)
and the free coefficients in the asymptotics (like θ∗

app, c′∗
0 , C1, etc.) was solved using the

FindRoot command in Mathematica. Some pertinent computation results are provided in
(3.27) and figure 9 and further discussed in § 3.9.

Appendix F. Grashof number for puddle evaporation

It can be defined as

Gr = Δρairg�3

ηairνair
, (F1)

where Δρair = ρsat(Mair/Mw − 1)(1 − RH) is the density difference between the ambient
air and the water-saturated air. Apart from the parameter values provided earlier in
this paper, here RH = 0.48 (as in the experiments on droplet motion in a humidity
gradient), Mair = 0.029 kg mol−1, ηair = 1.8 × 10−5 Pa s−1 the air dynamic viscosity,
ρair = 1.2 kg m−3 the air density, νair = ηair/ρair and � = 0.013 m the small half-size of
the puddle. Finally, Gr ∼ 430.

Appendix G. Moving foot region and (5.2)

This is needed in the context of the droplet migration in a humidity gradient and (5.2) in
particular. Consider first the generalization of (3.6) and (3.7) for a foot region (located at

933 A45-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1030


Water–PG sessile droplet: Marangoni mixing and scale separation

x > 0) moving at a velocity −U along the x axis (pointing to the right), such that U > 0
when moving to the left (advancing) and U < 0 when moving to the right (receding). The
problem still remains quasi-steady, but now in the moving frame of reference, which we
adhere to here. The effect of the motion will be treated as a perturbation. The lubrication
velocity profile (3.5) now becomes u = U + η−1(∂xp)(1

2 z2 − hz)+ η−1(dγ /dc)(∂xc′)z,
still with p = −γ ∂xxh. Then

∫ h
0 u(z) dz = 0 gives rise to

3ηU
h

+ γ h∂xxxh + 3
2

dγ
dc
∂xc′ = 0, (G1)

which is the sought generalization of (3.6). As for (3.7), it remains of the same form
as before. What changes is just the expression (3.8) for Deff , for it is now not just the
solutal Marangoni flow but also the motion that contribute into the Taylor dispersion.
Proceeding in the same way as previously, but now with the U-modified profile of u(z)
and (G1) in lieu of (3.6), one can obtain B Pe2 = (1680η2D2

l )
−1(dγ /dc)2h4(∂xc′)2 −

(168ηD2
l )

−1U(dγ /dc)h3∂xc′ + O(U2). Then an O(U) term emerges in (3.7) by means of
Deff = Dl(1 + B Pe2), and it is this form of (3.7) that is meant hereafter.

One can readily see that U /= 0 gives rise to more singular terms as x → +∞ than
they were just for U = 0. In particular, the first term of (G1) engenders a well known
Cox–Voinov (viscous bending) logarithmic divergence of the slope according to h ∼
θappx + 3ηU/γ θ2

appx ln x as x → +∞. The O(U) term now appearing through Deff in
(3.7) proves to be particularly singular too, and one can establish therefrom that the O(U)
contribution into (dγ /dc)h∂xc′ behaves as 10

3 ηU as x → +∞. Then this means that the
O(U) contribution into the last term on the left-hand side of (G1) behaves in the same way
as in the first term, just with a different numerical prefactor. Thus, we eventually end up
with a behaviour h ∼ θappx + (8ηU/γ θ2

app)x ln x as x → +∞, where the overall prefactor
’8’ replaces the classical Cox–Voinov prefactor ‘3’. This brings to a close the first issue
related to (5.2), of why one should use in the denominator n = 8

3 , as reported in (5.3a), in
lieu of the classical n = 1.

To address the other issue related to (5.2), namely, the value of ln to be used therein,
we follow on with the above developments in a dimensionless/rescaled form using (3.9)
and, for simplicity, just in the framework of the non-rectified local model. We look for a
perturbation solution h∗ = h∗

0 + ξh∗
1, f ∗ = f ∗

0 + ξ f ∗
1 , where ξ ≡ (3ηU/γ )ε−3 � 1 and an

auxiliary dependent variable f ∗ ≡ h∗2∂x∗c′∗ has been introduced for convenience in lieu
of c′∗. The leading-order solution was already obtained by means of (3.12)–(3.23) and
is considered known here; in the present context, we merely append the subscript ‘0’ to
the notations of the thereby obtained quantities (except for θ∗

app). Then the counterpart of
(3.12) and (3.17) for the first correction can be written as

1
h∗2

0
+ ∂x∗x∗x∗h∗

1 + f ∗
1

h∗3
0

− 3f ∗
0 h∗

1

h∗4
0

= 0, (G2)

(1 + 3f ∗2
0 )f ∗

1 − 5f ∗2
0 h∗

0 = 2
√

x∗h∗
1. (G3)

The counterpart of (3.18) is then

h∗
1 ∼

(
35
2

)2/3
x∗2/3 + K1x∗α + · · · as x∗ → 0, (G4)
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where one has to tolerate a greater singularity, although there is still a free parameter K1
(still with α = 2.134) so that the problem appears to be well-posed to shoot for

h∗
1 ∼ 8

3θ∗2
app

x∗ ln x∗ + b1x∗ + · · · as x∗ → +∞. (G5)

This yields b1 = 4.3, reported in (5.4), which is the counterpart of θ∗
app = 2.4 in (3.23). In

view of (G5), the logarithmic factor ln sought in the context of (5.2) is equal to (ln x∗ +
3
8θ

∗2
appb1) evaluated at a certain macroscopic distance x∗ = k R/δ, of the order of the droplet

size, where k needs in principle to be found by matching the solutions in the foot region
and in the core of the droplet. We can note, however, that the overall result turns out to
be not very sensitive to k. For instance, for a typical value of R/δ = 300, the ln estimation
varies between 12.7 and 15 when k is varied from 0.1 to 1. Our analysis of a droplet moving
in a humidity gradient can hardly count with a precision higher than that anyway. Thus,
for definiteness, we adopt k = 1 and hence ln reported in (5.3b).
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