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The object-calculus is an imperative and object-based programming language in which every

object comes equipped with its own method suite. Consequently, methods need to reside in

the store (‘higher-order store’), which complicates the semantics. Abadi and Leino defined a

program logic for this language enriching object types by method specifications. We present

a new soundness proof for their logic using denotational semantics. It turns out that

denotations of store specifications are predicates defined by mixed-variant recursion. A

benefit of our approach is that derivability and validity can be kept distinct. Moreover, it

reveals which of the limitations of Abadi and Leino’s logic are incidental design decisions

and which follow inherently from the use of a higher-order store. We discuss the

implications for the development of other, more expressive, program logics.

1. Introduction and motivation

When Hoare presented his seminal work on an axiomatic basis of computer programming

(Hoare 1969), high-level languages had just begun to gain broader acceptance. Since

then programming languages have been evolving ever more rapidly, whereas verification

techniques seem to be struggling to keep up. For object-oriented languages several formal

systems have been proposed: see, for example, Abadi and Leino (2004), Hensel et al. (1998),

Jacobs and Poll (2001), Reddy (2002), Poetzsch-Heffter and Müller (1999), de Boer (1999),

von Oheimb (2001) and Reus et al. (2001). A ‘standard’ approach comparable to the

Hoare-calculus for imperative While-languages (Apt 1981) has not yet emerged. Nearly

all the approaches listed above are designed for class-based languages (usually a sub-

language of sequential Java), where method code is known statically.

One notable exception is the work of Abadi and Leino (Abadi and Leino 1997; 2004)

where a logic for an object-based language is introduced that is derived from the imperative

object calculus with first-order types, impς, of Abadi and Cardelli (1996). In object-based

languages, every object contains its own suite of methods. Operationally speaking, the

store for such a language contains code and is thus often called a higher-order store.

† This work was supported by the EPSRC under grant GR/R65190/01, ‘Programming Logics for Denotations

of Recursive Objects’.
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The fact that methods are stored like any other data inside objects means that new

code can be added at any time, yielding compositionality of components (objects in this

case) for free. By contrast, classical fixpoint-based semantics for classes (or modules) is

‘closed’ in the sense that it cannot model the addition of previously unknown classes

in a compositional way. As classes can be compiled into objects (Abadi and Cardelli,

1996), and object-based languages provide this kind of compositionality, higher-order

store semantics can deal naturally with classes defined on-the-fly, like inner classes and

classes loaded at run-time (cf. Reus (2002; 2003)).

Abadi and Leino’s logic is a Hoare-style system, dealing with partial correctness of

object expressions. Their idea was to enrich object types by method specifications, also

called transition relations, relating pre- and post-execution states of program statements,

and result specifications describing the result if the program terminates. Informally, an

object satisfies a specification

A ≡ [fi:Ai
i=1...n, mj: ς(yj)Bj::Tj

j=1...m]

if it has fields fi satisfying Ai and methods mj that satisfy the transition relation Tj and,

if the method invocation terminates, their result satisfies Bj . However, just as a method

can use the self-parameter, we can assume that an object a itself satisfies A in both Bj

and Tj when establishing that A holds for a. This yields a powerful and convenient proof

principle for objects†.

We are going to present a new soundness proof for this logic using an untyped

denotational semantics of the language, and the logic to define validity. Every program

and every specification has a meaning, a denotation. The denotations of specifications are

simply predicates on (the domain of) objects. The properties of these predicates provide a

description of inherent limitations of the logic. Such an approach is not new, for instance,

it has been used in LCF, a logic for functional programs (Paulson 1987).

The difficulty in this case is to establish predicates that provide a powerful reasoning

principle for objects. Reus and Streicher (2004) outlined how to use some classic domain

theory (Pitts 1996) to guarantee existence and uniqueness of appropriate predicates on

isolated objects. In an object-calculus program, however, an object may depend on other

objects and their respective methods in the store. So object specifications must depend on

specifications of other objects in the store, which gives rise to ‘store specifications’. Indeed

store specifications were already present in the operationally-based work of Abadi and

Leino.

This paper is, therefore, not merely an application of the ideas in Reus and Streicher

(2004). Much care is needed to establish the important invariance property of Abadi–Leino

logic, namely that proved programs preserve store specifications. Our main achievement,

in a nutshell, is that we have successfully applied the ideas of Reus and Streicher (2004)

to the logic of Abadi and Leino (2004). We have obtained a more useful and more

† In class-based languages one can provide an analogous proof principle when using a higher-order store (see

Kamin and Reddy (1994)). In a closed-world scenario, however, where (mutually recursive) classes are all

known at verification time, fixpoint induction suffices as a proof principle.
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instructive soundness proof, which is complementary to that of Abadi and Leino (2004)

for the following reasons:

1 Abadi and Leino employ an operational semantics in which stores contain method

syntax that can be reused in derivations. This allows them to get away with having no

semantics for store specifications at all. Validity for judgements is with respect to initial

stores whose methods are assumed to have been derived correct with respect to some

store specification. Consequently, the validity (of judgements) depends on derivability

(for store specifications). This approach can be justified under the assumption that only

verified methods reside in initial stores. Alas, it prevents them from using induction on

derivations of judgements, so they are forced to use induction on derivations of the

(small-step) semantics of the judgement’s program instead. As the subsumption rule is

not triggered by program syntax, it has to be considered in all cases and clutters the

soundness proof.

On the other hand, by using a denotational semantics, we can provide a (necessarily

recursive) semantics for store specifications, and keep validity and derivability distinct.

This has the additional advantage of a canonical treatment of the subsumption rule.

We can also define a semantics of object specifications and show how it relates to store

specifications. Note that our approach would also work for stores containing method

syntax as it can be interpreted in a big-step operational semantics.

2 We can easily extend the logic, for instance, by recursive specifications. In our approach,

fold and unfold can be handled by subsumption rules, which are problematic in the

original proof (see 1). A similar extension has been done for the Abadi–Leino logic

in Leino (1998), but for a slightly different language, which has nominal rather than

structural subtyping.

3 The essential restrictions of object logics in general are revealed and distinguished

from the idiosyncratic shortcomings of the Abadi–Leino logic. For example, in Abadi

and Leino (2004), transition specifications cannot talk about methods at all (see also

Section 7). Our semantics shows that this is not necessary, although certain conditions

must be met by the specification language in order to show the existence of the recursive

store specifications.

That specifications are preserved by verified programs is a consequence of the idea of

enriching types and disallowing method update. It relieves the verifier from carrying

around specifications of (parts of) the store. Unfortunately, it enforces a global verifica-

tion regime and prohibits method and specification updates. Making assumptions about

the store explicit is a remedy. This may sound tedious, but employing local reasoning

principles like those of Separation Logic (for an overview see, for example, O’Hearn et

al. (2001) and Reynolds (2002)), it should not be. Our denotational semantics directly

supports such an explicit handling of store specifications.

Problems that are inherent to object logics (or logics for higher-order stores) are the

need for (recursive) store specifications, and the invariance of field types in the definition

of subspecification. Our proof still refers to syntactic store specifications since programs

will not preserve arbitrary predicates on stores. We do not know how to describe
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Table 1. Syntax

a, b ::= x variable

| true | false booleans

| if x then a else b conditional

| let x = a in b let

| [fi = xi
i=1...n,mj = ς(yj )bj

j=1...m] object construction

| x.f field selection

| x.f := y field update

| x.m method invocation

semantically those programs of a specific programming language that are verifiable in

a specific logic.

4 Our work provides an alternative description of the difficulties inherent in programming

logics for objects. Therefore, it may be appealing to semanticists and domain theorists.

It may be useful to develop and analyse similar, but more powerful, program logics as

well.

The structure of this paper is as follows. In the next section, the syntax and semantics

of the object calculus are presented. Section 3 introduces the Abadi–Leino logic and the

denotational semantics of its object specifications. There is then a discussion on store

specifications and their semantics (Section 4). The main result is in Section 5, where

the logic is proved to be sound. Finally, we sketch how recursive specifications can be

introduced (Section 6) and discuss further extensions (Section 7). Section 8 provides a

summary to conclude the paper.

An extended abstract of this article has appeared as Reus and Schwinghammer (2005).

2. The object calculus

We begin by recalling the language used in Abadi and Leino (2004), which is based

on the imperative object calculus of Abadi and Cardelli (1996). Following Reus and

Streicher (2004), we give a denotational semantics to this language in Section 2.2.

2.1. Syntax

Let V, M and F be pairwise disjoint, countably infinite sets of variables, method names

and field names, respectively. Let x, y range over V, let m ∈ M and f ∈ F. The language

is defined by the grammar in Table 1.

Variables are (immutable) identifiers, and booleans and conditional have the usual

semantics. The object expression let x = a in b first evaluates a and then evaluates b

with the result of a bound to x.

Object construction [fi = xi
i=1...n,mj = ς(yj)bj

j=1...m] allocates new storage and returns a

reference to an object containing fields fi (with initial value the value of xi) and methods

mj . In a method mj = ς(yj)bj , ς is a binder that binds the explicit self parameter yj in

the method body bj . During method invocation, the method body is evaluated with the

https://doi.org/10.1017/S0960129506005214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005214


Denotational semantics for a program logic of objects 317

self parameter bound to the host object. We identify objects that differ only in the names

of bound variables and the order of components.

The result of field selection x.f is the value of the field, and x.f := y is field update. A

formal semantics is given in the next subsection.

Note that in contrast to the calculus of Abadi and Cardelli (1996), this language

distinguishes between fields and methods, and method update is disallowed. Also note

that we restrict the cases for field selection, field update, method invocation and statements

to contain only variables as subterms (instead of arbitrary object terms). This is no real

limitation because of the let construct, but it simplifies the statement of the rules of

the logic (Abadi and Leino 2004). In the examples we use a more generous syntax (for

instance, we allow the inclusion of natural numbers).

Example 2.1. We extend the syntax with integer constants and operations, and consider

an object-based modelling of a bank account as an example:

acc(x) ≡ [balance = 0,

deposit10 = ς(y) let z = y.balance+10 in y.balance:=z,

interest = ς(y) let r = x.manager.rate in

let z = y.balance∗r/100 in y.balance:=z]

Note how the self parameter y is used in both methods to access the balance field.

Object acc depends on a ‘managing’ object x in the context that provides the interest rate,

through a field manager, for the interest method.

2.2. Semantics of objects

2.2.1. Preliminaries We work in the category pCpo of ω-complete partial orders (not

necessarily containing a least element) and partial continuous functions†. Let A ⇀ B

denote the partial continuous function space between cpos A and B. For f ∈ A ⇀ B and

a ∈ A we write f(a)↓ if f applied to a is defined, and f(a)↑ otherwise.

If L is a set, then P(L) is its powerset, Pfin(L) denotes the set of its finite subsets, and

AL is the set of all total functions from L to A. For a countable set � and a cpo A we

write

Rec�(A) =
∑

L∈Pfin(�)
AL

for the cpo of records with entries from A and labels from �. Note that Rec� extends

to a locally continuous endofunctor on pCpo. Further note that, in the natural partial

order on records defined in this way, only records with equal domain are comparable; in

particular, a record and its extensions are incomparable.

A record (L, f ∈ AL), with labels L = {l1, . . . , ln} and corresponding entries f(li) = ai,

is written as {|l1 = a1, . . . , ln = an|}. Update (and extension) of records is defined as the

† Other categories of domains could be used; our results only rely on the existence of minimal invariant

solutions to recursive domain equations (Pitts 1996).
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corresponding operation on functions, that is,

{|li = ai
i=1...n|}[l := a] =

{
{|l1 = a1, . . . , lk = a, . . . , ln = an|} if l = lk for some k

{|li = ai
i=1...n, l = a|} otherwise.

The selection of a label l ∈ � of a record r ∈ Rec�(A) is written r.l. It is defined and

yields f(l) if r is (D, f ∈ AD) and l ∈ D.

2.2.2. Interpretation The language of the previous section finds its interpretation within

the following system of recursively defined cpos in pCpo:

Val = BVal + Loc

St = RecLoc(Ob)

Ob = RecF(Val) × RecM(Cl)

Cl = St ⇀ (Val + {error}) × St.

(1)

Here, Loc is some countably infinite set of locations ranged over by l, and BVal is the set

of truth values true and false. Both are discrete partial orders and thus complete. Objects

in Ob are pairs, consisting of a record that assigns values to the fields of the object, and a

record associating closures to method names. Each closure is modelled as a partial map in

Cl. In case of termination, the result value and resulting store are returned by the closure;

exceptional termination is indicated by returning error. Finally, the cpo St models stores

as finite records of objects, indexed by locations.

Consider the functor FStore : pCpoop × pCpo → pCpo obtained from (1) by solving the

system of equations for St, and separating positive and negative occurrences of St on the

right-hand side:

FStore(S, T ) = RecLoc(RecF(Val) × RecM(S ⇀ (Val + {error}) × T )).

This is a locally continuous bifunctor. So there exists a minimal invariant solution St to

this system of equations, that is, FStore(St,St) = St and, moreover, the identity on St is the

least fixed point of the map δ(e) = F(e, e) (for instance, see Pitts (1996) and Smyth and

Plotkin (1982)).

Let Env = V →fin Val be the set of environments, that is, maps between V and Val

with finite domain. Given an environment ρ ∈ Env, the interpretation [[a]]ρ of an object

expression a in St ⇀ (Val + {error}) × St is given in Table 2. Here we use a (semantic)

strict let that is also ‘strict’ with respect to error:

let (v, σ) = s in s′ ≡




undefined if s is undefined

(error, σ′) if s = (error, σ′)

(λ(v, σ).s′) s otherwise.

Note that for o ∈ Ob we just write o.f and o.m instead of π1(o).f and π2(o).m, respectively.

Similarly, we omit the injections for elements of Val +{error}, writing simply l instead of

inLoc(l), and so on. Observe that, in contrast to Reus and Streicher (2004), we distinguish

between non-termination (undefinedness) and exceptional termination (error); the latter

represents dynamic type errors and null-pointer dereferencing. Finally, because Loc is
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Table 2. Denotational semantics

[[x]]ρσ =

{
(ρ(x), σ) if x ∈ dom(ρ)

(error, σ) otherwise

[[true]]ρσ = (true, σ)

[[false]]ρσ = ( false, σ)

[[if x then b1 else b2]]ρσ =




[[b1]]ρσ
′ if [[x]]ρσ = (true, σ′)

[[b2]]ρσ
′ if [[x]]ρσ = ( false, σ′)

(error, σ′) if [[x]]ρσ = (v, σ′) for v /∈ BVal

[[let x = a in b]]ρσ = let (v, σ′) = [[a]]ρσ in [[b]]ρ[x := v]σ′

[[[fi = xi
i=1...n,mj = ς(yj )bj

j=1...m]]]ρσ

=

{
(l, σ[l := (o1, o2)]) if xi ∈ dom(ρ), 1 � i � n

(error, σ) otherwise

where




l /∈ dom(σ)

o1 = {|fi = ρ(xi)
i=1...n|}

o2 = {|mj = λσ.[[bj ]]ρ[yj := l]σj=1...m|}
[[x.f]]ρσ = let (l, σ′) = [[x]]ρσ

in

{
(σ′.l.f, σ′) if l ∈ dom(σ′) and f ∈ dom(σ′.l)
(error, σ′) otherwise

[[x.f := y]]ρσ = let (l, σ′) = [[x]]ρσ in let (v, σ′′) = [[y]]ρσ′

in

{
(l, σ′′[l:=σ′′.l[f:=v]]) if l ∈ dom(σ′′) and f ∈ dom(σ′′.l)
(error, σ′′) otherwise

[[x.m]]ρσ = let (l, σ′) = [[x]]ρσ

in

{
σ′.l.m(σ′) if l ∈ dom(σ′) and m ∈ dom(σ′.l)
(error, σ′) otherwise

assumed to be infinite, the condition l /∈ dom(σ) in the case of object creation can always

be satisfied. Therefore object creation will never raise error.

A more subtle point is the choice of the location itself: in order for the interpretation

[[a]] to be well defined, a deterministic or parametric allocator has to be assumed (Banerjee

and Naumann 2005, Section 5). For example, a deterministic allocator is one that always

chooses the minimal location (in an appropriate sense) amongst those available for

allocation. A more sophisticated solution may be possible in the setting of FM-sets

(Shinwell and Pitts 2005; Benton and Leperchey 2005). For a language with a higher-

order store this is an interesting research topic that needs further investigation.

2.2.3. Flat stores We will make use of a projection to the part of the store that contains

just the data in Val, thus ‘forgetting’ all closures of objects residing in the store: let

StVal = RecLoc(RecF(Val)), and define the projection πVal : St → StVal by

(πVal σ).l.f = σ.l.f

for all l ∈ Loc and f ∈ F. We refer to πVal(σ) as the flat part of σ. Note that for all

σ, σ′ ∈ St,

σ 	 σ′ =⇒ πVal(σ) = πVal(σ
′)

since StVal = RecLoc(RecF(Val)) inherits the discrete order from Val.
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3. Abadi–Leino logic

In this section we recall the logic of Abadi and Leino (2004). A slightly different

presentation can be found in Tang and Hofmann (2002), where the proof system is

given in a syntax-directed way.

3.1. Transition relations and specifications

Transition relations T correspond to the pre- and post-conditions of Hoare logic and allow

us to express state changes caused by computations. The syntax of transition relations is

defined by the following grammar:

T ::= e0 = e1 | allocpre(e) | allocpost(e) | ¬T | T0 ∧ T1 | ∀x.T
e ::= x | f | result | true | false | selpre(e0, e1) | selpost(e0, e1).

Expressions e range over variables x ∈ V, field names f ∈ F, constants true, false

and result (which stands for the result value of a computation), and function symbol

applications: intuitively, the application selpre(x, y) yields the value of field y of the

object at location x before execution, provided this exists in the store, and is undefined

otherwise. Correspondingly, selpost(x, y) gives the value of field y after execution. The

predicates allocpre(x) and allocpost(x) are true if the location x is allocated before and

after the execution, respectively, and false otherwise. The notions of free and bound

variables of a transition relation T carry over directly from first-order logic. As usual,

further logical constants and connectives such as True, False, disjunction and implication

can be defined as abbreviations.

Specifications combine transition relations for each method together with the result

types into a single specification for the whole object. They generalise the first-order types

from Abadi and Cardelli (1996), and are

A,B ∈ Spec ::= Bool | [fi:Ai
i=1...n, mj: ς(yj)Bj::Tj

j=1...m].

In the case of an object specification, ς in ς(yj)Bj::Aj binds the variable yj in Bj and

Tj . Specifications are identified up to renaming of bound variables and reordering of

components, which will be justified by our semantics.

Intuitively, true and false satisfy Bool , and an object satisfies the specification A ≡
[fi:Ai

i=1...n, mj: ς(yj)Bj::Tj
j=1...m] if it has fields fi satisfying Ai and methods mj that satisfy

the transition relation Tj and, if the method invocation terminates, the result satisfies Bj .

Corresponding to the fact that a method mj can use the self-parameter yj , in both Tj and

Bj one can refer to the ambient object yj .

Let Γ range over specification contexts x1:A1, . . . , xn:An. A specification context is well

formed if no variable xi occurs more than once, and the free variables of Ak are contained

in the set {x1, . . . , xk−1}. In writing Γ, x:A, we will always assume that x does not appear

in Γ. Sometimes we will write � for the empty context. Given Γ, we write [Γ] for the list

of variables occurring in Γ:

[x1:A1, . . . , xn:An] = x1, . . . , xn.
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Table 3. Well-formed specifications and contexts

wfSpec1

x  Bool
wfSpec2

x  Ai
i=1...n x, yj  Bj

j=1...m x, yj  Tj
j=1...m

x  [fi:Ai
i=1...n, mj : ς(yj )Bj ::Tj

j=1...m]
wfCtxt1

�  ok
wfCtxt2

Γ  ok [Γ]  A x /∈ dom(Γ)

Γ, x:A  ok

Table 4. Transition relations Tres, Tobj and Tupd

Tres(e) ≡ result = e ∧ ∀x ∀f. (allocpre(x) ↔ allocpost(x) ∧ selpre(x, f) = selpost(x, f))

Tobj(fi=xi)
i=1...n ≡ ¬allocpre(result) ∧ allocpost(result) ∧

∧
i=1...n selpost(result, fi) = xi

∧ ∀x ∀f. x �=result → (allocpre(x)↔allocpost(x) ∧ selpre(x, f) = selpost(x, f))

Tupd(x, f, e) ≡ ∀x′. allocpre(x
′) ↔ allocpost(x

′) ∧ selpost(x, f) = e ∧ result = x

∧ ∀x′ ∀f′. (x′ �= x ∨ f′ �= f) → selpre(x
′, f′) = selpost(x

′, f′)

If it is clear from the context, we use the notation x for a sequence x1, . . . , xn, and,

similarly, x : A for x1:A1, . . . , xn:An. To make the notions of well-formed specifications

and well-formed specification contexts formal, there are judgements for:

— well-formed transition relations: x  T

— well-formed specifications: x  A

— well-formed specification contexts: Γ  ok.

For transition relations, x1, . . . , xn  T holds if all the free variables of T appear in

x1, . . . , xn; we will omit the simple rules. Table 3 contains the rules for specifications and

specification contexts. When A is closed we may simply write A instead of  A, and

similarly for closed T .

Table 4 defines several transition relations that are used in the statement of the rules

in the following subsection. The relation Tres(e) states that the result of a computation is

e and that the flat part of the store remains unchanged. While transition relations do not

talk about the non-flat part of the store, the stored methods remain necessarily unchanged

since the variant of the object calculus considered here has no method update. Tobj(fi = xi)

describes the allocation of a new object in memory, which is initialised with field fi set

to xi, and whose location is returned as the result. Tupd(x, f, e) describes the effect on the

store when updating field x.f. Note that in Abadi and Leino (2004) the relation Tres is

called Res and Tupd is called Update. There is no abbreviation corresponding to Tobj.

Example 3.1. Table 5 shows a specification for the bank accounts of Example 2.1.

Although we are using UML-like notation, these diagrams actually stand for individual

objects, not classes – in fact there are no classes in the language. Observe how the
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Table 5. An example of transition and result specifications

Tdeposit10(y) ≡ ∃z. z = selpre(y, balance)

∧ Tupd(y, balance, z + 10)

Tinterest(x, y) ≡ ∃z. z = selpre(y, balance)

∧ ∃m.m = selpre(x, manager)

∧ ∃r. r = selpre(m, rate)

∧ Tupd(y, balance, z ∗ r/100)

Tcreate(x) ≡ Tobj(balance = 0)

AAccount(x) ≡ [balance : Int,

deposit10 : ς(y)[] :: Tdeposit10(y),

interest : ς(y)[] :: Tinterest(x, y)]

AAccFactory ≡ [manager : [rate : Int],

create : ς(x)AAccount(x) :: Tcreate(x)]

AManager ≡ [rate : Int,

accFactory : AAccFactory]

Manager

 rate: Int

 accFactory

AccFactory

 manager

 create()

Account

 balance: Int

 deposit10()

 interest()

specification Tinterest depends not only on the self parameter y of the host object but

also on the statically enclosing object x.

The result specifications [ ] for the methods deposit10 and interest in AAccount

stand for the ‘empty’ object. However, by the subspecification relation, defined below

in Section 3.2, this specification is satisfied by any object. In particular, this is the case

for both method implementations in Example 2.1 where the result is the object itself,

according to the semantics of field update.

3.2. Abadi–Leino logic

Abadi and Leino generalised the notion of subtypes to a form of subspecification, x 
A <: A′, that is defined inductively by x  Bool <: Bool and the rule

x  Ai
i=1...n+p x, yj  Bj

j=m+1...m+q x, yj  Tj
j=1...m+q x, yj  T ′

j
j=1...m

x, yj  Bj <: B′
j
j=1...m fo Tj → T ′

j
j=1...m

x  [fi:Ai
i=1...n+p, mj: ς(yj)Bj::Tj

j=1...m+q] <: [fi:Ai
i=1...n, mj: ς(yj)B

′
j::T

′
j
j=1...m]

where fo ϕ denotes provability in first-order logic with equality (in the theory with

axioms stating that true, false and all f ∈ F are distinct). Just as with subtyping in

the corresponding type system (Abadi and Cardelli 1996), the subspecification relation

is covariant along method specifications and transition relations, and invariant in field

specifications. Observe that x  A1 <: A2 implies x  Ai for i = 1, 2.

In the logic, judgements of the form Γ  a:A::T can be derived, where Γ is a well-

formed specification context, a is an object expression, A is a specification and T is a

transition relation. The rules guarantee that all the free variables of a, A and T appear

in [Γ]. There is one rule for each syntactic form of the language, and, additionally, a

subsumption rule that generalises the consequence rule of classical Hoare logic. The rules

are given in Table 6.
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Table 6. Inference rules of Abadi–Leino logic

Subsumption

[Γ]  A <: A′ Γ  a:A::T [Γ]  A′ [Γ]  T ′ fo T → T ′

Γ  a:A′::T ′

Variable

Γ  ok x:A in Γ

Γ  x:A::Tres(x)
Booleans

Γ  ok

Γ  false:Bool::Tres(false)

Γ  ok

Γ  true:Bool::Tres(true)
Conditional

A[true/x] ≡ At[true/x] and A[false/x] ≡ Af [false/x]
T [true/x] ≡ Tt[true/x] and T [false/x] ≡ Tf [false/x]

Γ  x:Bool::Tres(x) Γ  a:At::Tt Γ  b:Af::Tf

Γ  if x then a else b:A::T
Let

Γ  a:A′::T ′ Γ, x:A′  b:B::T ′′ [Γ]  B [Γ]  T
fo T ′[selint(·, ·)/selpost(·, ·), allocint(·)/allocpost(·), x/result]

∧ T ′′[selint(·, ·)/selpre(·, ·), allocint(·)/allocpre(·)] → T

Γ  let x = a in b:B::T
Object Construction

A ≡ [fi:Ai
i=1...n, mj : ς(yj )Bj ::Tj

j=1...m]

Γ  xi:Ai::Tres(xi)
i=1...n Γ, yj :A  bj :Bj ::Tj

j=1...m

Γ  [fi = xi
i=1...n,mj = ς(yj )bj

j=1...m]:A::Tobj(f1=x1 . . . fn=xn)

Field Selection

Γ  x:[f:A]::Tres(x)

Γ  x.f:A::Tres(selpre(x, f))
Field Update

A ≡ [fi:Ai
i=1...n, mj : ς(yj )Bj ::Tj

j=1...m]
Γ  x:A::Tres(x) Γ  y:Ak::Tres(y) 1 � k � n

Γ  x.fk := y:A::Tupd(x, fk , y)
Method Invocation

Γ  x:[m:ς(y)A::T ]::Tres(x)

Γ  x.m:A[x/y]::T [x/y]

As indicated earlier, one of the most interesting and powerful rules of the logic is the

Object Construction rule,

A ≡ [fi:Ai
i=1...n, mj: ς(yj)Bj::Tj

j=1...m]

Γ  xi:Ai::Tres(xi)
i=1...n Γ, yj:A  bj:Bj::Tj

j=1...m

Γ  [fi = xi
i=1...n,mj = ς(yj)bj

j=1...m]:A::Tobj(fi = xi)
i=1...n

In order to establish that the object satisfies specification A, when verifying the methods

bj , we can assume that the self parameter yj also satisfies A. Essentially, this causes

the semantics of store specifications, introduced in the next section, to be defined by a

mixed-variant recursion.

The rule for the Let case is somewhat unusual in that it introduces additional function

and relation symbols to the signature, selint(·, ·) and allocint(·), to capture the intermediate

state of the store in first-order logic. In the hypothesis, textual substitution of function

and predicate symbols, respectively, is used to compose the first and second transition
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relation: for instance,

selpost(e1, e2)[selint(·, ·)/selpost(·, ·)] ≡ selint(e1, e2).

We omit the obvious general definition of this substitution operation. The side condition

[Γ]  T ensures that the transition relation in the conclusion does not export this

intermediate state.

Example 3.2. The proof rules of Abadi and Leino’s logic can be used to derive the

judgement

x:AAccFactory  acc(x) : AAccount(x) :: Tobj(balance = 0) (2)

for the acc object (cf. Examples 2.1 and 3.1). Using the Object Construction rule, (2)

can be reduced to a trivial proof obligation for the field balance, a judgement for the

method deposit10,

Γ  let z=(y.balance)+10 in y.balance:=z : [] :: Tdeposit10(y) (3)

where Γ is the context x:AAccFactory, y:AAccount(x), and a similar judgement for the method

interest. In turn, a proof of (3) involves showing

Γ  (y.balance)+10 : Int :: Tres(selpre(y, balance) + 10) (4)

Γ, z:Int  y.balance:=z : [] :: Tupd(y, balance, z) (5)

for the constituents of the let expression, by an application of Let. These can be proved

from the Field Selection and Field Update rules, respectively.

As another example, the structural subspecification  AManager <: [rate : Int] and

Subsumption can be used to prove

m:AManager, x:AAccFactory  x.manager:=m : AAccFactory :: Tupd(x, manager, m)

when creating a reference to the manager object in the manager field of the factory object,

as indicated by the diagram in Table 5.

3.3. Semantics of specifications

Having recalled Abadi and Leino’s logic, we next give a denotational semantics of

specifications. In transition relations it is possible to quantify over field names, for

examples of this see the transition relations in Table 4. We write Env∗ = V →fin (Val� F)

when interpreting transition relations:

[[x  T ]] : Env∗ → P(StVal × Val × StVal).

This can be defined in a straightforward way, a few typical cases are given in Tables 7

and 8. Note that even though expressions may be undefined (for instance, because they

refer to non-existent fields), the interpretation of transition relations is two-valued. Also

observe that the meaning of a transition relation x  T without free variables does not

depend on the environment, so we may omit the environment and simply write [[T ]] for

closed T .
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Table 7. Semantics of expressions

[[x  e]] : Env∗ → StVal → Val → StVal ⇀ (Val � F)

[[x  x]]ρσvσ′ =

{
ρ(x) if x ∈ dom(ρ)

undefined otherwise

[[x  f]]ρσvσ′ = f

[[x  result]]ρσvσ′ = v

[[x  true]]ρσvσ′ = true

[[x  false]]ρσvσ′ = false

[[x  selpre(e0, e1)]]ρσvσ
′ =




σ.l.f if [[x  e0]]ρσvσ
′ = l ∈ Loc defined

and [[x  e1]]ρσvσ
′ = f ∈ F defined

and l ∈ dom(σ) and f ∈ dom(σ.l)

undefined otherwise

[[x  selpost(e0, e1)]]ρσvσ
′ =




σ′.l.f if [[x  e0]]ρσvσ
′ = l ∈ Loc defined

and [[x  e1]]ρσvσ
′ = f ∈ F defined

and l ∈ dom(σ′) and f ∈ dom(σ′.l)
undefined otherwise

Table 8. Semantics of transition relations

[[x  T ]] : Env∗ → P(StVal × Val × StVal)

(σ, v, σ′) ∈ [[x  e0 = e1]]ρ ⇐⇒
{

both [[x  e0]]ρσvσ
′ and [[x  e1]]ρσvσ

′ are defined

and equal, or both undefined

(σ, v, σ′) ∈ [[x  allocpre(e)]]ρ ⇐⇒ [[x  e]]ρσvσ′ ↓ ∧ [[x  e]]ρσvσ′ ∈ dom(σ)

(σ, v, σ′) ∈ [[x  allocpost(e)]]ρ ⇐⇒ [[x  e]]ρσvσ′ ↓ ∧ [[x  e]]ρσvσ′ ∈ dom(σ′)
(σ, v, σ′) ∈ [[x  ¬T ]]ρ ⇐⇒ (σ, v, σ′) /∈ [[x  T ]]ρ

(σ, v, σ′) ∈ [[x  T0 ∧ T1]]ρ ⇐⇒ (σ, v, σ′) ∈ [[x  T0]]ρ ∩ [[x  T1]]ρ

(σ, v, σ′) ∈ [[x  ∀x.T ]]ρ ⇐⇒ for all u ∈ Val � F. (σ, v, σ′) ∈ [[x, x  T ]]ρ[x := u]

Table 9. Semantics of specifications

[[x  A]] : Env → P(Val × St)

[[x  Bool]]ρ = BVal × St

[[x  [fi:Ai
i=1...n, mj : ς(yj )Bj ::Tj

j=1...m]]]ρ

=




(l, σ) ∈ Loc × St

(F) ∀1 � i � n. (σ.l.fi, σ) ∈ [[x  Ai]]ρ

(M) ∀1 � j � m. if σ.l.mj (l, σ) = (v, σ′)↓
then (v, σ′) ∈ [[x, yj  Bj ]]ρ[yj := l]

and (πVal(σ), v, πVal(σ
′)) ∈ [[x, yj  Tj ]]ρ[yj := l]




Remark 3.3. We think it would have been clearer to use a multi-sorted logic, with different

quantifiers ranging over locations, basic values and field names, respectively, but decided

to keep close to the original presentation of Abadi and Leino’s logic.

An object specification x  A gives rise to a predicate that depends on values for the

free variables x. However, since the underlying logic in the transition relations is untyped,

the types of the free variables are not relevant. The interpretation of object specifications

x  A,

[[x  A]] : Env → P(Val × St),

is given in Table 9.
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We begin with two simple observations about the interpretation.

Lemma 3.4. For all specifications x  A, store σ ∈ St and environments ρ we have

(error, σ) /∈ [[x  A]]ρ.

Proof. The statement is immediate from the definition of [[x  A]]ρ.

This observation will be used to obtain soundness of the proof system, in the sense of

‘well-typed (or rather, verified ) programs do not raise errors’.

Lemma 3.5 (Soundness of subspecification). Suppose x  A <: B. Then, for all environ-

ments ρ, [[x  A]]ρ ⊆ [[x  B]]ρ for values v.

Proof. We use induction on the derivation of x  A <: B. The cases for reflexivity and

transitivity are immediate. For the case where both A and B are object specifications we

need a similar lemma for transition relations:

If x  T and x  T ′, then

fo T → T ′ =⇒ [[x  T ]]ρ ⊆ [[x  T ′]]ρ (6)

for all ρ ∈ Env∗. However, (6) follows immediately since fo is sound for all models of

first-order logic.

4. Store specifications

Object specifications are not sufficient. This is a phenomenon of languages with a higher-

order store and is well known from subject reduction and type soundness proofs in

both operational and denotational settings (for instance, see Abadi and Cardelli (1996,

Chapter 11) and the references therein, and Levy (2002), respectively). Since statements

may call subprograms residing in the store, the store has to be checked as well. However,

it may contain loops, so induction on the reachable part of the store is unavailable.

The standard remedy – also used in Abadi and Leino (2004) – is to relativise the

typing judgement such that it only needs to hold for ‘verified’ stores. In other words,

judgements are interpreted with respect to store specifications. A store specification Σ

assigns a specification to each location in a store:

Σ ≡ l1:A1, . . . , ln:An.

When an object is created, the specification assigned to it at the time of creation is

included in the store specification. This leads to a natural notion of store specification

extension.

In this section we will interpret such store specifications using techniques from Reus

and Streicher (2004). Since the denotations of a store specification will rely on mixed-

variant recursion, we were unable to define a semantic notion of subspecification for

stores. However, the logic of Abadi and Leino makes essential use of subspecifications.

We get around this problem by only using a subset relationship on denotations of

object specifications. In object specifications there is no contravariant occurrence of store

as the semantics of objects is with respect to one fixed store (cf. Table 9).

https://doi.org/10.1017/S0960129506005214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005214


Denotational semantics for a program logic of objects 327

Unfortunately, we are restricted by the logic’s requirement that verified statements never

break the validity of store specifications. Suppose y denotes an object in σ satisfying a

specification B. For a field update σ.l.f := y to preserve a specification l : A where

A <: [f : B], the location l must be in the set

{l ∈ Loc | Σ.l is A′ and  A′ <: A}, (7)

which ensures that A and A′ both have a component named f, of type B. Since the

semantic interpretation of the subspecification relation as set containment cannot reflect

this invariance, preservation cannot be guaranteed for locations in the (semantically more

appealing) set

{l ∈ dom(σ) | (l, σ) ∈ [[A]]}.

Therefore we were forced to use the former set (7) for the interpretation of A in the

semantics of store specifications.

4.1. Result specifications, store specifications and a tentative semantics

A store specification Σ assigns closed specifications  A to (a finite set of) locations.

Definition 4.1 (Store specification). A record Σ ∈ RecLoc(Spec) is a store specification if

for all l ∈ dom(Σ), Σ.l is a closed object specification. Let StSpec denote the set of store

specifications.

Because we focus on closed specifications in the following, we need a way to turn the

components Bj of a specification [fi:Ai
i=1...n, mj: ς(yj)Bj::Tj

j=1...m] (which will, in general,

depend on the self parameter yj) into closed specifications. We do this by extending the

syntax of expressions with locations: there is one symbol l for each l ∈ Loc, and we define

[[x  l]]ρ = l (cf. Table 7). Similarly, we set true = true and false = false. When it is

clear from the context, we will simply write v in place of v.

Furthermore, we write A[ρ/x] (respectively, A[ρ/Γ]) for the simultaneous substitution

of all x ∈ x (respectively, x ∈ [Γ]) in A by ρ(x). Then we can prove the following

substitution lemma.

Lemma 4.2 (Substitution lemma). Suppose ρ is an environment, x  T is a transition

relation and y  A and y  A′ are specifications. Then:

— T [ρ/x] is well formed, and [[T [ρ/x]]] = [[x  T ]]ρ.

— A[ρ/y] is well formed, and [[A[ρ/y]]] = [[y  A]]ρ.

— if y  A <: A′, then  A[ρ/y] <: A′[ρ/y].

Proof. The first part is by induction on T , the second by induction on A and the last

by induction on the derivation of y  A <: A′.

Definition 4.3 (Store specification extension). Let Σ,Σ′ ∈ StSpec be store specifications. Σ′

extends Σ, written Σ′ � Σ, if dom(Σ) ⊆ dom(Σ′) and Σ.l = Σ′.l for all l ∈ dom(Σ).
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Table 10. Store specifications, first (and incorrect) attempt

σ ∈ [[Σ]] ⇐⇒ ∀l ∈ dom(Σ) where Σ.l ≡ [fi:Ai
i=1...n, mj : ς(yj )Bj ::Tj

j=1...m] :

(F) ∀1 � i � n. σ.l.fi ∈ ||Ai||Σ; and

(M) ∀1 � j � m ∀Σ′ � Σ ∀σ′, σ′′ ∈ St ∀l′ ∈ Loc ∀v ∈ Val.

if l′ ∈ ||Σ.l||Σ′ ∧ σ′ ∈ [[Σ′]] ∧ σ.l.mj (l
′, σ′) = (v, σ′′) then

(M1) (πVal(σ
′), v, πVal(σ

′′)) ∈ [[Tj [l
′/yj ]]] and

(M2) ∃Σ′′ ∈ StSpec. Σ′′ � Σ′ ∧ σ′′ ∈ [[Σ′′]] and

(M3) v ∈ ||Bj [l
′/yj ]||Σ′′

Note that � is reflexive and transitive. We can then abstract away from particular

stores σ ∈ St, and interpret closed result specifications  A with respect to such store

specifications.

Definition 4.4 (Object specifications). Suppose Σ ∈ StSpec is a store specification. For

closed  A, let ||A||Σ ⊆ Val be defined by

||Bool||Σ = BVal

||B||Σ = {l ∈ Loc |  Σ.l <: B}

where B ≡ [fi:Ai
i=1...n, mj: ς(yj)Bj::Tj

j=1...m] and  B. We extend this definition to

specification contexts ||Γ||Σ ⊆ Env in the natural way:

ρ ∈ ||�||Σ ⇐⇒ always

ρ ∈ ||Γ, x:A||Σ ⇐⇒ ρ ∈ ||Γ||Σ ∧ ρ(x) ∈ ||A[ρ/Γ]||Σ .

Observe that for all A, if Σ′ � Σ, then ||A||Σ ⊆ ||A||Σ′ . We obtain the following lemma for

context extensions.

Lemma 4.5 (Context extension). If ρ ∈ ||Γ||Σ and Γ, x:A  ok and v ∈ ||A[ρ/Γ]||Σ, then

ρ[x := v] ∈ ||Γ, x:A||Σ.

Proof. The result follows immediately from the definition once we show ρ[x := v] ∈
||Γ||Σ. This can be seen to hold since x /∈ dom(Γ), hence, for all y:B in Γ we know that x

is not free in B and we must have B[ρ[x := v]/Γ] ≡ B[ρ/Γ].

The semantics of a store specification Σ = l1:A1, . . . , ln:An as a predicate over stores in

St must be more sophisticated than one might think at first sight. In particular, it is not

enough to stipulate that σ ∈ [[Σ]] iff (σ.li, σ) ∈ [[Ai]] for all 1 � i � n, for then we could not

infer anything about stores that are derived from σ by updating or allocating additional

objects. To show that Σ is invariant throughout the execution of a program, a key lemma

for the soundness theorem, the assumption σ ∈ [[Σ]] is not sufficiently strong to conclude

that, for example, σ[l := σ.l[f := 0]] or σ[lnew := o] still fulfil [[Σ]].

This deficiency explains the need for a mixed variant recursive definition of the semantics

of [[Σ]], with a universal quantification over arbitrary argument stores σ′ assumed to already

fulfil the store specification we are defining. Thus, if the equivalence in Table 10 is taken

as the defining property of [[Σ]], this quantification in (M) provides a handle to the update

problem. Furthermore, using the extension relation of store specifications allows us to
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Table 11. Functional for store specifications, first (and incorrect) attempt

σ ∈ Φ(Y ,X)Σ ⇐⇒ ∀l ∈ dom(Σ) where Σ.l ≡ [fi:Ai
i=1...n, mj : ς(yj )Bj ::Tj

j=1...m] :

(F) ∀1 � i � n. σ.l.fi ∈ ||Ai||Σ; and

(M) ∀1 � j � m ∀Σ′ � Σ ∀σ′, σ′′ ∈ St ∀l′ ∈ Loc ∀v ∈ Val.

if l′ ∈ ||Σ.l||Σ′ ∧ σ′ ∈ YΣ′ ∧ σ.l.mj (l
′, σ′) = (v, σ′′) then

(M1) (πVal(σ
′), v, πVal(σ

′′)) ∈ [[Tj [l
′/yj ]]] and

(M2) ∃Σ′′ ∈ StSpec. Σ′′ � Σ′ ∧ σ′′ ∈ XΣ′′ and

(M3) v ∈ ||Bj [l
′/yj ]||Σ′′

address the issues with allocation: the universal quantification over extensions Σ′ of Σ in

(M) accounts for the specifications of objects allocated between the time they are defined

and the time the methods are called. The existential quantification over extensions Σ′′ of

Σ in (M2) and (M3) provides for objects allocated by the method. In particular, since the

result of a method call may be a freshly allocated object, it is not sufficient simply to use

Σ′ in (M2) and (M3).

This semantic structure also appears in models for many other languages with dynamic

allocation (Levy 2002; Levy 2004; Reddy and Yang 2004; Stark 1998; Banerjee and

Naumann 2005; Moggi 1990). It is particularly obvious in those models explicitly

constructed in terms of possible worlds. Indeed, we may view ||A|| as a functor from

the partial order category (StSpec,�) to the category of subsets of Val ordered by set

inclusion, for every specification A.

The standard approach to obtain predicates defined by a mixed-variant recursion

proceeds as follows. Let R = P(St)StSpec denote the collection of predicates on St, indexed

by store specifications, and define a functional Φ : Rop × R → R according to Table 11.

We would then like to write [[Σ]] for fix(Φ)Σ. Unfortunately, there is a problem with the

definition of [[Σ]] as fix(Φ)Σ, which we discuss next.

4.2. On the existence of store specifications

The contravariant occurrence of Y in case (M) of the ‘definition’ of Φ above is forced

by the premise of the object construction rule in the Abadi–Leino logic. It states that, in

order to prove that specification A holds for a new object, one can assume that the self

object in methods already fulfils the specification A. It is this contravariance, in turn, that

calls for some advanced domain theory to show that the fixpoint of Φ does actually exist.

Unfortunately, the usual techniques (Pitts 1996; Reus and Streicher 2004) for establishing

the existence of such predicates involving a mixed-variance recursion (suitably extended

to families of predicates) do not apply: they require the functional Φ of Table 11 to

map admissible predicates to admissible predicates. However, because of the existential

quantification in cases (M2) and (M3), ranging over extensions of Σ′, this property fails

here. To see this failure, a counterexample is sketched in the remainder of this subsection,

which the reader may wish to skip.

Essentially, the counterexample relies on the fact that we are dealing with families X =

(XΣ)Σ∈StSpec of predicates. Due to the existential quantification over the indices Σ ∈ StSpec

it is possible to pick different Σi for each element of an ω-chain f0 	 f1 	 f2 	 . . . so that
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fi(x) ∈ XΣi
, that is, the chain need not be in line with the family (XΣ)Σ. Thus, in general,

there need not be any Σ◦ ∈ StSpec such that f(x) ∈ XΣ◦ holds for the lub f = �ifi, even

under the assumption that each XΣ is closed under taking least upper bounds.

In more detail, let

Σ = l0 : [m0 : ς(x)[m1 : ς(y)[]::True]::True],

which, informally, describes a store with a single object at location l0 containing a method

m0. When a call of this method converges, it returns an object satisfying [m1 : ς(y)[]::True]

(which is not much of a restriction). However, this resulting object has to be allocated in

the store, so a proper extension of the original store specification Σ has to be found.

Next, for i ∈ � let Ai be the object specification defined inductively by

A0 = [m1 : ς(y)[]::False]

Ai+1 = [m1 : ς(y)Ai::True].

In particular, this means that the method m1 of objects satisfying A0 must diverge. The

method m1 of an object satisfying Ai returns an object satisfying Ai−1. Hence, for such

objects x, it is possible to have method calls x.m1.m1 . . .m1 at most i times, of which the

i-th call must necessarily diverge (the others may or may not terminate).

The example below uses the fact that we can construct an ascending chain of objects for

which the first i − 1 calls indeed terminate, and which therefore do not satisfy Ai−1. Then,

the limit of this chain is an object x for which an arbitrary number of calls x.m1.m1 . . .m1

terminates, and which therefore does not satisfy any of the Ai: set Σ′′
i = Σ, l : Ai and

let σ ∈ [[Σ]] denote some store satisfying Σ according to the tentative definition above.

Moreover, define

σi = {|l0 = {|m0 = λ .(l, σ + σ′′
i )|}|}

where σ′′
0 = {|l = {|m1 = λ .⊥|}|} and σ′′

i+1 = {|l = {|m1 = λ .(l, σ + σ′′
i )|}|}, and let σ = �iσi.

Finally, define (indexed) relations X,Y ∈ R by

XΣ̂ =

{
{σ + σ′′

i } if ∃i ∈ �. Σ̂ ≡ Σ′′
i

� otherwise

YΣ̂ =

{
{σ} if Σ̂ ≡ Σ

� otherwise.

By construction, both X and Y are admissible in every component Σ̂. By induction, we

get σ′′
0 	 σ′′

1 	 . . . , and therefore σ0 	 σ1 	 . . . in Φ(Y ,X)Σ ⊆ St. Hence we must show

σ ∈ Φ(Y ,X)Σ. But this is not the case, since it would entail, by (M2) and

σ.l0.m0(l, σ) =
⊔

i σi.l0.m0(l, σ) = (l, σ +
⊔

i σ
′′
i ),

that there exists Σ′′ � Σ such that σ + �iσ
′′
i ∈ XΣ′′ . Clearly this does not hold: σ + �iσ

′′
i

is strictly above every σ + σ′′
i and therefore not in any of the XΣ′′

i
. Hence, by choice of X,

there is no store specification Σ′′ � Σ such that σ + σ′′
i ∈ XΣ′′ . This shows that Φ(Y ,X)Σ

is not necessarily admissible, even if X (and also Y ) is.
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Table 12. Store specifications

(σ, φ) ∈ Φ(Y ,X)Σ ⇐⇒ (Dom1) dom(Σ) = dom(φ); and

(Dom2) ∀l ∈ dom(Σ).

if dom(Σ.l) ≡ [fi:Ai
i=1...n, mj : ς(yj )Bj ::Tj

j=1...m]

then dom(φ.l) = {mj}j=1...m; and

∀l ∈ dom(Σ) where Σ.l ≡ [fi:Ai
i=1...n, mj : ς(yj )Bj ::Tj

j=1...m] :

(F) ∀1 � i � n. σ.l.fi ∈ ||Ai||Σ; and

(M) ∀1 � j � m ∀Σ′ � Σ ∀σ′, σ′′ ∈ St ∀φ′ ∈ RSF ∀l′ ∈ Loc ∀v ∈ Val.

if l′ ∈ ||Σ.l||Σ′ ∧ (σ′, φ′) ∈ YΣ′ ∧ σ.l.mj (l
′, σ′) = (v, σ′′)

then ∃Σ′′ � Σ′ ∃φ′′ ∈ RSF. φ.l.mj (l
′, σ′, φ′,Σ′) = (Σ′′, φ′′) and

(M1) (πVal(σ
′), v, πVal(σ

′′)) ∈ [[Tj [l
′/yj ]]]; and

(M2) (σ′′, φ′′) ∈ XΣ′′ ; and

(M3) v ∈ ||Bj [l
′/yj ]||Σ′′

4.3. A refined semantics of store specifications

We refine the definition of store predicates by replacing the existential quantifier in

condition (M2) of the functional Φ from Table 11 by a choice function, as follows: we

call the elements of the (recursively defined) domain

φ ∈ RSF = RecLoc(RecM(St × RSF × StSpec ⇀ StSpec × RSF)) (8)

(records of) choice functions. The intuition is that, given a store σ ∈ [[Σ]] and some

extension Σ′ � Σ, if σ′ ∈ [[Σ′]] with choice function φ′ and the method invocation

σ.l.m(σ′) terminates, then φ.l.m(σ′, φ′,Σ′) = (Σ′′, φ′′) yields a store specification Σ′′ � Σ′

such that σ′′ ∈ [[Σ′′]] (and φ′′ is a choice function for the extension Σ′′ of Σ). This is again

an abstraction of the actual store σ, this time abstracting the dynamic effects of methods

with respect to allocation, on the level of store specifications. Note that the argument

store σ′ is needed in general to determine the resulting extension of the specification, since

allocation behaviour may depend on the actual values of fields.

We use the domain RSF of choice functions explicitly in the interpretation of store

specifications below. This has the effect of constraining the existential quantifier to work

uniformly on the elements of increasing chains, hence precluding the counterexample to

admissibility of the previous subsection.

Definition 4.6 (Store predicate, revisited). Let S = P(St×RSF)StSpec denote the collection

of families of subsets of St × RSF, indexed by store specifications. Table 12 defines a

functional Φ : Sop × S → S; we write σ ∈ [[Σ]] if there is some φ ∈ RSF such that

(σ, φ) ∈ fix(Φ)Σ.

Lemma 4.7 (Existence). Functional Φ, defined in Definition 4.6, does have a unique fixed

point.

Proof. First, we show that Φ is monotonic and maps admissible predicates to admissible

predicates, in the sense that for all X and Y ,

∀Σ ∈ StSpec. XΣ ⊆ St × RSF admissible

=⇒ ∀Σ ∈ StSpec. Φ(Y ,X)Σ ⊆ St × RSF admissible.
(9)
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Indeed, if (σ0, φ0) 	 (σ1, φ1) 	 . . . is a chain in Φ(Y ,X)Σ, then σ0 	 σ1 	 . . . in St and

φ0 	 φ1 	 . . . in RSF. Let σ = �kσk and φ = �kφk (so (σ, φ) = �k(σk, φk)). We show

(σ, φ) ∈ Φ(Y ,X)Σ under the assumption that XΣ′ is admissible for all Σ′ ∈ StSpec.

Clearly, conditions (Dom1) and (Dom2) of Definition 4.6 are satisfied. As for (F)

and (M), suppose l ∈ dom(Σ) with Σ.l = [fi:Ai
i=1...n, mj: ς(yj)Bj::Tj

j=1...m]. Since, for all

1 � i � n,

σ0.l.fi = σ1.l.fi = · · · = σ.l.fi,

and we obtain σ.l.fi ∈ ||Ai||Σ by the assumption that (σ0, φ0) ∈ Φ(Y ,X)Σ, showing (F). To

prove (M), suppose Σ′ � Σ, (σ′, φ′) ∈ YΣ′ and σ.l.mj(σ
′) = (v, σ′′) ↓ for some v ∈ Val and

σ′′ ∈ St. By definition of σ as �kσk and continuity of σ.l.mj , there must be σ′′
k ∈ St and

σk.l.mj(σ
′) = (v, σ′′

k )↓ for sufficiently large k, and

(v, σ′′) =
⊔

k σk.l.mj(σ
′) =

⊔
k(v, σ

′′
k ).

By assumption, (σk, φk) ∈ Φ(Y ,X)Σ, so for all sufficiently large k, φk.l.mj(σ
′, φ′,Σ′) =

(Σ′′
k , φ

′′
k ) with Σ′′

k � Σ′ and:

— (πVal(σ
′), v, πVal(σ

′′
k )) ∈ [[Tj[l/yj]]];

— (σ′′
k , φ

′′
k ) ∈ XΣ′′

k
; and

— v ∈ ||Bj[l/yj]||Σ′′
k
.

Since πVal(σ
′′
k ) = πVal(σ

′′), condition (M1) follows. The discrete order on Spec entails

Σ′′
k ≡ Σ′′

k+1 ≡ . . . , so, φ(σ′, φ′,Σ′) = �(Σ′′
k , φ

′′
k ) = (Σ′′,�kφ

′′
k ) with Σ′′ ≡ Σ′′

k ≡ Σ′′
k+1 ≡ . . . , and

(M3) is clearly satisfied. By assumption, XΣ′′ is admissible, so condition (M2) also holds,

as required, that is, (σ′′, φ′′) = �(σ′′
k , φ

′′
k ) ∈ XΣ′′ . This proves claim (9).

Next, define, for all admissible X,X ′ ∈ S and e = (e1, e2) ∈ [St ⇀ St] × [RSF ⇀ RSF],

e : X ⊂ X ′ ⇐⇒ ∀Σ ∈ StSpec ∀σ ∈ St ∀φ ∈ RSF.

(σ, φ) ∈ XΣ ∧ (e1(σ)↓ ∨ e2(φ)↓)

=⇒ e1(σ)↓ ∧ e2(φ)↓ ∧ (e1(σ), e2(φ)) ∈ X ′
Σ

such that e : X ⊂ X ′ states that e maps pairs of stores and choice functions that are in

XΣ to pairs of stores and choice functions that are in the corresponding component X ′
Σ of

X ′. Let FStore be the locally continuous, mixed-variant functor associated with the domain

equations (1), for which FStore(St,St) = St, and consider the locally continuous functor

FSt,RSF(R, S) : (pCpo × pCpo)op × pCpo × pCpo → pCpo × pCpo

FSt,RSF(R, S) =〈FStore(Π1(R),Π1(S)),

RecLoc(RecM(Π1(R) × Π2(R) × StSpec ⇀ StSpec × Π2(S)))〉

where Πi is the projection to the i-th component. Hence (St,RSF) is the minimal invariant

for FSt,RSF. In the following, we write FSt for the functor Π1 ◦FSt,RSF and FRSF for

Π2 ◦FSt,RSF. By the results of Pitts (1996), all that remains is to show that

e : X ⊂ X ′ ∧ e : Y ′ ⊂ Y =⇒ FSt,RSF(e, e) : Φ(Y ,X) ⊂ Φ(Y ′, X ′) (†)

for all X,Y ,X ′, Y ′ ∈ S and e = (e1, e2) with e1 	 idSt and e2 	 idRSF, which follows from

a similar line of reasoning to that in Reus and Streicher (2004). Suppose e = (e1, e2) such

https://doi.org/10.1017/S0960129506005214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005214


Denotational semantics for a program logic of objects 333

that e1 	 idSt, e2 	 idRSF and

e : X ⊂ X ′ ∧ e : Y ′ ⊂ Y (10)

for some X,Y ,X ′, Y ′ ∈ S. Assume (σ, φ) ∈ Φ(Y ,X)Σ. We must show FSt,RSF(e, e)(σ, φ) ∈
Φ(Y ′, X ′)Σ to prove (†). Recall that

FSt(e, e)(σ, φ).l.f = σ.l.f (11a)

FSt(e, e)(σ, φ).l.m(σ′) = (idVal × e1)(σ.l.m(e1(σ
′))) (11b)

FRSF(e, e)(σ, φ).l.m(σ′, φ′,Σ′) = (idStSpec × e2)(φ.l.m(e1(σ
′), e2(φ

′),Σ′)) (11c)

for all f ∈ F and m ∈ M. In particular, conditions (Dom1) and (Dom2) of Definition 4.6

are immediately seen to be satisfied for FSt,RSF(e, e)(σ, φ).

To show (F) and (M), let l ∈ dom(Σ) and Σ.l ≡ [fi:Ai
i=1...n, mj: ς(yj)Bj::Tj

j=1...m]. From

(σ, φ) ∈ Φ(Y ,X)Σ and (11a), we obtain for all 1 � i � n

(F) FSt(e, e)(σ, φ).l.fi ∈ ||Ai||Σ
We still need to check conditions (M1)–(M3) of Definition 4.6. Let 1 � j � m. Suppose

Σ′ � Σ, φ′ ∈ RSF and σ′ ∈ St with (σ′, φ′) ∈ Y ′
Σ′ and such that FSt(e, e)(σ, φ).l.mj(σ

′) ↓.

Thus, by (11b), we know that

FSt(e, e)(σ, φ).l.mj(σ
′) = (v, e1(σ

′′))

where (v, σ′′) = σ.l.mj(e1(σ
′))

for some v ∈ Val and σ′′ ∈ St. By (10), assumption (σ′, φ′) ∈ Y ′
Σ′ shows e(σ′, φ′) =

(e1(σ
′), e2(φ

′)) ∈ YΣ′ . Together with the assumption (σ, φ) ∈ Φ(Y ,X)Σ and (11c), this

entails

FRSF(e, e)(φ).l.mj(σ
′, φ′,Σ′) = (Σ′′, e2(φ

′′))

where (Σ′′, φ′′) = φ.l.mj(e1(σ
′), e2(φ

′),Σ′)

for φ′′ ∈ RSF and Σ′′ � Σ′ such that:

(M1
′
) (πVal(e1(σ

′), v, πVal(σ
′′)) ∈ [[T [l/yj]]].

(M2
′
) (σ′′, φ′′) ∈ XΣ′′ .

(M3) v ∈ ||Bj[l/yj]||Σ′′ .

Since, by assumption, e1 	 idSt, we know e1(σ
′′) 	 σ′′, and, in particular, πVal(e1(σ

′′)) =

πVal(σ
′′). Similarly, for σ′, πVal(e1(σ

′)) = πVal(σ
′) since σ′ � e1(σ

′). Hence, (M1
′
) entails

(πVal(σ
′), v, πVal(e1(σ

′′))) ∈ [[T [l/yj]]], that is, (M1) holds. Finally, assumption (10) and

(M2
′
) give (e1(σ

′′), e2(φ
′′)) ∈ X ′

Σ′′ , which shows (M2), and we have proved (†).

Note that our proof of property (†) relies on the fact that the predicates denoting trans-

ition specifications are upward-closed in the pre-execution store and downward-closed in

the post-execution store. This holds in Abadi–Leino logic as transition specifications are

only defined on the flat part of the store. If they referred to the method part, (†) could

not necessarily be shown, unless one finds an appropriate way to restrict the reference to

methods in transition specifications. See Reus and Streicher (2004) for more discussion

and some suggestions for how to lift this restriction.
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5. Soundness

In this section we present a new soundness proof of Abadi and Leino’s logic using

denotational semantics. Before we can embark on this endeavour, we need to define the

semantics of judgements Γ  a : A :: T , which provides a notion of validity for those

judgements. We write Γ � a : A :: T for the semantics of judgement Γ  a : A :: T .

Soundness means that every judgement that is derivable is indeed valid.

The definition of validity has to be assembled in a compositional way from the semantics

of the constituents of the judgement, which were discussed in the previous sections. The

definition must also take into consideration the fact that the initial store in which the

program a is executed may contain methods that are called by a. Store specifications have

been introduced exactly for this purpose. The context Γ specifies objects that are referred

to by variables of the environment, but which actually lie in the store. This means context

specification and store specification are intertwined. Because of Definition 4.4, context

specifications can be interpreted with respect to store specifications Σ, which resolves this

entanglement, so we obtain the following definition of validity.

Definition 5.1 (Validity). Γ � a : A :: T if and only if for all store specifications Σ ∈ StSpec,

for all ρ ∈ ||Γ||Σ and all σ ∈ [[Σ]], if [[a]]ρσ = (v, σ′), then (v, σ′) ∈ [[[Γ]  A]]ρ and

(πVal(σ), v, πVal(σ
′)) ∈ [[[Γ]  T ]]ρ.

Thus Γ � a : A :: T states the following: suppose program [[a]] returns (v, σ) when run in

a store σ that satisfies some store specification Σ (and therefore does not contain any code

that violates the restrictions needed for the logic, see also the discussion in Section 4) and

in an environment ρ that satisfies Γ with respect to σ (expressed via reference to Σ). Then

(v, σ) satisfies the specification [[[Γ]  A]]ρ and the state transformation provoked satisfies

[[[Γ]  T ]]ρ.

The rest of this section is dedicated to a proof of the soundness theorem (Theorem 5.5),

which relies on a number of properties that are derived in the following.

Recall from the previous section that the semantics of store specifications is defined in

terms of the semantics ||A||Σ for result specifications A without any reference to the object

specification [[A]]. The following key lemma establishes the relation between the store

specifications of Section 4 and the object specifications [[A]] as defined in Section 3.3.

Lemma 5.2. For all object specifications A, store specifications Σ, stores σ and locations

l, if σ ∈ [[Σ]] and l ∈ dom(Σ) such that  Σ.l <: A, then (l, σ) ∈ [[A]].

Proof. We use induction on the structure of A. Because A is an object specification, it

is necessarily of the form

A ≡ [fi:Ai
i=1...n, mj: ς(yj)Bj::Tj

j=1...m].

We have to show that (l, σ) ∈ [[A]], that is, that

— (σ.l.fi, σ) ∈ [[Ai]] for all 1 � i � n; and

— if σ.l.mj(σ) = (v, σ′), then (v, σ′) ∈ [[yj  Bj]](yj �→ l) and (πVal(σ), v, πVal(σ
′)) ∈ [[yj 

Tj]](yj �→ l) for all 1 � j � m.
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From the subtyping relation and Σ.l <: A, we find

Σ.l ≡ [fi:Ai
i=1...n+p,mj:ς(yj)B

′
j::T

′
j
j=1...m+p

]

where yj  B′
j <: Bj and yj fo T ′

j → Tj .

For the first part, by Definition 4.6 (F) and σ ∈ [[Σ]], we have σ.l.fi ∈ ||Ai||Σ. If

Ai is Bool, then ||Ai||Σ = BVal, hence, (σ.l.fi, σ) ∈ [[Bool]] = [[Ai]]. Otherwise, Ai is

an object specification and the definition of ||Ai||Σ implies  Σ.(σ.l.fi) <: Ai, again by

Definition 4.6 (F). Hence, by the induction hypothesis, we obtain (σ.l.fi, σ) ∈ [[Ai]], as

required.

For the second part, suppose that σ.l.mj(σ) = (v, σ′′). From Definition 4.6 (M2) and

(M3), and the assumption σ ∈ [[Σ]], we find v ∈
∣∣∣∣B′

j[l/yj]
∣∣∣∣

Σ′′ and σ′′ ∈ [[Σ′′]] for some

Σ′′ � Σ. In the case where Bj is Bool, we therefore have v ∈ BVal and obtain

(v, σ′′) ∈ [[Bool]] = [[yj  Bool]](yj �→ l).

Next, if Bj is an object specification, by the definition of
∣∣∣∣B′

j[l/yj]
∣∣∣∣

Σ′′ , we have

 Σ′′.v <: B′
j[l/yj].

By the induction hypothesis (applied to B′
j[l/yj], Σ′′, σ′′ and v), (v, σ′′) ∈ [[B′

j[l/yj]]]. Thus,

(v, σ′′) ∈ [[B′
j[l/yj]]] = [[yj  B′

j]](yj �→ l) by substitution lemma (Lemma 4.2)

⊆ [[yj  Bj]](yj �→ l) by subtype soundness (Lemma 3.5),

as required.

Finally, by Definition 4.6 (M1), we obtain

(πVal(σ), v, πVal(σ
′′)) ∈ [[T ′

j [l/yj]]] = [[yj  T ′
j ]](yj �→ l) by substitution (Lemma 4.2)

⊆ [[yj  Tj]](yj �→ l) by soundness of fo.

This concludes the proof.

Before proving the main technical result in Lemma 5.4, we state the following fact

about the transition relation that appears in the let rule.

Lemma 5.3. Suppose that for σ, σ′, σ′′ ∈ St and v, v′ ∈ Val, we have

(πVal(σ), v, πVal(σ
′)) ∈ [[x  T ′]]ρ

and

(πVal(σ
′), v′, πVal(σ

′′)) ∈ [[x, x  T ′′]]ρ[x := v]

Then, if x  T and

foT
′[selint(·, ·)/selpost(·, ·), allocint(·)/allocpost(·), x/result]

∧ T ′′[selint(·, ·)/selpre(·, ·), allocint(·)/allocpre(·)] → T
(12)

we have (πVal(σ), v′, πVal(σ
′′)) ∈ [[x  T ]]ρ.

Proof. Consider an extended signature of transition relations, with additional function

and predicate symbols selint(·, ·) and allocint(·), respectively. We extend the interpretation
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of transition relations (and expressions) in the natural way to operate on three stores,

[[x1, . . . , xk  T ]]ρ : P(StVal × Val × StVal × StVal)

where the second store argument is used to interpret selint(·, ·) and allocint(·):

(σ, v, σ̂, σ′) ∈ [[x  allocint(e)]]ρ ⇐⇒ [[x  e]]ρσvσ̂σ′ ↓ ∧ [[x  e]]ρσvσ̂σ′ ∈ dom(σ̂)

and

[[x  selint(e0, e1)]]ρσvσ̂σ
′ =




σ̂.l.f if [[x  e0]]ρσvσ̂σ
′ = l ∈ Loc

and [[x  e1]]ρσvσ̂σ
′ = f ∈ F

and l ∈ dom(σ̂) and f ∈ dom(σ̂.l)

undefined otherwise.

By assumption and using the fact that neither T ′ nor T ′′ contains the new predicates, we

also have

(πVal(σ), v, πVal(σ
′), πVal(σ

′)) ∈ [[x, x  T ′]]ρ[x := v], and

(πVal(σ
′), v′, πVal(σ

′), πVal(σ
′′)) ∈ [[x, x  T ′′]]ρ[x := v].

Thus,

(πVal(σ), v′, πVal(σ
′), πVal(σ

′′)) ∈
[[x, x  T ′[selint(·, ·)/selpost(·, ·), allocint(·)/allocpost(·), x/result]]]ρ[x := v]

since there are no occurrences of selpost(·, ·), allocpost(·) and result, and

(πVal(σ), v′, πVal(σ
′), πVal(σ

′′)) ∈
[[x, x  T ′′[selint(·, ·)/selpre(·, ·), allocint(·)/allocpre(·)]]]ρ[x := v]

since there are no occurrences of selpre(·, ·) and allocpre(·). From soundness of first-order

provability and assumption (12), we obtain

(πVal(σ), v′, πVal(σ
′), πVal(σ

′′)) ∈ [[x, x  T ]]ρ[x := v],

and the result follows since T does not depend on x or the new predicates, by x  T .

5.1. The invariance lemma

In this subsection we state and prove the main lemma of the soundness proof. Intuitively,

it shows that store specifications Σ are ‘invariant’ under proved programs,

σ ∈ [[Σ]] ∧ [[a]]ρσ = (v, σ′) =⇒ ∃ Σ′ � Σ. σ′ ∈ [[Σ′]]. (13)

Note that the program a will in general allocate further objects, so the resulting store

only satisfies an extension of the original store specification. The precise conditions of

when (13) holds are given in the statement of the following lemma, and take the choice

functions φ ∈ RSF introduced in Section 4 into account. We write SF for the domain of

‘individual’ choice functions,

SF = [St × RSF × StSpec ⇀ StSpec × RSF]

for which RSF = RecLoc(RecM(SF)).
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Lemma 5.4. Suppose:

(H1) Γ  a : A :: T .

(H2) Σ ∈ StSpec is a store specification.

(H3) ρ ∈ ||Γ||Σ.

Then there exists φ ∈ SF such that, for all Σ′ � Σ and for all (σ′, φ′) ∈ fix(Φ)Σ′ , if

[[a]]ρσ′ = (v, σ′′)↓, the following hold:

(S1) ∃Σ′′ � Σ′ ∃φ′′ ∈ RSF. φ(σ′, φ′,Σ′) = (Σ′′, φ′′).

(S2) (σ′′, φ′′) ∈ fix(Φ)Σ′′ .

(S3) v ∈ ||A[ρ/Γ]||Σ′′ .

(S4) (πVal(σ
′), v, πVal(σ

′′)) ∈ [[[Γ]  T ]]ρ.

Proof. The proof is by induction on the derivation of Γ  a : A :: T .

— Lemma 4.5 is applied in the cases Let and Object Construction, where an extended

specification context is used in the induction hypothesis.

— Invariance of subspecifications in field specifications is needed in the case for Field

Update.

— In the cases where the store changes, that is, Object Construction and Field

Update, we must show explicitly that the resulting store satisfies the store specification,

according to Definition 4.6. In this case one makes use of the fact that methods in

the semantics of store specifications are specified using arbitrary store arguments

that recursively fulfil the same store specification. This provides a sufficiently strong

hypothesis to deal with the changed store.

We consider cases, according to the last rule applied in the derivation of the judgement

Γ  a : A :: T .

— Subsumption

Suppose that Γ  a : A :: T has been obtained by an application of the subsumption

rule, and that:

(H2) Σ is a store specification.

(H3) ρ ∈ ||Γ||Σ.

We have to show that there is φ ∈ SF such that whenever Σ′ � Σ, (σ′, φ′) ∈ fix(Φ)Σ′

and [[a]]ρσ′ = (v, σ′), we have that (S1)–(S4) hold.

Recalling the subsumption rule,

[Γ]  A′ <: A Γ  a:A′::T ′ [Γ]  A [Γ]  T fo T ′ → T

Γ  a:A::T
,

we must have Γ  a : A′ :: T ′ for some specification A′ and transition relation T ′ with

fo T ′ → T and [Γ]  A′ <: A. By the induction hypothesis, there exists φ ∈ SF such

that for all Σ′ � Σ, (σ′, φ′) ∈ fix(Φ)Σ′ with [[a]]ρσ′ = (v, σ′):

(S1) There exists Σ′′ � Σ′ and φ′′ ∈ RSF such that φ(σ′, φ′,Σ′) = (Σ′′, φ′′).

(S2) (σ′′, φ′′) ∈ fix(Φ)Σ′′ .

(S3′) v ∈ ||A′[ρ/Γ]||Σ′ .

(S4′) (πVal(σ), v, πVal(σ
′)) ∈ [[[Γ]  T ′]]ρ.
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Because fo T ′ → T , we know [[Γ  T ′]]ρ ⊆ [[Γ  T ]]ρ, and therefore (S4
′
) implies

(πVal(σ), v, πVal(σ
′)) ∈ [[Γ  T ]]ρ. (S4)

We still need to show

v ∈ ||A[ρ/Γ]||Σ′ . (S3)

Note that by the subtyping rules, A ≡ Bool if and only if A′ ≡ Bool. In this case, (S3)

follows directly from (S3′). In the case where A′ is an object specification, assumption

[Γ]  A′ <: A and Lemma 4.2 entail  A′[ρ/Γ] <: A[ρ/Γ]. Transitivity of <: and

(S3′) then prove (S3), by the definition of ||A′[ρ/Γ]||Σ′ .

— Var

Suppose Γ  a : A :: T has been derived by an application of the Var rule

Γ  ok x:A in Γ

Γ  x:A::Tres(x)
,

for which we see that a ≡ x, x:A in Γ, and T ≡ Tres(x). Further, assume:

(H2) Σ ∈ StSpec.

(H3) ρ ∈ ||Γ||Σ.

Define the (partial continuous) map φ ∈ SF by

φ(σ′, φ′,Σ′) = (Σ′, φ′).

Now suppose Σ′ � Σ, (σ′, φ′) ∈ fix(Φ)Σ′ and [[a]]ρσ′ = (v, σ′′). By the assumptions and

the semantics of variables, we obtain (v, σ′′) = (ρ(x), σ′), that is,

v = ρ(x) ∧ σ′′ = σ′. (14)

By the definition of φ above, we can choose Σ′′ as Σ′, since then, as required:

(S1) φ(σ′, φ′,Σ′) = (Σ′, φ′).

(S2) (σ′′, φ′) ∈ fix(Φ)Σ′ , by σ′′ = σ′ and assumption (σ′, φ′) ∈ fix(Φ)Σ′ .

(S3) v ∈ ||A[ρ/Γ]||Σ′ , by v = ρ(x), by x:A ∈ Γ and (H3).

(S4) (πVal(σ
′), v, πVal(σ

′′)) ∈ [[[Γ]  Tres(x)]]ρ, by the definition of [[[Γ]  T ]] in Table 8

and (14).

— Const

This is similar to the previous case.

— Conditional

We use case distinction, depending on whether the value of the guard x is true or

false.

— Let

Suppose (H1) Γ  a : A :: T has been derived by an application of the Let rule.

Hence, a is let x = a1 in a2. Assume that:

(H2) Σ ∈ StSpec is a store specification.

(H3) ρ ∈ ||Γ||Σ.

https://doi.org/10.1017/S0960129506005214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005214


Denotational semantics for a program logic of objects 339

Now recall the rule for this case,

Γ  a1:A1::T1 Γ, x:A1  a2:A::T2 [Γ]  A [Γ]  T
fo T1[selint(·, ·)/selpost(·, ·), allocint(·)/allocpost(·), x/result]

∧ T2[selint(·, ·)/selpre(·, ·), allocint(·)/allocpre(·)] → T

Γ  let x = a1 in a2:A::T

By the premiss of this rule, we must have:

(H1′) Γ  a1 : A1 :: T1.

(H1′′) Γ, x:A1  a2 : A :: T2.

By the induction hypothesis applied to (H1′), there is φ1 ∈ SF such that, for all Σ′ � Σ

and (σ′, φ′) ∈ fix(Φ)Σ′ with [[a1]]ρσ
′ = (v̂, σ̂), the conclusions of the lemma hold:

(S1′) there exists Σ̂ � Σ′ and φ̂ ∈ RSF such that φ1(σ
′, φ′,Σ′) = (Σ̂, φ̂).

(S2′) (σ̂, φ̂) ∈ fix(Φ)Σ̂.

(S3′) v̂ ∈ ||A1[ρ/Γ]||Σ̂.

(S4′) (πVal(σ
′), v̂, πVal(σ̂)) ∈ [[[Γ]  T1]]ρ.

In particular, by conclusion (S3′) and context extension (Lemma 4.5),

ρ[x := v̂] ∈ ||Γ, x:A1||Σ̂ .

Therefore, by the induction hypothesis applied to (H1′′), there is φΣ̂v̂ ∈ SF such that,

for all Σ′ � Σ̂ and all (σ′, φ′) ∈ fix(Φ)Σ′ with [[a2]]ρ[x := v̂]σ′ = (v, σ′′), the following

hold:

(S1′′) There exists Σ′′ � Σ′ and φ′′ ∈ RSF such that φΣ̂v̂(σ
′, φ′,Σ′) = (Σ′′, φ′′).

(S2′′) (σ′′, φ′′) ∈ fix(Φ)Σ′′ .

(S3′′) v ∈ ||A[ρ[x := v̂]/Γ, x:A1]||Σ′′ .

(S4′′) (πVal(σ
′), v, πVal(σ

′′)) ∈ [[[Γ, x:A1]  T2]]ρ.

Now define φ ∈ SF for all σ′, φ′ and Σ′ by

φ(σ′, φ′,Σ′) =

{
φΣ̂v̂(σ̂, φ̂, Σ̂) if [[a1]]ρσ

′ = (v̂, σ̂) ∧ φ1(σ
′, φ′,Σ′) = (Σ̂, φ̂)

undefined otherwise,

which is continuous as all its constituents are, and since Val and StSpec are flat.

We show that the conclusion of the lemma holds. Let Σ′ � Σ and (σ′, φ′) ∈ fix(Φ)Σ′ ,

and suppose [[a]]ρσ′ = (v, σ′′). From the definition of the semantics,

(v, σ′′) = let (v̂, σ̂) = [[a1]]ρσ
′ in [[a2]]ρ[x := v̂]σ̂,

which shows:

– [[a1]]ρσ
′ = (v̂, σ̂).

– [[a2]]ρ[x := v̂]σ̂ = (v, σ′′).

We now show that φ defined above does fulfill the necessary requirements:

(S1) There is Σ′′ ∈ StSpec such that Σ′′ � Σ̂ � Σ′ and φ(σ′, φ′,Σ′) = φΣ̂v̂(σ̂, φ̂, Σ̂) =

(Σ′′, φ′′), where φ1(σ
′, φ′,Σ′) = (Σ̂, φ̂), by (S1′) and (S1′′).

(S2) (σ′′, φ′′) ∈ fix(Φ)Σ′′ , by (S2′) and (S2′′).
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(C3) v ∈ ||A[ρ[x := v̂]/Γ, x:A1]||Σ′′ , by (S3′) and (S3′′).

(C4′) (πVal(σ
′), v̂, πVal(σ̂)) ∈ [[[Γ]  T1]]ρ, by (S4′).

(C4′′) (πVal(σ̂), v, πVal(σ
′′)) ∈ [[[Γ, x:A1]  T2]]ρ[x := v̂], by (S4′′).

Since [Γ]  A, that is, x is not free in A, we have

A[ρ[x := v]/(Γ, x:A1)] ≡ A[ρ/Γ]. (15)

Moreover, (C4′), (C4′′), Lemma 5.3 and

foT1[selint(·, ·)/selpost(·, ·), allocint(·)/allocpost(·), x/result]

∧ T2[selint(·, ·)/selpre(·, ·), allocint(·)/allocpre(·)] → T

prove

(πVal(σ
′), v, πVal(σ

′′)) ∈ [[Γ  T ]]ρ. (16)

We therefore obtain, as required:

(S3) v ∈ ||A[ρ/Γ]||Σ′ , by (C3) and (15) as Σ′′ extends Σ′.

(S4) (πVal(σ
′), v, πVal(σ

′′)) ∈ [[Γ  T ]]ρ by (16).

— Object Construction

Suppose (H1): Γ  a : A :: T has been derived by an application of the Object

Construction rule. Necessarily, a ≡ [fi = xi
i=1...n, mj = ς(yj)bj

j=1...m]. Suppose that:

(H2) Σ ∈ StSpec.

(H3) ρ ∈ ||Γ||Σ.

Recalling the object introduction rule

A ≡ [fi:Ai
i=1...n, mj: ς(yj)Bj::Tj

j=1...m]

Γ  xi:Ai :: Tres(xi)
i=1...n Γ, yj:A  bj:Bj::Tj

j=1...m

Γ  [fi = xi
i=1...n,mj = ς(yj)bj

j=1...m]:A::Tobj(f1 = x1 . . . fn = xn)
,

we see that A is [fi:Ai,mj:Bj::Tj], that T is Tobj(f1 = x1 . . . fn = xn) and that:

(H1′) Γ  xi : Ai :: Tres(xi) for 1 � i � n.

(H1′′) Γ, yj:A  bj : Bj :: Tj for 1 � j � m.

We have to show that there is φ ∈ SF such that, for all Σ′ � Σ and all (σ′, φ′) ∈ fix(Φ)Σ′

with [[a]]ρσ′ = (v, σ′′), conditions (S1)–(S4) hold.

From (H3) and context extension (Lemma 4.5), we know that for all Σ̂ � Σ and

l0 ∈ ||A[ρ/Γ]||Σ̂,

ρ[yj := l0] ∈ ||Γ, yj:A||Σ̂ .

Hence, by the induction hypothesis on (H1′′), for all 1 � j � m there is φ
j

Σ̂ l0
∈ SF

such that, for all Σ1 � Σ̂ and all (σ1, φ1) ∈ fix(Φ)Σ̂ with [[bj]]ρ[yj := l0]σ1 = (v2, σ2) ↓,

we obtain the conclusions (S1)–(S4) of the lemma, that is:

(S1′) There exists Σ2 � Σ1 � Σ̂ and φ2 ∈ RSF such that φj

Σ̂ l0
(σ1, φ1,Σ1) = (Σ2, φ2).

(S2′) (σ2, φ2) ∈ fix(Φ)Σ2
.

https://doi.org/10.1017/S0960129506005214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005214


Denotational semantics for a program logic of objects 341

(S3′) v2 ∈ ||Bj[ρ[yj := l0]/Γ, yj:A]||Σ2
.

(S4′) (πVal(σ1), v2, πVal(σ2)) ∈ [[[Γ, yj:A]  Tj]]ρ[yj := l0].

Now we can define φ ∈ SF as follows:

φ(σ′, φ′,Σ′) =




((Σ′, l0:A[ρ/Γ]), φ′ + {|l0 = {|mj =φ
j
(Σ′ ,l0:A[ρ/Γ]) l0

|}|})
if Σ′ � Σ and [[a]]ρσ′ = (l0, σ

′′)

undefined otherwise,

(17)

which is continuous as all constituents are and StSpec is a flat cpo. We now show that

(S1)–(S4) hold. Let Σ′ � Σ and (σ′, φ′) ∈ fix(Φ)Σ̂, and suppose [[a]]ρσ′ = (v, σ′′). By the

definition of the semantics, and the fact that (H1′) entails ρ(xi) ↓ for 1 � i � n, for

[[a]]ρσ′ = (v, σ′′) ∈ Loc×St, we obtain v = l0 where l0 /∈ dom(σ′) (and so l0 /∈ dom(Σ′))

and

σ′′ = σ′ + {|l0 = {|fi = ρ(xi),mj = λσ.[[bj]]ρ[yj := l0]σ|}|}. (18)

We then get that there exists φ′′ ∈ RSF such that:

(S1) φ(σ′, φ′,Σ′) = ((Σ′, l0:A[ρ/Γ]), φ′′), by construction of φ in (17).

(S3) v = l0 ∈ ||A[ρ/Γ]||(Σ′ ,l0:A[ρ/Γ]), by definition of ||·||.
(S4) (πVal(σ

′), v, πVal(σ
′′)) ∈ [[Γ  Tobj(f1 = x1 . . . fn = xn)]]ρ, which is easily checked

from the definition of Tobj(. . . ), the semantics in Table 8 and equation (18).

Now all we need to show is (S2): (σ′′, φ′′) ∈ fix(Φ)Σ′′ , where Σ′′ is Σ′, l0:A[ρ/Γ]. By the

construction of φ in (17),

φ′′ = φ′+{|l0={|mj=φ
j
(Σ′ ,l0:A[ρ/Γ]) l0

|}|}.

We show (S2) according to Definition 4.6.

First, by assumption, the domains of φ′ and Σ′ agree, so (Dom1) holds. By construction

of φ, we also have dom(φ′′.l0) = {m1, . . . ,mm}, from which (Dom2) follows. For the

remaining conditions, suppose l ∈ dom(Σ′′). We distinguish two cases:

– l �= l0: Then

Σ′′.l = Σ′.l = [gi:A
′
i
i=1...p

, nj:ς(yj)B
′
j :: T ′

j
1...q

].

(F) For all 1 � i � p, σ′′.l.gi = σ′.l.gi, so from (σ′, φ′) ∈ fix(Φ)Σ′ ,

σ′′.l.gi ∈ ||A′
i||Σ′ ⊆ ||A′

i||Σ′′ .

(M) Let 1 � j � q, Σ1 � Σ′′ and (σ1, φ1) ∈ fix(Φ)Σ1
, and suppose σ′′.l.nj(σ1) =

(v2, σ2). Since σ′′.l.nj = σ′.l.nj and Σ1 � Σ′, the assumption that (σ′, φ′) ∈
fix(Φ)Σ′ and the construction of φ′′ entails that there exists Σ2 � Σ1 and

φ2 ∈ RSF such that φ′′.l.nj(σ1, φ1,Σ1) = φ′.l.nj(σ1, φ1,Σ1) = (Σ2, φ2) and:

(M1) (πVal(σ1), v2, πVal(σ2)) ∈ [[T ′
j [l/yj]]].

(M2) (σ2, φ2) ∈ fix(Φ)Σ2
.

(M3) v2 ∈
∣∣∣∣B′

j[l/yj]
∣∣∣∣

Σ2
.
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– l = l0:

(F) By the assumption, (H1′) and ρ ∈ ||Γ||Σ, we know that there is  Ai
′ <: Ai for

all 1 � i � n such that xi:Ai
′ in Γ. Hence,

σ′′.l0.fi = ρ(xi) ∈ ||Ai
′||Σ ⊆ ||Ai||Σ ⊆ ||Ai||Σ′′ .

(M) Let 1 � j � m. Suppose Σ1 � Σ′′, let (σ1, φ1) ∈ fix(Φ)Σ1
and suppose

σ′′.l0.mj(σ1) = (v2, σ2). Since σ′′.l0.mj = [[bj]]ρ[yj := l0]σ1, Σ1 � Σ′′ and

(σ1, φ1) ∈ fix(Φ)Σ1
, by setting Σ̂ := Σ′′ from (S1′), we get φ

j
Σ′′ l0

(σ1, φ1,Σ1) =

(Σ2, φ2), so we obtain the required Σ2 and φ2 such that

φ′′.l0.m(σ1, φ1,Σ1) = (Σ2, φ2)

by definition of φ′′. Thus, we can prove the remaining goals:

(M1) (πVal(σ1), v2, πVal(σ2)) ∈ [[[Γ, yj:A]  Tj]]ρ[yj := l0] = [[Tj[ρ/Γ][l0/yj]]], by

(S4′);

(M2) (σ2, φ2) ∈ fix(Φ)Σ2
, by (S2′);

(M3) v2 ∈ ||Bj[ρ[yj := l0]/Γ, yj:A]||Σ2
= ||Bj[ρ/Γ][l0/yj]||Σ2

, by (S3′);

where the equations in (M1) and (M2) are by applications of the substitution

lemma, Lemma 4.2.

Thus, we have shown (σ′′, φ′′) ∈ fix(Φ)Σ′′ , that is, (S2) holds.

— Method Invocation

Suppose Γ  a : A :: T is derived by an application of the Method Invocation rule:

Γ  x:[m:ς(y)A′::T ′]::Tres(x)

Γ  x.m:A′[x/y]::T ′[x/y]
.

Necessarily, a is of the form x.m and there are A′ and T ′ such that A ≡ A′[x/y] and

T ≡ T ′[x/y]. So, suppose:

(H1) Γ  a : A′[x/y] :: T ′[x/y].

(H2) Σ is a store specification.

(H3) ρ ∈ ||Γ||Σ.

Define φ ∈ SF using ‘self-application’ of the argument,

φ(σ′, φ′,Σ′) = φ′.ρ(x).m(σ′, φ′,Σ′). (19)

Now let Σ′ � Σ, (σ′, φ′) ∈ fix(Φ)Σ′ and suppose [[a]]ρσ′ = σ′.ρ(x).m(σ′) = (v, σ′′)

terminates. We show that (S1)–(S4) hold.

By the hypothesis of the method invocation rule, we can assume

Γ  x:[m:ς(y)A′::T ′]::Tres(x). (H1′)

Since this implies x:B ∈ Γ for some [Γ]  B <: [m : ς(y)A′ :: T ′], by assumption (H3)

this entails

 Σ′.(ρ(x)) <: [m : ς(y)A′ :: T ′] [ρ/Γ].
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That is, there are Ai, A
′′, Bj and Tj , T

′′ such that

 Σ′.ρ(x) ≡ [fi:Ai,mj:ς(yj)Bj :: Tj,m:ς(y)A′′::T ′′]

where

y  A′′ <: A′[ρ/Γ] ∧ fo T ′′ → T ′[ρ/Γ]. (20)

Now, the assumption that (σ′, φ′) ∈ fix(Φ)Σ′ together with equation (19) implies that

there are Σ′′, φ′′ such that:

(S1) φ(σ′, φ′,Σ′) = φ′.(ρ(x)).m(σ′, φ′,Σ′) = (Σ′′, φ′′).

(S2) (σ′′, φ′′) ∈ fix(Φ)Σ′′ .

(S3′) v ∈ ||A′′[ρ(x)/y]||Σ′′ .

(S4′) (πVal(σ
′), v, πVal(σ

′′)) ∈ [[ T ′′[ρ(x)/y]]].

By the transitivity of <: , equation (20), Lemma 4.2 and (S3′)

v ∈ ||A′[ρ/Γ][ρ(x)/y]||Σ′′ .

Since A′[ρ/Γ, ρ(x)/y] ≡ A′[x/y][ρ/Γ], we also have:

(S3) v ∈ ||A′[x/y][ρ/Γ]||Σ′′ = ||A[ρ/Γ]||Σ′′ .

Similarly, by (20) and (S4′),

(πVal(σ
′), v, πVal(σ

′′)) ∈ [[T ′′[ρ(x)/y]]] ⊆ [[T ′[ρ/Γ][ρ(x)/y]]]

= [[[Γ]  T [x/y]]]ρ, (S4)

which is what we had to show.

— Field Selection

This is similar to the previous case. φ can be chosen as φ(σ′, φ′,Σ′) = (φ′,Σ′).

— Field Update

Suppose:

(H1) Γ  a:A::T has been derived by an application of Field Update.

(H2) Σ is a store specification.

(H3) ρ ∈ ||Γ||Σ.

Let Σ′ � Σ and (σ′, φ′) ∈ fix(Φ)Σ′ , and suppose [[a]]ρσ′ = (v, σ′′) terminates. Recall the

rule for field update,

A ≡ [fi:Ai
i=1...n, mj: ς(yj)Bj::Tj

j=1...m]
Γ  x:A::Tres(x) Γ  y:Ak::Tres(y)

Γ  x.fk := y:A::Tupd(x, fk, y)
(1 � k � n).

In particular, a is of the form x.fk := y and T is Tupd(x, fk, y). From the semantics of

[[a]]ρσ′, this means v = ρ(x) ∈ Loc and

σ′′ = σ′[v := σ′.v[fk := ρ(y)]]. (21)

Let us define the required φ ∈ SF by φ(σ′, φ′,Σ′) = (Σ′, φ′), which reflects the fact that

no new objects are created. We have to show that (S1)–(S4) hold.
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By (H3), ρ(x) ∈ ||A[ρ/Γ]||Σ ⊆ ||A[ρ/Γ]||Σ′ . Then, by the construction of φ and (21):

(S1) φ(σ′, φ′,Σ′) = (Σ′, φ′).

(S3) v = ρ(x) ∈ ||A[ρ/Γ]||Σ′ .

(S4) (πVal(σ
′), v, πVal(σ

′′)) ∈ [[[Γ]  T ]]ρ, from the semantics given in Table 8.

We still need to show (S2): (σ′′, φ′) ∈ fix(Φ)Σ′ .

By the assumption that (σ′, φ′) ∈ fix(Φ)Σ′ and dom(σ′′) = dom(σ′), the conditions

(Dom1) and (Dom2) of Definition 4.6 are satisfied. As for (F) and (M), let l ∈ dom(Σ′)

and Σ′.l ≡ [gi:A
′
i
i=1...p

, nj:ς(yj)B
′
j :: T ′

j
1...q].

(F) We distinguish two cases:

– Case l = ρ(x) and gi = fk . Then, by (21), σ′′.l.gi = ρ(y). By (H3), ρ(x) ∈
||A[ρ/Γ]||Σ ⊆ ||A[ρ/Γ]||Σ′ , which entails

 Σ′.l <: A[ρ/Γ],

and, in particular, by the definition of the subspecification relation,

A′
k = Σ′.l.fk ≡ Ak[ρ/Γ].

Note that invariance of subspecification in the field components is needed to

conclude this. Now, again by (H3),

ρ(y) ∈ ||Ak[ρ/Γ]||Σ ⊆ ||Ak[ρ/Γ]||Σ′ = ||A′
k||Σ′ .

Hence, σ′′.l.gi ∈ ||A′
i||Σ′ , as required.

– Case l �= ρ(x) or gi �= fk . Then σ′′.l.gi = σ′.l.gi, by (21). Hence, by the assumption

that (σ′, φ′) ∈ fix(Φ)Σ′ , we have σ′′.l.gi ∈ ||A′
i||Σ′ .

(M) Let Σ′′ � Σ′ and (σ1, φ1) ∈ fix(Φ)Σ′′ , and suppose σ′′.l.nj(σ1) = (v2, σ2). Then, by

the assumption that (σ′, φ′) ∈ fix(Φ)Σ′ and the fact that σ′′.l.nj = σ′.l.nj by (21),

we get φ′.l.nj(σ1, φ1,Σ
′′) = (Σ2, φ2) where Σ2 � Σ′′, and, as required:

(M1) (πVal(σ1), v2, πVal(σ2)) ∈ [[T ′
j [l/yj]]].

(M2) (σ2, φ2) ∈ fix(Φ)Σ2
.

(M3) v2 ∈
∣∣∣∣B′

j[l/yj]
∣∣∣∣

Σ2
.

This concludes the proof.

5.2. Soundness theorem

With Lemma 5.2 and Lemma 5.4 proved above, it is now easy to establish our main result.

Theorem 5.5 (Soundness). If Γ  a : A :: T , then Γ � a : A :: T .

Proof. Suppose Γ  a : A :: T , let Σ ∈ StSpec be a store specification and suppose

ρ ∈ Env such that ρ ∈ ||Γ||Σ. Let σ ∈ [[Σ]], so, by definition, there exists φ ∈ RSF such that

(σ, φ) ∈ fix(Φ)Σ. Next suppose

[[a]]ρσ = (v, σ′).

By Lemma 5.4, there exists φa ∈ RSF such that:

(S1) φa(σ, φ,Σ) = (Σ′, φ′) where Σ′ � Σ and
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(S2) (σ′, φ′) ∈ fix(Φ)Σ′

(S3) v ∈ ||A[ρ/Γ]||Σ′

(S4) (πVal(σ), v, πVal(σ
′)) ∈ [[[Γ]  T ]]ρ.

In particular, σ′ ∈ [[Σ′]] follows.

Now, in the case where A is Bool we obtain (v, σ′) ∈ [[[Γ]  A]]ρ from ||Bool||Σ′ = BVal.

Otherwise, A is an object specification, and we must have  Σ′.v <: A[ρ/Γ] by the

definition of ||A[ρ/Γ]||Σ′ . Hence, by Lemma 5.2,

(v, σ′) ∈ [[A[ρ/Γ]]] = [[[Γ]  A]]ρ,

where the last equality is by the the substitution lemma, Lemma 4.2.

In particular, if  a : A :: T and [[a]]σ = (v, σ′), then (v, σ′) ∈ [[A]], so v �= error by

Lemma 3.4.

6. Recursive specifications

In this section we investigate an extension of the logic with recursive specifications. These

are required when a field of an object or a result of one of the object’s methods are

supposed to satisfy the same specification as the object itself. In particular, they are

needed for the specification of any recursive datatype: referring back to the example of

the account manager in Table 5, if AManager included a list of accounts, we would need a

recursive specification µ(X)[head : AAccount, tail : X].

In this section we discuss in more detail how recursive specifications can be dealt with

in the logic.

6.1. Syntax and proof rules

To accommodate reasoning about elements of recursive types such as lists, we introduce

recursive specifications µ(X)A. To prevent meaningless specifications such as µ(X)X, we

only allow recursion through object specifications, thereby enforcing ‘formal contractive-

ness’.

A ::= � | Bool | [fi:Ai
i=1...n, mj: ς(yj)Bj::Tj

j=1...m] | µ(X)A

A,B ::= A | X

where X ranges over an infinite set SV of specification variables. X is bound in µ(X)A,

and, as usual, we identify specifications up to the names of bound variables.

In addition to specification contexts Γ, we introduce contexts ∆ that contain specification

variables with an upper bound, X <: A, where A is either another variable or �. In

the rules of the logic, we replace each judgement Γ  a:A::T by Γ; ∆  a:A::T , and

the definitions of well-formed specifications and well-formed specification contexts are

extended in a similar way to the case of recursive types for the object calculus (Abadi

and Cardelli 1996),

Γ; ∆  Y X /∈ ∆

Γ; ∆, X <: Y  ok

Γ; ∆  ok X /∈ ∆

Γ; ∆, X <: �  ok
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and

Γ; ∆, X <: A,∆′  ok

Γ; ∆, X <: A,∆′  X

Γ; ∆, X <: �  A

Γ; ∆  µ(X)A

Γ; ∆  ok

Γ; ∆  � .

We will simply write ∆, X,∆′ in place of ∆, X <: �,∆′.

Subspecifications for recursive specifications are obtained by the ‘usual’ recursive

subtyping rule (Amadio and Cardelli 1993), and � is the greatest specification,

RecSub
Γ; ∆, Y <: �, X <: Y  A <: B

Γ; ∆  µ(X)A <: µ(Y )B

Top
Γ; ∆  A

Γ; ∆  A <: � .

As can be seen from the semantics below, in our model, a recursive specification and

its unfolding are not just isomorphic but equal, that is, [[µ(X)A]] = [[A[(µ(X)A)/X]]].

Because of this, we do not need to introduce fold and unfold terms: we can deal with

(un)folding of recursive specifications through the subsumption rule once we add the

following subspecifications:

Fold
Γ; ∆  µ(X)A

Γ; ∆  A[(µ(X)A)/X] <: µ(X)A

Unfold
Γ; ∆  µ(X)A

Γ; ∆  µ(X)A <: A[(µ(X)A)/X]
.

We will prove their soundness below.

6.2. Existence of store specifications

In this section, we adapt our notion of store specification to recursive specifications. This

is very similar to Definition 4.6; for completeness we will spell it out in detail.

Definition 6.1. A store specification, for the purposes of the present section, is a record Σ ∈
RecLoc(Spec) such that for each l ∈ dom(Σ), Σ.l is a closed (recursive) object specification

of the form µ(X)[fi:Ai
i=1...n, mj: ς(yj)Bj::Tj

j=1...m]. We continue to write StSpec for the set

of store specifications.

Note that because of the Fold and Unfold rules of recursive types, the requirement that

only object specifications with a µ-binder in head position occur in Σ is no real restriction.

The definition of the functional Φ of Definition 4.6 remains virtually the same, apart

from an unfolding of the recursive specification in the cases for field and method result

specifications.

Definition 6.2. Let S = P(St × RSF)StSpec denote the collection of families of subsets of

St × RSF, indexed by store specifications (in the sense of Definition 6.1). Table 13 defines

a functional Φ : Sop × S → S; as before, we write σ ∈ [[Σ]] if there is some φ ∈ RSF

such that (σ, φ) ∈ fix(Φ)Σ.

The proof of Lemma 4.7 can be easily adapted to show that this functional also has a

unique fixed point.
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Table 13. Store specifications

(σ, φ) ∈ Φ(Y ,X)Σ ⇐⇒ (Dom1) dom(Σ) = dom(φ); and

(Dom2) ∀l ∈ dom(Σ).

if dom(Σ.l) ≡ µ(X)[fi:Ai
i=1...n, mj : ς(yj )Bj ::Tj

j=1...m]

then dom(φ.l) = {mj}j=1...m; and

∀l ∈ dom(Σ) where Σ.l ≡ µ(X)[fi:Ai
i=1...n, mj : ς(yj )Bj ::Tj

j=1...m] :

(F) ∀1 � i � n. σ.l.fi ∈ ||Ai[Σ.l/X]||Σ; and

(M) ∀1 � j � m. ∀Σ′ � Σ ∀σ′, σ′′ ∈ St ∀φ′ ∈ RSF ∀l′ ∈ Loc ∀v ∈ Val.

if l′ ∈ ||Σ.l||Σ′ ∧ (σ′, φ′) ∈ YΣ′ ∧ σ.l.mj (l
′, σ′) = (v, σ′′)

then ∃Σ′′ � Σ′ ∃φ′′ ∈ RSF. φ.l.mj (l
′, σ′, φ′,Σ′) = (Σ′′, φ′′) and

(M1) (πVal(σ
′), v, πVal(σ

′′)) ∈ [[Tj [l
′/yj ]]]; and

(M2) (σ′′, φ′′) ∈ XΣ′′ ; and

(M3) v ∈ ||Bj [Σ.l/X][l′/yj ]||Σ′′

Lemma 6.3 (Existence). Functional Φ in Definition 6.2 has a unique fixpoint fix(Φ).

6.3. Semantics of recursive specifications

Definition 6.4. We extend the interpretation of specifications to the new cases, where η

maps specification variables to admissible subsets of Val × St:

[[Γ; ∆  �]]ρη = Val × St

[[Γ; ∆  X]]ρη = η(X)

[[Γ; ∆  µ(X)A]]ρη = gfp(λχ.[[Γ; ∆, X<:�  A]]ρη[X = χ])

We write η � ∆ if, for all X <: Y in ∆, we have η(X) ⊆ η(Y ).

We briefly observe the following facts, (the duals of) which are standard (Davey and

Priestley 2002):

— By Tarski’s Fixed Point Theorem, every monotonic map f : L → L on a complete

lattice (L,�) has a greatest fixed-point gfp(f) (which is in fact the greatest post-fixed

point).

— If f : L → L also preserves meets of decreasing chains x0 � x1 � . . . , that is, f(
∧

i xi) =∧
i f(xi), then the greatest fixed point can be obtained as gfp(f) =

∧
{fn(�) | n ∈ �}

where � is the greatest element of L.

— For a complete lattice (L,�) and any set A, the set of maps A → L forms a complete

lattice when ordered pointwise, with the meet of {fi | i ∈ I} given by λa.
∧

i fi(a).

— The greatest fixed point operator is monotonic: if f � g are monotonic maps in the

lattice L → L, then gfp(f) � gfp(g).

— Composition preserves meets of descending chains: if f0 � f1 � . . . and g0 � g1 � . . .

are maps in L → L such that every fi and gj is monotonic and preserves meets

of descending chains, then
∧

i fi ◦
∧

j gj =
∧

n(fn ◦ gn). It follows that gfp(
∧

i fi) =∧
i gfp(fi) that is, gfp also preserves meets of chains.

The set of admissible subsets of Val × St, Adm(Val × St), is closed under arbitrary

intersections, and hence forms a complete lattice when ordered by set inclusion. Therefore,

specification environments η : SV → Adm(Val × St) with the pointwise ordering form a

complete lattice.
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In the following, we show that the interpretation of specifications given above is well

defined. More specifically, we show that meets of descending chains of environments are

preserved.

Lemma 6.5 (Well-definedness). [[Γ; ∆  A]] preserves meets of descending chains:

η0 � η1 � . . . =⇒ [[Γ; ∆  A]]ρ(
∧

i ηi) =
⋂

i[[Γ; ∆  A]]ρηi.

In particular, this lemma shows that the greatest fixed point used in Definition 6.4 exists

by the observations made above.

Proof. We use induction on the structure of A. The only interesting case is where A is

of the form µ(X)B.

Suppose η0 � η1 � . . . . If we let fi : Adm(Val × St) → Adm(Val × St),

fi(χ) = [[Γ; ∆, X  B]]ρηi[X = χ], i ∈ �,

then the induction hypothesis entails that each fi is monotonic, and f0 � f1 � . . . is a

descending chain of environments. Moreover, since for each i ∈ � and descending chain

χ0 ⊇ χ1 ⊇ . . . in Adm(Val × St),

∧
j ηi[X = χj] = ηi[X =

⋂
j χj]

the induction hypothesis shows that each fi preserves meets:

fi(
⋂

j χj) = [[Γ; ∆, X  B]]ρ(
∧

j ηi[X = χj])

=
⋂

j[[Γ; ∆, X  B]]ρ(ηi[X = χj])

=
⋂

j fi(χj).

We obtain

[[Γ; ∆  A]]ρ(
∧

i ηi) = gfp(λχ.[[Γ; ∆, X  B]]ρ(
∧

i ηi)[X = χ]) by definition

= gfp(λχ.[[Γ; ∆, X  B]]ρ(
∧

i ηi[X = χ])) pointwise meet

= gfp(λχ.
⋂

i[[Γ; ∆, X  B]]ρηi[X = χ]) by induction

= gfp(
∧

i fi) pointwise meet

=
⋂

i gfp(fi) gfp preserves meet

=
⋂

i[[Γ; ∆  A]]ρηi by definition,

which concludes the proof

Lemma 6.6 (Substitution). For all Γ; ∆, X  A, Γ; ∆  B, ρ and η,

[[Γ; ∆, X  A]]ρ(η[X=[[Γ; ∆  B]]ρη]) = [[Γ; ∆  A[B/X]]]ρη.

Proof. The proof is by induction on A.
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Table 14. Approximations

X|k+1 = X

�|k+1 = �
Bool|k+1 = Bool

µ(X)A|k+1 = A[µ(X)A/X]|k+1

B|k+1 = [fi : Ai|k, mj : ς(yj )Bj |k :: Tj ]i∈I,j∈J

where B ≡ [fi:Ai
i=1...n, mj : ς(yj )Bj ::Tj

j=1...m]

6.4. Syntactic approximations

Recall the statement of Lemma 5.2, one of the key lemmas in the proof of the soundness

theorem:

∀σ,Σ, l, A. A closed ∧ σ ∈ [[Σ]] ∧  Σ.l <: A =⇒ (l, σ) ∈ [[A]]. (22)

In Section 5 this was proved by induction on the structure of A. This inductive proof

cannot be extended directly to prove a corresponding result for recursive specifications:

the recursive unfolding in cases (F) and (M3) of Definition 6.2 would force a similar

unfolding of A in the inductive step, thus not necessarily decreasing the size of A.

The remainder of this section is therefore concerned with the derivation of (22). Instead

of using induction on A, we consider finite approximations in the sense of Amadio and

Cardelli (1993), where we get rid of recursion by unfolding a finite number of times

and then replacing all remaining occurrences of recursion by �. We call a specification

non-recursive if it does not contain any occurrences of specifications of the form µ(X)B.

Definition 6.7 (Approximations). For each A and each k ∈ �, we define A|0 = � and

A|k+1 by the cases given in Table 14.

Note that, as in Amadio and Cardelli (1993), well definedness of approximation can be

shown by a well-founded induction on the lexicographic order on k and the number of µ

in head position. In particular, observe that our definition of recursive specifications has

already ruled out troublesome cases such as µ(X)X.

6.4.1. Properties of approximations Unfortunately, approximations A|k as defined above

are not in fact approximating to A (from above) with respect to the subspecification

relation <: , the reason being the invariance in field specifications. For example, if we

consider an object specification A ≡ [f1 : X, f2 : Bool ], we can observe the following:

µ(X)µ(Y )A|2 = [f1 : µ(X)µ(Y )A, f2 : Bool ]|2

= [f1 : µ(X)µ(Y )A|1, f2 : Bool |1]
= [f1 : [f1 : µ(X)µ(Y )A, f2 : Bool ]|1, f2 : Bool ]

= [f1 : [f1 : µ(X)µ(Y )A|0, f2 : Bool |0], f2 : Bool ]

= [f1 : [f1 : �, f2 : �], f2 : Bool ].
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Table 15. The generalised object subspecification rule

Γ, yj  Tj
j=1...m+q

Γ ; ∆  Ai
i=1...n+p Γ ; ∆  Ai <: A′

i
i=1...n

Γ, yj  T ′
j
j=1...m

Γ, yj ; ∆  Bj
j=m+1...m+q Γ, yj ; ∆  Bj <: B′

j
j=1...m fo Tj → T ′

j
j=1...m

Γ; ∆  [fi:Ai
i=1...n+p, mj : ς(yj )Bj ::Tj

j=1...m+q] <: [fi:A
′
i
i=1...n

, mj : ς(yj )B
′
j ::T

′
j
j=1...m

]

By inspection of the rules,  µ(X)µ(Y )A <: µ(X)µ(Y )A|2 requires us to show

Γ; ∆  [f1 : [f1 : µ(X)µ(Y )A, f2 : Bool ], f2 : Bool ] <: [f1 : [f1 : �, f2 : �], f2 : Bool ]

for appropriate Γ and ∆. But subspecifications of object specifications can only be derived

for equal components f1 with the rules of Section 3.

Therefore, we consider the more generous subspecification relation that also allows

subspecifications in field components by replacing the rule for object specifications with

the one given in Table 15.

We write <:∗ for this relation, and observe that  A <: B implies  A <:∗ B. It is still

sufficient to guarantee soundness in our case as will be shown below. First, we obtain the

following approximation lemma for the <:∗ relation.

Lemma 6.8 (Approximation). For all specifications Γ; ∆  A, the following hold:

1 For all k ∈ �, Γ; ∆  A <:∗ A|k .
2 For all k, l ∈ �, Γ; ∆  A|k+l <:∗ A|k .
3 If A is non-recursive, there exists n ∈ � such that for all k � n, A ≡ A|k .

Proof. The proofs are by induction on the lexicographic order on k and the number of

µ in head position, and then by considering cases for the specification A.

6.4.2. Soundness of the subspecification

Lemma 6.9 (Soundness of <:∗). If Γ; ∆  A <:∗ B, ρ ∈ Env and η � ∆, then [[Γ; ∆ 
A]]ρη ⊆ [[Γ; ∆  B]]ρη.

Proof. We use induction on the derivation of Γ; ∆  A <:∗ B:

— The cases for Reflexivity and Transitivity are immediate, as is Top.

— Fold and Unfold follow from the fact that the denotation of µ(X)A is indeed a fixed

point,

[[Γ; ∆  µ(X)A]]ρη = gfp(λχ.[[Γ; ∆, X  A]]ρη[X = χ]) by definition

= [[Γ; ∆, X  A]]ρ(η[X = [[Γ; ∆  µ(X)A]]ρη]) fixed point

= [[Γ; ∆  A[µ(X)A/X]]]ρη by Lemma 6.6.

— The case of the (generalised) object subspecification rule SubObject follows by

induction and is rather straightforward.

— Finally, in the case of the SubRec rule, suppose that Γ; ∆  µ(X)A <:∗ µ(Y )B has been

derived from Γ; ∆, Y <: �, X <: Y  A <:∗ B. We use the fact that [[Γ; ∆  µ(Y )B]]ρη
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is the greatest post-fixed point of the map

f(χ) = [[Γ; ∆, Y  B]]ρη[X = χ],

which is monotonic as shown in Lemma 6.5. Since α = [[Γ; ∆  µ(X)A]]ρη is a fixed

point of λχ.[[Γ; ∆  A]]ρη[X = χ], we calculate

α = [[Γ; ∆, X, Y  A]]ρη[X = α, Y = α] Γ; ∆, X  A independent of η(Y )

⊆ [[Γ; ∆, X, Y  B]]ρη[X = α, Y = α] by induction

= f(α) Γ; ∆, Y  B independent of η(X),

which shows that α is a post-fixed point of f. Hence, [[Γ; ∆  µ(X)A]]ρη = α ⊆ gfp(f) =

[[Γ; ∆  µ(Y )B]]ρη, as required.

6.4.3. Relating semantics and syntactic approximations Taken together, Lemma 6.9 and

Lemma 6.8(1) show [[Γ; ∆  A]]ρη ⊆ [[Γ; ∆  A|k]]ρη for all η � ∆ and k ∈ �; in particular,

[[A]]η ⊆
⋂

k∈�[[A|k]]η (23)

for closed specifications A. For the reverse inclusion, we use the characterisation of greatest

fixed points as the meet of a descending chain, which is in close correspondence with the

syntactic approximations.

Lemma 6.10 (Combining substitution and approximation). For all specifications A, B, all

X such that Γ; ∆  B and Γ; ∆, X  A, and for all k, l ∈ �,

Γ; ∆  A[B/X]|l <:∗ A[B|k/X]|l .

In particular, by Lemma 6.9, [[Γ; ∆  A[B/X]|l]]ρη ⊆ [[Γ; ∆  A[B|k/X]|l]]ρη, for all η � ∆.

Proof. We use induction on the lexicographic order on l and the number of µ in head

position:

— l = 0. Clearly, Γ; ∆  A[B/X]|0 <:∗ � = A[B|k/X]|0.
— l > 0. We consider possible cases for A:

– A is X. In this case Γ; ∆  A[B/X]|l = B|l <:∗ B|k|l = A[B|k/X]|l .
– A is �,Bool or Y �= X. In this case Γ; ∆  A[B/X]|l = A|l <:∗ A|l = A[B|k/X]|l .
– A is [fi:Ai

i=1...n, mj: ς(yj)Bj::Tj
j=1...m]. This case again follows easily by the induction

hypothesis.

– A is µ(Y )C , without loss of generality Y not free in B. In this case, by the

induction hypothesis, we find Γ; ∆  C[A/Y ][B/X]|l <:∗ C[A/Y ][B|k/X]|l . Using

the properties of syntactic substitutions, we calculate

A[B/X]|l ≡ µ(Y )(C[B/X])|l substitution

≡ C[B/X][(µ(Y )(C[B/X]))/Y ]|l definition of (−)|l

≡ C[B/X][(A[B/X])/Y ]|l substitution

≡ C[A/Y ][B/X]|l Y not free in B,

and, analogously, C[A/Y ][B|k/X]|l = A[B|k/X]|l , which entails the result.
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Lemma 6.11 (Approximation of specifications). For all Γ; ∆  A, ρ ∈ Env and environ-

ments η � ∆,

[[Γ; ∆  A]]ρη =
⋂

k∈�[[Γ; ∆  A|k]]ρη.

Proof. By (23), all that remains to be shown is [[Γ; ∆  A]]ρη ⊇
⋂

k∈�[[Γ; ∆  A|k]]ρη.
We proceed by induction on the lexicographic order on pairs (M,A) where M is an upper

bound on the number of µ-binders in A. For the base case, M = 0, by Lemma 6.8(3),

there exists n ∈ � such that for all k � n, A|k = A, and thus, in fact,

[[Γ; ∆  A]]ρη = [[Γ; ∆  A|n]]ρη ⊇
⋂

k∈�[[Γ; ∆  A|k]]ρη.

Now suppose that A contains at most M + 1 µ binders. We consider cases for A:

— A of the form �, X or Bool. Then, as above, there exists n ∈ � such that for all k � n,

A|k = A, and we are done.

— A is [fi:Ai
i=1...n, mj: ς(yj)Bj::Tj

j=1...m]. Then, by the induction hypothesis,

[[Γ; ∆  Ai]]ρη ⊇
⋂

k∈�[[Γ; ∆  Ai|k]]ρη

and

[[Γ, yj; ∆  Bj]](ρ[yj := l])η ⊇
⋂

k∈�[[Γ, yj; ∆  Bj |k]](ρ[yj := l])η

for 1 � i � n and 1 � j � m. Hence, if (l, σ) ∈ [[Γ; ∆  A|k]]ρη for all k ∈ �, then

(σ.l.fi, σ) ∈
⋂

k∈�[[Γ; ∆  Ai|k]]ρη ⊆ [[Γ; ∆  Ai]]ρη

and σ.l.mj(σ) = (v, σ′) implies

(v, σ′) ∈
⋂

k∈�[[Γ, yj; ∆  Bj |k]](ρ[yj := l])η ⊆ [[Γ, yj; ∆  Bj]](ρ[yj := l])η

by the definition of A|k . This shows (l, σ) ∈ [[Γ; ∆  A]]ρη, as required.

— A is µ(X)B. Recall that

[[Γ; ∆  A]]ρη = gfp(fA)

is the greatest post-fixed point of fA(χ) = [[Γ; ∆, X  B]]ρη[X = χ]. We show that

α :=
⋂

k∈�[[Γ; ∆  A|k]]ρη is a post-fixed point of fA, from which

[[Γ; ∆  A]]ρη ⊇
⋂

k∈�[[Γ; ∆  A|k]]ρη

then follows. First note that, by Lemma 6.8(2) and Lemma 6.9,

η[X = [[Γ; ∆  A|0]]ρη] � η[X = [[Γ; ∆  A|1]]ρη] � . . .
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forms a descending chain of environments. Hence we can calculate

fA(α) = [[Γ; ∆, X  B]]ρη[X = α] definition of fA

= [[Γ; ∆, X  B]]ρ(
∧

kη[X = [[Γ; ∆  A|k]]ρη]) definition of α and meets

=
⋂

k∈�[[Γ; ∆, X  B]]ρη[X = [[Γ; ∆  A|k]]ρη] Lemma 6.5, meets

=
⋂

k∈�[[Γ; ∆  B[A|k/X]]]ρη Lemma 6.6, substitution

⊇
⋂

k∈�

⋂
l∈�[[Γ; ∆  B[A|k/X]|l]]ρη induction hypothesis

⊇
⋂

l∈�[[Γ; ∆  B[A/X]|l]]ρη Lemma 6.10

=
⋂

k∈�[[Γ; ∆  A|k]]ρη definition of µ(X)A|k,

that is, α ⊆ fA(α). Note that we can apply induction in the fourth line since A|k does

not contain any µ and thus B[A|k/X] contains at most M µ-binders.

This concludes the proof.

6.5. Soundness

The technical development in the preceding subsection means we can now prove (22).

The soundness proof of the logic extended with recursive specifications then follows

from this result following the lines of the proof presented in Section 5 for non-recursive

specifications.

Lemma 6.12. For all σ ∈ St, Σ ∈ StSpec, l ∈ Loc and closed A, if σ ∈ [[Σ]] and  Σ.l <:∗ A,

then (l, σ) ∈ [[A]].

Proof. The proof proceeds by considering finite specifications first. This can be proved

by induction on A, as in Lemma 5.2. When applying the induction hypothesis we use the

fact that  A <: B implies  A <:∗ B.

To extend the proof to all (possibly recursive) specifications, note that by Lemma 6.8,

 A <:∗ A|k for all k ∈ �, which entails  Σ.l <:∗ A|k for all k by transitivity. Every A|k is

non-recursive, so, by the above considerations, (l, σ) ∈ [[A|k]] for all k. Thus

(l, σ) ∈
⋂

k∈� [[A|k]] = [[A]]

by Lemma 6.11.

7. Outlook

The study of Abadi–Leino logic from a denotational viewpoint was not just carried out

in order to advertise denotational techniques, or in the belief that it is the best logic one

can devise. However, it was the first (and, to the best of our knowledge, so far the only)

logic for the object-calculus, and is thus an ideal playground and starting point for our

research programme.

Our long-term objective is to design a better, more powerful and more complete logic,

building on the lessons learnt from analysing Abadi–Leino logic. To that end, we plan to

carry out the following extensions or changes to Abadi and Leino’s calculus. We strongly
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believe that the denotational approach will guide us in finding the right rules (and a

modular correctness proof).

Local store In this paper we have worked with a global store model. Every object, its fields

and methods, are visible to any other object. For Abadi–Leino logic this was sufficient,

but one significant feature of object-oriented programs is encapsulation. Encapsulation

is modelled only by a refined notion of store – and, accordingly, more refined store

specifications. Reddy and Yang (2004), and Benton and Leperchey (2005) have presented

such models for higher-order languages with storable references (but no higher-order

store). Their models give rise to a large number of correct program equivalences, and

the authors expressed the need to extend their respective models to a full object-oriented

language and to specifications. Coming from the other end, we have a logic for a simple

object-oriented language, but need to incorporate locality and encapsulation.

A complementary approach to information hiding is to restrict the language by imposing

a confinement condition on programs. Banerjee and Naumann (2005) used this approach

to prove representation independence for a class-based Java-like language. It should be

interesting to try similar techniques for a language with higher-order store, such as the

object calculus, in order to prove a restricted form of encapsulation and representation

independence.

Invariants of fields Abadi and Leino’s logic is peculiar in that verified programs need to

preserve store specifications. Put another way, only properties that are in fact preserved can

be expressed by object specifications. In particular, specifying fields in object specifications

is limited. For example, we cannot formulate invariants like balance � 0, stating that an

account cannot be overdrawn. Note that such an axiom in a transition specification only

guarantees that the current balance is positive. Using a store with local fields (as described

above), means such invariants can be accommodated. Invariance of such a field then has

to be established for just those methods that can see it.

Method parameters Formal method parameters of the form x:A can be attached to

method specifications – for example, deposit(x:Int) : ς(y)[] ::Tdeposit – by adding an

extra assumption to the definition of store specifications. When σ′ ∈ [[Σ′]], the conditions

(M1)–(M3) have to be shown for all v ∈ ||A||Σ′ where v is the actual parameter replacing

the formal parameter x in the method call. There are limitations, however, as the resulting

object specification must still allow for subspecifications. In particular, its semantics should

not be defined by a recursion with negative occurrences of store.

Dynamic loading Dynamic loading of objects is, in a way, already available in the

object calculus (and this is one of its advantages over class-based languages). Loading

an object for which one only knows the specification A ≡ [fi : Ai; mj : ς(xj)Bj :: Tj]

corresponds to using a command for which one only knows the result specification A.

Thus, x : [load : ς(y)A :: ∃z. Tobj(f = z)]  x.load : A :: ∃z. Tobj(f = z) simulates dynamic

loading where x may be thought of as a class loader, and where the load command is

x.load. If A is simply [], nothing is known about the loaded object. In this case one has
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to assume another command to check at runtime whether a given object fulfils a given

specification. This implies that specifications have to be representable in the progamming

language, and thus a form of reflection.

Recursive specifications Recursive specifications are necessary when a field of an object

or a result of one of the object’s methods are supposed to satisfy the same specification

as the object itself. As outlined at the beginning of Section 6, they are required for the

implementation of recursive datatypes such as lists and trees. In the preceding section we

described how the logic can be safely enriched by recursive specifications.

Parametric method specifications Transition specifications in Abadi–Leino logic cannot

refer to methods. This is unnecessary, as method specifications are fixed at object

introduction and assumed to be invariant afterwards. But for programs that, for instance,

use delegations (similar to the Command pattern of Gamma et al. (1995)), this is not

adequate: the specification in use is not known at the time of object creation but only

at update (and it may change with further updates). As a remedy, one could allow

placeholders for specifications (B and T ) that can be shared inside objects. For example,

with X and Y acting as such placeholders, [f : [n : ς(x)X::Y ],m : ς(x)X::Y ] states that m

satisfies the same method specification that n satisfies. Note that only n can be updated via

f. The invariance of specification still holds, it is just that every object providing a method

n will meet specification [n : ς(x)X::Y ], and m will still satisfy m : ς(x)X::Y if it is

implemented as m = ς(y)x.f.n. One can conceive of more general transition specifications

for m that assume that Y holds only for certain calls of n. The restrictions revealed by

the existence theorem may turn out to be useful in finding the correct semantics for such

specifications.

Method update Although method update is not allowed in Abadi–Leino logic, fields, and

thus the methods in a field object, can be updated in a way similar to the Decorator pattern

(Gamma et al. 1995) as seen in the example above. By the invariance of field components

of object specifications, the object used for the update must satisfy the specification of the

field to be updated. Any extra conditions that the new object may fulfil are not recorded in

the logic and cannot be used later. More useful would be a ‘behavioural’ update in which

the result and transition specifications of the overriding method are subspecifications of

the original method. But this would require a relaxation of the idea of invariance of store

specifications.

Invariance of store specifications The previous discussion shows the need for a logic in

which object specifications are not always preserved or in which one may refine the object

specifications. It seems it would be worthwhile developing a calculus that makes invariance

properties explicit in the logic. Even though this may clutter proofs (for users of such a

logic), it may reveal limitations of logics with higher-order dynamic store. Moreover, it

is expected that Separation Logic (O’Hearn et al. 2001; Reynolds 2002), will be able to

provide support for local reasoning. However, this first requires more research to marry

Separation Logic to higher-order stores.
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As a consequence, one should be able to devise more practical and more expressive

program logics. It may also be instructive to derive a class-based logic by translating

classes into objects (Abadi and Cardelli 1996) using the object-calculus. With this calculus

it is easy to model dynamic (class) loading.

8. Conclusion

Using a denotational semantics, we have given a soundness proof for Abadi and Leino’s

program logic of an object-based language. Compared to the original proof, which

was carried out with respect to an operational semantics, our techniques allowed us

to distinguish the notions of derivability and validity. Furthermore, we have used

the denotational framework to extend the logic to recursive object specifications. In

comparison to a similar logic presented in Leino (1998), our notion of subspecification is

structural rather than nominal.

Although our proof is very different from the original one, the nature of the logic

forces us to work with store specifications too. Information for locations referenced from

the environment Γ will be needed for derivations. Since the context Γ cannot reflect the

dynamic aspect of the store (which is growing), one uses store specifications Σ. They do

not show up in the rules of Abadi–Leino logic as they are automatically preserved by

programs. This is shown as part of the soundness proof rather than by being a proof

obligation on the level of derivations. In contrast with Abadi and Leino (2004), we can

view store specifications as predicates on stores that need to be defined by mixed-variant

recursion due to the form of the object introduction rule. Unfortunately, such recursively

defined predicates do not directly admit an interpretation of either subsumption or

weakening. This led us to a positive recursive semantics of individual objects, for which

the set containment models the syntactic subspecification relation (cf. Lemma 3.5).

Conditions (M1)–(M3) in the semantics of store specifications ensure that methods in

the store preserve not only the current store specification but also arbitrary extensions

Σ′ � Σ. This accounts for the (specifications of) objects allocated between definition time

and call time.

Clearly, not every predicate on stores is preserved. As we lack a semantic characterisation

of those specifications that are syntactically definable (as Σ), the specification syntax

appears in the definition of σ ∈ [[Σ]] (Definition 4.6). More annoyingly, field update requires

subspecifications to be invariant in the field components, otherwise even type soundness

is invalidated. We do not know how to express this property of object specifications

semantically (on the level of predicates), and need to use the inductively defined syntactic

subspecification relation instead.

The proof of Theorem 4.7, establishing the existence of store predicates, explains why

transition relations of the Abadi–Leino logic express properties of the flat part of stores

only: semantically, a (sufficient) condition is that transition relations are upwards and

downwards closed in their first and second store argument, respectively.

In Section 7 we have described some of the limitations of Abadi–Leino logic and

sketched possible improvements. The results established in this paper pave the way for

this line of research.
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