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Shape matters: a Brownian microswimmer in a
channel
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We consider the active Brownian particle model for a two-dimensional microswimmer
with fixed speed, whose direction of swimming changes according to a Brownian process.
The probability density for the swimmer obeys a Fokker–Planck equation defined on
the configuration space, whose structure depends on the swimmer’s shape, centre of
rotation and domain of swimming. We enforce zero probability flux at the boundaries
of configuration space. At first neglecting hydrodynamic interactions, we derive a reduced
equation for a swimmer in an infinite channel, in the limit of small rotational diffusivity,
and find that the invariant density depends strongly on the swimmer’s precise shape and
centre of rotation. We also give a formula for the mean reversal time: the expected time
taken for a swimmer to completely reverse direction in the channel. Using homogenization
theory, we find an expression for the effective longitudinal diffusivity of a swimmer in
the channel, and show that it is bounded by the mean reversal time. Finally, we include
hydrodynamic interactions with walls, and examine the role of shape.

Key words: micro-organism dynamics

1. Introduction

Microswimmers are common in nature – they include bacteria, spermatozoa, some
algae and synthetic swimmers. In almost all contexts these swimmers interact with
boundaries, either biological (e.g. the gut, cell walls) or man-made (e.g. tubes, filters).
These interactions have been studied experimentally, numerically and theoretically by
many groups. The two main aspects of interaction are hydrodynamic (mediated by the
fluid) and steric (direct contact with the boundary); they can have different relative
importance depending on the context, but it is widely accepted that both can play a crucial
role (Drescher et al. 2011; Kantsler et al. 2013; Contino et al. 2015; Bianchi, Saglimbeni
& Leonardo 2017).
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In the present paper we will be concerned with modelling the steric interaction of a
microswimmer with solid surfaces, with an emphasis on the role of the swimmer’s shape.
For simplicity, the swimmer will be two-dimensional with a fixed shape, although, in
principle, the theory could be extended to include a deformable body or flagella. To keep
the model tractable, we drop the hydrodynamic interactions when deriving theoretical
results, but in § 8 we quantify their importance relative to steric interactions.

1.1. Previous work
Many models have been proposed to mimic the behaviour of microswimmers, with
the simplest being the active Brownian particle (ABP) model (Ai et al. 2013; Redner,
Hagan & Baskaran 2013; Stenhammar et al. 2014; Solon et al. 2015; Zöttl & Stark 2016;
Wagner, Hagan & Baskaran 2017) where a particle moves with constant speed and both its
swimming direction and spatial position are subject to independent diffusion processes.
A more complicated model has the organism moving in a straight line for a random
time (run), followed by a random change in direction (tumble); such run-and-tumble
models have been investigated both theoretically and numerically (Tailleur & Cates 2009;
Lambert, Liao & Austin 2010; Nash et al. 2010; Costanzo et al. 2012; Ezhilan, Pahlavan
& Saintillan 2012; Lushi, Goldstein & Shelley 2012; Martens et al. 2012; Cates & Tailleur
2013; Koumakis, Maggi & Leonardo 2014; Lushi, Wioland & Goldstein 2014; Molaei
et al. 2014; Elgeti & Gompper 2015; Ezhilan, Alonso-Matilla & Saintillan 2015; Elgeti
& Gompper 2016; Lushi 2016; Razin et al. 2017; Sepúlveda & Soto 2017; Chen et al.
2018; Lee, Szuttor & Holm 2019). There are also more complex models that incorporate
hydrodynamic effects (Fauci & McDonald 1995; Saintillan, Shaqfeh & Darve 2006a, b;
Saintillan & Shelley 2007, 2008; Crowdy & Or 2010; Evans & Lauga 2010; Rusconi et al.
2010; Saintillan 2010; Shum, Gaffney & Smith 2010; Crowdy & Samson 2011; ten Hagen,
Wittkowski & Löwen 2011; Costanzo et al. 2012; Obuse & Thiffeault 2012; Saintillan
& Shelley 2013; Li & Ardekani 2014; Lushi et al. 2014; Takatori, Yan & Brady 2014;
Bricard et al. 2015; Lushi & Vlahovska 2015; Spagnolie et al. 2015; ten Hagen et al. 2015;
Yeo, Lushi & Vlahovska 2015; Mathijssen et al. 2016; Wioland, Lushi & Goldstein 2016;
Theillard, Matilla & Saintillan 2017; Daddi-Moussa-Ider et al. 2018; Lushi, Goldstein &
Shelley 2018; Theers et al. 2018; Alonso-Matilla & Saintillan 2019; Wagner, Hagan &
Baskaran 2019). In the present paper we will limit ourselves to the ABP model.

Experiments with microswimmers near boundaries are also plentiful (Rothschild 1963;
Frymier et al. 1995; Woolley 2003; DiLuzio et al. 2005; Lauga 2006; Hill et al. 2007;
Berke et al. 2008; Li, Tam & Tanf 2008; Drescher et al. 2011; Volpe et al. 2011; Kantsler
et al. 2013; Kim et al. 2014; Contino et al. 2015; Mok, Dunkel & Kantsler 2019). As early
as 1963, Rothschild measured the density of bull spermatozoa between two glass plates
and found accumulation near the plates. Accumulation as well as local alignment and
preferred tail rotation were also observed in later experiments (Rothschild 1963; Woolley
2003; Lauga 2006; Hill et al. 2007; Berke et al. 2008; Li et al. 2008; Drescher et al. 2011;
Li et al. 2011; Volpe et al. 2011; Denissenko et al. 2012; Kantsler et al. 2013; Lefauve
& Saintillan 2014; Contino et al. 2015). Simulations have shown that either hydrodynamic
interactions or steric interactions with thermal fluctuations can lead to accumulation. Later
work found that steric effects dominate at walls, while hydrodynamic interactions can play
an important role (Drescher et al. 2011; Kantsler et al. 2013; Contino et al. 2015; Bianchi
et al. 2017).

In principle, the interaction of microswimmers with boundaries requires modelling of
both hydrodynamic and steric interactions. Some groups use far-field approximations for
hydrodynamic interactions (Katz 1974; Katz & Blake 1975; Katz, Blake & Paverifontana
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1975; Hernandez-Ortiz, Stoltz & Graham 2005; Saintillan et al. 2006a; Swan & Brady
2007; Elgeti & Gompper 2009; Crowdy & Or 2010; Crowdy & Samson 2011; Obuse &
Thiffeault 2012; Spagnolie & Lauga 2012; Lopez & Lauga 2014; Schaar, Zöttl & Stark
2015; Sipos et al. 2015; Spagnolie et al. 2015; ten Hagen et al. 2015; Kaynan & Yariv
2017; Mirzakhanloo & Alam 2018; Wagner et al. 2019), which can be done in several ways:
either explicitly with a solution of the Stokes equation, or implicitly through a resistance or
mobility matrix. Spagnolie & Lauga (2012) used a multipole expansion which in principle
can be applied to any swimmer shape, and Takagi et al. (2014) solved the Stokes equation
in the lubrication limit. Zargar, Najafi & Miri (2009) solved for the mobility matrix by
restricting the swimmer to planar motion near a wall. Despite some simplifications in
these models, they are fairly accurate away from boundaries and reproduce observed
behaviour (Lauga & Powers 2009; Marchetti et al. 2013; Bechinger et al. 2016; Zöttl &
Stark 2016). However, such models remain in general fairly complicated and available
theoretical results either ignore the details of swimmers such as shape, or are swimmer
dependent.

Steric interactions are often included phenomenologically, such as by using
wall potential functions (van Teeffelen & Löwen 2008; Wensink & Löwen 2008;
Hernandez-Ortiz, Underhill & Graham 2009; Costanzo et al. 2012; Kaiser, Wensink &
Löwen 2012; Chilukuri, Collins & Underhill 2014; Mathijssen et al. 2016; Tian et al. 2017;
Caprini & Marconi 2018; Daddi-Moussa-Ider et al. 2018; Sepúlveda & Soto 2018; Wagner
et al. 2019). This approach makes it easy to add boundaries to free-space simulations
and has low simulation cost. Sepúlveda & Soto (2018) used Weeks–Chandler–Anderson
functions and a Gaussian potential function for deformable swimmers; they treat the
effective wall force as a smooth repulsive force. Hernandez-Ortiz et al. (2009) used
Gay–Berne functions for steric exclusion of rod-shape swimmers. These models are
usually a smooth approximation to the true dynamics, whereas for rigid swimmers the
steric effect is by volume exclusion. Moreover, the complicated potential functions make
it hard to obtain predictive formulas, although some authors used a simple harmonic
potential to represent an elastic boundary, which made the problem tractable (Drescher
et al. 2011; Nikola et al. 2016; Caprini & Marconi 2018).

Another way to model steric interactions is to assign a specific dynamics near the
boundary such as reflecting (Li & Tang 2009; Koumakis et al. 2014; Volpe, Gigan &
Volpe 2014; Paksa et al. 2016; Chen et al. 2018) or vanishing velocity (Sepúlveda &
Soto 2018) boundary conditions, or a repulsive force condition (Spagnolie & Lauga 2012).
Ezhilan & Saintillan (2015) observed that reflecting boundary conditions do not recover
the behaviour observed in experiments. Other groups did not try to prescribe any specific
law for swimmers at a boundary and focused on statistics such as the invariant density of
swimmers (Ezhilan et al. 2012; Yariv & Schnitzer 2014; Yan & Brady 2015; Malgaretti &
Stark 2017) and swim pressure (Caprini & Marconi 2018; Chen et al. 2018; Yan & Brady
2015; Speck 2020).

When modelling a collection of stochastic swimmers or the statistics of a single
swimmer, an ideal approach to include steric interactions is to use no-flux boundary
conditions that prevent the organism’s body from entering the wall, as described by
Nitsche & Brenner (1990) for passive particles. Most work in the literature using these
boundary conditions assumes that swimmers have negligible size or are of spherical
shape, so that they can rotate freely at a wall (Burada et al. 2009; Bearon, Hazel &
Thorn 2011; Bruna & Chapman 2013; Yariv & Schnitzer 2014; Ezhilan & Saintillan 2015;
Yan & Brady 2015; Alonso-Matilla, Ezhilan & Saintillan 2016; Malgaretti & Stark 2017;
Alonso-Matilla & Saintillan 2019). Lee (2013) attempted to solve for the invariant density
without spatial diffusion for point swimmers in a channel, and managed to find a solution
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when swimmers had only six swimming directions. Wagner et al. (2017) continued Lee’s
work and found the invariant density for continuous swimming directions by introducing
a wall density function. Schaar et al. (2015) later calculated the trapping time at a wall.
Ai et al. (2013) predicted for point swimmers the optimal swimming speed, the spatial
diffusion and the strength of wall potentials for maximal effective diffusion. For spherical
or point swimmers, Elgeti & Gompper (2013) and Ezhilan & Saintillan (2015) investigated
asymptotic solutions to the Fokker–Planck equation associated with the ABP model. Elgeti
& Gompper (2016) subsequently found the invariant density for run-and-tumble spherical
swimmers.

1.2. The role of shape
The admissible positions and orientations of a non-spherical swimmer are constrained
by the presence of walls; the set of admissible values of the degrees of freedom is the
configuration space (Nitsche & Brenner 1990) (see § 2). A natural way to include the
shape of a swimmer into a model is thus to impose no-flux boundary conditions on the
configuration space itself. Krochak, Olson & Martinez (2010) and Ezhilan & Saintillan
(2015) used steric exclusion with no-flux boundary conditions for rigid fibres and rod-like
swimmers, respectively, and simulated the invariant density in a channel in the presence
of flow.

In the present paper we propose a framework to incorporate the shape of a swimmer
into the boundary conditions of a partial differential equation describing its dynamics.
The partial differential equation (PDE) is the Fokker–Planck equation derived from the
two-dimensional ABP model with no-flux boundary conditions in configuration space.
For simplicity, we ignore hydrodynamic interactions for now. (We will introduce them in
§ 8.) The configuration space is determined by the swimmer’s shape and the domain of
swimming, which we take to be an infinite channel. We solve explicitly for the invariant
density in the limit of small rotational diffusivity. In the same limit, we also solve for
the mean reversal time and the longitudinal effective diffusivity of the swimmer. All
these quantities are greatly influenced by the shape of the swimmer. In particular the
effective diffusivity can become very large when the swimmer tends to align parallel to
the channel walls, which can surprisingly occur even for circular swimmers when their
centre of rotation does not coincide with the geometric centre (see below). In § 8, we
add hydrodynamic interactions into the ABP model, and examine how the cross-sectional
invariant density varies with the shape-dependent configuration space.

In the literature so far, authors have often prevented swimmers from entering inside
boundaries by applying some ad hoc repulsive force or potential, which models steric
interactions. Our main point is that a similar effect can be achieved by a no-flux boundary
condition, which is natural in the context of a Fokker–Planck equation. It has the advantage
of naturally involving the shape of the organism through the configuration space. As we
will, this mathematical elegance allows analytical progress for simple swimmer shapes, at
least when neglecting hydrodynamic interactions as a first approximation.

An important observation is in order regarding the ABP model for a finite-size swimmer.
The ABP model implicitly assumes that the swimmer rotates about some distinguished
fixed point in a co-moving frame. The precise location of this point becomes important
when the swimmer has finite size and boundaries are present. For example, figure 1
shows an elliptical swimmer approaching a boundary: the direction of swimming is given
by the angle θ , which is measured counterclockwise from the horizontal, so that θ < 0
corresponds to swimming towards the wall. The angle θ is measured around a point we
call the centre of rotation of the swimmer. For a free particle, this corresponds to the
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θ

Figure 1. An elliptical swimmer approaching a wall at a direction θ = −π/4. The centre of rotation is not
necessarily the geometric centre of the ellipse.

centre of hydrodynamic reaction defined by Happel & Brenner (1983, p. 174). For an
ellipse it would coincide with the geometrical centre. However, the swimmer’s propulsion
mechanism (e.g. flagella), which is abstracted here since we consider fixed shapes, can
displace this centre. Hence, we treat the centre of rotation as a parameter that may be
adjusted to model a particular swimmer. To parallel terminology based on the type of
propulsion used by a microorganism (Hernandez-Ortiz et al. 2005; Saintillan & Shelley
2007; Hernandez-Ortiz et al. 2009; Saintillan & Shelley 2011), when the centre of rotation
is ahead of the geometric centre we will call the swimmer front rotating; when it is behind
we call it rear rotating. We assume the centre of rotation is inside a swimmer’s body. If the
swimmer does not interact with boundaries, then the centre of rotation is not particularly
important to the dynamics; but with external boundaries it can influence the tendency of
the swimmer to align parallel or perpendicular to a wall, depending on its shape (Lushi,
Kantsler & Goldstein 2017). In fact, we will see that even a circular particle can align
with a wall if its centre of rotation is behind the geometric centre, despite the absence of
hydrodynamic interactions.

1.3. Outline
In this paper we focus exclusively on a two-dimensional swimmer undergoing steric
interactions. In § 2 we describe the configuration space for a swimmer with an arbitrary
fixed convex shape, in particular when the swimmer is confined to a channel consisting
of two infinite parallel walls. A crucial quantity is the wall distance function, which
describes the swimmer’s closest point of approach to a wall as a function of the swimmer’s
orientation. We give explicit examples for needle (rod-like), elliptical, and teardrop-shaped
swimmers. The wall distance function can then be used twice to determine the full
configuration space in a channel. This configuration space is open if the swimmer can
reverse direction in the channel, or closed if the channel is too narrow to do so. We
also describe symmetries of the configuration space that follow from symmetries of the
swimmer and channel, the most important being the case where a swimmer is left–right
symmetric.

In § 3 we describe the stochastic ABP model for our swimmer, and give its
corresponding Fokker–Planck equation. This leads to the natural no-flux boundary
conditions that we impose at the solid walls. For the infinite channel geometry we
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average over the lengthwise coordinate. In § 4 we simplify the model by assuming a
small rotational diffusivity. This leads to a reduced equation, which is a partial differential
equation in one time variable and one angle. The configuration geometry is completely
encoded into a single effective angular drift function.

In § 5 we solve for the steady state of the reduced equation, which gives us the invariant
probability density of the swimmer, or invariant density for short. The invariant density
is strongly dependent on the shape and centre of rotation, as we show with some explicit
examples, typically in the limit of rapid swimming. In particular, we show that circular
swimmers can align either parallel or perpendicular to the walls, depending on whether
they are rear or front rotating, respectively. When a swimmer has broken left–right
symmetry, it can undergo a net rotation due to repeated biased interactions with the walls.

We introduce the mean reversal time (MRT) of a swimmer in § 6: the expected time
for a swimmer to fully reverse direction in an open channel. This is a generalization of
the turnaround time of Holcman & Schuss (2014), who described the expected time for a
Brownian needle to reverse direction when its length is slightly shorter than the channel
width. For a left–right symmetric swimmer we give a simple integral formula for the MRT.
We explicitly compute the MRT in some limits, in particular for a fast swimmer. The MRT
in this fast case is exponentially long, since the swimmer sticks to a wall for a very long
time before undergoing a large enough random fluctuation that causes reversal.

In § 7 we use a homogenization theory approach to find the longitudinal effective
diffusivity Deff for the swimmer in an open channel. In the same reduced limit as above
(small rotational diffusion) we give an integral formula for the diffusivity. For a fast
swimmer we might expect that the effective diffusivity is related to the MRT: the swimmer
makes large excursions and sometimes reverses direction, thereby undergoing an effective
random walk for long times. Indeed, we obtain the rigorous bound

Deff ≤ DX + 1
2τrev U2, (1.1)

where DX is the diffusivity of the swimmer along the direction of swimming, τrev is the
MRT and U is the swimming speed. The term 1

2 (τrev U)2/τrev is equal to the diffusivity
for an unbiased random walk with step size τrevU and step time τrev .

In § 8, we incorporate hydrodynamic interactions of the swimmer with walls, using
the same interaction terms as in Spagnolie et al. (2015). We compare the cross-sectional
invariant density in a narrow channel for a configuration space corresponding to an
ellipsoidal and a near-spherical shape. Finally, we offer some concluding remarks in § 9.

2. Configuration space

In this section we describe how the swimmer’s shape interacts with boundaries to create
configuration space. We first establish coordinate systems for a convex swimmer (§ 2.1):
the fixed laboratory frame and a frame rotating with the swimmer. These are both
necessary since the direction of swimming and the magnitude of diffusion are tied to
the swimmer’s shape, and may be different along different axes (§ 3). We use the term
‘swimmer’ throughout, but our entire formalism applies to passive particles as well, for
which U = 0. We consider an arbitrary contact point between a swimmer’s body and
a single wall, and show how to derive the wall distance function for the swimmer. We
present a few examples: a needle (one-dimensional segment), an ellipse and a ‘teardrop’
shape. These are all swimmers with a left–right axis of symmetry, but our formalism
applies to more general swimmers as well.
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y

x

X

r

Y

Rb(ϕ)

θ

θ

rb

(b)(a)

Rb(ϕ)

Figure 2. Boundary of a convex swimmer in (a) the swimmer’s frame, with the swimming direction along the
positive X axis, and (b) the fixed laboratory frame, where the swimming direction makes an angle θ with the x
axis.

In § 2.2 we use the wall distance function to obtain the configuration space for a
swimmer confined between two infinite, parallel walls. Two very different cases emerge:
in the open channel configuration the channel is wide enough to allow the swimmer to
completely reverse direction, whereas in the closed configuration the swimmer is unable
to do so.

2.1. The wall distance function
The shape of a swimmer is expressed by giving its boundary in parametric form

R = Rb(ϕ) = (Xb(ϕ), Yb(ϕ)), −π < ϕ ≤ π, (2.1)

where Rb(ϕ) is a 2π-periodic, piecewise-smooth function (figure 2a). By convention, the
swimming direction Rb(0) is along the positive X axis in the swimmer’s co-moving and
co-rotating frame. The origin of the R = (X, Y) coordinate system is the centre of rotation
of the swimmer. Note that we do not require tan ϕ = Yb(ϕ)/Xb(ϕ), that is, ϕ does not
necessarily correspond to the polar angle of Rb(ϕ).

In a fixed (laboratory) frame, the boundary of the swimmer is located at (figure 2b)

(xb, yb) = rb(θ, ϕ) = r + Qθ · Rb(ϕ), −π < ϕ, θ ≤ π, (2.2)

where r = (x, y) denotes the centre of rotation of the swimmer and

Qθ =
(

cos θ − sin θ

sin θ cos θ

)
(2.3)

is a rotation matrix.
Now take the swimmer to be touching an infinite wall along y = 0, as shown in

figure 3(a). The contact point W between the swimmer and the wall has coordinates

(xb, 0) = r + Qθ · Rb(ϕ). (2.4)

We wish to solve for the swimmer’s centre of rotation r = (x, y), which depends only on
the convex hull of the swimmer; hence, the swimmer’s shape may be assumed convex
without loss of generality. We proceed differently depending on whether the contact point
W is a corner or a smooth boundary point. (Note that the analysis below can be couched in
the language of Legendre transformations and convex analysis, but we opt here for a direct
treatment.)
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x x x
WWW

QθRb(ϕ) y∗(θ–) y∗(θ+)y∗(θ)

θ–θ
θ+

(b) (c)(a)

Figure 3. (a) Convex swimmer touching a horizontal wall at a corner point W. (b,c) Holding W fixed, the
angle θ can vary from the right-tangency angle θ− to the left-tangency angle θ+.

2.1.1. Corner
Consider first the case where the contact point W corresponds to a corner of the
piecewise-smooth boundary, as in figure 3(a). The parameter ϕ has a fixed value for corner
W. The allowable range of θ is then determined by the right- and left-tangency values of θ

θ− ≤ θ ≤ θ+, tan θ±=−Y ′
b(ϕ

±)/X′
b(ϕ

±), (2.5)

as depicted in figures 3(b) and 3(c). Here, Y ′
b and X′

b are derivatives of Yb and Xb.
For this range of θ , we can then use (2.4) to deduce the range of y values

y∗(θ) = − sin θXb(ϕ) − cos θYb(ϕ), θ− ≤ θ ≤ θ+. (2.6)

We call y∗ the wall distance function. It characterizes the minimum distance from the
swimmer’s centre of rotation to a horizontal wall, as a function of the swimmer’s
orientation. Observe that a given corner corresponds to a single ϕ value, but a range of
θ values.

EXAMPLE 2.1 (needle swimmer). As a simple example, take

Xb(ϕ) = 1
2� cos ϕ − Xrot, Yb(ϕ) = 0. (2.7)

This is the needle swimmer with centre of rotation displaced by Xrot, with |Xrot| ≤
�/2. It consists of a one-dimensional segment of length �, with degenerate ‘corners’
at ϕ1 = 0 and ϕ2 = π. At ϕ = ϕ1 = 0, we have −π ≤ θ ≤ 0, so from (2.6) y∗(θ) =
− sin θ Xb(ϕ1) = − sin θ(1

2� − Xrot). At ϕ = ϕ2 = π, we have 0 ≤ θ ≤ π, so from (2.6)
y∗(θ) = − sin θ Xb(ϕ2) = − sin θ(−1

2� − Xrot). We can combine these cases by writing

y∗(θ) = 1
2�|sin θ | + Xrot sin θ, −π < θ ≤ π. (2.8)

Only needle positions with y ≥ y∗(θ) are allowed; see figures 4(a) and 4(b) for a plot.
For the case Xrot = 0, this type of swimmer and configuration space was investigated by
Ezhilan & Saintillan (2015).

We will typically use � to denote the maximum diameter of a swimmer, which controls
whether or not it can reverse direction for a given channel width (§ 2.2). The parameter
Xrot controls the position of the centre of rotation: for Xrot > 0 it is closer to the front, and
for Xrot < 0 it is towards the rear. We refer to these cases as front rotating and rear rotating,
respectively.
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Figure 4. The wall distance function y∗(θ) for three different swimmers: (a,b) needle of length � = 2a = 1;
(c,d) ellipse of length � = 2a = 1 and width 2b = 1/2; (e, f ) teardrop-shaped swimmer of size 1 by 1. The
inset shows the swimmer shape and centre of rotation, with swimming direction to the right. The right column
has centre of rotation displaced to Xrot = −1/4.

2.1.2. Smooth boundary point
When the contact point W is at a smooth boundary point, given θ we wish to solve for (x, y)
and ϕ. Two equations come from (2.4), but we need a third, which stems from requiring
that the tangent to the swimmer,

tb = ∂ϕrb = Qθ · R′
b(ϕ), (2.9)

is horizontal at W

X′
b(ϕ) sin θ + Y ′

b(ϕ) cos θ = 0, (2.10)
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or
Y ′

b(ϕ)/X′
b(ϕ) = − tan θ. (2.11)

We can solve (2.11) for ϕ = ϕ∗(θ), which we then use in (2.4) to obtain r = r∗(θ) at the
contact point

r∗(θ) = (x∗(θ), y∗(θ)) = −Qθ · Rb(ϕ∗(θ)). (2.12)

Equation (2.11) can have more than one solution, but we keep the one that leads to a
non-negative wall distance function,

y∗(θ) = − sin θ Xb(ϕ∗(θ)) − cos θ Yb(ϕ∗(θ)) ≥ 0. (2.13)

EXAMPLE 2.2 (elliptical swimmer). An ellipse-shaped swimmer with semi-axes a and b
can be parameterized as

Xb(ϕ) = a cos ϕ − Xrot, Yb(ϕ) = b sin ϕ (2.14)

with |Xrot| ≤ a. Here, a and b are the semi-axes along and perpendicular to the swimming
direction, respectively. The tangency condition (2.11) is then cot ϕ∗(θ) = (a/b) tan θ . After
inserting in (2.13) and selecting the non-negative solution we obtain

y∗(θ) =
√

a2 sin2 θ + b2 cos2 θ + Xrot sin θ. (2.15)

This wall distance function is plotted in figures 4(c) and 4(d).
For a ≥ b, it is convenient to rewrite (2.15) as

y∗(θ) = a
√

1 − e2 cos2 θ + Xrot sin θ, e :=
√

1 − b2/a2 < 1, (2.16)

where e is the eccentricity. For b = 0 (e = 1) we recover the needle case (2.8), with a =
�/2. The case e = 0 is a circular swimmer, which for Xrot = 0 has the same dynamics in
our model as a point swimmer (Elgeti & Gompper 2013; Lee 2013). Note, however, that
for Xrot /= 0 even a circular swimmer can exhibit alignment with the walls (see example
5.2).

2.1.3. General shapes
The convex hull for a general swimmer will consist of a combination of smooth parts
separated by corners, as for the ‘teardrop’ swimmer depicted in figure 2. The wall distance
function y∗(θ) cannot be found analytically in general, but is easy to compute numerically.
The simplest approach is to discretize the convex hull as a polygon, and then apply the
formulas in § 2.1.1 to every corner.

EXAMPLE 2.3 (teardrop swimmer). The ‘teardrop’ swimmer depicted in figure 2 is
parameterized by

Xb(ϕ) = a (2|cos(ϕ/2)| − 1) − Xrot, Yb(ϕ) = b sin ϕ, (2.17)

with |Xrot| ≤ a. This shape has a smooth boundary except for one corner at ϕ = ϕ1 =
π. The wall distance function can be obtained analytically but is a bit cumbersome; we
plot it in figures 4(e) and 4(f). Unlike the previous examples, the wall distance function
for the teardrop swimmer has a local minimum at θ = −π/2, rather than a maximum.
This value of θ corresponds to swimming towards the wall, and the minimum suggests
that this shape has a tendency to align perpendicular to the wall, rather than parallel.
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Shape matters: a Brownian microswimmer in a channel

(This is similar to the triangular swimmer in Lushi et al. 2017.) In the presence of diffusion,
the depth of the local minimum is a measure of how long a swimmer gets stuck in that
position before fluctuating out. See also example 5.2 for another, simpler model swimmer
that aligns perpendicular to the wall.

All the examples discussed thus far involve left–right-symmetric swimmers, which
satisfy (Xb(ϕ), Yb(ϕ)) = (Xb(−ϕ), −Yb(−ϕ)). For this class of swimmers, the wall
distance function has the symmetry

y∗(θ) = y∗(π − θ), (2.18)

which is evident in figure 4.

2.2. Channel geometry
So far we have considered a two-dimensional swimmer above a single infinite horizontal
wall. In a channel geometry, the swimmer is confined between two parallel infinite walls,
at y = ±L/2. Luckily, we do not need to derive a separate wall distance function for the
top wall: we can deduce it by symmetry. The centre of rotation of a swimmer with wall
distance function y∗(θ) will have its y coordinate in the range

ζ−(θ) ≤ y ≤ ζ+(θ), (2.19)

where

ζ−(θ) = y∗(θ) − L/2, ζ+(θ) = −y∗(θ + π) + L/2. (2.20)

This means that ζ± are related by the channel symmetry

ζ+(θ) = −ζ−(θ + π). (2.21)

The x coordinate of the centre of rotation is unconstrained and can be any real number,
but the domain for the swimming angle θ can either be [−π, π] or a union of disjoint
intervals. This depends on whether ζ−(θ) < ζ+(θ) for all θ ∈ [−π, π], or ζ+(θ) = ζ−(θ)

for some θ . We call these two cases the open channel and the closed channel, respectively.

2.2.1. Open channel
In the simplest case, we have

θ ∈ [−π, π], ζ−(θ) < ζ+(θ). (2.22)

In this case the swimmer can fully reverse direction in the channel. The full configuration
space for the swimmer’s centre of rotation is then

Ω = {(x, y, θ) : x ∈ R, ζ−(θ) ≤ y ≤ ζ+(θ), −π ≤ θ ≤ π} (2.23)

periodic in the θ direction. A typical example for this configuration space is depicted in
figure 5(a).
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Figure 5. Configuration space for the needle in figure 4(b) of length � = 2a = 1 in (a) an open channel of
width L = 1.05; (b) a closed channel of width L = 0.95. (x direction not shown.)

2.2.2. Closed channel
Another possibility is that ζ+(θi) = ζ−(θi) for some set of points {θi}. This breaks up
[−π, π] into inadmissible intervals where ζ−(θ) > ζ+(θ), and N disjoint admissible
intervals

θ ∈ (θL
i , θR

i ), with ζ−(θ) < ζ+(θ), i = 1, . . . , N. (2.24)

The relevant interval is determined by the initial orientation of the swimmer. The motion
of the swimmer then takes place in the configuration space

Ωi = {(x, y, θ) : x ∈ R, ζ−(θ) ≤ y ≤ ζ+(θ), θL
i ≤ θ ≤ θR

i }, (2.25)

which is not periodic in the θ direction. A typical example for this configuration space is
depicted in figure 5(b). Note that the condition ζ+(θi) = ζ−(θi) together with the channel
symmetry (2.21) implies that ζ+(θi + π) = ζ−(θi + π).

3. Stochastic model

Now that we have established that the domain of motion for our swimmer is described
by the configuration space of § 2, we describe the stochastic model for the swimmer’s
motion, the ABP model. For simplicity, we neglect hydrodynamic interactions; we will
include them in § 8.

3.1. Derivation from the stochastic differential equation
In the ABP model, the Brownian swimmer obeys the stochastic equation

dX = Udt +
√

2DX dW1, (3.1a)

dY =
√

2DY dW2, (3.1b)

dθ =
√

2Dθ dW3, (3.1c)

in its own rotating reference frame. (We omitted any intrinsic swimmer rotation for
simplicity, though this would not change the derivation appreciably. We will see that a
net rotation can still emerge when the swimmer is not left–right symmetric.) In terms of
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Shape matters: a Brownian microswimmer in a channel

absolute x and y coordinates, this becomes an Itô stochastic equation

dx =
(

Udt +
√

2DX dW1

)
cos θ − sin θ

√
2DY dW2, (3.2a)

dy =
(

Udt +
√

2DX dW1

)
sin θ + cos θ

√
2DY dW2, (3.2b)

dθ =
√

2Dθ dW3. (3.2c)

For now we take U, DX , DY and Dθ to be general functions of (x, y, θ, t). The
corresponding Fokker–Planck equation for the probability density p(x, y, θ, t) is then

∂tp = −∇ · (Up − ∇ · (D p)) + ∂2
θ (Dθ p), (3.3)

where ∇ := x̂ ∂x + ŷ ∂y, and the drift vector and diffusion tensor are respectively

U =
(

U cos θ

U sin θ

)
, D =

(
DX cos2 θ + DY sin2 θ 1

2(DX − DY) sin 2θ

1
2(DX − DY) sin 2θ DX sin2 θ + DY cos2 θ

)
. (3.4)

See Kurzthaler, Leitmann & Franosch (2016) and Kurzthaler & Franosch (2017) for the
intermediate scattering function for (3.3) in the absence of boundaries and with constant
parameters.

For any fixed volume V we have

∂t

∫
V

p dV = −
∫

V

(
∇ · (Up − ∇ · (D p)) − ∂2

θ (Dθ p)
)

dV = −
∫

∂V
f · dS, (3.5)

where ∂V is the boundary of V , and the flux vector is

f = Up − ∇ · (D p) − θ̂ ∂θ (Dθ p). (3.6)

Thus, on the impermeable parts of the boundary we require the no-flux condition

f · n = 0, on ∂V, (3.7)

where n is normal to the boundary.

3.2. Infinite channel geometry
The previous section applies to any geometry and general U , D, and Dθ , which can be
functions of (x, y, θ, t). For our problem, these only depend on θ . In an infinite channel
geometry (§ 2.2), which we consider in this paper, we can eliminate the along-channel
direction x by defining the marginal probability density

p̄( y, θ, t) =
∫ ∞

−∞
p(x, y, θ, t) dx. (3.8)

In order for p̄ to be finite, p has to decay fast enough as |x| → ∞; we use this assumption
to discard some terms after we integrate (3.3) from x = −∞ to ∞, and find an equation
for p̄

∂tp̄ = −∂y (U sin θ p̄) + ∂2
y
(
Dyy p̄

)+ ∂2
θ (Dθ p̄) , (3.9)

where from (3.4) Dyy = [D]22 = DX sin2 θ + DY cos2 θ . For the rest of the paper we take
U, DX , DY and Dθ to be constants, so that (3.9) simplifies to

∂tp̄ = −U sin θ ∂yp̄ + Dyy(θ) ∂2
y p̄ + Dθ ∂2

θ p̄. (3.10)

(Note that, instead of defining p̄ as in (3.8), we could assume that p is independent of x,
in which case p is a density per unit length that satisfies (3.10).) Equation (3.10) is our
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main focus. The corresponding flux vector (3.6) reduces to

f̄ = (U sin θ p̄ − Dyy(θ) ∂yp̄) ŷ − Dθ ∂θ p̄ θ̂ . (3.11)

For the channel geometry, the domain can be characterized by ζ−(θ) < y < ζ+(θ), so the
normal vector is

n̄ = ζ ′
±(θ) θ̂ − ŷ. (3.12)

The no-flux boundary conditions on (3.10) comes from (3.7)

f̄ · n̄ = −(U sin θ p̄ − Dyy(θ) ∂yp̄) − ζ ′
±(θ) Dθ ∂θ p̄ = 0, y = ζ±(θ). (3.13)

For convenience, we gather together the main (3.10) and its no-flux boundary condition
(3.13) for an infinite channel geometry

∂tp̄ + U sin θ ∂yp̄ − Dyy(θ) ∂2
y p̄ − Dθ ∂2

θ p̄ = 0, ζ−(θ) < y < ζ+(θ), (3.14a)

U sin θ p̄ − Dyy(θ) ∂yp̄ + ζ ′
±(θ) Dθ ∂θ p̄ = 0, y = ζ±(θ). (3.14b)

As discussed in § 2, the domain in θ is [−π, π] (periodic) for ζ−(θ) < ζ+(θ), which
means the swimmer can fully reverse direction in the channel (open-channel configuration,
figure 5a). If ζ−(θ) ≤ ζ+(θ), the domain ‘pinches off’ whenever ζ−(θ) = ζ+(θ), and
consists of two or more disconnected pieces (closed-channel configuration, figure 5b).

4. Reduced equation

Equation (3.14) is a challenging equation to solve, in particular because of the complicated
boundary shape. We can dramatically simplify the problem by assuming that the
diffusivity Dθ is small, and carrying out an expansion in powers of ε = Dθ . We call this
the small-Dθ or reduced limit. The reduced form of (3.14), given by (4.17), will enable us
to solve for the invariant density for a swimmer in § 5, as well as many other quantities of
interest such as a swimmer’s mean reversal time (§ 6) and its effective diffusivity along
the channel (§ 7).

Take (3.14) and write Dθ = ε:

U sin θ ∂yp̄ − Dyy(θ) ∂2
y p̄ = ε (∂2

θ p̄ − ∂T p̄), ζ−(θ) < y < ζ+(θ), (4.1a)

U sin θ p̄ − Dyy(θ) ∂yp̄ = −ε ζ ′
±(θ) ∂θ p̄, y = ζ±(θ), (4.1b)

where we also defined a slow time T = εt, ∂t → ε ∂T . We write the regular expansion

p̄(θ, y, T) = p̄0(θ, y, T) + ε p̄1(θ, y, T) + ε2 p̄2(θ, y, T) + . . . , (4.2)

and proceed to solve for p̄i order by order.
At order ε0, (4.1) is

U sin θ ∂yp̄0 − Dyy(θ) ∂2
y p̄0 = 0, U sin θ p̄0 − Dyy(θ) ∂yp̄0 = 0, y = ζ±(θ) (4.3)

with solution

p̄0(θ, y) = Q(θ, T) eσ(θ) y, σ (θ) := U sin θ/Dyy(θ), (4.4)

where Q(θ, T) is as-yet undetermined.
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Shape matters: a Brownian microswimmer in a channel

At order ε1, (4.1) is

U sin θ ∂yp̄1 − Dyy(θ) ∂2
y p̄1 = ∂2

θ p̄0 − ∂T p̄0, (4.5a)

U sin θ p̄1 − Dyy(θ) ∂yp̄1 = −ζ ′
±(θ) ∂θ p̄0, y = ζ±(θ). (4.5b)

Integrate (4.5a) from y = ζ− to ζ+ and use the boundary conditions (4.5b) to get, on the
left,

∫ ζ+(θ)

ζ−(θ)

(U sin θ ∂yp̄1 − Dyy ∂2
y p̄1) dy

= [
U sin θ p̄1 − Dyy(θ) ∂yp̄1

]ζ+(θ)

ζ−(θ)

= −ζ ′
+(θ) ∂θ p̄0(θ, ζ+(θ)) + ζ ′

−(θ) ∂θ p̄0(θ, ζ−(θ)). (4.6)

On the right, the integral of the term ∂2
θ p̄0 is

∫ ζ+(θ)

ζ−(θ)

∂2
θ p̄0 dy = ∂θ

∫ ζ+(θ)

ζ−(θ)

∂θ p̄0 dy − ζ ′
+(θ) ∂θ p̄0(θ, ζ+(θ)) + ζ ′

−(θ) ∂θ p̄0(θ, ζ−(θ)).

(4.7)

Combining the last two equations, we obtain

∂T

∫ ζ+(θ)

ζ−(θ)

p̄0 dy = ∂θ

∫ ζ+(θ)

ζ−(θ)

∂θ p̄0 dy. (4.8)

We can then carry out the y integral on the right of (4.8) after using (4.4), to get

∫ ζ+(θ)

ζ−(θ)

(
∂θQ + σ ′(θ)Q y

)
eσ(θ) y dy = w(θ) ∂θQ − ν(θ)Q, (4.9a)

where we defined the weight

w(θ) =
∫ ζ+(θ)

ζ−(θ)

eσ(θ) y dy = (exp(σ (θ) ζ+(θ)) − exp(σ (θ) ζ−(θ))) /σ (θ), (4.10a)

and the drift

ν(θ) = −σ ′(θ)

∫ ζ+(θ)

ζ−(θ)

y eσ(θ) y dy

= −σ ′(θ)

σ (θ)

([
y eσ(θ) y

]ζ+(θ)

ζ−(θ)
−
∫ ζ+(θ)

ζ−(θ)

eσ(θ) y dy

)

= σ ′(θ)

σ (θ)
(w(θ) − exp(σ (θ) ζ+(θ)) ζ+(θ) + exp(σ (θ) ζ−(θ)) ζ−(θ)) . (4.10b)

Note that w(θ) > 0 if ζ+(θ) > ζ−(θ), and w(θ) = 0 if and only if ζ+(θ) = ζ−(θ). Thus,
w(θ) only vanishes when the domain ‘pinches off’, as described in § 2.2.2. Despite the
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apparent singularity, the weight w is non-singular when σ is small

w(θ) ∼ ζ+(θ) − ζ−(θ), σ → 0. (4.11)

Another convenient form for the drift ν is

ν(θ) = w(θ)
σ ′(θ)

σ (θ)

[
1 − σ(θ)

2 sinh Δ(θ)

(
eΔ(θ) ζ+(θ) − e−Δ(θ) ζ−(θ)

)]
, (4.12)

with
Δ(θ) := 1

2σ(θ) (ζ+(θ) − ζ−(θ)). (4.13)

The function ν appears singular as Δ → 0, but the limit exists

ν(θ)

w(θ)
∼ −1

2σ ′(θ)(ζ+(θ) + ζ−(θ)), Δ → 0. (4.14)

This expression is valid whether Δ vanishes owing to σ(θ) = 0 or ζ+(θ) = ζ−(θ).
Doing the y integral on the left of (4.8), we finally obtain the reduced equation

w(θ) ∂TQ + ∂θ (ν(θ)Q − w(θ) ∂θQ) = 0. (4.15)

The reduced equation is a (1 + 1)-dimensional drift-diffusion PDE that captures the time
evolution of the marginal probability density

P(θ, T) =
∫ ζ+(θ)

ζ−(θ)

p̄0(θ, y, T) dy = w(θ) Q(θ, T). (4.16)

The weight function w(θ) and drift ν(θ) encode the effect of the shape of the configuration
space.

We can transform (4.15) into an equation for P

∂TP + ∂θ (μ(θ) P − ∂θP) = 0, (4.17)

with

w(θ) μ(θ) := ν(θ) + w′(θ) = exp(σ (θ) ζ+(θ))ζ ′
+(θ) − exp(σ (θ) ζ−(θ))ζ ′

−(θ). (4.18)

An explicit form for μ in terms of Δ in (4.13) is

μ(θ) = σ(θ)

2 sinh Δ(θ)

(
eΔ(θ) ζ ′

+(θ) − e−Δ(θ) ζ ′
−(θ)

)
. (4.19)

Although (4.17) is slightly nicer than (4.15), it has the disadvantage that it requires a
derivative w′(θ) in μ(θ), which can cause problems for non-smooth swimmer shapes.

EXAMPLE 4.1 (μ(θ) for elliptical and needle swimmers). For the elliptical swimmer
described by (2.16), we have

μellipse(θ) = −1
2

e2 aσ(θ) sin 2θ√
1 − e2 cos2 θ

coth Δ(θ) + Xrot σ(θ) cos θ, (4.20)

with Δ(θ) = 1
2σ(θ)(L − 2a

√
1 − e2 cos2 θ). Note that μ vanishes when e = 0 (circular or

point swimmer). The needle is the limit of (4.20) as e → 1

μneedle(θ) = −aσ(θ) cos θsgnθ coth Δ(θ) + Xrot σ(θ) cos θ. (4.21)

These are plotted in figure 6. Note that μneedle(θ) is discontinuous at θ = 0, due to the
singular derivative of w in (4.18).
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μ

Figure 6. The angular drift μellipse(θ) ((4.20)) in a channel of width L = 1.2 for an ellipse with a = 1/2,
b = 1/8, U = DX = DY = 1, Xrot = −1/4. The dashed line is μneedle(θ) (b = 0, (4.21)).

5. Invariant density

A natural quantity to compute from the reduced equation (4.15) is the invariant density for
the swimmer. This is the time-independent solution Q(θ, T) = Q(θ) to (4.15)

d
dθ

(ν(θ)Q(θ) − w(θ)Q′(θ)) = 0. (5.1)

The value of Q is unique for a periodic domain Ω or a single component Ωi; see § 2.2.
Note that Q (and hence the invariant density) is independent of Dθ at leading order.

To find the invariant density, we first integrate (5.1) once to get

ν(θ)Q(θ) − w(θ)Q′(θ) = c2. (5.2)

The solution to (5.2) then can be written

Q(θ) = c1 (1 − c2 F(θ)) eΦ(θ), (5.3)

where

Φ(θ) :=
∫ θ

θL

ν(ϑ)

w(ϑ)
dϑ, F(θ) :=

∫ θ

θL

dϑ

c1w(ϑ) eΦ(ϑ)
(5.4)

and θL is the left-most domain limit (θL = −π for Ω and θL = θL
i for Ωi; see § 2.2). The

integrand in (5.4) appears singular as Δ → 0, but the limit exists as we saw in (4.14).
Next we need to determine the constants c1 and c2. Normalization of P := wQ

determines c1, but c2 depends on whether we have an open or closed-channel configuration
space (§ 2.2). We treat these two cases separately.

5.1. Open channel
For the open-channel configuration space as described in § 2.2.1, w(θ) and ν(θ)

are 2π-periodic. The boundary condition on Q(θ) is that it be periodic as well.
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Figure 7. Invariant density p̄0 = Q(θ) eσ(θ) y for U = 1 and DX = DY = 0.1 for the needle in figure 4(b) of
length � = 2a = 1 in (a) an open channel of width L = 1.05; (b) a closed channel of width L = 0.95, for the
domain Ω1 in figure 5(b).

Choosing θL = −π in (5.4), we have

Q(−π) = c1 = Q(π) = c1 (1 − c2 F(π)) eΦ(π). (5.5)

We solve for c2 in (5.5) to obtain

c2 =
(

1 − e−Φ(π)
)

/F(π), (5.6)

and

Q(θ) = c1 eΦ(θ)
(

1 −
(

1 − e−Φ(π)
)

F(θ)/F(π)
)

. (5.7)

The constant c1 is chosen to enforce the normalization of P = wQ∫ π

−π

∫ ζ+(θ)

ζ−(θ)

p̄0(θ, y) dy dθ =
∫ π

−π

P(θ) dθ = 1. (5.8)

If Φ(θ) happens to be 2π-periodic, then we have Φ(π) = 0, so c2 = 0 and

Q(θ) = c1 eΦ(θ), (Φ(θ) 2π-periodic). (5.9)

The invariant probability density in this case satisfies detailed balance (Pavliotis 2014). In
fact Φ(θ) is periodic for the very important case of a left–right symmetric swimmer, for
then we have ζ+(θ) = −ζ−(−θ), which follows from symmetries (2.18) and (2.21). This
leads to Δ(−θ) = −Δ(θ) and the integrand of (5.4) is odd in θ . Choosing θL = −π then
gives Φ(−π) = Φ(π) = 0, i.e. Φ is periodic.

From Q, we can reconstruct the full invariant density from (4.4) as p̄0(θ, y) =
Q(θ) eσ(θ)y, with σ(θ) = U sin θ/Dyy(θ). The exponential term reflects the accumulation
near both walls, as observed in experiments and simulations. The thickness of the
boundary layer is Dyy/U sin θ , which agrees qualitatively with the results for a spherical
swimmer in Elgeti & Gompper (2013) and Ezhilan & Saintillan (2015). A typical invariant
density in an open-channel configuration is shown in figure 7(a) for a needle swimmer.
The marginal invariant probability density P(θ) is plotted in figure 8(a) for elliptical
swimmers with different velocities U and centres of rotation Xrot. From figure 7, the
invariant marginal density in y peaks near both walls, but not exactly at the walls, in
accordance with the simulations in the appendix of Ezhilan & Saintillan (2015).
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Shape matters: a Brownian microswimmer in a channel
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Figure 8. For an ellipse with a = 2b = 1/2, DX = DY = 0.1, Dθ = 0.01, U = 1, in a channel of width L =
1.2: (a) marginal invariant probability density P(θ); (b) 1/P , normalized to unit area (see (6.8) for definition
of τrev).

What is the meaning of non-zero c2? It represents an average rotational drift of the
needle’s stochastic angle θ(t). To see this, note that in the equilibrium state we have the
expectation

Eμ(θ(T)) =
∫ π

−π

μ(θ)P(θ) dθ =
∫ π

−π

(P ′(θ) + c2) dθ = 2πc2, (5.10)

since μP − P ′ = c2 and P(θ) is periodic. Hence, the average rate of angular rotation of
the swimmer is ω = 2πc2. From (5.4), the periodic average of μ(θ) is

μ̄ = 1
2π

∫ π

−π

μ(θ) dθ = 1
2π

∫ π

−π

ν(θ)

w(θ)
dθ = Φ(π)

2π
= 1

2π
log(1 − c2F(π))−1, (5.11)

which is zero if and only if c2 = 0 ((5.6)).

EXAMPLE 5.1 (invariant density for fast needle swimmer). It is in general quite
challenging to get closed-form solutions for the invariant density of a swimmer, but it
can be done in the large-U limit. From (5.4) and (4.18) we have

Φ(θ) =
∫ θ

−π

μ(ϑ) dϑ − log w(θ) + const., (5.12)

and so the leading-order invariant marginal density P = c1w eΦ for a left–right-symmetric
swimmer is

P(θ) = c̄1 exp
(∫ θ

−π

μ(ϑ) dϑ

)
, (5.13)

with c̄1 a normalization constant. For large U, the constant c̄1 can be determined by
approximating the normalization integral using the maxima of μ.

We illustrate this here for the needle swimmer of examples 2.1 and 4.1. For large U, we
can approximate coth Δ ≈ sgn(θ) for μ = μneedle in (4.21), and we have

μ(θ) ≈ −σ(θ) cos θ (a − Xrot) , U → ∞, (5.14)

with σ defined in (4.4), and a = �/2 the needle half-length. Note that the channel width L
does not appear in (5.14) at leading order in large U: the needle spends most of its time
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Figure 9. For a needle with � = 1, U = 8, DX = 0.1, DY = 1, Dθ = 0.01, in a channel of width L = 1.2
(β = 3.6): (a) marginal invariant probability density P(θ) (solid) and large-U form (5.17) (dashed). Notice the
discrepancy near θ = 0, π, which goes away for large U. (b) Value of 1/P , normalized to unit area, for the
same parameters.

stuck to one of the walls, so the channel width is not important. We can integrate (5.14)
and use the result in (5.13) to find

P(θ) = c̄1 exp
(

β log
(
α sin2 θ + cos2 θ

)1/(1−α)
)

, (5.15)

with
α := DX/DY , β := U(a − Xrot)/2DY � 1. (5.16)

We can see that ‘large U’ in non-dimensional terms means large β, which is a Péclet
number that accounts for the position of the centre of rotation: β is maximized when the
centre of rotation is at the rear (Xrot = −a), which is a rear-rotating swimmer. We can now
use Laplace’s method to find the normalization constant c̄1. The maxima of the argument
of the exponential in (5.15) correspond to the zeros of μ at θ = 0 and π (with −a ≤ Xrot <

a). We thus find

P(θ) =
√

β

4π

(
α sin2 θ + cos2 θ

)β/(1−α)

, β � 1. (5.17)

In the limit α = 1 (equal diffusivities), (5.17) simplifies to

P(θ) =
√

β

4π
e−β sin2 θ , β � 1. (5.18)

Note that the limit α → 0 in (5.17) is well defined and gives P(θ) = √
β/4π |cos θ |2β .

However, the limit α → ∞ gives an improperly normalized density, indicating that the
limits β, α → ∞ do not commute. (The quartic term in a Taylor series expansion of the
log in (5.15) has coefficient proportional to α, and cannot be neglected when applying
Laplace’s method.)

In figure 9 we compare a numerical solution for P to the large-U form (5.17).
There is some discrepancy near θ = 0, π, which comes from the approximation (5.14)

breaking down near those points, but the difference vanishes as U gets larger. We also plot
1/P , which we shall need in § 6, for which the approximation is uniformly much better.
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Shape matters: a Brownian microswimmer in a channel

EXAMPLE 5.2 (invariant density for fast circular swimmer). When the swimmer is
perfectly circular, putting e = 0 in (4.20) gives μ(θ) = Xrot σ(θ) cos θ , which is the same
as (5.14) with a = 0 in the previous example, except that here this expression is exact. The
invariant density thus has the form (5.15), with β = −UXrot/2DY, which can have either
sign. For β � 1 we recover (5.17) and (5.18) – the circular swimmer tends to align parallel
to the wall. For −β � 1 the maxima of

∫
μ dθ switch from {0, π} to ±π/2, and we get

instead of (5.17)

P(θ) =
√

|β|
4πα

(
sin2 θ + α−1 cos2 θ

)−|β|/(1−α)

, −β � 1, (5.19)

which for α = 1 simplifies to

P(θ) =
√

|β|
4π

exp(−|β| cos2 θ), −β � 1. (5.20)

Comparing the latter to (5.18), we can see that fast front-rotating circular swimmers
(Xrot > 0) collect at θ = ±π/2, swimming towards the wall, rather than aligning parallel
to the wall. The limit α → 0 in 5.19 gives P(θ) = 1

2 (δ(θ − π/2) + δ(θ + π/2)).

5.2. Closed channel
For a closed-channel configuration space, as described in § 2.2.2, the domain is given by
Ωi in (2.25), for some fixed i. Now the boundary condition is that there be no net flux in
the θ direction, so the constant c2 = 0 in (5.2). The solution for the invariant density is
thus

Q(θ) = c1 eΦ(θ), θL
i ≤ θ ≤ θR

i , (5.21)

with c1 obtained by the normalization condition for P = wQ∫ θR
i

θL
i

∫ ζ+(θ)

ζ−(θ)

p̄0(θ, y) dy dθ =
∫ θR

i

θL
i

P(θ) dθ = 1. (5.22)

A typical invariant density in a closed-channel configuration is shown in figure 7(b) for a
needle swimmer.

6. Mean exit times and MRTs

A standard problem in drift-diffusion processes is to compute the mean exit time (MET)
of a particle to some exit, also called a first-passage time (Ward & Keller 1993; Redner
2001; Holcman & Schuss 2014; Kurella et al. 2015; Grebenkov 2016; Marcotte et al. 2018).
Associated with the reduced drift-diffusion equation (4.17) is a reduced equation for the
mean exit time τ(θ)

μ(θ)τ ′ + τ ′′ = −1, θL < θ < θR, (6.1a)

τ(θL) = τ(θR) = 0. (6.1b)

The left-hand side of (6.1a) is the adjoint of the linear operator in (4.17) (Redner 2001;
Holcman & Schuss 2014; Kurella et al. 2015). The solution to (6.1) gives the expected time
τ for a particle starting at θ (for any y) to reach an ‘exit’ at θ = θL or θ = θR. Note that
since T = Dθ t in (4.17) the dimensional MET is τ/Dθ , which goes to infinity as Dθ → 0,
i.e. the exit cannot be reached if Dθ = 0. The word exit here is interpreted loosely: the
MET merely signifies the first time a swimmer’s orientation achieves the value θL or θR,
starting from some value θ .
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6.1. Solving the MET equation
To solve (6.1), define T = wτ ′ which satisfies

(ν/w) T + T ′ = −w, T = wτ ′, (6.2)

where w(θ) and ν(θ) are defined in (4.10). Use the integrating factor c̃1 eΦ(θ) from (5.4) to
get

τ ′(θ) = − 1

P̃(θ)

(
G̃(θ) − C

)
, G̃(θ) :=

∫ θ

θL
P̃(ϑ) dϑ, (6.3)

where P̃(θ) = c̃1 w eΦ is analogous to the invariant density for a closed channel (5.21)
and C is an integration constant. We choose c̃1 so that the normalization condition (5.22)
is satisfied: G̃(θR) = 1; hence, G̃(θ) is the equilibrium probability of finding the swimmer
between θL and θ , if the channel were closed. The MET τ has a unique maximum at
θ = θ∗ with C = G̃(θ∗).

Now integrate (6.3)

τ(θ) =
∫ θ

θL

1

P̃(ϑ)

(
C − G̃(ϑ)

)
dϑ, (6.4)

which satisfies the left boundary condition τ(θL) = 0. The right boundary condition then
requires τ(θR) = 0, which fixes the integration constant

C =
∫ θR

θL

G̃(ϑ)

P̃(ϑ)
dϑ

/∫ θR

θL

dϑ

P̃(ϑ)
. (6.5)

Equations (6.4) and (6.5) give the MET for a swimmer starting at θ and exiting at either
θL or θR. We now focus on a particular version of this mean exit time with a more natural
interpretation – the MRT.

6.2. Mean reversal time
The MRT τrev (or turnaround time (Holcman & Schuss 2014)) is the expected time for a
swimmer initially oriented with θ = 0 to reverse direction to θ = ±π. It can be obtained
from (6.4) by setting −θL = θR = π and θ = 0

τrev = τ(0) =
∫ 0

−π

1

P̃(ϑ)

(
C − G̃(ϑ)

)
dϑ. (6.6)

In Appendix A we show how the constant C can be eliminated to obtain

τrev = G̃(0)

1 + eπμ̄

∫ 0

−π

dϑ

P̃(ϑ)
+ tanh(πμ̄/2)

∫ 0

−π

G̃(ϑ)

P̃(ϑ)
dϑ, (6.7)

where μ̄ is defined in (5.11). For a left–right-symmetric swimmer, P̃ = P , μ̄ = 0 and
G̃(0) = 1/2 by symmetry, so we obtain the compact expression

τrev = 1
4

∫ π

0

dθ

P(θ)
. (6.8)
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Shape matters: a Brownian microswimmer in a channel
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Figure 10. MRT for a needle as a function of Dθ , for λ = 0.9, DY = 1. The dashed line is (6.11), which is
technically valid for small Dθ but applies over a wide range. The dotted line is from Holcman & Schuss (2014).
The solid line is from a finite-element simulation of the full PDE.

EXAMPLE 6.1 (MRT with diffusion only). In the absence of swimming (U = 0), we have
ν = 0 from (4.10b), and P̃ = P = c1w, with c−1

1 = ∫ π

−π
w dθ . Hence, (6.8) is

τrev = 1
2

(∫ π

0
w(θ) dθ

)(∫ π

0

dθ

w(θ)

)
. (6.9)

For a needle with wall distance function (2.8), we get from (2.20)

w(θ) = ζ+(θ) − ζ−(θ) = L − � |sin θ | (6.10)

where Xrot drops out: the centre of rotation is immaterial in the absence of swimming. We
can then easily compute the integral (6.9) to obtain

τrev = (π − 2λ)(π − arccos λ)√
1 − λ2

, λ := �/L < 1. (6.11)

The ‘narrow exit’ limit corresponds to λ = 1 − δ, with δ small

τrev = π(π − 2)√
2δ

+ O(δ0), δ  1. (6.12)

This is similar but not identical to Holcman & Schuss’s result (Holcman & Schuss 2014,
(5.13))

τrev = π(π − 2)√
2δ

√
DY

2L2Dθ

, (6.13)

valid as δ → 0, but otherwise unconstrained. In figure 10, a comparison to a finite-element
numerical solution of the full PDE (i.e. without using the reduced equation) shows
excellent agreement with our small-Dθ form (6.11), but less so with the form (6.13).
Possibly there is a parameter regime where (6.13) shows better agreement.
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Ellipse 1 × 0.5
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101
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Figure 11. MRT τrev for a needle and different ellipses, as a function of gap size δ. An ellipse reverses more
rapidly as it becomes more circular, since it spends less time aligning with the wall.

For an elliptical shape (2.16) with U = 0, we have

w(θ) = L (1 − λ
√

1 − e2 cos2 θ). (6.14)

Then

L−1
∫ π

0
w(θ) dθ = π − 2λE(e), (6.15)

where E is a complete elliptic integral of the second kind. We also have∫ π

0

L dθ

w(θ)
= π√

(1 − λ2)(1 − (1 − e2)λ2)
− 2
λ

K(e) + 2
λ(1 − λ2)

�

(
e2

1 − λ−2

∣∣∣∣ e
)

,

(6.16)

where K and � are the complete elliptic integrals of the first and third kinds. Together, the
product of (6.15) and (6.16) into (6.9) gives the reversal time for an ellipse. The MRT for a
needle is compared to different ellipses in figure 11.

6.3. Asymptotics of MRT
The integrand in (6.8) is the inverse of P(θ) = c1w(θ) eΦ(θ). The integral itself will thus
typically be dominated by the minima of P , which correspond to values of θ that the
swimmer finds difficult to cross when trying to reverse. This could be because δ = 1 − �/L
is small: this is the narrow escape problem discussed by Holcman & Schuss (2014) (see
example 6.1). However, for a swimmer the long reversal time is usually due to a swimmer
‘sticking’ to the top or bottom wall for long times.

To approximate the integral in (6.8), we look for minima θ∗ of P(θ), where we can
approximate

P(θ) = P(θ∗) exp(C∗ξ2 + O(ξ3)), ξ = θ − θ∗. (6.17)

This gives us the approximation

τrev ≈ 1
4P(θ∗)

∫ ∞

−∞
e−C∗ξ2

dϑ = 1
4P(θ∗)

√
π

C∗
. (6.18)
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Shape matters: a Brownian microswimmer in a channel

This should be multiplied by the number of minima with value P(θ∗) in 0 ≤ θ < π, should
there be more than one. We can easily obtain a more accurate, if messier, approximation
by retaining higher-order terms in (6.17).

EXAMPLE 6.2 (MRT for a fast needle swimmer). An ideal example for the asymptotic
approximation of τrev is the fast needle swimmer of example 5.1. Figure 9(b) clearly shows
strong peaks in 1/P at θ∗ = ±π/2 even for this modest value of U. Hence, we are justified
in expanding around the minimum of (5.17) at θ∗ = π/2, which gives

P(θ∗) =
√

β

4π
αβ/(1−α), C∗ = β/α. (6.19)

Recall that α = DX/DY is the ratio of diffusivities, and β is a large Péclet number defined
in (5.16). Inserting these in (6.18), we find

τrev ≈ π

2β
α

1
2 − β

1−α , (6.20)

or in the case α = 1

τrev ≈ π

2β
eβ, α = 1. (6.21)

This is exponential in the Péclet number β, so that the reversal time can become extremely
long. Note also that the MRT is independent of the channel width L in this limit. For the
parameters in figure 9 (β = 3.6), the numerical MRT is τrev ≈ 1.54 × 103, whereas the
approximation (6.20) gives 1.38 × 103. The approximation is thus reasonably good even
for a modest Péclet number β.

7. Effective diffusion along the channel

For the open-channel configuration, as a microswimmer travels down the channel, it will
occasionally reverse direction. For long times, we expect these reversals to lead to an
effective diffusion process on large scales. One way to capture this limit exactly is to derive
an effective diffusion equation using a homogenization approach (Sagues & Horsthemke
1986; McCarty & Horsthemke 1988; Childress & Soward 1989; Majda & Kramer 1999).
We proceed to do so for our microswimmer in a channel, and find the effective diffusivity
in the same reduced limit as in § 4 (small Dθ ).

7.1. Homogenized equation
Rewrite the Fokker–Planck (3.3) as

∂tp + ∂x(u p) + ∂y(v p) = ∂2
x (Dxx p) + 2∂x∂y(Dxy p) + ∂2

y (Dyy p) + ∂2
θ (Dθ p), (7.1)

where U = (u, v). In this section we only assume that D, Dθ and U do not depend on
x. (The derivation could easily be extended to allow x dependence.) Later (§ 7.2) we will
specialize to the forms in (3.4), which are functions of θ only.

We will homogenize in the x direction only, since the swimmer is confined between
walls in the y direction and the θ direction is periodic. We introduce a large scale x/η
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and long time t/η2, where η is a small expansion parameter. After rescaling t → t/η2 and
x → x/η, (7.1) becomes

L p = −η ∂x(u p) + 2η ∂x∂y(Dxy p) − η2∂tp + η2 ∂2
x (Dxx p), (7.2a)

where we defined the linear operator

L p := ∂y(v p) − ∂2
y (Dyy p) − ∂2

θ (Dθ p). (7.2b)

The no-flux boundary conditions for (7.2a) are(
v p − ∂y(Dyy p) − η ∂x(Dxy p)

)+ ζ ′
±(θ) ∂θ (Dθ p) = 0, y = ζ±(θ). (7.2c)

We expand the probability density p as a regular series in η

p = p0 + η p1 + η2 p2 + . . . . (7.3)

Define the cell integral of f (θ, y) as

〈f 〉 :=
∫ π

−π

∫ ζ+(θ)

ζ−(θ)

f (θ, y) dy dθ. (7.4)

To ensure uniqueness at each order, we enforce the cell-integrated probability 〈p〉 = 〈p0〉,
so that 〈pi〉 = 0 for i > 0.

Now we collect powers of η in (7.2) with the expansion (7.3). At leading order in η we
have from (7.2a)

L p0 = 0, (7.5a)

with boundary conditions from (7.2c)

v p0 − ∂y(Dyy p0) + ζ ′
±(θ) ∂θ (Dθ p0) = 0, y = ζ±(θ). (7.5b)

The operator L only involves (θ, y), so we can solve (7.5) with

p0 = P(x, t) ρ(θ, y), Lρ = 0, 〈ρ〉 = 1, (7.6)

where ρ(θ, y) is the cell-normalized x-independent invariant density for (7.1), and so
〈p0〉 = P(x, t).

At order η1, (7.2a) gives

L p1 = −∂x(u p0) + 2∂x∂y(Dxy p0) = (−u ρ + 2∂y(Dxy ρ)
)

∂xP. (7.7)

We can solve this by letting
p1 = χ ∂xP, (7.8)

where χ(θ, y) satisfies the cell problem

Lχ = −u ρ + 2∂y(Dxy ρ), (7.9a)

0 = v χ − ∂y(Dyy χ) + ζ ′
±(θ) ∂θ (Dθ χ) − Dxy ρ, y = ζ±(θ), (7.9b)

with 〈χ〉 = 0. The solvability condition for the cell problem (7.9) demands

〈u ρ〉 = 〈
∂y(Dxy ρ)

〉
. (7.10)

In our case, the left and right sides of (7.10) vanish separately after using the channel
symmetry ρ(θ + π, y) = ρ(θ, −y). On the left, we have u(θ) = U cos θ , so u(θ + π) =
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Shape matters: a Brownian microswimmer in a channel

−u(θ) and the integral must vanish. On the right, we have Dxy(θ) = 1
2 (DX − DY) sin 2θ

from (3.4), so Dxy(θ + π) = Dxy(θ) and ∂yρ(θ + π, y) = −(∂yρ)(θ, −y) and the integral
again vanishes. There is thus no ‘ratchet effect’ to cause a net drift, since there is no
breaking of the left–right symmetry of the channel. Having patterned walls as in Yariv &
Schnitzer (2014) and Malgaretti & Stark (2017) would likely cause such a drift.

At order η2, (7.2) gives

L p2 = −∂x(u p1) + 2∂x∂y(Dxy p1) − ∂tp0 + ∂2
x (Dxx p0), (7.11a)

0 = (
v p2 − ∂y(Dyy p2) − ∂x(Dxy p1)

)+ ζ ′
±(θ) ∂θ (Dθ p2), y = ζ±(θ). (7.11b)

The solvability condition then yields the effective heat equation

∂tP = Deff ∂2
x P, (7.12)

where the effective diffusivity in x is

Deff = 〈Dxx ρ〉 − 〈u χ〉 + 〈
∂y(Dxyχ)

〉
. (7.13)

The solvability condition (7.10) implies that χ only affects the effective diffusivity up to
an additive multiple of ρ.

7.2. Reduced equation limit
We solve the cell problem (7.9) in the same small-Dθ limit as in § 4. Anticipating that the
effective diffusivity should diverge as ε = Dθ becomes smaller, we expand

χ = ε−1 χ0 + χ1 + ε χ2 + . . . . (7.14)

The leading-order ε−1 cell problem (7.9) is the same as (4.3), with solution

χ0(θ, y) = X(θ) eσ(θ)y. (7.15)

At next order ε0 we have the PDE and boundary conditions

U sin θ ∂yχ1 − Dyy(θ) ∂2
y χ1 = ∂2

θ χ0 − (
U cos θ − 2σDxy

) Q(θ) eσ(θ)y; (7.16a)

U sin θ χ1 − Dyy(θ) ∂yχ1 = −ζ ′
±(θ) ∂θχ0 + Dxy Q(θ) eσ(θ)y, y = ζ±(θ), (7.16b)

where we used the invariant density p̄0 = Q(θ) eσ(θ)y. Integrate (7.16a) from y = ζ− to ζ+
and use the boundary conditions (7.16b)

∂θ (νX − w ∂θX) = −Ξ P, (7.17)

where P = wQ, and

Ξ(θ) := U cos θ − σDxy = U cos θ

cos2 θ + α sin2 θ
, (7.18)

with α = DX/DY as in (5.17). We integrate (7.17) once

νX − w ∂θX = d − H(θ), H(θ) :=
∫ θ

−π

Ξ(ϑ)P(ϑ) dϑ, (7.19)

with d a constant of integration. The solvability condition (7.10) ensures that H(θ) is a
periodic function of θ . Next use the integrating factor eΦ(θ) from (5.4), with θL = −π

w eΦ ∂θ (e−ΦX) = H(θ) − d. (7.20)

916 A15-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

14
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.144


H. Chen and J.-L. Thiffeault

We integrate again and find

e−Φ(θ) X(θ) − X(−π) =
∫ θ

−π

H(ϑ)

w(ϑ) eΦ(ϑ)
dϑ − c1d F(θ), (7.21)

where we used F(θ) from (5.4). By rearranging and using (5.7), we find after introducing
new constants

X(θ) = c̃1 eΦ(θ)

(∫ θ

−π

H(ϑ)

P̃(ϑ)
dϑ − d2F(θ)

)
+ d1Q(θ), (7.22)

where we used P̃ = c̃1w eΦ as in § 6.1. The constant d1 is adjusted to satisfy 〈χ〉 = 0 and
is immaterial to the effective diffusivity. The constant d2 is used to enforce periodicity of
X and can be eliminated to obtain

X(θ) = c̃1 eΦ(θ)

(∫ θ

−π

H(ϑ)

P̃(ϑ)
dϑ − F(θ)

F(π)

∫ π

−π

H(ϑ)

P̃(ϑ)
dϑ

)
+ d1Q(θ). (7.23)

In this reduced limit, the effective diffusivity (7.13) is

Deff = EDxx + Denh, Denh := −
∫ π

−π

Ξ wX dθ, (7.24)

to leading order in Dθ . The expected value EDxx is taken over the invariant marginal
density P(θ), and Denh is the ‘enhanced’ part of the diffusivity.

7.3. Bounding Deff by τrev for a left–right-symmetric swimmer
Since the expressions are getting a bit complicated, for the sake of brevity we will focus on
the left–right-symmetric case for this section. In that case the term involving F(θ) vanishes
in (7.23), and c̃1 eΦ becomes Q

X(θ) = Q(θ)

∫ θ

−π

H(ϑ)

P(ϑ)
dϑ + d1Q(θ). (7.25)

After restoring in (7.25) the definition of H from (7.19), it can be shown that the enhanced
diffusivity Denh in (7.24) can be written as

Denh = 4
∫ π/2

0
Ξ(θ)P(θ)

∫ θ

0
Ξ(θ ′)P(θ ′)

∫ π−θ

θ

dθ ′′

P(θ ′′)
dθ ′ dθ. (7.26)

To derive this we used the symmetries Ξ(θ + π) = Ξ(π − θ) = −Ξ(θ), P(θ + π) =
P(π − θ) = P(θ), the latter holding for a left–right-symmetric swimmer. Rearranging
the inner-most integral in (7.27) gives us

Denh = 1
2
τrev(E|Ξ |)2 − 8

∫ π/2

0
Ξ(θ)P(θ)

∫ θ

0
Ξ(θ ′)P(θ)′

∫ θ

0

dθ ′′

P(θ ′′)
dθ ′ dθ, (7.27)

where the MRT τrev was defined in (6.8). The expected value in (7.27) is taken over the
invariant marginal density P(θ), as in (7.24).
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Figure 12. Effective diffusivity from (7.24) for an ellipse with a = 1, b = 1/2, DX = DY = 0.1, Dθ = 0.01,
in a channel of width L = 1.2. The dashed lines are the bound 1

2 U2τrev from (7.28), with α = 1 and τrev given
by (6.8). The decrease in exponential rate as the centre of rotation Xrot is moved forward is similar to the
asymptotic form of τrev for a needle, (6.21), with β given by (5.16).

Since Ξ(θ) defined by (7.18) is non-negative in [0, π/2], (7.27) immediately gives us
the bound

Denh ≤ 1
2τrev(E|Ξ |)2 ≤ 1

2τrev max
θ

Ξ2(θ), (7.28a)

with

max
0≤θ≤π/2

Ξ(θ) =
{

U, α ≥ 1/2;
U/

√
4α(1 − α), α < 1/2.

(7.28b)

This useful bound allows us to estimate Denh from τrev , which is simpler to compute
((6.8)). The estimate tends to improve the longer the swimmer spends aligned with the
walls (figure 12).

8. Hydrodynamic interactions

In this section, we model a swimmer as a point singularity (stresslet) and add
hydrodynamic interactions with walls to the ABP model (3.2). Our goal is to examine
the importance of including shape in addition to hydrodynamic interactions in a narrow
channel. Hydrodynamic interactions modify the velocity and vorticity experienced by the
swimmer. The swimmer’s shape modifies the configuration space, that is, the allowable
range of θ and y values.

Since it is challenging to directly compare invariant densities p̄(θ, y) for two different
shapes, which have different configuration spaces, we compare instead cross-sectional
(marginal) invariant densities

∫ π

−π
p̄(θ, y) dθ for a narrow open channel.

We take the model from Spagnolie et al. (2015) where the velocity field of an ellipsoidal
swimmer with Xrot = 0 is approximated by a stresslet with non-dimensional magnitude
α. Here α > 0 and α < 0 represent a pusher and puller, respectively. Using the result in
Spagnolie et al. (2015) and axial symmetry of the ellipsoid, we can obtain the swimmer’s
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translational and rotational velocity in a channel. We assume the motion is confined to the
x–y plane, even though the hydrodynamic interactions are based on an ellipsoid. Assuming
an isotropic spatial diffusion (DX = DY ), we arrive at the Itô stochastic equation

dy = U sin θ dt − 3Uα

8

(
a2

(L/2 + y)2 − a2

(L/2 − y)2

)
(1 − 3 sin2 θ) dt +

√
2DX dW1,

(8.1a)

dθ = −3Uα

64a

(
a3

(L/2 + y)3 + a3

(L/2 − y)3

)
[4 − Γ (3 − cos 2θ)] sin 2θ dt +

√
2Dθ dW2,

(8.1b)

which is a generalization to (3.2) that includes hydrodynamic interactions. Here, Γ =
(a2 − b2)/(a2 + b2) ∈ [0, 1], where a and b are the semi-major and semi-minor axes
of the ellipsoid. Equation (8.1) is a far-field approximation, but Spagnolie et al. (2015)
have shown that this model is surprisingly accurate when a swimmer is near a wall,
so we expect (8.1) to be an adequate model for narrow channel confinement. Since the
noise is purely additive, we can easily integrate (8.1) using the explicit Euler method for
stochastic differential equations (SDEs). We use an adaptive step size that is decreased as
the swimmer approaches boundaries. If a step would take the swimmer inside a boundary,
that step is rejected, the step size is decreased and new Gaussian random numbers are
generated. This ‘rejection sampling’ approach realizes the no-flux boundary condition
at the walls. We integrate over many realizations and for long enough times that the
probability density of swimmers closely approximates the invariant density.

Spagnolie et al. (2015) argue that, without noise, a puller (α < 0) is repelled by a
wall when initially aligned parallel to it; it is stable when aligned perpendicular to the
wall. The opposite is true for a pusher (α > 0). Figure 13 shows cross-sectional invariant
densities for various stresslet magnitudes α. In figure 13(a) (puller), there is a plateau
between [−0.1, 0.1] with small peaks, corresponding to the swimmer accumulating
predominantly perpendicular to the wall. The plateau and peaks become more pronounced
with a larger stresslet amplitude. Figure 13(b) (pusher) shows concentration peaks near
both walls, corresponding to parallel alignment, which get closer to the walls as α is
increased. Simulations with a wider channel (not shown) agree with past experiments
(Berke et al. 2008; Li & Tang 2009; Li et al. 2011; Gachelin et al. 2013) and simulations
(Hernandez-Ortiz et al. 2005; Nash et al. 2010; Costanzo et al. 2012; Chilukuri et al. 2014;
Alonso-Matilla et al. 2016).

A simple way to quantify the importance of correctly accounting for the shape of
the swimmer is to perform simulations using the configuration space for a spherical
swimmer of radius 0.5, but retain hydrodynamic interactions for an ellipsoidal swimmer.
This artificial situation is not meant to model a real swimmer, but is merely used to
confirm that the shape of configuration space plays an important role in the final results.
Figure 14 shows the cross-sectional invariant densities for that case, and we can see that a
pusher (figure 14b) no longer exhibits parallel accumulation at the walls. The ellipsoidal
configuration space is thus responsible for the parallel alignment of a pusher, and must
be taken into account. In comparison, we still observe a plateau for a puller, only without
small peaks for perpendicular accumulation; a puller’s shape plays a lesser role.

Note that, instead of a spherical swimmer, we used one that is very close to a sphere,
to avoid numerical issues with the spherical swimmers sticking to the walls for very long
times. The importance of accounting for shape is less pronounced for wider channels, since
a swimmer experiences fewer steric wall interactions.
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Figure 13. Cross-sectional invariant density
∫

p̄(θ, y) dθ with stresslet magnitude (a) α < 0 (pullers); (b) α >

0 (pushers). The channel has width L = 1.2 and the swimmer is an ellipsoid with a = 2b = 0.5, Xrot = 0,
U = 1, DX = DY = 0.1, Dθ = 0.01, Γ = 0.6 in (8.1).
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Figure 14. Cross-sectional invariant density for the same parameters as in figure 13, but with a configuration
space corresponding to a nearly spherical swimmer with a = 0.5, b = 0.475. We keep Γ = 0.6 so that the
hydrodynamic interactions are as in figure 13.

9. Discussion

We used both theory and numerics to analyse the dynamics of finite-sized swimmers in
a channel. The shape of swimmers is embedded in their configuration space, which is
defined even for non-smooth swimmers via their convex hull. Shape enters solely in the
boundary conditions to the Fokker–Planck equation. Ignoring hydrodynamic interactions
for simplicity, we derived a reduced equation in the small Dθ limit for both open and closed
channels, from which we computed the invariant density. For open-channel geometry, we
calculated the MRT. We used homogenization techniques and solved the cell problem to
find the effective diffusivity. The shape of a swimmer is encoded in the rotational drift
term μ in the reduced equation (4.17), and appears explicitly in the integral solution
for the invariant density, MRT, and effective diffusivity. The integral of μ vanishes for
a left–right-symmetric swimmer, and many of our expressions then greatly simplify. In
particular the mean angular drift vanishes for such a symmetric swimmer. In § 8, we
added hydrodynamic interactions with the walls and discussed the importance of shape.
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We showed that, in a narrow channel, including the exact shape in configuration space is
important for a pusher, but less so for a puller since they tend to be aligned perpendicular
the walls.

A particular novelty in our work is to explicitly allow the position of the centre of
rotation, Xrot, to vary. The sign of Xrot affects the configuration space, as shown in figure 4,
and changes a swimmer’s tendency to align with walls. When a swimmer’s centre of
rotation is behind its geometrical centre, it tends to align with a wall; in the opposite case,
it tends to stay perpendicular to the wall even for a needle or circular swimmer (examples
5.1 and 5.2). A more systematic study of the role of Xrot for realistic swimmers will be the
subject of future work.

In our work we focused on two-dimensional swimmers for simplicity and ease of
presentation. However, generalizing the formalism to three-dimensional axisymmetric
swimmers is straightforward (Nitsche & Brenner 1990). In that case, the wall distance
function y∗ is essentially the same as in two dimensions, and all that changes is that the
∂2
θ operator must be replaced by the three-dimensional surface Laplacian. The dynamics

for three-dimensional axisymmetric swimmers will thus be similar to two-dimensional
left–right-symmetric swimmers, with some quantitative changes. In particular, following
almost the same calculations, we found the invariant density is given by a formula similar
to (5.21), and when applied to spherical swimmers with Xrot = 0 it agrees with the results
in Ezhilan & Saintillan (2015) and Elgeti & Gompper (2013). A Fully three-dimensional
swimmer that is not axisymmetric will require considerably more work to implement: the
configuration space has an extra dimension due to the extra degrees of freedom. Of course,
this will potentially also make the dynamics richer, and will allow for interesting effects
such as chirality.

Another challenging direction is to find asymptotic results when adding hydrodynamic
interactions with boundaries. It is also possible to include variable swimmer shapes, which
would allow the inclusion of flagella, by letting the configuration space itself be time
dependent. Yet another potential avenue is to treat the interaction of multiple swimmers,
in a manner analogous to Burada et al. (2009) and Bruna & Chapman (2013) for passive
diffusing spheres.
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Appendix A. Derivation of the MRT

In this appendix, we show how to from the reversal time formula (6.6) to the more explicit
form (6.7) by eliminating the constant C. First note that the numerator of (6.5) is

∫ π

−π

G̃(ϑ)

P̃(ϑ)
dϑ =

∫ 0

−π

G̃(ϑ)

P̃(ϑ)
dϑ +

∫ 0

−π

G̃(ϑ + π)

P̃(ϑ + π)
dϑ. (A1)
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Shape matters: a Brownian microswimmer in a channel

We wish to relate P̃(θ + π) to P̃(θ) = c̃1 w(θ) eΦ(θ). We have w(θ + π) = w(θ). The
change in Φ over a period is, from (5.4),

Φ(θ + π) − Φ(θ) =
∫ π

0
μ(ϑ) dϑ = πμ̄, (A2)

since μ(θ) is π-periodic. Here, μ̄ is the period-averaged μ(θ) from (5.11); Φ(θ) is only
π-periodic when μ̄ = 0, or equivalently c2 = 0. It follows from (A2) that Φ must have the
form

Φ(θ) = μ̄ θ + �̃(θ), (A3)

where �̃(θ) is π-periodic. We conclude from P̃(θ) = c̃1 w(θ) eΦ(θ) that P̃(θ + π) =
eπμ̄ P̃(θ). Similarly, for −π ≤ θ ≤ 0,

G̃(θ + π) =
∫ θ+π

−π

P̃(ϑ) dϑ

=
∫ 0

−π

P̃(ϑ) dϑ +
∫ θ+π

0
P̃(ϑ) dϑ

= G̃(0) + eπμ̄ G̃(θ). (A4)

Returning to (A1), we obtain∫ π

−π

G̃(ϑ)

P̃(ϑ)
dϑ =

∫ 0

−π

G̃(ϑ)

P̃(ϑ)
dϑ +

∫ 0

−π

G̃(0) + eπμ̄ G̃(θ)

eπμ̄ P̃(ϑ)
dϑ

= 2
∫ 0

−π

G̃(ϑ)

P̃(ϑ)
dϑ + G̃(0) e−πμ̄

∫ 0

−π

dϑ

P̃(ϑ)
. (A5)

The denominator of C in (6.5) is∫ π

−π

dϑ

P̃(ϑ)
=
∫ 0

−π

dϑ

P̃(ϑ)
+
∫ 0

−π

dϑ

P̃(ϑ + π)
= (1 + e−πμ̄)

∫ 0

−π

dϑ

P̃(ϑ)
. (A6)

Together, (A5) and (A6) give

C
∫ 0

−π

dϑ

P̃(ϑ)
= 1

1 + e−πμ̄

(
2
∫ 0

−π

G̃(ϑ)

P̃(ϑ)
dϑ + G̃(0) e−πμ̄

∫ 0

−π

dϑ

P̃(ϑ)

)
. (A7)

We use this in the reversal time (6.6):

τrev = C
∫ 0

−π

dϑ

P̃(ϑ)
−
∫ 0

−π

G̃(ϑ)

P̃(ϑ)
dϑ

= 1
1 + e−πμ̄

(
2
∫ 0

−π

G̃(ϑ)

P̃(ϑ)
dϑ + G̃(0) e−πμ̄

∫ 0

−π

dϑ

P̃(ϑ)

)
−
∫ 0

−π

G̃(ϑ)

P̃(ϑ)
dϑ

= 1
1 + e−πμ̄

(
G̃(0) e−πμ̄

∫ 0

−π

dϑ

P̃(ϑ)
+ (1 − e−πμ̄)

∫ 0

−π

G̃(ϑ)

P̃(ϑ)
dϑ

)

= G̃(0) e−πμ̄

1 + e−πμ̄

∫ 0

−π

dϑ

P̃(ϑ)
+ 1 − e−πμ̄

1 + e−πμ̄

∫ 0

−π

G̃(ϑ)

P̃(ϑ)
dϑ, (A8)

which is (6.7).
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