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Abstract Harish-Chandra induction and restriction functors play a key role in the representation theory
of reductive groups over finite fields. In this paper, extending earlier work of Dat, we introduce and

study generalisations of these functors which apply to a wide range of finite and profinite groups, typical

examples being compact open subgroups of reductive groups over non-archimedean local fields. We prove
that these generalisations are compatible with two of the tools commonly used to study the (smooth,

complex) representations of such groups, namely Clifford theory and the orbit method. As a test case, we

examine in detail the induction and restriction of representations from and to the Siegel Levi subgroup
of the symplectic group Sp4 over a finite local principal ideal ring of length two. We obtain in this

case a Mackey-type formula for the composition of these induction and restriction functors which is a
perfect analogue of the well-known formula for the composition of Harish-Chandra functors. In a different

direction, we study representations of the Iwahori subgroup In of GLn(F), where F is a non-archimedean

local field. We establish a bijection between the set of irreducible representations of In and tuples of
primitive irreducible representations of smaller Iwahori subgroups, where primitivity is defined by the

vanishing of suitable restriction functors.
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1. Introduction

1.1. Overview

Harish-Chandra (or parabolic) induction and restriction are fundamental operations

in the representation theory of reductive groups over finite fields, allowing efficient

transport of representations between such groups and establishing a close connection

to the representation theory of finite Coxeter groups; see [32, 46] for a particularly

elegant development of this connection for finite classical groups. Let us briefly recall

the definition of these functors. Let G be the group of rational points of a connected

reductive group defined over a finite field, and let L and U be the respective groups

of rational points of a Levi factor of and the unipotent radical of a rational parabolic

subgroup P of G. Then the Harish-Chandra induction functor iGL is the functor from

the complex representations of L to the complex representations of G given by tensor

product with the H(G)-H(L) bimodule H(G)eU, where H denotes the complex group

algebra and eU is the idempotent associated with the trivial representation of U. Dually,

tensoring with the bimodule eUH(G) gives the Harish-Chandra restriction functor rGL
that is adjoint to iGL . The two functors are related by a variant of Mackey’s double-coset

formula:

rGL iGL
∼=

⊕
g∈WL\WG/WL

iL
L∩gLg−1

Adg rL
g−1Lg∩L

(1.1)

where W denotes the Weyl group. See [13] for the precise general formulation and proof,

and for a sampling of the applications of this formula; and see [17, 41] for the original

work of Harish-Chandra.

In this paper we study induction and restriction functors which generalise the

Harish-Chandra functors to a rich family of profinite groups, to which the family of

reductive groups over finite fields is only a partial first approximation. Our motivating

examples are classical groups over compact discrete valuation rings, but our framework

covers many other cases, including arbitrary open compact subgroups of reductive

groups over local fields. Certain representations of such open compact subgroups play

an important role in the construction and classification of smooth representations of the

reductive groups via the theory of types. However, the representation theory of these

compact subgroups per se is not so well understood.

Before we introduce the functors that are at the heart of the present paper we remark

that the most obvious generalisation of the Harish-Chandra functors to the setting
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considered here tends to produce representations whose decomposition into irreducibles is

rather complicated, and in this sense lacks the efficiency of the ‘classical’ Harish-Chandra

functors, for which the problem of decomposing induced representations is tractable

through Weyl group calculations, thanks to (1.1) (see [24] for a comprehensive account).

For a concrete example of this inefficiency, let o be the ring of integers in a

non-archimedean local field F (so F is either the field of Laurent series over a finite

field, or a finite extension of the p-adic numbers). Let p denote the maximal ideal of o,

and for every ` ∈ N set o` = o/p`. Let Tn ⊂ Bn ⊂ GLn denote the standard diagonal

torus and the standard upper-triangular Borel subgroup in the general linear group,

and let Un denote the unipotent radical of Bn. The classical Harish-Chandra induction

functor from representations of Tn (o1) to representations of GLn (o1) is given by tensor

product with the bimodule H(GLn (o1))eUn (o1). There is an obvious way to generalise

this definition to GLn (o`) for ` > 1, by taking the tensor product with the bimodule

H(GLn (o`))eUn (o`). In particular, this functor sends the trivial representation of Tn (o`)

to the permutation representation of GLn (o`) given by

H(GLn (o`))eUn (o`)⊗H( Tn (o`)) 1
∼= H(GLn (o`)/Bn (o`)). (1.2)

When ` = 1 the Mackey formula (1.1) gives a decomposition of (1.2) according to the

regular representation of the symmetric group on n letters. For ` > 1 the decomposition of

(1.2) into irreducibles gets very quickly out of control, owing to the complicated nature of

the double-coset space Bn (o`)\GLn (o`)/Bn (o`). Misleadingly simple is the case n = 2,

where the induced representation has `+ 1 irreducible components (see [5]); already for

n = 3 the decomposition of the induced representation is rather complicated and, in

particular, depends on the degree of the residue field o1 = o/p, see [37].

Our proposed variant of Harish-Chandra induction, in this GLn example, sends the

trivial representation of Tn (o`) to the image of the intertwining operator

H(GLn (o`)/Bn (o`))→ H(GLn (o`)/Btn (o`))

which averages right Bn (o`)-invariant functions on GLn (o`) by the right action of

Utn (o`), where t means transpose, to obtain right Btn (o`)-invariant functions. This image

is isomorphic—regardless of `—to the module H(GLn (o1)/Bn (o1)), on which GLn (o`)

acts through the quotient map GLn (o`)→ GLn (o1).

This process of passing to the image of a canonical intertwining operator between two

induced representations fits into a rather general setting, which we shall now describe. In

the main body of the paper we study representations of profinite groups, such as groups

of matrices over compact discrete valuation rings; but our results also apply to (and are

interesting for) finite groups, such as matrix groups over the finite rings o`, and in order

to minimise the technicalities in this introduction we shall restrict our attention here to

the finite case.

Let G be a finite group, and suppose that U, L and V are subgroups of G such that L

normalises U and V, and such that the map

U×L×V ↪→ G
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given by multiplication in G is injective. We let eU and eV denote the idempotents in

the complex group algebra H(G) associated to the trivial representations of U and V,

and we consider the H(G)-H(L) bimodule H(G)eUeV . Let iU,V be the functor from the

category R(L) of complex representations of L to the category of complex representations

of G defined by tensoring with this bimodule:

iU,V : R(L)→ R(G), M 7→ H(G)eUeV ⊗H(L)M.

Similarly, define

rU,V : R(G)→ R(L), N 7→ eUeVH(G)⊗H(G)N.

This definition, suitably extended to profinite groups, generalises the parahoric functors

defined by Dat in [10] for the purpose of studying representations of p-adic reductive

groups. (Note, though, that we consider only complex representations, whereas Dat

studied representations over more general commutative rings.) In the situations studied

by Dat, which we shall recall in detail in Example 2.4, G is the isotropy group of a point

in the Bruhat–Tits building of a reductive group G, and the product ULV is a parahoric

subgroup of G. The main novelty of the above definition relative to Dat’s is that we do

not require the product ULV to be a group; for instance, ULV may be the intersection

with G of a Bruhat cell of G. One source of motivation for considering this more general

situation is a question raised by Dat [10, Question 2.15], to which we shall provide a

negative answer in Corollary 5.21. The precise relationship between our definition and

Dat’s is discussed in more detail in Examples 2.4 and 2.12, Remark 2.8, and in § 5.5.

1.2. Description of the main results

Basic properties of the functors iU,V and rU,V , in the abstract setting for profinite

groups, are presented in § 2. For instance, these functors are adjoints on both sides; they

do not depend on the order of U and V, up to natural isomorphism; they preserve finite

dimensionality; and they satisfy a version of ‘induction in stages’.

The analysis of the functors iU,V and rU,V becomes considerably less complicated in

cases where the product map U×L×V → G is a bijection. In many examples, such as

the GLn example considered above, this is not the case, but there is a normal subgroup

G0�G such that the product map U0×L0×V0→ G0 is a bijection, where H0 means

H∩G0. In the GLn example we can take G0 to be the principal congruence subgroup

G0 = {g ∈ GLn (o`) | g ≡ 1 modulo p}.

Suppose that G admits such a normal subgroup G0. The representation categories R(L)

and R(G) decompose according to L0- and G0-isotypic components, and the individual

components can be described using Clifford theory. In § 3 we prove that the Clifford

analysis is compatible with the induction and restriction functors iU,V and rU,V .

More precisely, let ψ be an irreducible representation of L0, and let ϕ = iU0,V0 (ψ) be

the corresponding (irreducible) induced representation of G0. Let L(ψ) and G(ϕ) denote

the inertia groups of ψ and ϕ. We prove in Theorems 3.4, 3.6 and 3.14 that there is a
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commutative diagram for induction (and a similar diagram for restriction) :

R(L)ψ
iU,V // R(G)ϕ

R (L(ψ))ψ
iU(ϕ),V(ϕ) //

∼=

OO

R(G(ϕ))ϕ

∼=

OO

Rγ(L(ψ)/L0)
iU(ϕ)/U0,V(ϕ)/V0 //

∼=

OO

Rγ(G(ϕ)/G0)

∼=

OO

where R(H)θ stands for the representations of H whose restriction to H0�H is a sum

of conjugates of the irreducible representation θ; and Rγ(H(θ)/H0) stands for projective

representations (for a certain cocycle γ) of the quotient H(θ)/H0.

As for the groups L0 and G0, in many of our motivating examples they are amenable

to the orbit method: their irreducible representations correspond bijectively to coadjoint

orbits in the Pontryagin duals of certain Lie algebras l0 and g0. This situation is

studied in § 4, where we show that under appropriate assumptions the induction

functor iU0,V0 : R(L0)→ R(G0) corresponds to a natural inclusion of coadjoint orbits

Λ∗ : L0\l̂0 ↪→ G0\ĝ0. That is, the diagram

Irr (L0)
iU0,V0 //

∼=

��

Irr (G0)

∼=

��
L0\l̂0

Λ∗ // G0\ĝ0

commutes.

Returning from the abstract setting to our motivating examples, the functors iU,V
and rU,V provide a new approach to the representation theory of classical groups over

compact discrete valuation rings, and the results of §§ 3 and 4 provide tools to analyse

these functors. In § 5 we illustrate the method for the symplectic group Sp4 (o2). The

main result (Theorem 5.2) is a Mackey-type formula for the composition of restriction

and induction to/from the Siegel Levi subgroup. The formula is the same as the usual
formula (1.1) for the composition of Harish-Chandra induction and restriction for the

corresponding group Sp4 (o1) over the residue field of o, which lends some support to

the analogy between our functors and the Harish-Chandra functors. This analogy is

further supported by an analysis for the groups GLn, which is presented in [9] and in

the forthcoming paper [8].

The general methods developed in §§ 3 and 4 and used in § 5 apply equally well to Dat’s

parahoric induction and restriction functors. In § 5.5 we prove that, for the Siegel Levi

subgroup of Sp4, Dat’s parahoric induction and restriction functors are not isomorphic

to the functors appearing in our Mackey formula; this gives a negative answer to Dat’s

question [10, Question 2.15]. We also prove that the parahoric induction and restriction

functors do not satisfy the analogue of (1.1) in this example.
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While our primary motivation for studying the functors iU,V and rU,V is their

application to classical groups, these functors are defined in much broader generality,

and we believe that they have a useful role to play in the representation theory of more

general matrix groups. In § 6 we use these functors to study one such example, the

representation theory of the Iwahori subgroup In of GLn (o). The Iwahori in SL2 was

previously studied from a similar point of view in [10] and [7]. The main result of this

section, Theorem 6.11, states that the functors iU,V and rU,V in this context give a

bijection

Irr (In)←→
⊔

n1+···+nk=n

Prim (In1)× · · ·×Prim (Ink) (1.3)

between the irreducible representations of In, and tuples of primitive irreducible

representations of smaller Iwahori subgroups (where primitivity is defined by the

vanishing of the functors rU,V ). The problem of classifying the irreducible representations

of In remains a very difficult one—it contains the problem of counting the conjugacy

classes in the group of upper-triangular matrices over the residue field o1—but the

bijection (1.3) shows that part of this classification is very simple and combinatorial

in nature.

1.3. Related constructions

Representations of open compact subgroups of reductive groups over local fields have

received much attention in the past two decades. One approach, taken by Lusztig and

Stasinski, is to generalise Deligne–Lusztig theory [12] (which is itself a generalisation

of the Harish-Chandra theory) to such groups; see [34, 44], and also [6] and [35].

Another approach, taken by Hill [18–21], consists of a direct Clifford-theoretic analysis

of representations according to their restrictions to congruence kernels. In particular, in

[18] Hill establishes a Jordan decomposition for characters of general linear groups over

rings of integers in p-adic fields, analogous to the Jordan decomposition of irreducible

characters of finite reductive groups established by Lusztig, cf. [33]. Hill’s work relies

on an analysis of certain Hecke algebras building on the work of Howe and Moy

[23]. Another approach was proposed by the third author in [36] using a different

variant of Harish-Chandra induction that allows one to import representations from

automorphism groups of finite modules over discrete valuation rings, yielding a complete

and characteristic-independent treatment in rank two. The work of Dat [10], in which
representations of parahoric subgroups of p-adic reductive groups are studied using

methods closely related to those of the present paper, has already been mentioned above.

It would be of great interest to understand how all these approaches align with the one

taken in this paper. The relationship between our work and that of Dat is addressed in

Examples 2.4 and 2.12, Remark 2.8, and § 5.5. As for the other works cited above, let us

make a couple of general observations.

The first point to note is that the natural filtration on the valuation ring o does not

enter a priori into the definition of our induction/restriction functors, and in this sense

our approach is more elementary than those of the above-cited works. For instance,

induction functors of the form iU,V are used in [9] to give a simple construction of a

‘principal series’ of representations of GLn (R), where R is any finite commutative ring.
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A second difference is one of scope. Our focus here is on producing induced

representations with tractable intertwining properties, rather than on producing all or

most of the irreducible representations of a given group. To give an example, we note

that in the case of G = GL2 (o), L = T2 (o), U = U2 (o) and V = Ut2 (o) as in (1.2),

all of the representations of G which are of types (3) and (4) in the classification of

Stasinski [43, § 2.1] (or equivalently types (iii) and (iv) in [36, § 5.2]) are annihilated by the

restriction functor rU2 (o),Ut2 (o) : R(GL2 (o))→ R( T2 (o)); hence these representations

do not appear as subrepresentations of iU2 (o),Ut2 (o) (M) for any representation M

of T2 (o). Our goal here is to develop an analogue of Harish-Chandra theory which

mirrors as closely as possible the theory for reductive groups over a finite field, yielding

a description of arbitrary representations in terms of ‘primitive’ ones, and of Weyl group

combinatorics. We leave untouched for now the problem of constructing or classifying

the primitive representations.

2. Notation, definitions, and basic properties

In this section we define and develop basic properties of the functors iU,V and rU,V in

an abstract setting. The pivotal point in this section is Proposition 2.16, which allows

us to generalise many of Dat’s results from [10, § 2] to the situation considered in this

paper. We begin by setting up the notation that will be used throughout the paper.

2.1. Notation

For a profinite group G we let R(G) denote the category of smooth, complex

representations of G, that is, linear representations ϕ : G→ GLC (M) in which each

vector in M is fixed by some open subgroup of G. We denote such a representation either

by the map ϕ or by the space M, as convenient. If M is any representation of G (not

necessarily smooth), we let M∞ denote the G-subspace of vectors fixed by some open

subgroup of G.

Let H(G) denote the algebra of locally constant, complex-valued functions on G, with

product given by convolution with respect to some Haar measure on G. Different choices

of Haar measure give isomorphic algebras, the isomorphism being multiplication by the

ratio vol1 (G)/ vol2 (G) of the total volumes of the two measures. The category R(G) is

equivalent to the category of nondegenerate left H(G)-modules, i.e. those modules M
which satisfy M = H(G)M. If G is finite then we usually use counting measure as the

Haar measure on G, in which case the map sending g ∈ G to the δ-function δg at g

extends to an isomorphism from the complex group ring C(G) to H(G).

Let Irr (G) denote the set of isomorphism classes of irreducible smooth representations

of G. When chances for confusion are slim we also write ρ ∈ Irr (G) for an actual

irreducible representation. For each ρ ∈ Irr (G) let chρ ∈ H(G) be the character g 7→

tr (ρ(g)) of ρ, and let eρ ∈ H(G) be the idempotent defined by

eρ : g 7→
dimC (ρ)

vol (G)
chρ (g−1).
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If M is a smooth representation of G then eρ acts on M by projecting M onto its

ρ-isotypical submodule. For the special case of the trivial representation we write eG for

the corresponding idempotent, namely, the function on G with constant value 1/ vol (G).

The element eG acts on each smooth representation M by projecting onto the submodule

MG of G-fixed vectors.

If M is a nondegenerate left H(G)-module, and N is a nondegenerate right

H(G)-module, then by definition

N⊗H(G)M = N⊗CM
/

span{nf⊗m−n⊗ fm | n ∈ N, m ∈M, f ∈ H(G)}.

Equivalently, viewing N and M as smooth representations of G, N⊗H(G)M is the space

of coinvariants for the action g : n⊗m→ ng−1⊗gm of G on N⊗CM.

If H is a closed subgroup of G, then H(G) is a smooth representation of H under both

left and right translation, and consequently H(G) is an H(H)-bimodule. Given a smooth

representation M of H we write

indGHM =

{
f : G

locally
↘constant
M

∣∣∣∣ f(hg) = h · f(g),∀h ∈ H, g ∈ G

}
for the induced representation, on which G acts by right translation. This is isomorphic

to the tensor product H(G)⊗H(H)M. If the subgroup H is a semidirect product UoL,

then representations may be induced from L to G by first inflating to H (i.e. pulling

back along the quotient map H→ L), and then applying the functor indGH. The resulting

functor from R(L) to R(G) is isomorphic to the functor of tensor product with the

H(G)-H(L) bimodule H(G)eU ∼= H(G/U), where H(G/U) denotes the space of locally

constant functions on G/U.

Whenever a group G acts on a set X we write G(x) for the stabiliser in G of x ∈ X.

The first three chapters of [38] are a convenient reference for all of the above. Many

of the examples considered here will be groups of matrices over compact subrings of

non-archimedean local fields; see [38, Chapter V], for instance, for more background on

these.

2.2. Virtual Iwahori decompositions

Let us begin by describing the kind of groups that we shall be interested in, and giving

several examples.

Definition 2.1. Let G be a profinite group. A virtual Iwahori decomposition of G is a

triple of closed subgroups (U, L, V) of G, where L normalises U and V, such that

(1) The multiplication map U×L×V → G is an open embedding (and therefore a

homeomorphism onto its image).

(2) G contains arbitrarily small open, normal subgroups K for which the multiplication

map

(U∩K)× (L∩K)× (V ∩K)→ K

is a homeomorphism.
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An Iwahori decomposition of G is a virtual Iwahori decomposition for which the

multiplication map in (1) is surjective (and therefore, a homeomorphism).

The following immediate observation shows that the notion of virtual Iwahori

decomposition is inherited by subgroups and quotients.

Observation 2.2. Let (U, L, V) be a virtual Iwahori decomposition of G.

(1) If J is a closed subgroup of G, then (U∩ J, L∩ J, V ∩ J) is a virtual Iwahori

decomposition of J.

(2) If (X,H, Y) is a virtual Iwahori decomposition of L, then (UoX,H, YnV) is a

virtual Iwahori decomposition of G.

(3) If K is an open normal subgroup of G with an Iwahori decomposition as in part

(2) of Definition 2.1, then (U/(U∩K), L/(L∩K), V/(V ∩K)) is a virtual Iwahori

decomposition of G/K.

The concept of Iwahori decomposition first appeared in the work of Iwahori and

Matsumoto on p-adic Chevalley groups [26]. The ‘virtual’ version defined above is likewise

motivated by examples occurring naturally in the study of reductive groups:

Example 2.3. Let G be a connected reductive group over a non-archimedean local field

F, and let G be any compact open subgroup of G(F). There is a maximal F-split torus

T ⊂ G (depending on G) with the property that if L is an F-rational Levi subgroup of G

containing T, and U and V are the unipotent radicals of an opposite pair of F-rational

parabolic subgroups of G with common Levi factor L, then the triple of subgroups

(G∩U(F), G∩L(F), G∩V(F)) is a virtual Iwahori decomposition of G. This follows from

the Bruhat–Tits theory: one can take T to be any torus whose associated apartment in

the affine building of G(F) contains a point fixed by G. An explicit filtration of G by

open normal subgroups admitting Iwahori decompositions is constructed in [39, § 1.2];

cf. [10, 2.11].

Example 2.4. Keeping the notation of the previous example, let us recall the Iwahori

decompositions used by Dat in his construction of parahoric induction and restriction;

see [10, 2.11] for more details. Let x be a point in the Bruhat–Tits building of G(F),

lying in the apartment associated to some maximal split torus T. Let G = G(F)(x) be the

stabiliser of x in G(F); this is a compact open subgroup of G(F). The Bruhat–Tits theory

distinguishes an open subgroup G+ of G, the pro-p radical. Let P = LU and Q = LV

be an opposite pair of rational parabolic subgroups of G whose common Levi factor

L contains T. In addition to the groups U = G∩U(F), L = G∩L(F), and V = G∩V(F)

considered in the previous example, we consider U+ = U∩G+ and V+ = V ∩G+. Then

(U, L, V+) and (U+, L, V) are virtual Iwahori decompositions of G, with the property

that the products GP = ULV+ and GQ = U+LV are subgroups of G (and so, (U, L, V+)

and (U+, L, V) are Iwahori decompositions of the groups GP and GQ). By contrast, for

the virtual Iwahori decomposition (U, L, V) considered in Example 2.3, the product ULV

is generally not a subgroup of G.

https://doi.org/10.1017/S1474748017000305 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748017000305


1002 T. Crisp et al.

Example 2.5. For a specific instance of the previous two examples, let G = GLn, and let

F be a non-archimedean local field with ring of integers o and maximal ideal p. For each

positive integer ` we let o` = o/p`.

Given an ordered partition n = n1+ · · ·+nm of n as a sum of positive integers, let L ∼=
GLn1 × · · ·×GLnm be the corresponding block-diagonal Levi subgroup of G; let U be the

group of upper-triangular matrices in G with diagonal blocks 1n1×n1 × · · ·× 1nm×nm ;

let P = LU be the parabolic subgroup of block-upper-triangular matrices; and let Q = LV

be the opposite parabolic subgroup of block-lower-triangular matrices.

The group G = G(o) = GLn (o) is the stabiliser of a vertex in the building of G(F), lying

in the apartment associated to the diagonal torus T. The group L = L(o) is the group of

block-diagonal matrices in G; similarly U = U(o) and V = V(o). The triple (U, L, V) is a

virtual Iwahori decomposition of G: the principal congruence subgroups

K` := ker ( GLn (o)→ GLn (o`))

all admit Iwahori decompositions. Passing to quotients by the K` yields virtual Iwahori

decompositions of the finite groups GLn (o`).

The pro-p radical G+ is the first principal congruence subgroup K1. The subgroups

GP = ULV+ and GQ = U+LV are the preimages of the parabolic subgroups P(o1)

and Q(o1) (respectively) under the reduction-mod-p map G→ G(o1). For instance, if

the partition is n = 1+ · · ·+ 1, then GP is the standard Iwahori subgroup of GLn (o),

comprising those matrices which are upper-triangular modulo p. By contrast, ULV is in

this example the set of o-points of the open Bruhat cell PQ ⊂ G; this is clearly not a

subgroup of G.

Let us return now to the general setting of Definition 2.1. If G is finite then the condition

(2) of that definition is always satisfied, e.g. by the trivial subgroup K = {1}. Since the

smooth representation theory of a profinite group G is determined in a very simple

way by the representations of the finite quotients of G, the condition (2) is therefore

not essential to much of the sequel. On the other hand, this condition is convenient in

places for shortening some proofs, and it is satisfied by all of our motivating examples.

Nevertheless, let us note the following quite general construction of examples which satisfy

condition (1) without—at least a priori—satisfying (2).

Example 2.6. Let G be a totally disconnected locally compact group and let α : G→ G

be a topological group automorphism. Suppose that the contraction subgroups

Uα = {g ∈ G | αn(g)→ 1 as n→∞} and Vα = Uα−1

are closed in G. This is always the case, for example, if G is a p-adic Lie group.

These contraction subgroups are both normalised by the closed subgroup

Lα = {g ∈ G | {αn(g) | n ∈ Z} is precompact in G},

and the multiplication map

Uα×Lα×Vα→ G
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is an open embedding. So if G is any compact open subgroup of G, then the triple

(Uα ∩G,Lα ∩G,Vα ∩G) satisfies condition (1) of Definition 2.1. Moreover, G contains

arbitrarily small open subgroups K for which the multiplication map

(Uα ∩K)× (Lα ∩K)× (Vα ∩K)→ K

is a homeomorphism (the so-called tidy subgroups for α). It is not clear to us whether

G contains arbitrarily small open normal subgroups K with this property. If G is an

analytic Lie group over a local field and the automorphism α is analytic (keeping the

assumption that the contraction groups are closed), then it is at least true that G contains

arbitrarily small open subgroups K with Iwahori decomposition (Uα ∩K,Lα ∩K,Vα ∩K);

cf. Example 4.8 for the characteristic 0 case. We thank George Willis and Helge Glöckner

for a discussion of this example. See [1] and [16] for details.

2.3. Definition and basic properties of the functors i and r

We now come to the main definition of the paper. Whenever H is a closed subgroup of

a profinite group G, the space H(G) is a bimodule over H(H). If L, U and V are closed

subgroups of G, and L normalises U and V, then the action of H(L) on H(G) commutes

with the idempotents eU ∈ H(U) and eV ∈ H(V). Thus H(G)eUeV is an H(G)-H(L)

bimodule, and eUeVH(G) is an H(L)-H(G) bimodule.

Definition 2.7. Let (U, L, V) be a virtual Iwahori decomposition of a profinite group G.

Define the following functors:

iU,V : R(L)→ R(G), iU,V :M 7→ H(G)eUeV ⊗H(L)M

rU,V : R(G)→ R(L), rU,V : N 7→ eUeVH(G)⊗H(G)N.

Remark 2.8. The definition in the case where ULV is a subgroup of G is due to Dat, who

considered situations like Example 2.4; see [10, 2.6, 2.11]. The novelty of Definition 2.7 is

that we relax the requirement that ULV be a group, so as to cover cases like Example 2.3.

See Example 2.12 and § 5.5 for a discussion of the relationship between this more general

definition and Dat’s definition of parahoric induction. Note that Dat makes a further

assumption in [10], namely that the group L should contain an open normal subgroup

L† such that the set UL†V is a pro-p subgroup of G. This assumption, which is needed

to ensure the integrality of certain constructions in [10], plays no role here, where all

representations are over C.

Let us make a few further remarks on Definition 2.7. Firstly, since H(G)eUeV is the

image of the bimodule map f 7→ feV from H(G)eU to H(G)eV , and since everyM ∈ R(L)

is a direct sum of representations of finite quotients of L, and hence flat as a module over

H(L), the module iU,V (M) is isomorphic to the image of the map

JV : H(G)eU⊗H(L)M
f⊗m7→feV⊗m

↘ H(G)eV ⊗H(L)M. (2.9)

The module H(G)eU⊗H(L)M is isomorphic as a representation of G to the induced

representation indGLU (M), where M is inflated to a representation of LU by letting U act
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trivially (cf. § 2.1). We similarly have H(G)eV ⊗H(L)M
∼= indGLV (M), and the map JV

corresponds in this picture to the ‘standard intertwining operator’

JV : indGLU (M)→ indGLV (M), JV (f) : g 7→

∫
V
f(vg)dv.

Similarly, rU,V (N) is isomorphic to the image of the canonical projection

eU : NV → NU, n 7→

∫
U
undu

from the V-invariants to the U-invariants of N.

As a final remark on Definition 2.7, we note that the definition makes sense if we

assume only that L, U and V are closed subgroups of G such that L normalises U and

V. Some of the properties of the functors iU,V and rU,V that we shall establish below

remain valid in this degree of generality: e.g., parts (1), (2), (4) and (7) of Theorem 2.18.

For the applications we have in mind, the assumption that (U, L, V) is a virtual Iwahori

decomposition is both a natural and a useful one.

Example 2.10. Let G be a reductive group over a finite field, and let LU and LV be an

opposite pair of parabolic subgroups of G. A theorem of Howlett and Lehrer (see [25,

Theorem 2.4]) asserts that in this case the map (2.9) is an isomorphism for every M ∈

R(L), and this implies that the functor iU,V is equal to the Harish-Chandra induction

functorM 7→ H(G)eV ⊗H(L)M (and isomorphic to the analogous functor withU in place

of V). Similarly, rU,V is isomorphic to the functor of Harish-Chandra restriction. See [13,

Chapter 4] for background on Harish-Chandra functors for finite reductive groups.

Example 2.11. Example 2.10 notwithstanding, the map (2.9) is usually far from being an

isomorphism. For instance, if G is a compact open subgroup of a reductive group G(F)

as in Example 2.3, and (U, L, V) is the virtual Iwahori decomposition of G corresponding

to an opposite pair of proper parabolic subgroups of G, then the subgroups LU and

LV have infinite index in G, and hence the representations indGLU (M) and indGLV (M)

are infinite-dimensional for every M ∈ R(L). By contrast, the representation iU,V (M) is

finite-dimensional whenever M is: see Theorem 2.18(6).

Example 2.12 (Parahoric induction [10]). We return to the setting of Example 2.4: G is

the stabiliser of a point in the Bruhat–Tits building of the reductive group G(F); P = LU

and Q = LV are a suitably chosen pair of opposite parabolic subgroups; U, L and V

denote the intersections with G of U(F), L(F) and V(F); and U+ denotes the intersection

of U with the pro-p-radical of G. In [10], Dat considers the parahoric induction functor

iU+,V : R(L)→ R(G) associated to the virtual Iwahori decomposition (U+, L, V) of G.

The product GQ = U+LV is a group, and it is straightforward to see that the functor

iU+,V factors into the composition

R(L)
iU+,V

↘ R(GQ)
indGGQ

↘
R(G). (2.13)

Dat observed [10, p.275] that the functor iU+,V : R(L)→ R(GQ) can be viewed as a kind

of generalised ‘inflation’ from L to the parahoric subgroup GQ, and that the composition
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(2.13) bears a resemblance to the functor of parabolic induction, which inflates smooth

representations of L(F) to Q(F), then induces to G(F).

As we observed in Example 2.3, the triple (U, L, V) gives a second virtual Iwahori

decomposition of G, and thus a second induction functor iU,V : R(L)→ R(G). Since

ULV is not necessarily a subgroup of G, the functor iU,V does not a priori admit a

decomposition as in (2.13). Now, U+ is a subgroup of U, and so we have eU = eUeU+ ,

and consequently

H(G)eUeV ⊆ H(G)eU+eV . (2.14)

Thus iU,V is a subfunctor of iU+,V .

In [10, Question 2.15], Dat asks whether there exists a distribution D on G such that

eU+eV = DeUeV . The existence of such a D would imply that the inclusion (2.14) is

in fact an equality, so that the functor iU,V is equal to the parahoric induction functor

iU+,V . Dat proves that this is indeed the case when L is a minimal Levi subgroup of

G. In § 5.5 we shall produce an example where the inclusion (2.14) is proper, showing in

particular that there does not always exist a distribution D as above, and the functor

iU,V is generally a proper subfunctor of the parahoric induction functor iU+,V .

Example 2.15. Suppose that (U, L, V) is a virtual Iwahori decomposition of G such that

the subgroups U and V commute with one another. Then the product H := ULV is an

open subgroup of G, isomorphic to (U×V)oL. We have eUeV = eU×V , and there are

isomorphisms of H(G)-H(L) bimodules

H(G)eUeV = H(G)eU×V ∼= H(G/(U×V)).

Consequently the functor iU,V is of the form R(L)
inf
↘ R(H)

ind
↘ R(G) discussed in § 2.1.

We shall now establish some basic properties of the functors iU,V and rU,V . Many

of these properties were established in [10] for the case where (U, L, V) is an actual, as

opposed to a virtual, Iwahori decomposition of G. The proofs in [10] mostly carry over

with only minor changes to the case of a virtual Iwahori decomposition, thanks to the

following analogue of [10, Proposition 2.2]. The proofs of these propositions, though, are

quite different.

Proposition 2.16. Let G be a profinite group and let L, U and V be closed subgroups of

G such that L normalises U and V. For every M ∈ R(G) there is a linear automorphism

zM ∈ GL (M), commuting with the actions of L, eU and eV , such that z−1M eUeV is an

idempotent in End (M).

Proof. Each smooth representationM ∈ R(G) may be regarded as a representation of the

infinite dihedral group Γ = 〈s, t | s2 = t2 = 1〉, by sending s 7→ 2eU− 1 and t 7→ 2eV − 1.

Since G is profinite, every M ∈ R(G) is isomorphic to a direct sum of finite-dimensional

unitary representations of G, which restrict to finite-dimensional unitary representations

of Γ (unitary because the idempotents eU and eV are self-adjoint in H(G)). It follows that

every M ∈ R(G) is semisimple as a representation of Γ , and so M decomposes (uniquely)

as the direct sum of its Γ -isotypic components.
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We claim that in each irreducible representation W of Γ there is a nonzero zW ∈ C such

that z−1W pq is an idempotent in GL (W), where p = 1
2 (s+ 1) and q = 1

2 (t+ 1). Indeed,

since the dihedral group has an abelian normal subgroup of index two, every irreducible

representation of Γ is either one- or two-dimensional. In the one-dimensional case p and

q commute and so we may take zW = 1. In the two-dimensional case, pq and (pq)2 are

two nonzero maps between the one-dimensional subspaces qW and pW, and so there is

a (unique) nonzero scalar zW such that pq = z−1W (pq)2.

Having established the claim, we let zM ∈ GL (M) be the automorphism of M which

acts as the scalar zW on the W-isotypical component of M. It is clear from the

construction that zM commutes with eU and eV , and that z−1M eUeV is an idempotent.

If T ∈ End (M) commutes with eU and eV then T preserves the Γ -isotypic components,

and so commutes with zM. In particular, zM commutes with the L-action on M.

Remark 2.17. If W is a two-dimensional irreducible unitary representation of the infinite

dihedral group, then zW = cos2 (αW), where αW is the angle between the images of p

and q in the Hilbert space W. Thus the eigenvalues of zM all lie in the interval (0, 1].

If the multiplication map U×L×V → G is a homeomorphism, and M is an irreducible

representation of G, then zM is the scalar operator

zM =

dim rU,V (M)/ dimM if rU,V (M) 6= 0,

1 if rU,V (M) = 0;

see [7, Proposition 1.11]. Moreover, Dat has shown that if L contains an open normal

subgroup L† such that UL†V is a pro-p subgroup of G, then the eigenvalues lie in Z[1/p];
see [10, Proposition 2.2].

With the automorphisms zM in hand, many of the arguments from [10, § 2] carry over

to our setting, and establish the following properties of the functors iU,V and rU,V .

Theorem 2.18. Let (U, L, V) be a virtual Iwahori decomposition of a profinite group G,

and consider the functors iU,V and rU,V . Then:

(1) There are natural isomorphisms iU,V ∼= iV,U and rU,V ∼= rV,U.

(2) iU,V is naturally isomorphic to the functor

i ′U,V :M 7→ HomH(L) (eVeUH(G),M)∞,
and is therefore right-adjoint to rU,V .

(3) rU,V is naturally isomorphic to the functor

r ′U,V : N 7→ HomH(G) (H(G)eVeU, N)∞,
and is therefore right-adjoint to iU,V .
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(4) Let (U ′, L, V ′) be a second virtual Iwahori decomposition of G, such that

U = (U∩U ′)(U∩V ′), V = (V ∩U ′)(V ∩V ′),

U ′ = (U ′ ∩U)(U ′ ∩V), and V ′ = (V ′ ∩U)(V ′ ∩V).

Then iU,V ∼= iU ′,V ′ and rU,V ∼= rU ′,V ′ .

(5) Let K be an open normal subgroup of G with an Iwahori decomposition

(UK, LK, VK) := (U∩K, L∩K,V ∩K). The diagrams

R(L)
iU,V // R(G)

R(L/LK)

inf

OO

iU/UK,V/VK // R(G/K)

inf

OO
and R(G)

rU,V // R(L)

R(G/K)

inf

OO

rU/UK,V/VK // R(L/LK)

inf

OO

commute up to natural isomorphism. (Here inf denotes inflation.)

(6) iU,V (M) is nonzero whenever M is nonzero, and iU,V (M) is finite-dimensional

whenever M is finite-dimensional.

(7) If (X,H, Y) is a virtual Iwahori decomposition of L, then

iU,V ◦ iX,Y ∼= iUoX,YnV

as functors R(H)→ R(G).

Parts (2) and (3) are instances of the following general fact, whose proof generalises

the argument of [10, Corollaire 2.7]:

Lemma 2.19. Let H and K be closed subgroups of a profinite group G. Let X ⊆ H(G)

be an H(H)-H(K) subbimodule, and denote by X∗ the image of X under the involution

f∗(g) = f(g−1) on H(G); note that X∗ is an H(K)-H(H) bimodule. Suppose that for every

open normal subgroup H1 ⊆ H there is an open normal subgroup G1 ⊆ G satisfying

eH1X ⊆ eG1H(G). (2.20)

Then the functors R(K)→ R(H) defined by

M 7→ X⊗H(K)M and M 7→ HomH(K) (X∗,M)∞
are naturally isomorphic.

Proof. Consider the natural transformation

Φ : X⊗H(K)M→ HomH(K) (X∗,M), Φ(x1⊗m) : x∗2 7→ (x∗2x1)|K ·m

where (x∗2x1)|K means the restriction of the convolution product x∗2x1 ∈ H(G) to the

subgroup K. Fix an open normal subgroup H1 ⊆ H. We show that the map Φ restricts

to an isomorphism between the respective subspaces of H1-fixed vectors.

Let G1 be an open normal subgroup of G satisfying condition (2.20), so that the

subspace eH1X ⊂ H(G) consists exclusively of G1-invariant functions. We may then
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replace G by G/G1, and assume for the rest of the proof that G is a finite group.

Furthermore, the module M decomposes as a direct sum of finite-dimensional modules,

and the natural map Φ commutes with direct sums, so we may assume that M is

finite-dimensional.

Now, the pairing

X∗×X→ C (x∗2, x1) 7→ (x∗2x1)(1)

is nondegenerate, since it is the restriction to X of the natural L2-inner product on H(G).

It follows from this, and from the standard duality theory of finite-dimensional vector

spaces, that the map

Ψ : X⊗CM→ HomC (X∗,M) Ψ(x1⊗m) : x∗2 7→ (x∗2x1)(1) ·m

is an isomorphism. The map Ψ descends to an isomorphism of K-coinvariants

X⊗H(K)M
∼=
↘ ( HomC (X∗,M))K, (2.21)

where the K-action on HomC (X∗,M) is by conjugation. Averaging over K gives an

isomorphism of K-coinvariants with K-invariants:

( HomC (X∗,M))K
T 7→

∫
K kTk

−1 dk

↘∼=
HomH(K) (X∗,M), (2.22)

and the map Φ is the composition of the isomorphisms (2.21) and (2.22).

Proof of Theorem 2.18. To prove part (1), let zH(G) be the automorphism of H(G)

obtained by applying Proposition 2.16 to the left-translation action of G. Then the maps

eUeVH(G)
f7→eVf

↘ eVeUH(G) and eVeUH(G)
f7→z−1

H(G)
eUf

↘
eUeVH(G)

are mutually inverse isomorphisms of H(L)-H(G) bimodules, giving rise to a natural

isomorphism of functors rU,V ∼= rV,U. A similar argument, using the right action of G

on H(G), gives iU,V ∼= iV,U.

To prove part (2) we apply Lemma 2.19 with H = G, K = L, and X = H(G)eUeV . The

hypothesis (2.20) is trivially satisfied and we conclude that the functor iU,V is naturally

isomorphic to i ′U,V . The standard ⊗-Hom adjunction implies that i ′U,V is right-adjoint to

rV,U, and we have rV,U ∼= rU,V by part (1); see [38, I.2.2 (Corollaire)] for a formulation

and proof of the adjunction in the present context.

To prove part (3) we apply Lemma 2.19 again, this time with H = L, K = G and

X = eUeVH(G). To verify the hypothesis (2.20), fix an open normal subgroup H1 ⊆

L. Then there is an open normal subgroup G0 ⊆ G having an Iwahori decomposition

(U0, L0, V0), where L0 is contained in H1. Here Y0 means Y ∩G0 for every subset Y ⊂ G.

We then have

eH1eUeVH(G) ⊆ eL0eUeVH(G) = eU(eU0eL0eV0)eVH(G) ⊆ eG0H(G),

so (2.20) is satisfied by G1 = G0. Now Lemma 2.19 implies that rU,V is isomorphic to

r ′U,V , which is right-adjoint to iU,V by the argument of part (2) .

Part (4) follows from Proposition 2.16, as in [10, Lemme 2.9].

https://doi.org/10.1017/S1474748017000305 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748017000305


A variant of Harish-Chandra functors 1009

Part (5) follows from the equality eK = eUKeLKeVK , as was remarked in [10, p. 272].

It is also a consequence of Theorem 3.4, below.

The finite-dimensionality assertion in part (6) follows from part (5) : every

finite-dimensional smooth representation of L is inflated from a representation of

some finite quotient L/LK, and the functor iU/UK,V/VK obviously preserves finite

dimensionality. To prove that iU,V (M) 6= 0 as long as M 6= 0, fix a nonzero m ∈M and

let f ∈ indGLU (M) be the function supported on the open set ULV ⊂ G, and given there

by f(ulv) = l ·m. The image of f under the intertwiner JV : indGLU (M)→ indGLV (M) (see

(2.9)) is nonzero, because

(JVf)(1) =

∫
V
f(v)dv = m,

and so iU,V (M) ∼= Im (JV ) is nonzero.

For part (7), convolution over L gives an isomorphism of H(G)-H(H) bimodules

H(G)eUeV ⊗H(L) H(L)eXeY
∼=
↘ H(G)eUeVeXeY .

Now eX commutes with eV since X normalises V, and we have eUeX = eUoX and eVeY =

eYnV , and so we have produced an isomorphism between the bimodules representing the

functors iU,V ◦ iX,Y and iUoX,YnV .

If the triple (U, L, V) is an actual Iwahori decomposition of G, then the functors iU,V
and rU,V enjoy the following additional properties, which we recall from [10] and [7] for

the reader’s convenience:

Theorem 2.23. Suppose that (U, L, V) is an Iwahori decomposition of a profinite group

G. Then:

(1) iU,V sends Irr (L) to Irr (G), while rU,V sends Irr (G) to Irr (L)t {0}.

(2) rU,V ◦ iU,V ∼= idR(L).

(3) If M ∈ Irr (G) and rU,V (M) 6= 0, then iU,V rU,V (M) ∼=M.

(4) If M ∈ Irr (G), then either HomL (MU,MV ) is zero, in which case rU,V (M) = 0;

or HomL (MU,MV ) is one-dimensional, in which case it is spanned by the operator

eVeU, which is an isomorphism, and rU,V (M) ∼=MU ∼=MV .

(5) Given M ∈ Irr (G) and N ∈ Irr (L), one has M ∼= iU,V (N) if and only if N is a

common subrepresentation of MU and MV .

(6) For each (ϕ,M) ∈ Irr (G) there is a nonzero scalar c such that

eUeϕeV = ceUerU,V (ϕ)eV

as operators on H(G).

Proof. Parts (1) and (2) are proved in [10, Corollaire 2.10]. Part (4) is proved in [7,

Lemma 1.10], and part (5) follows from parts (4) and (3).

To prove part (3) : if rU,V (M) 6= 0 then the adjunction in part (2) of Theorem 2.18 gives

a nonzero intertwiner M→ iU,V rU,V (M). Both of these representations are irreducible

(by part (1)), and so they are isomorphic.
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Part (6) follows from the character formula for rU,V proved in [7, Proposition 1.11].

That formula implies that there is a nonzero s ∈ C such that

chrU,V (ϕ) (l) = s

∫
U

∫
V

chϕ (vlu)dudv

for all l ∈ L. Writing ∼ to indicate equality up to a nonzero scalar multiple, the operator

eUerU,V (ϕ)eV is thus given by

eUerU,V (ϕ)eV ∼

∫
U

∫
L

∫
V

chrU,V (ϕ) (l−1)ulv dudl dv

∼

∫
U

∫
L

∫
V

( ∫
U

∫
V

chϕ (v−11 l−1u−11 )du1 dv1

)
ulv dudl dv

∼

∫
U

∫
L

∫
V

( ∫
U

∫
V

chϕ (v−11 l−1u−11 )du1 dv1

)
u(u1lv1)v dudl dv

∼

∫
U

∫
G

∫
V

chϕ (g−1)ugvdudgdv

∼ eUeϕeV

where in the third step we used invariance of the Haar measures, and in fourth we used

the fact that the product of the Haar measures on U, L and V is a Haar measure on

G = ULV.

3. Relations of the functors i and r with Clifford theory

The functors iU,V and rU,V can be difficult to work with, since the bimodule H(G)eUeV
is not obviously the space of functions on any nice G×L-space. The situation where

(U, L, V) is an actual, rather than a virtual, Iwahori decomposition of G is significantly

easier to deal with; see §§ 4 and 6, for instance. If G admits only a virtual Iwahori

decomposition, then G contains an open normal subgroup G0 which admits an actual

Iwahori decomposition (this is part of the definition). In this section we firstly recall

how Clifford theory reduces the study of representations of G to that of projective

representations of certain subgroups of G/G0; and then we show how the induction

and restriction functors i and r are compatible with this reduction.

3.1. Review of Clifford theory

Let us recall the basic assertions of Clifford theory. Details can be found in [28], for

example.

Let G0 be an open normal subgroup of a profinite group G. Then G acts by conjugation

on the set Irr (G0) of isomorphism classes of irreducible representations of G0. For each

ϕ ∈ Irr (G0) we let R(G)ϕ denote the category of smooth representations of G whose

restriction to G0 contains only representations in the G-orbit G ·ϕ. The first assertion

of Clifford theory is:

R(G) is equivalent to the product
∏

G·ϕ∈G\ Irr (G0)

R(G)ϕ. (C1)
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Fix an irreducible representation ϕ : G0→ GL (W) of G0, and let G(ϕ) denote the

stabiliser of ϕ in G. Since ϕ is smooth, it is trivial on some open normal subgroup G00
of G, and replacing G by G/G00 we might as well assume—as we shall, for the rest of

§ 3.1—that G is finite. We use the counting measure on G to define the convolution on

H(G), so that the δ-functions δg satisfy δgδh = δgh.

Representations may be induced from G(ϕ) to G in the usual way (see § 2.1). The

second assertion of Clifford theory is:

The functor ind : R(G(ϕ))ϕ→ R(G)ϕ is an equivalence of categories. (C2)

An inverse is given by the functor which sends a representation M ∈ R(G)ϕ to its

G(ϕ)-subspace eϕM, where eϕ ∈ H(G0) is the central idempotent associated to ϕ. Note

that the category R(G(ϕ))ϕ is equivalent, in an obvious way, to the category of modules

over the direct-summand eϕH(G(ϕ)) of the algebra H(G(ϕ)).

LetG denote the quotientG/G0, and let θ : G→ G be the quotient map. Schur’s lemma

implies that ϕ admits a projective extension to G(ϕ), i.e. a map ϕ ′ : G(ϕ)→ GL (W)

which becomes a group homomorphism upon passing to the quotient PGL (W), and

which satisfies

ϕ ′(g0g) = ϕ(g0)ϕ ′(g) and ϕ ′(gg0) = ϕ ′(g)ϕ(g0)

for all g ∈ G(ϕ) and all g0 ∈ G0. These two properties imply that there is a two-cocycle

γ : G(ϕ)×G(ϕ)→ C× whose inflation to a cocycle on G(ϕ), which we also denote by

γ, satisfies

ϕ ′(g1)ϕ ′(g2) = γ(g1, g2)−1ϕ ′(g1g2). (3.1)

We call γ−1 the two-cocycle associated to ϕ ′; the cocycles associated to different

choices of projective extensions of ϕ are cohomologous. The projective representation ϕ ′

may be regarded as a module over the twisted group algebra Hγ
−1

(G(ϕ)), a construction

that we now recall. To a two-cocycle α on a finite group Γ , one may associate the twisted

group algebra Hα(Γ), that is, the algebra of complex-valued functions on G, with twisted

convolution multiplication ·α defined on the basis {δg | g ∈ Γ } of δ-functions by

δg1 ·α δg2 := α(g1, g2)δg1g2 .

We let Rα (Γ) denote the category of Hα(Γ)-modules. An immediate consequence of

the definition is that if α,β : Γ × Γ → C× are two-cocycles, and M and N are modules

over Hα(Γ) and Hβ(Γ) respectively, then M⊗N is naturally an Hαβ(Γ)-module with

respect to the diagonal action.

Returning to our setup, if M is an Hγ(G(ϕ))-module, then by inflation M

is also an Hγ(G(ϕ))-module. As W ∈ Rγ
−1

(G(ϕ)) we get that M⊗W is an

Hγ·γ
−1

(G(ϕ))-module, i.e. an ordinary (as opposed to a projective) representation of

G(ϕ), and the third assertion of Clifford theory is:

The functor ⊗ϕ ′ : Rγ(G(ϕ))
M 7→M⊗W

↘ R(G(ϕ))ϕ is an equivalence of categories.

(C3)

An equivalent formulation of (C3), which we shall use below, is that the map

θ⊗ϕ ′ : H(G(ϕ))eϕ→ Hγ(G(ϕ))⊗C End (W) δgeϕ 7→ δθ(g)⊗ϕ
′(g)
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is an isomorphism of algebras. Then the equivalence (C3) decomposes as

Rγ (G(ϕ))
M 7→M⊗W

↘∼=
Mod (Hγ(G(ϕ))⊗End (W))

(θ⊗ϕ ′)∗

↘∼=
R(G(ϕ))ϕ. (3.2)

Here Mod (R) denotes the category of left R-modules.

This ends our review of Clifford theory. We shall now explain the compatibility with

the functors i and r.

3.2. Induction and Clifford theory

In this section we let G be a profinite group, with a virtual Iwahori decomposition

(U, L, V) as in Definition 2.1. We also fix one open normal subgroup G0 ⊂ G for which

the product mapping

U0×L0×V0→ G0

is a homeomorphism, where H0 := H∩G0 for every subgroup H ⊆ G. We consider the

induction functors

i = iU,V : R(L)→ R(G) and i0 = iU0,V0 : R(L0)→ R(G0),

along with their adjoint restriction functors r and r0, as in Definition 2.7.

It follows from part (1) of Theorem 2.23 that the functor i0 sends irreducible

representations of L0 to irreducible representations of G0, and thus produces a map

from Irr (L0) to Irr (G0).

Lemma 3.3. The map i0 : Irr (L0)→ Irr (G0) is L-equivariant and injective.

Proof. L normalises U0 and V0, and so commutes with eU0 and eV0 . The injectivity

follows from part (2) of Theorem 2.23.

The functors i and r are compatible with the decomposition (C1), in the following

sense.

Theorem 3.4. With the above notation one has i (R(L)ψ) ⊆ R(G)i0 (ψ), for every ψ ∈

Irr (L0).

Proof. We first claim that H(G)eUeV is isomorphic, as an H(G)-H(L) bimodule, to some

submodule of H(G)eU0eV0 . This is because

H(G)eUeV ⊆ H(G)eU0eV
∼= H(G)eVeU0 ⊆ H(G)eV0eU0

∼= H(G)eU0eV0 ,

where the inclusions hold because U0 and V0 are subgroups of U and V, respectively,

and the isomorphisms hold by part (1) of Theorem 2.18.

For each N ∈ R(L)ψ we now have (up to G-equivariant isomorphism)

i (N) ⊆ H(G)eU0eV0 ⊗H(L)N ⊆ H(G)eU0eV0 ⊗H(L0) resLL0 (N) (3.5)

where the first inclusion holds because of the inclusion of bimodules established above,

and the second inclusion holds because the tensor product over H(L) is a quotient—and

therefore also a submodule—of the tensor product over the subalgebra H(L0). The
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restriction to G0 of the right-hand side in (3.5) is a direct sum of G-conjugates

of i0 ( resLL0 (N)), where resLL0 (N) is a direct sum of L-conjugates of ψ. Since i0 is

L-equivariant this implies that the restriction of i (N) toG0 is a direct sum ofG-conjugates

of i0 (ψ), as claimed.

For the rest of this section we shall fix an irreducible representation ψ : L0→ GL (W)

of L0, and study the functor i on the subcategory R(L)ψ. There is an open normal

subgroup G00 ⊂ G with an Iwahori decomposition G00 = U00L00V00, such that ψ is

trivial on L00. Part (5) of Theorem 2.18 allows us to replace G by the quotient G/G00,

and so we may assume without loss of generality for the rest of this section that G is a

finite group. We consequently take all Haar measures to be counting measures, so that

the δ functions on elements of G satisfy δgδh = δgh inside H(G).

To simplify the notation let us write ϕ for i0 (ψ). Lemma 3.3 implies that G(ϕ)∩L =

L(ψ). Let U(ϕ) and V(ϕ) denote the inertia groups of ϕ in U and V, respectively, and

consider the functor

iψ := iU(ϕ),V(ϕ) : R(L(ψ))ψ→ R(G(ϕ))ϕ

given by tensor product with the eϕH(G(ϕ))-eψH(L(ψ)) bimodule eϕH(G(ϕ))eU(ϕ)

eV(ϕ)eψ.

The functors i and r are compatible with the equivalence (C2) as follows:

Theorem 3.6. The diagram

R(L)ψ
i // R(G)ϕ

R(L(ψ))ψ

ind ∼=

OO

iψ // R(G(ϕ))ϕ

ind∼=

OO

commutes up to a natural isomorphism.

Proof. We replace the right-hand vertical arrow in the diagram by its inverse, and prove

that the diagram

R(L)ψ
i // R(G)ϕ

eϕ

��
R(L(ψ))ψ

ind

OO

iψ // R(G(ϕ))ϕ

(3.7)

commutes up to natural isomorphism. This amounts to producing an isomorphism of

G(ϕ)-L(ψ) bimodules

eϕH(G)eUeVeψ ∼= eϕH(G(ϕ))eU(ϕ)eV(ϕ)eψ. (3.8)

We first claim that

eϕH(G)eUeVeψ = eϕH(G(ϕ))eU(ϕ)eVeψ, (3.9)
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the equality holding inside H(G). For vectors x and y we write x ∼ y if they differ by a

nonzero scalar multiple. To prove (3.9) we compute for every g ∈ G:

δgeUeVeψ = δgeU(eU0eψeV0)eVeψ ∼ δgeU(eU0eϕeV0)eVeψ

= δgeUeϕeVeψ ∼
∑

u∈U/U(ϕ)

δgueϕeU(ϕ)eVeψ,

where in the first step we have used that eψ is an idempotent which commutes with

eV , and in the second step we have used part (6) of Theorem 2.23. Orthogonality of

characters then implies

eϕδgeUeVeψ ∼
∑

u∈U/U(ϕ)

eϕe(gu)·ϕδgueU(ϕ)eVeψ

∼

 eϕδgueU(ϕ)eVeψ if ∃u ∈ U with gu ∈ G(ϕ),

0 otherwise.

This shows that every element of the left-hand side of (3.9) can be written as an element

of the right-hand side, and vice versa.

Now, the G(ϕ)×L(ψ)-equivariant map

eϕH(G(ϕ))eU(ϕ)eV(ϕ)eψ
f7→feV

↘ eϕH(G(ϕ))eU(ϕ)eVeψ (3.10)

is obviously surjective. It is injective as well, for if f ∈ H(G(ϕ))eV(ϕ) then

feV ∼
∑

v∈V(ϕ)\V

feV(ϕ)δv =
∑

v∈V(ϕ)\V

fδv,

where the functions fδv (as v varies over V(ϕ)\V) are supported on the disjoint cosets

G(ϕ)v and are therefore linearly independent. Thus the map (3.10) is an isomorphism.

Composing with the equality (3.9) gives the desired isomorphism (3.8).

We are still fixing an irreducible representation ψ : L0→ GL (W) and letting ϕ denote

the induced representation i0 (ψ) : G0→ GL( i0 (W)). Consider the quotients

G(ϕ) = G(ϕ)/G0, L(ψ) = L(ψ)/L0, U(ϕ) = U(ϕ)/U0, V(ϕ) = V(ϕ)/V0.

Choose a projective extension ϕ ′ of ϕ to G(ϕ), and let γ−1 be the associated

two-cocycle as in (3.1). Part (2) of Theorem 2.23 implies that there is an L0-equivariant

isomorphism

Θ :W
∼=
↘ ϕ(eU0)ϕ(eV0) i0 (W),

unique up to a nonzero scalar multiple. Since the subgroup L(ψ) normalises the subgroups

U0 and V0 it follows that ϕ ′(l) commutes with ϕ(eU0)ϕ(eV0) for every l ∈ L(ψ),

and therefore ϕ ′(l) stabilises the subspace ϕ(eU0)ϕ(eV0) i0 (W) ⊂ i0 (W). The map

ψ ′ : L(ψ)→ GL (W) defined by

ψ ′(l) = Θ−1ϕ ′(l)Θ (3.11)
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is then a projective extension of ψ to L(ψ), independent of the choice of Θ. (However, it

does depend on the choice of ϕ ′.) An easy argument shows that the resulting two-cocycle

on L(ψ) is just the restriction of the two-cocycle γ to L(ψ), and we shall therefore denote

both two-cocycles by the same letter.

Lemma 3.12. Given a projective extension ϕ ′ of ϕ as above, there are unique scalars

ax, by ∈ C× for x ∈ U(ϕ) and y ∈ V(ϕ) such that the elements

eϕ
′

U(ϕ)
:=

1

|U(ϕ)|

∑
x∈U(ϕ)

axδx and eϕ
′

V(ϕ)
:=

1

|V(ϕ)|

∑
y∈V(ϕ)

byδy

are idempotents in Hγ(G(ϕ)), commute with the subalgebra Hγ(L(ψ)), and such that

the image of the elements eU(ϕ)eϕ and eV(ϕ)eϕ under the isomorphism of algebras

θ⊗ϕ ′ : H(G(ϕ))eϕ→ Hγ(G(ϕ))⊗End ( i0 (W))

are eϕ
′

U(ϕ)
⊗ϕ(eU0) and eϕ

′

V(ϕ)
⊗ϕ(eV0), respectively.

Proof. We prove the lemma for the U-subgroups. The proof for the V-subgroups is

identical.

We know, by Parts (2) and (4) of Theorem 2.23, that ϕ(eU0) i0 (W) ∼=W as

representations of L0, and in particular that ϕ(eU0) i0 (W) is irreducible over L0.

Let u ∈ U(ϕ). Since U0 is a normal subgroup of U(ϕ), we know that u commutes

with eU0 in H(G(ϕ)), and so ϕ ′(u) induces a linear automorphism of the subspace

ϕ(eU0) i0 (W). Moreover, for l ∈ L0 we have that ulu−1l−1 ∈ U∩G0 = U0. Writing

ul = luu0 with u0 ∈ U0, we observe that on ϕ(eU0) i0 (W) the operator ϕ ′(u) commutes

with ϕ(l) for every l ∈ L0. Hence, by Schur’s lemma, the operator ϕ ′(u) acts on

ϕ(eU0) i0 (W) as a nonzero scalar au ∈ C×. The scalar au depends only on the class of

u in the quotient U(ϕ) = U(ϕ)/U0, and so for each x ∈ U(ϕ) we may define ax := ax̃,

where x̃ ∈ U(ϕ) is any lift of x.

The image of the idempotent eU(ϕ)eϕ under θ⊗ϕ ′ is therefore

θ⊗ϕ ′(eU(ϕ)eϕ) =
1

|U(ϕ)|

∑
u∈U(ϕ)

θ(δu)⊗ϕ ′(u)

=
1

|U(ϕ)| · |U0|

∑
x∈U(ϕ)
u0∈U0

δx⊗ϕ
′(x̃)ϕ(u0)

=
1

|U(ϕ)|

∑
x∈U(ϕ)

δx⊗ϕ
′(x̃)ϕ(eU0) = e

ϕ ′

U(ϕ)
⊗ϕ(eU0).

From the fact that the element eU(ϕ)eϕ is an idempotent which commutes with the

elements of L(ψ) in H(G(ϕ)), and the fact that θ⊗ϕ ′ is an algebra homomorphism, it

follows immediately that eϕ
′

U(ϕ)
is an idempotent which commutes with the subalgebra

Hγ(L(ψ)).
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Finally, the uniqueness of the scalars ax follows from the linear independence of the

elements δx⊗ϕ(eU0) in Hγ(G(ϕ))⊗End ( i0 (W)).

Remark 3.13. From the proof of Lemma 3.12 it follows that the restriction of γ to U(ϕ)

and to V(ϕ) is cohomologous to the trivial two-cocycle. Indeed, following the proof of the

lemma, we see that for x1, x2 ∈ U(ϕ) one has ax1ax2γ(x1, x2) = ax1x2 . In other words,

a : U(ϕ)→ C× is a coboundary which provides a trivialisation of the restriction of γ

to U(ϕ). The same is true for V(ϕ) and b. By changing the choice of ϕ ′ by a suitable

coboundary, one can therefore arrange that all the numbers ax and by are 1. We shall

continue to work with an arbitrary choice of ϕ ′ in what follows.

Lemma 3.12 implies that Hγ(G(ϕ))eϕ
′

U(ϕ)
eϕ
′

V(ϕ)
is an Hγ(G(ϕ))-Hγ(L(ψ)) bimodule.

We denote by iϕ
′

U(ϕ),V(ϕ)
: Rγ (L(ψ))→ Rγ (G(ϕ)) the functor of tensor product with

this bimodule. Likewise, we denote by rϕ
′

U(ϕ),V(ϕ)
the functor of tensor product with the

Hγ(L(ψ))-Hγ(G(ϕ)) bimodule eϕ
′

U(ϕ)
eϕ
′

V(ϕ)
Hγ(G(ϕ)). The arguments of Theorem 2.18

carry over to this twisted setting, and show that the functors iϕ
′

U(ϕ),V(ϕ)
and rϕ

′

U(ϕ),V(ϕ)
are two-sided adjoints, and that up to natural isomorphism they do not depend on the

order of U(ϕ) and V(ϕ).

Our induction functors are compatible with the final assertion (C3) of Clifford theory,

as follows:

Theorem 3.14. Let ϕ ′ be a projective extension of ϕ, with corresponding cocycle γ−1,

and let ψ ′ be the projective extension of ψ defined by (3.11). The diagram

R(L(ψ))ψ
iψ // R(G(ϕ))ϕ

Rγ(L(ψ))

∼=⊗ψ ′

OO

iϕ
′

U(ϕ),V(ϕ) // Rγ(G(ϕ))

⊗ϕ ′∼=

OO

is commutative up to natural isomorphism.

Example 3.15. Suppose that the irreducible representation ψ of L0 satisfies G( i0ψ) =

L(ψ)G0. We then have G(ϕ) = L(ψ) in Theorem 3.14, and iϕ
′

U(ϕ),V(ϕ)
is the identity

functor, and so we conclude from Theorems 3.6 and 3.14 that in this case

iU,V : R(L)ψ→ R(G)i0 (ψ)

is an equivalence of categories. Specific examples of this kind arise in § 5.

The proof of Theorem 3.14 uses the following lemma, whose proof is a matter of

straightforward linear algebra:
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Lemma 3.16. Let E be a finite-dimensional vector space over C, and let S : E→ E be a

linear endomorphism. Let A ⊆ EndC (E) be the centraliser of S in EndC (E). Then we

have isomorphisms

E⊗ ( Im (S))∗
e⊗f ↘ [e ′ 7→ef(e ′)]

↘
Hom ( Im (S), E)

T 7→T◦S
↘ End (E)S

of End (E)-A-bimodules.

In our application the space E will be i0 (W), and the endomorphism S will be the

action of eU0eV0eψ.

Proof of Theorem 3.14. Consider the functor

T : Mod (Hγ(L(ψ))⊗End (W)))→ Mod (Hγ(G(ϕ))⊗End ( i0 (W))

of tensor product with the bimodule Hγ(G(ϕ))eϕ
′

U(ϕ)
eϕ
′

V(ϕ)
⊗C ( i0 (W)⊗CW∗), where

i0 (W) is viewed as a left End ( i0 (W)) module and W∗ is viewed as a right

End (W)-module in the obvious way.

We shall decompose the equivalences ⊗ψ ′ and ⊗ϕ ′ into compositions of two

equivalences, as in (3.2), and show both squares in the diagram

R(L(ψ))ψ
iψ // R(G(ϕ))ϕ

Mod (Hβ(L(ψ))⊗End (W))

∼=(θ⊗ψ ′)∗

OO

T // Mod (Hγ(G(ϕ))⊗End ( i0 (W)))

∼= (θ⊗ϕ ′)∗

OO

Rβ (L(ψ))

∼=⊗W

OO

iϕ
′

U(ϕ),V(ϕ) // Rγ (G(ϕ))

∼= ⊗ i0 (W)

OO
(3.17)

commute.

To show that the bottom square of (3.17) commutes, let M be an Hγ(L(ψ)) module.

We have natural isomorphisms of Hγ(G(ϕ))⊗End ( i0 (W)) modules

T(M⊗W) =
(
Hγ(G(ϕ))eϕ

′

U(ϕ)
eϕ
′

V(ϕ)
⊗ ( i0 (W)⊗W∗)

)
⊗Hγ(L(ψ))⊗End (W) (M⊗W)

∼=
(
Hγ(G(ϕ))eϕ

′

U(ϕ)
eϕ
′

V(ϕ)
⊗Hγ(L(ψ))M

)
⊗ ( i0 (W)⊗ (W∗⊗End (W)W))

∼= iϕ
′

U(ϕ),V(ϕ)
(M)⊗ i0 (W),

because W∗⊗End (W)W
∼= C, as W is finite-dimensional. Thus the bottom square of the

diagram commutes.

To show that the top square of (3.17) commutes, it is enough to construct a linear

isomorphism

F : eϕH(G(ϕ))eU(ϕ)eV(ϕ)eψ ↘ Hγ(G(ϕ))eϕ
′

U(ϕ)
eϕ
′

V(ϕ)
⊗C ( i0 (W)⊗CW

∗)
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between the bimodules associated to the functors iψ and T , satisfying

F(f ·h ·k) = (θ⊗ϕ ′)(f) · F(h) · (θ⊗ψ ′)(k) (3.18)

for all f ∈ eϕH(G(ϕ)), h ∈ eϕH(G(ϕ))eU(ϕ)eV(ϕ)eψ and k ∈ eψH(L(ψ)).

We shall construct F as a composition F = F3F2F1:

eϕH(G(ϕ))eU(ϕ)eV(ϕ)eψ
F1
↘∼=
Hγ(G(ϕ))eϕ

′

U(ϕ)
eϕ
′

V(ϕ)
⊗End ( i0 (W))ϕ(eU0eV0eψ)

F2
↘∼=
Hγ(G(ϕ))eϕ

′

U(ϕ)
eϕ
′

V(ϕ)
⊗ i0 (W)⊗ (ϕ(eψeU0eV0) i0 (W))∗

F3
↘∼=
Hγ(G(ϕ))eϕ

′

U(ϕ)
eϕ
′

V(ϕ)
⊗ i0 (W)⊗W∗,

where the isomorphisms F1, F2 and F3 are defined below.

The map F1 is the restriction of the algebra isomorphism θ⊗ϕ ′ to the bimodule

eϕH(G(ϕ))eU(ϕ)eV(ϕ)eψ. The image is as claimed because of Lemma 3.12. By

definition, F1 satisfies

F1(f ·h ·k) = (θ⊗ϕ ′)(f) · F1(h) · (θ⊗ϕ ′)(k)

(where f, h and k are as in (3.18)).

The map F2 is the identity on the first tensor factor, while on the second factor it is the

isomorphism given by Lemma 3.16, with E = i0 (W) and S = ϕ(eU0eV0eψ). Clearly F2 is

a map of left Hγ(G(ϕ))⊗End ( i0 (W)) modules. Turning to the right module structure,

fix l ∈ L(ψ). The operator ϕ ′(eψδl) ∈ End ( i0 (W)) commutes with ϕ(eψeU0eV0),

because L(ψ) centralises ψ and normalises U0 and V0. Therefore, ϕ ′(eψδl) lies in the

algebra A of Lemma 3.16, and so the isomorphism F2 satisfies

F2(F1(h) · θ(l)⊗ϕ ′(eψδl)) = F2F1(h) · (θ(l)⊗ϕ ′(eψδl)).

The map F3 is the identity on the first two tensor factors, while on the third factor it

is the linear dual Θ∗ of the isomorphism Θ :W → ϕ(eU0eV0) i0 (W). (Note that eψ acts

as the identity on W.) Clearly F3 is a map of left Hγ(G(ϕ))⊗End ( i0 (W)) modules.

The isomorphism Θ satisfies ϕ ′(eψδl) ◦Θ = Θ ◦ψ ′(eψδl), by the definition (3.11) of ψ ′,

and we therefore have

F3[F2F1(h) · (θ(l)⊗ϕ ′(eψδl))] = F(h) · (θ(l)⊗ψ ′(eψδl)).

We have now shown that the isomorphism F satisfies (3.18), and this completes the proof

of Theorem 3.14.

4. The functor i and the orbit method

In this section we examine the induction functor iU,V in situations to which the orbit

method applies, and show that it corresponds to a natural inclusion map on coadjoint

orbits. We begin with an abstract formulation and then discuss a natural family of groups

to which it applies, namely uniform pro-p-groups and finite p-groups of nilpotency class

less than p. In particular, this family includes many compact open subgroups in reductive

groups over p-adic fields.
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4.1. An abstract formulation

The orbit method in the context of profinite groups goes back to the work of Howe [22].

An abstract formulation was given by Boyarchenko and Sabitova in [4], and it is this

latter point of view that we shall adopt here.

Let G be a profinite group, let g be an abelian profinite group, and let exp : g→ G be

a homeomorphism satisfying

(A) The formula Adg (x) := log (g exp (x)g−1) for g ∈ G, x ∈ g, and log = exp−1 defines

an action of G on g by group automorphisms.

(B) The pullback map exp∗ : H(G)G→ H(g)G, from the AdG-invariant locally

constant functions on G to those on g, is an isomorphism of convolution algebras.

The adjoint action of G on g induces a coadjoint action on the Pontryagin dual group ĝ.

It is shown in [4, Theorem 1.1] that for each irreducible smooth representation τ of G,

with character chτ ∈ H(G)G, there is an AdG-orbit Ω ⊂ ĝ such that

exp∗ ( chτ ) = |Ω|−1/2
∑
ψ∈Ω

ψ, (4.1)

and the map chτ 7→ Ω sets up a bijection OG : Irr (G)→ G\̂g from the set of isomorphism

classes of irreducible representations of G to the set of coadjoint orbits in ĝ.

Theorem 4.2. Let G, g and exp be as above. Let U, L and V be closed subgroups of G

such that:

(1) (U, L, V) is an Iwahori decomposition of G.

(2) The preimages u, l, v of U, L, V under exp are subgroups of g, and g = u⊕ l⊕ v as

abelian groups.

(3) The map exp : g→ G restricts to homeomorphisms

l→ L, l⊕ u→ LU and l⊕ v→ LV,

each of which satisfies the conditions (A) and (B).

Then the projection Λ of g onto its summand l induces an injective map

Λ∗ : L\̂l→ G\̂g, Ω 7→ Ad∗G (Ω ◦Λ)

which makes the diagram

Irr (L)
iU,V //

OL
��

Irr (G)

OG

��
L\̂l

Λ∗ // G\̂g

commutative.

We require the following lemma:
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Lemma 4.3. Let Ω be an orbit in LU\l̂u, corresponding via the orbit method to an

irreducible representation τ of LU. Then τ is trivial on U if and only if every ψ ∈ Ω

is trivial on u.

Proof. If every ψ ∈ Ω is trivial on u, then the character formula (4.1) ensures that the

character of τ is constant on U, and therefore that τ is trivial on U. Conversely, if τ is

trivial on U then its character is constant on U, with constant value dim (τ) = |Ω|1/2,

and so (4.1) implies that
∑
ψ∈Ωψ(y) = |Ω| for every y ∈ u. Since each ψ(y) is a complex

number of modulus one, this equality forces ψ(y) = 1 for every ψ and every y.

Note that by Theorem 2.23(1) the functor i = iU,V : R(L)→ R(G) preserves

irreducibility, and therefore induces a map i : Irr (L)→ Irr (G). We recall the following

characterisation of the map i from Theorem 2.23(4) : given irreducible representations

τ ∈ R(G) and σ ∈ R(L), one has τ ∼= i (σ) if and only if σ is a common subrepresentation

of τU and τV .

Proof of Theorem 4.2. Fix an orbit Ω ∈ L\̂l and let σ = O−1
L (Ω) ∈ Irr (L) be the

corresponding irreducible representation of L. Let τ = O−1
G (Λ∗Ω) ∈ Irr (G) be the

corresponding irreducible representation of G. We show that σ is isomorphic to

a subrepresentation of τU. The same argument shows that σ is isomorphic to a

subrepresentation of τV , and then Theorem 2.23(4) gives τ ∼= i (σ) as required.

The characters chρ, where ρ ranges over Irr (LU), constitute a linear basis for the space

H(LU)LU. We let P : H(LU)LU→ H(LU)LU be the projection

P( chρ ) =

chρ if ρ is trivial on U

0 otherwise.

On the other hand, the functions

χΨ := |Ψ|−1/2
∑
ψ∈Ψ

ψ,

as Ψ ranges over LU\l̂u, constitute a basis for H(lu)LU, and we let Q be the idempotent

operator on H(lu)LU defined by

Q(χΨ) =

χΨ if every ψ ∈ Ψ is trivial on u

0 otherwise.

Lemma 4.3 implies the commutativity of the middle square in the diagram

H(G)G
restrict //

exp∗

��

H(LU)LU
P //

exp∗

��

H(LU)LU
restrict //

exp∗

��

H(L)L

exp∗

��
H(g)G

restrict // H(lu)LU
Q // H(lu)LU

restrict // H(l)L

(4.4)

where ‘restrict’ means restriction of functions. The two outer squares in the diagram

obviously commute. For each irreducible representation ρ of G, the composition along

the top row of (4.4) sends the character of ρ to the character of ρU.
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Choose a point ψ in the orbit Ω ⊂ l̂, and write Λ∗Ω = {ψ ◦Λ,ϕ1, . . . , ϕn}. Since the

character ψ ◦Λ ∈ ĝ is trivial on u, and has ψ ◦Λ|l = ψ, we find that the composition

along the bottom row of (4.4) sends χΛ∗Ω = exp∗ ( chτ ) to the function

|Λ∗Ω|−1/2
(
ψ+

∑
ϕi≡1 on u

ϕi|l

)
.

Since this sum contains ψ—and hence χΩ = exp∗ ( chσ )—with a positive coefficient, we

conclude from the commutativity of (4.4) that τU contains a copy of σ.

4.2. Application to (pro-) p-groups

The results of the previous subsection apply to a rich and well-behaved family of (pro-)

p-groups which we now discuss. Roughly speaking these groups admit good linearisations,

that is, to each such group one may associate a Lie algebra that carries complete

information on the group.

Uniform pro-p-groups. A finite p-group is called powerful if [G,G] ⊂ Gp when p

is odd (and [G,G] ⊂ G4 when p = 2). Here Gm is the group generated by m-powers.

A pro-p group is called powerful if it is the inverse limit of finite powerful groups. A

pro-p group is called uniform if it is powerful, finitely generated (as a pro-p group),

and torsion-free. To each uniform pro-p group G one may associate a uniform Zp-Lie

algebra g = Lie (G), that is, a Zp-Lie algebra which is free of finite rank as a Zp-module,

and which satisfies [g, g]Lie ⊂ pg for p odd (and [g, g]Lie ⊂ 4g for p = 2); see [14] for a

comprehensive treatment. This association defines an equivalence of categories between

the category of uniform pro-p-groups and uniform Zp-Lie algebras. Starting with a

uniform Lie algebra g this association is made concrete using the Campbell–Hausdorff

series

H(u, v) = log ( exp (u) exp (v)) = u+ v+ (Lie brackets) ∈ Q〈〈u, v〉〉,

which is expressible in terms of u, v ∈ g by means of the Lie bracket, and which allows

one to define a uniform pro-p group G having the same underlying set as g and group

operation u · v = H(u, v). Let exp denote the identity map on g, thought of as a map

from the Lie algebra g to the group G. This map is well-behaved with respect to passage

to subgroups or quotients: Lie subalgebras of g correspond bijectively to closed uniform

subgroups of G, and ideals in g correspond to normal subgroups in G; see [14, § 4.5].

Moreover, it is shown in [4, Theorem 2.6] that for p 6= 2 this map exp satisfies the

conditions (A) and (B) from § 4.1, meaning that the orbit method applies and gives a

bijection OG : Irr (G)→ G\ĝ. This generalises an earlier result of Howe [22, Theorem 1.1].

Finite p-groups of nilpotency class less than p. There is a similar Lie-type

correspondence for finite p-groups of nilpotency class less than p. To each group G

of this type one may associate a finite Z-Lie algebra g = Lie (G) which is nilpotent of

class less than p, and whose additive group is a p-group, such that G is isomorphic to

the group exp (g) whose underlying set is g and whose multiplication is given by the

Campbell–Hausdorff series (which is finite, in this case); see [29, § 10.2]. If p is odd then

the orbit method applies to the map exp : g→ G; see [4, Theorem 2.6].
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Application of Theorem 4.2. For the rest of this section let G = exp (g) be either a

uniform pro-p group or a finite p-group of nilpotency class less than p, with corresponding

Lie algebra g. For each subalgebra h of g we write H for the corresponding subgroup

exp (h) of G.

Definition 4.5. An Iwahori decomposition of g is a triple of Lie subalgebras (u, l, v) of g

such that [l, u] ⊆ u, [l, v] ⊆ v, and such that g = u⊕ l⊕ v as Zp-modules (in the uniform

pro-p case) or as Z-modules (in the finite p-group case).

Lemma 4.6. If (u, l, v) is an Iwahori decomposition of g, then (U, L, V) is an Iwahori

decomposition of G.

Proof. The Lie correspondence ensures that U, L and V are closed subgroups of G such

that L normalises U and V. The subgroups V and B := UL have trivial intersection in

G, because the subalgebras v and u⊕ l have trivial intersection in g, and so the product

map U×L×V → G is injective. We shall now show that this map is surjective.

We must show that for each x ∈ b := u⊕ l and each y ∈ v one has exp (x+y) ∈ BV.

The Campbell–Hausdorff formula implies that exp (x+y) = exp (x) exp (z1) exp (y) for

some z1 ∈ g1 = [g, g]. Writing z1 = x1+y1, where x1 ∈ b and y1 ∈ v, another application

of Campbell–Hausdorff gives exp (z1) = exp (x1) exp (z2) exp (y1) for some z2 ∈ g2 =

[g, g1]. Continuing in this way we find zn ∈ gn = [g, gn−1], xn−1 ∈ b and yn−1 ∈ v,

for every n ∈ N, such that exp (zn−1) = exp (xn−1) exp (zn) exp (yn−1), and we deduce

that

exp (x+y) ∈
⋂
n>0

B exp (gn)V = B

( ⋂
n>0

exp (gn)

)
V = BV,

where the first equality holds because the groups exp (gn) form a descending chain and

G is compact, and the second holds because g is either uniform or nilpotent.

We are left to verify condition (2) of Definition 2.1. If G is finite this condition is

trivially satisfied, so suppose that G is a uniform pro-p group. For each n > 0 the

triple (pnu, pnl, pnv) is an Iwahori decomposition of the ideal png of g, and so the

above argument shows that the open normal subgroups Kn = exp (png) of G satisfy

condition (2).

We now have the following corollary of Theorem 4.2:

Corollary 4.7. Let p be an odd prime. Let G be either a uniform pro-p group, or a finite

p-group of nilpotency class less than p. Let (u, l, v) be an Iwahori decomposition of the

Lie algebra g of G, and let (U, L, V) be the corresponding Iwahori decomposition of G.

The diagram

Irr (L)
iU,V //

OL

��

Irr (G)

OG

��
L\̂l

Λ∗ // G\̂g

is commutative.
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Proof. This follows from Theorem 4.2. The hypothesis (1) of that theorem is satisfied

because of Lemma 4.6; hypothesis (2) is satisfied by assumption; and the hypothesis (3)

is satisfied because of [4, Theorem 2.6].

We remark that for uniform pro-2-groups the orbit method does not fully apply, though

one has weaker versions; see [4, 27].

Example 4.8. In ‘real life’ one may find a rich supply of groups to which the corollary

may be applied. Let G be a p-adic Lie group, let α be an automorphism of G, and denote

by α∗ the derived automorphism of the Lie algebra g of G. Then

uα := {x ∈ g | αn∗ (x)→ 0 as n→∞} and vα := uα−1

are nilpotent Lie subalgebras of g, normalised by the subalgebra

lα := {x ∈ g | {αn∗ (x) | n ∈ Z} is precompact in g},

and we have g = uα⊕ lα⊕ vα as Qp-vector spaces. Moreover, uα, lα and vα are the

respective Lie algebras of the closed subgroups Uα, Lα and Vα of G, where we are using

the notation of Example 2.6. These assertions are proved in [45, Theorem 3.5]. It is shown

in [15, Lemma 3.3] that g contains arbitrary small open uniform Zp-Lie subalgebras k

having k = (uα ∩ k)⊕ (lα ∩ k)⊕ (vα ∩ k). The compact open subgroups K = exp (k) of G

then have Iwahori decompositions (Uα ∩K,Lα ∩K,Vα ∩K). If p is odd, Corollary 4.7

describes the induction functor iUα∩K,Vα∩K : R(Lα ∩K)→ R(K) in terms of the orbit

method and of the projection k→ lα ∩ k.

Example 4.9. For a finite example, let o be a compact discrete valuation ring with

maximal ideal p and residue characteristic p. Let K = K1 be the first principal congruence

subgroup in GLn (o/p`), for ` > 1. Then K is a finite p-group of nilpotency class `− 1,

with Lie algebra k =Mn(p/p`). As explained in Example 2.5, each partition n = n1+

· · ·+nm gives an Iwahori decomposition (U∩K, L∩K,V ∩K) of K, corresponding to the

decomposition of k into block-upper-triangular, block-diagonal and block-lower-triangular

matrices. If p > `− 1 and odd, Corollary 4.7 gives a description of the resulting induction

functor iU∩K,V∩K : R(L∩K)→ R(K) in terms of the orbit method and the projection of

k onto its subalgebra of block-diagonal matrices.

Remark 4.10. We have taken the point of view of the theory of uniform groups due

to its fairly concrete and algebraic formulation. Historically, the Lie correspondence for

(pro-)p-groups goes back to the seminal work of Lazard [30], [31]. The technique of

obtaining Iwahori decompositions of groups from decompositions of Lie algebras is well

known in the setting of p-adic reductive groups: see [2] and [11], for example.

5. Case study: Siegel Levi subgroup in Sp4 (o2)

Let o be a compact discrete valuation ring with maximal ideal p, a fixed uniformiser π

and finite residue field k of odd characteristic. Let o` := o/p`. In this section we illustrate

how the results of the previous sections may be applied to study the representations
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of the symplectic group Sp4 (o2) that are induced, in the sense of Definition 2.7, from

the Siegel Levi subgroup of 2× 2 block-diagonal matrices. Note that this is equivalent

to studying those induced representations of Sp4 (o) which factor through Sp4 (o2): see

Theorem 2.18(5). The main results in this section are a double-coset formula, à la Mackey,

for the composition of induction and restriction for these groups (Theorem 5.2); and an

answer to a question of Dat regarding parahoric induction (Corollary 5.21).

Let us introduce the notation used to state the Mackey formula. Let

G = Sp4 (o2) = {g ∈ GL4 (o2) | gtjg = j}, where j =

[
−1

−1
1
1

]
. (5.1)

This group admits a virtual Iwahori decomposition (U, L, V), with

L =

{[
a 0

0 a−t

] ∣∣∣∣ a ∈ GL2 (o2)

}
,

U =

{[
1 m

1

] ∣∣∣∣ m ∈M2(o2), m = mt
}
, and V = Ut,

where ( · )t means transpose and ( · )−t means transpose inverse. We consider the

associated functors

iGL := iU,V : R(L)→ R(G) and rGL := rU,V : R(G)→ R(L).

The subgroup L ∼= GL2 (o2) has a virtual Iwahori decomposition (U ′, D, V ′), where

D = {diag (α, δ, α−1, δ−1) | α, δ ∈ o×2 },

U ′ =
{

diag
([
1 β
1

]
,
[
1

−β 1

]) ∣∣∣ β ∈ o2

}
and V ′ = (U ′)t.

We consider the associated functors

iLD := iU ′,V ′ : R(D)→ R(L) and rLD := rU ′,V ′ : R(L)→ R(D).

We let

WG := NG(D)/D and WL := NL(D)/D

denote the Weyl groups ofD in G and in L, respectively. We write Adg for the conjugation

action of a group on itself and subsets thereof, and with a slight abuse of notation also
for the corresponding action on representations.

Theorem 5.2. There is a natural isomorphism of functors R(L)→ R(L),

rGL iGL
∼=

⊕
g∈WL\WG/WL

iL
gLg−1∩L

Adg rL
L∩g−1Lg

.

Remarks 5.3. Let us unpack Theorem 5.2 a little.

(1) The right-hand side of the formula in Theorem 5.2 is a sum over a set of

representatives g ∈ NG(D) for the double cosets ofWL inWG; the resulting functor

does not depend on the choices made, up to natural isomorphism.
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(2) For each g ∈ NG(D), the intersection gLg−1 ∩L is either L or D. The functors iLD
and rLD were defined above; the functors iLL and rLL are, by definition, the identity

functors on R(L).

(3) The group WL is the two-element group generated (modulo D) by the matrix

t=diag (σ, σ) ∈ L, where σ =
[

−1
1

]
∈ GL2 (o2).

The eight-element dihedral group WG is generated (modulo D) by WL together

with the matrix

w :=


0 −1

1

1 0

1

 .
Defining

s :=

[
σ

σ−1

]
∈ G,

we have the double-coset decomposition

WG =WL tWLsWL tWLwWL.

The element s normalises L, while wLw−1
∩L = D. Putting all of this together,

the formula in Theorem 5.2 takes the following more explicit form:

rGL iGL
∼= id⊕Ads⊕ iLDAdw rLD .

(4) Note that the definition of the functors iGL and rGL , and the statement of

Theorem 5.2, continue to make sense when o2 is replaced by o`, or indeed by any

finite (or profinite) commutative ring. Over o1, the formula is valid: as explained

in Example 2.10, the functors iGL , rGL , iLD and rLD are isomorphic in that case to

Harish-Chandra functors, and the formula in Theorem 5.2 is an instance of the

well-known formula (1.1) for the composition of these functors (cf. [13, Theorem

5.1]). We do not know whether the formula in Theorem 5.2 is valid for Sp4 over

more general rings; the proof presented below relies on some very special features

of o2.

Our strategy for proving Theorem 5.2 is as follows. Reduction modulo π gives rise to

a surjective group homomorphism G = Sp4 (o2)→ Sp4 (k), whose kernel is an abelian

group isomorphic to the Lie algebra sp4(k). In §§ 5.1 and 5.2 we apply the orbit

method and Clifford theory to reduce Theorem 5.2 to a statement about orbits and

representations of stabilisers for the adjoint action of Sp4 (k) on sp4(k). In §§ 5.3 and 5.4

we verify the theorem through a case-by-case analysis of the orbits (with some details

postponed to Appendix A).

For the semisimple orbits our induction and restriction functors correspond to

Harish-Chandra induction and restriction for (reductive) subgroups of Sp4 (k), and our

Mackey formula follows from the well-known Mackey formula (1.1) for Harish-Chandra

functors. The computation for the non-semisimple orbits—and in particular, for the one
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nilpotent orbit that is relevant here—is more subtle. In Corollary 5.17 we shall see that

it is precisely this nilpotent orbit that witnesses the difference between our induction

functor and Dat’s parahoric induction.

5.1. The congruence subgroup

Let G0 denote the kernel of the reduction map Sp4 (o2)→ Sp4 (k), and let

g = sp4(k) = {y ∈M4(k) | jy+ytj = 0},

viewed as an additive abelian group on which G acts via the adjoint action of its quotient

Sp4 (k). To reduce the notational load we shall write

g ·y = Adg (y) = gyg−1 (modulo π) , g ∈ G,y ∈ g.

Lemma 5.4. The map exp : g→ G0 defined as the composition

g
y7→πy

↘ πsp4(o2)
z 7→1+z

↘ G0

is a G-equivariant group isomorphism.

Proof. Clear.

For every subgroup H of G we set

H0 := H∩G0, H := HG0/G0 ∼= H/H0, and h := log (H0),

where log : G0→ g denotes the inverse to exp. In particular, l is the additive subgroup

of M4(k) consisting of the block-diagonal matrices diag (x,−xt), for x ∈M2(k).

It is easily checked that the triple of subgroups (u, l, v) forms an Iwahori decomposition

of g, and it follows that the triple (U0, L0, V0) is an Iwahori decomposition of G0.

Similarly, (u ′, d, v ′) is an Iwahori decomposition of l, and so (U ′0, D0, V
′

0) is an Iwahori

decomposition of L0.

Lemma 5.5. Choose and fix a nontrivial character ζ : k→ C×. For each y ∈ g, denote by

ϕy : G0→ C× the character

ϕy : g 7→ ζ ◦ tr ( log (g)y).

The mapping y 7→ ϕy is a G-equivariant bijection g
∼=
↘ Irr (G0), which restricts to an

L-equivariant bijection l
∼=
↘ Irr (L0), and to a D-equivariant bijection d

∼=
↘ Irr (D0).

Proof. Let 〈z, y〉 := ζ ◦ tr (zy) for z, y ∈M4(k). It is well known that the map M4(k)→

M̂4(k) sending y to 〈·, y〉 is an isomorphism. By Pontryagin duality this map restricts to

an isomorphism between g and the dual of M4(k)/g⊥, where g⊥ = {z ∈M4(k) | 〈z, g〉 =

1}. Let g ′ = {z ∈M4(k) | jz− ztj = 0}. For each z ∈ g ′ and y ∈ g we have tr (zy) =

tr ( Adj (z) Adj (y)) = − tr (zy), showing that g ′ ⊆ g⊥. We also have M4(k) = g⊕ g ′ (this

is the eigenspace decomposition for the involution y 7→ Adj (yt)), and since g and its dual

M4(k)/g⊥ have the same cardinality we must have g ′ = g⊥. Thus the pairing 〈·, ·〉 restricts

to an isomorphism g→ ĝ. Composing with the isomorphism l̂og : ĝ→ Ĝ0 = Irr (G0)

shows that y 7→ ϕy is an isomorphism g→ Irr (G0). The G-equivariance of this map

follows from the invariance of the trace. Similar arguments apply to l and d.
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Theorem 4.2, applied to this particularly simple setting, gives the following

identification of the induction maps

i0 := iU0,V0 : Irr (L0)→ Irr (G0) and i ′0 := iU ′0,V
′

0
: Irr (D0)→ Irr (L0).

Lemma 5.6. The diagram

Irr (D0)
i ′0 // Irr (L0)

i0 // Irr (G0)

d
inclusion //

y 7→ϕy ∼=

OO

l
inclusion //

y7→ϕy ∼=

OO

g

y 7→ϕy ∼=

OO

is commutative.

Proof. In view of Theorem 4.2 and Lemma 5.4, it is enough to observe that the diagram

d̂
(Λ ′)∗ // l̂

Λ∗ // ĝ

d

y7→〈·,y〉 ∼=

OO

inclusion // l

y7→〈·,y〉 ∼=

OO

inclusion // g

y7→〈·,y〉 ∼=

OO

commutes, where Λ is the projection of g = u⊕ l⊕ v onto its summand l, and Λ ′ is the

projection of l onto its summand d.

5.2. Application of Clifford theory

We shall use Theorems 3.4, 3.6 and 3.14 to transport the functors iGL and rGL to the

setting of (projective) representations of the centralisers L(y) = L(ϕy) ⊆ GL2 (k) and

G(y) = G(ϕy) ⊆ Sp4 (k) associated to the characters ϕy.

The first assertion (C1) of Clifford theory decomposes the categories R(D), R(L) and

R(G) as products over the sets D\ Irr (D0), L\ Irr (L0) and G\ Irr (G0), respectively. For

each y ∈ g, let ϕy be the character in Irr (G0) defined in Lemma 5.5. We denote by

EGy : R(G)→ R(G)ϕy

the projection onto the subcategory associated to (the G-orbit of) the character ϕy. We

similarly define ELy and EDy , for y ∈ l and y ∈ d respectively.

For each y ∈ l we write

G(y, l) := {g ∈ G | g ·y ∈ l}

for the set of elements in G which conjugate y back into l. Notice that G(y, l) is stable

under left multiplication by L, and under right multiplication by G(y).

The first step is to show that we may deal with ordinary, as opposed to projective,

representations of the centralisers.
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Lemma 5.7. There is a family of maps (ϕ ′y)y∈l with the following properties:

(1) ϕ ′y is a one-dimensional (ordinary) representation of the centraliser G(y) that

extends ϕy.

(2) For each g ∈ G(y, l) one has Adg (ϕ ′y) = ϕ ′g·y.

(3) ϕ ′y(g) = 1 for all g ∈ U(y)∪V(y).

(4) If y ∈ d then ϕ ′y(g) = 1 for all g ∈ U ′(y)∪V ′(y).

Proof. For each y ∈ l ⊂M4(k), let H(y) denote the centraliser of y in the group GL4 (o2)

(which acts on M4(k) through the adjoint action of its quotient GL4 (k)). Singla showed

in [40, Proposition 2.2] that the character ϕy extends to a linear character of H(y). If ϕ ′y
is such an extension, then for each g ∈ G(y, l) the character Adg (ϕ ′(y)) is an extension

of ϕg·y to H(g ·y). Moreover, if g ∈ G(y) then Adg (ϕ ′y) = ϕ ′y. We may thus choose a

family of characters ϕ ′y satisfying (1) and (2) by fixing one y in each G-orbit, choosing

an extension ϕ ′y as above, and then defining ϕ ′g·y := Adg (ϕ ′y) for each g ∈ G(y, l).

We prove that the characters ϕ ′y constructed above are trivial on U(y) and V(y) by

showing that these two groups belong to the commutator subgroup of H(y). Indeed, let

m ∈M2(o2) be any matrix such that the 4× 4 matrix u = [ 1 m1 ] lies in H(y). Then

the matrices u ′ = [ 1 m/2
1

] and z = [ 1 −1 ] also lie in H(y), and we have u = [u ′, z]. This

shows that U(y) lies in [H(y), H(y)], and a similar argument applies to V(y). Thus the

family ϕ ′y constructed above satisfies condition (3).

Finally, if y ∈ d, then a similar argument to the above shows that U ′(y) and V ′(y)

belong to the commutator subgroup of the centraliser of y inside the block-diagonal

subgroup diag (GL2 (o2),GL2 (o2)) ⊂ GL4 (o2), and so property (4) is also satisfied.

For the rest of § 5 we fix a family of characters ϕ ′y as in Lemma 5.7. As explained in

§ 3.1, Clifford theory gives equivalences of categories

FLy : R(L(y))
⊗ϕ ′y
↘

R(L(y))ϕy
indLL(y)
↘

R(L)ϕy

and

FGy : R(G(y))
⊗ϕ ′y
↘

R(G(y))ϕy
indGG(y)

↘
R(G)ϕy .

Lemma 5.8. For each y ∈ l, each g ∈ G(y, l) and each h ∈ NG(L), the diagrams

R(G)ϕy
id // R(G)ϕg·y

R(G(y))

FGy

OO

Adg // R(G(g ·y))

FGg·y

OO
and R(L)ϕy

Adh // R(L)ϕh·y

R(L(y))

FLy

OO

Adh // R(L(h ·y))

FLh·y

OO

commute up to natural isomorphism.

Proof. The commutativity of the second diagram follows from property (2) of Lemma 5.7,

and from the well-known fact that Adh ◦ indL
L(y)

∼= indL
L(h·y) ◦Adh. The commutativity

of the first diagram follows from the same argument, plus the fact that Adg is isomorphic

to the identity functor on R(G) for every g ∈ G.
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For each y ∈ l we consider the functors

i
G(y)

L(y)
:= iU(y),V(y) : R(L(y))→ R(G(y)) and r

G(y)

L(y)
: R(G(y))→ R(L(y)).

Lemma 5.9. For each y ∈ l the diagrams

R(L)ϕy

iGL E
L
y // R(G)ϕy

R(L(y))
i
G(y)

L(y) //

FLy ∼=

OO

R(G(y))

FGy∼=

OO
and R(G)ϕy

ELy rGL // R(L)ϕy

R(G(y))
r
G(y)

L(y) //

FGy ∼=

OO

R(L(y))

FLy∼=

OO

commute up to natural isomorphism.

Proof. The fact that ϕ ′y is trivial on the subgroups U(y) and V(y) ensures that the

functions a and b of Lemma 3.12 are identically equal to 1, and thus that the functor

i
ϕ ′y

U(y),V(y)
appearing in Theorem 3.14 is equal to i

G(y)

L(y)
. This proves the commutativity

of the i-diagram; taking adjoints proves the commutativity of the r-diagram.

Combining Lemmas 5.8 and 5.9 gives immediately:

Lemma 5.10. For each y ∈ l and each g ∈ G(y, l) the diagram

R(L)ϕy

iGL E
L
y // R(G)ϕy

id // R(G)ϕg·y

ELg·y rGL // R(L)ϕg·y

R(L(y))

FLy

OO

i
G(y)

L(y) // R(G(y))

FGy

OO

Adg // R(G(g ·y))

FGg·y

OO

r
G(g·y)

L(g·y) // R(L(g ·y))

FLg·y

OO

commutes up to natural isomorphism.

Now we use Clifford theory to analyse the right-hand side id⊕Ads⊕ iLDAdw rLD of the

Mackey formula (cf. Remarks 5.3(3)). For each pair of elements y, z ∈ l, define a functor

∆(z, y) : R(L(y))→ R(L(z)), ∆(z, y) =

Adl if z = l ·y

0 if z 6∈ L ·y.

Note that ∆(z, l) is well-defined up to natural isomorphism, because Adl ∼= id on R(L(y))

for every l ∈ L(y).

Lemma 5.11. For each y, z ∈ l the diagrams

R(L)ϕy

ELzE
L
y // R(L)ϕz

R(L(y))
∆(z,y) //

FLy

OO

R(L(z))

FLz

OO
and R(L)ϕy

ELz Ads ELy // R(L)ϕz

R(L(y))
∆(z,s·y) Ads //

FLy

OO

R(L(z))

FLz

OO

commute up to natural isomorphism.
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Proof. The commutativity of the first diagram follows from Lemma 5.8, and from the

fact that ELzE
L
y = 0 unless y and z are L-conjugate. The commutativity of the second

diagram follows from a similar argument, plus the equality Ads E
L
y = ELs·yAds.

The analysis of the functors iLD and rLD follows the above analysis of iGL and rGL . Because

D is abelian we have D(y) = D for each y ∈ d. Clifford theory gives an equivalence of

categories

FDy : R(D)
⊗ϕ ′y
↘

R(D)ϕy ,

such that for each h ∈ NG(D) the diagram

R(D)ϕy
Adh // R(D)ϕh·y

R(D)
Adh //

FDy

OO

R(D)

FDh·y

OO

commutes up to natural isomorphism.

We consider the functors

i
L(y)

D
:= i

U ′0(y),V ′0(y)
: R(D)→ R(L(y)) and r

L(y)

D
:= r

U ′0(y),V ′0(y)
: R(L(y))→ R(D).

For each y, z ∈ l, we define the functor

Ξ(z, y) : R(L(y))→ R(L(z))

as the direct sum, over d ∈ d, of the compositions

R(L(y))
∆(d,y)

↘
R(L(d))

r
L(d)

D

↘ R(D)
Adw
↘ R(D)

i
L(w·d)

D

↘ R(L(w ·d))
∆(z,w·d)

↘
R(L(z)).

Lemma 5.12. For each y, z ∈ l the diagram

R(L)ϕy

ELz ( iLDAdw rLD )ELy // R(L)ϕz

R(L(y))
Ξ(z,y) //

FLy

OO

R(L(z))

FLz

OO

commutes up to natural isomorphism.

Proof. Decomposing the category R(D) over Irr (D0) ∼= d, we have

iLDAdw rLD =
⊕
d∈d

iLDAdw E
D
d rLD =

⊕
d∈d

iLD E
D
w·dAdw E

D
d rLD

=
⊕
d∈d

ELw·d iLD E
D
w·dAdw E

D
d rLD E

L
d
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where in the last equality we have used Theorem 3.4. After applying Lemma 5.11 to the

functors ELyE
L
w·d and ELdE

L
z , we are left to prove the commutativity of

R(L)ϕd
EDd rLD // R(D)ϕd

Adw // R(D)ϕw·d
iLD // R(L)ϕw·d

R(L(d))
r
L(d)

D //

FLd

OO

R(D)
Adw //

FDd

OO

R(D)
i
L(w·d)

D //

FDw·d

OO

R(L(w ·d))

FLw·d

OO

for each d ∈ d. This follows from Theorem 3.14, just as in Lemma 5.10.

The end result of our Clifford analysis is as follows:

Corollary 5.13. Theorem 5.2 is equivalent to the assertion that for every y ∈ l and every

g ∈ G(y, l), there is a natural isomorphism

r
G(g·y)

L(g·y)
Adg i

G(y)

L(y)
∼= ∆(g ·y, y)

⊕
∆(g ·y, s ·y) Ads

⊕
Ξ(g ·y, y)

of functors R(L(y))→ R(L(g ·y)).

Proof. By Lemma 5.5 and (C1) we have

rGL iGL =
⊕

L·y, L·z∈L\l

ELz rGL iGL E
L
y.

Theorem 3.4 implies that

ELz rGL iGL E
L
y = ELz rGL E

G
z E
G
y iGL E

L
y,

and EGz E
G
y = 0 unless z and y lie in the same G-orbit. This proves that

rGL iGL =
⊕

L·y∈L\l,
g∈L\G(y,l)/G(y)

ELg·y rGL iGL E
L
y. (5.14)

Clifford theory likewise gives a decomposition

id⊕Ads⊕ iLDAdw rLD =
⊕

L·y, L·z∈L\l

(ELzE
L
y⊕E

L
z Ads E

L
y⊕E

L
z iLDAdw rLD E

L
y),

and Lemmas 5.11 and 5.12 imply that each term in the sum vanishes if z and y are not

G-conjugate. This proves that

id⊕Ads⊕ iLDAdw rLD =
⊕

L·y∈L\l,
g∈L\G(y,l)/G(y)

(ELg·yE
L
y⊕E

L
g·yAds E

L
y⊕E

L
g·y iLDAdw rLD E

L
y).

(5.15)

Thus the reformulation of Theorem 5.2 given in Remarks 5.3(3) is equivalent to the

existence of a natural isomorphism, for each y ∈ l and each g ∈ G(y, l), between the

(y, g) terms on the right-hand sides of (5.14) and (5.15). Conjugating each of these terms

by the equivalences FLy and FLg·y, and applying Lemmas 5.10, 5.11 and 5.12, we bring

Theorem 5.2 into the asserted form.
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5.3. Centralisers

We now present the facts about the centralisers G(y) and L(y) and about the orbit spaces

L\G(y, l)/G(y) that will be needed for the proof of Theorem 5.2. More details, and the

proofs of the assertions made here, are given in Appendix A.

Fix x ∈M2(k), and let y = diag (x,−xt) be the corresponding element of l. We divide

our analysis according to the Jordan normal form of x. Up to conjugacy by L ∼= GL2 (k),

the following nine cases exhaust all of the possibilities. In the following s, t, w and σ are

as in Remarks 5.3. We shall write ‘L\G(y, l)/G(y) = {g, h, k}’ to mean that G(y, l) =

LgG(y)tLhG(y)tLkG(y).

Case 1. x = diag (µ, µ), µ ∈ k. In this case L(y) = L ∼= GL2 (k). There are two subcases:

1A: µ 6= 0. Here G(y) = L(y), and L\G(y, l)/G(y) = {1, s,w}.

1B: µ = 0. Here G(y) = G and L\G(y, l)/G(y) = {1}.

Case 2. x = diag (µ, ν), µ 6= ν. In this case L(y) = D. There are three subcases:

2A: µ 6= ±ν, µ 6= 0 6= ν. Here G(y) = L(y), and L\G(y, l)/G(y) = {1, s,w,wt}.

2A?: ν = 0. Here G(y) is a reductive group over k; L(y) = D is a rational maximal

torus, whose Weyl group in G(y) is generated (modulo D) by the involution t−1wt; and

U(y) and V(y) are the unipotent radicals of an opposite pair of rational Borel subgroups

of G(y) containing L(y). We have L\G(y)/G(y) = {1,w}.

2B: µ = −ν. In this case we have G(y) = Adw (L), U(y) = Adw (V ′) and V(y) =

Adw (U ′), while L\G(y, l)/G(y) = {1,w,wt}.

Case 3. x =
[ α β
µβ α

]
, µ ∈ k non-square, α ∈ k, β ∈ k×. In this case k2 :=M2(k)(x) is a

quadratic field extension of k, and L(y) = {diag (a, a−t) | a ∈ k×2 } ∼= k
×

2 . There are two

subcases.

3A: α 6= 0. We have G(y) = L(y) and L\G(y, l)/G(y) = {1, s}.

3B: α = 0. Here G(y) is a reductive group over k; L(y) is a rational maximal torus of

G(y) whose Weyl group is generated by s; and U(y) and V(y) are the unipotent radicals

of an opposite pair of rational Borel subgroups of G(y) containing L(y). In this case

L\G(y, l)/G(y) = {1}.

Case 4. x = [µ 1µ ]. In this case L(y) = {diag (a, a−t) | a ∈ k[x]} ∼= GL1 (k[ε]/(ε2)). There

are two subcases.

4A: µ 6= 0. Here G(y) = L(y) and L\G(y, l)/G(y) = {1, s}.

4B: µ = 0. The subgroups U(y) and V(y) commute with one another in G(y), and we

have

G(y) = (U(y)×V(y))o (L(y)oS)

where S is the two-element group generated by s. We have L\G(y, l)/G(y) = {1}.

5.4. Proof of Theorem 5.2

In this section we shall use the results of the previous section to prove that for each y ∈ l

and each g ∈ G(y, l), there is a natural isomorphism

r
G(g·y)

L(g·y)
Adg i

G(y)

L(y)
∼= ∆(g ·y, y)

⊕
∆(g ·y, s ·y) Ads

⊕
Ξ(g ·y, y) (5.16)
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of functors R(L(y))→ R(L(g ·y)). By Corollary 5.13, this constitutes a proof of

Theorem 5.2. We recall from § 5.2 that

∆(z, y) =

Adl if z = l ·y

0 if z 6∈ L ·y
and Ξ(z, y) =

⊕
d∈d

(
∆(z,w ·d) i

L(w·d)

D
Adw r

L(d)

D
∆(d, y)

)

for all y, z ∈ l.

The proof of (5.16) goes through a case-by-case analysis of the various possibilities for

y = diag (x,−xt). The cases are labelled as in § 5.3. The reader who is more interested

in ideas than in details might like to focus on cases 1A , 2A? and 4B, which together

contain all of the techniques used in the other cases.

Case 1A. Take y = diag (µ, µ,−µ,−µ), µ 6= 0. We must consider g = 1, g = s and

g = w.

For g = 1, the left-hand side of (5.16) is the identity on R(L), because all of the

centralisers are equal to L. We have ∆(y, s ·y) = 0 because y and s ·y = −y are not

L-conjugate. The only diagonal matrix d ∈ d that is L-conjugate to y is d = y itself, and

we have ∆(y,w ·y) = 0, and so Ξ(y, y) = 0. Thus the only nonzero term on the right-hand

side of (5.16) is ∆(y, y), which is the identity on R(L). Thus the two sides of (5.16) are

isomorphic.

For g = s all of the centralisers are again equal to L, and so the left-hand side of (5.16)

equals Ads. One finds as above that the only nonzero term on the right-hand side is

∆(s ·y, s ·y) Ads, which equals Ads.

For g = w we have w ·y = diag (−µ, µ, µ,−µ), and so the centralisers of g ·y are as in

case 2B. The left-hand side of (5.16) is thus equal to r
G(w·y)

D
Adw. Since ∆(w ·y, y) and

∆(w ·y, s ·y) are both zero, the only potentially nonzero term on the right-hand side of

(5.16) is Ξ(w ·y, y). Since the only diagonal matrix that is L-conjugate to y is y itself,

we have

Ξ(w ·y, y) = ∆(w ·y,w ·y) i
L(w·y)

D
Adw r

L(y)

D
∆(y, y) = Adw rL

D
.

Now, we have G(w ·y) = Adw (L), U(w ·y) = Adw (V ′), and V(w ·y) = Adw (U ′) (see

case 2B in § 5.3), and therefore

r
G(w·y)

D
Adw = rU(w·y),V(w·y) Adw ∼= Adw rV ′,U ′

∼= Adw rU ′,V ′ = Adw rL
D

where we used Theorem 2.18(1) to switch U ′ and V ′. This completes the proof of (5.16)

in case 1A.

Case 2A. Take y = diag (µ, ν,−µ,−ν), where µ and ν are nonzero and µ 6= ±ν. We

must consider g = 1, g = s, g = w and g = wt. For each of these g the matrix g ·y is

again of the form 2A, and so all of the centralisers appearing in (5.16) are equal to D,

and the left-hand side of (5.16) is equal to the functor Adg on R(D).

For g = 1 the functor ∆(y, y) equals the identity, while ∆(y, s ·y) = 0 (because y and

s ·y are not L-conjugate) and Ξ(y, y) = 0 (because the only diagonal matrices that are

https://doi.org/10.1017/S1474748017000305 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748017000305


1034 T. Crisp et al.

L-conjugate to y are y and t ·y, and neither of these is L-conjugate to w ·y). So both

sides of (5.16) equal the identity.

For g = s the functor ∆(s ·y, s ·y) is the identity, while ∆(s ·y, y) and Ξ(s ·y, s ·y) are

both zero. So both sides of (5.16) equal Ads.

For g = w, the only potentially nonzero term on the right-hand side of (5.16) is

Ξ(w ·y, y). There are two diagonal matrices d ∈ d that are L-conjugate to y, namely

y itself and t ·y. Since w ·y = diag (−µ, ν, µ, ν) and wt ·y = diag (−ν, µ, ν,−µ) are

not L-conjugate, we have ∆(w ·y,wt ·y) = 0, and so the summand in Ξ(w ·y,w ·y)

corresponding to d = t ·y is equal to zero. Therefore,

Ξ(w ·y, y) = ∆(w ·y,w ·y) i
L(w·y)

D
Adw r

L(y)

D
∆(y, y) = Adw

as required.

For g = wt the argument of the previous paragraph shows that the right-hand side

of (5.16) is equal to Ξ(wt ·y, y), and that only the d = t ·y summand in the latter is

nonzero. We have

Ξ(wt ·y, y) = ∆(wt ·y,wt ·y) i
L(wt·y)

D
Adw r

L(t·y)

D
∆(t ·y, y) = AdwAdt

because ∆(t ·y, y) = Adt and all of the centralisers equal D. This completes the proof of

(5.16) in case 2A.

Case 2A?. Let y = diag (µ, 0,−µ, 0) where µ 6= 0. We must consider g = 1 and g = w.

For g = 1, the left-hand side of (5.16) equals r
G(y)

D
i
G(y)

D
. We are in the situation of

Example 2.10, and so r
G(y)

D
and i

G(y)

D
are isomorphic to the functors of Harish-Chandra

restriction and induction (respectively) for the maximal torus D ⊂ G(y). Since the Weyl

group of D in G(y) is equal to {1, t−1wt}, the usual Mackey formula (1.1) (cf. [13,

Theorem 5.1]) for the composition of Harish-Chandra functors gives

r
G(y)

D
i
G(y)

D
∼= id⊕Adt−1wt .

Still taking g = 1, we have ∆(g ·y, s ·y) = 0, and so the right-hand side of (5.16) equals

id⊕Ξ(y, y). The only diagonal matrices that are L-conjugate to y are d = y and d = t ·y.

For d = y we have ∆(y,w ·y) = 0, and so the only potentially nonzero summand in

Ξ(y, y) is the one corresponding to d = t ·y. Computing this summand, we find

Ξ(y, y) = ∆(y,wt ·y) i
L(wt·y)

D
Adw r

L(t·y)

D
∆(t ·y, y) = Adt−1 AdwAdt,

because L(wt ·y) = L(t ·y) = D. Thus the right-hand side of (5.16) is, like the left-hand

side, isomorphic to id⊕Adt−1wt.

Now take g = w. Notice that w ·y = −y. The left-hand side of (5.16) is

r
G(y)

D
Adw i

G(y)

D
∼= Adw r

G(y)

D
i
G(y)

D
∼= Adw⊕Adts,

where for the first isomorphism we have used Theorem 2.18(1), and for the second we

have used the Mackey formula (1.1) for Harish-Chandra induction together with the

equality wt−1wt = ts in G.
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Keeping g = w and turning to the right-hand side of (5.16), the term ∆(w ·y, y)

vanishes, while the fact that w ·y = ts ·y implies that ∆(w ·y, s ·y) Ads = Adts. So we

are left to show that Ξ(w ·y, y) = Adw. The d = y term in Ξ(w ·y, y) is equal to

∆(w ·y,w ·y) iD
D

Adw rD
D
∆(y, y) = Adw,

while the d = t ·y term vanishes because ∆(w ·y, t ·y) = 0. Thus both sides of (5.16) are

isomorphic to Adw⊕Adts in this case.

Case 3A. Take x = [ α β
βµ α ], where µ ∈ k is a non-square and α,β ∈ k×, and let y =

diag (x,−xt). We must consider g = 1 and g = s. We have G(y) = G(s ·y) = L(s ·y) =

L(y), so that the left-hand side of (5.16) is equal to Adg for each g. Note that since y is

not L-conjugate to a diagonal matrix we have Ξ(z, y) = 0 for every z.

For g = 1 we have ∆(y, y) = id while ∆(y, s ·y) = 0, so both sides of (5.16) equal the

identity.

For g = s we have ∆(s ·y, y) = 0 while ∆(s ·y, s ·y) = id and so both sides of (5.16)

equal Ads. So (5.16) holds in case 3A.

Case 4A. Take x = [µ 1µ ], where µ 6= 0, and let y = diag (x,−xt). The argument is the

same as in case 3A.

Case 1B. Take y = 0. We need only consider g = 1. Then (5.16) becomes the assertion

that

rG
L

iG
L

∼= id⊕Ads⊕ iL
D

Adw rL
D
.

This is true: the functors iG
L

and rG
L

identify, as in Example 2.10, with the functors of

Harish-Chandra induction and restriction for the Siegel Levi subgroup in G = Sp4 (k),

and the above formula is just the standard Mackey formula (1.1) for the composition of

these functors.

Case 2B. Let y = diag (µ,−µ,−µ, µ), µ 6= 0. We must consider g = 1, g = w and

g = wt.

For g = 1 the left-hand side of (5.16) is equal to

r
Adw (L)

D
i
Adw (L)

D
= Adw rL

D
iL
D

Adw−1
∼= Adw (id⊕Adt ) Adw−1

∼= id⊕Ads

where we have identified iL
D

and rL
D

with Harish-Chandra functors and applied the

usual Mackey formula (1.1) for the group L ∼= GL2 (k) and its diagonal torus D. On

the right-hand side of (5.16) we have ∆(y, y) = id and ∆(y, s ·y) = id, so we are left to

show that Ξ(y, y) = 0. The only d ∈ d with ∆(d, y) 6= 0 are d = y and d = t ·y. In both

of these cases we have ∆(y,w ·d) = 0, and so Ξ(y, y) = 0 as required.

The g = w and g = wt cases follow the argument for the ‘g = w component’ of case

1A. The left-hand side of (5.16) is isomorphic to Adg i
Adg (L)

D
, while the right-hand side is

isomorphic to iL
D

Adg, and the two sides are isomorphic to each other by Theorem 2.18(1).

Case 3B. Let x = [ β
βµ ], µ ∈ k a non-square, β ∈ k×, and take y = diag (x,−xt). We

need consider only g = 1. We have on the one hand ∆(y, s ·y) = id, while on the other
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hand Ξ(y, y) = 0 (since y is not L-conjugate to any d ∈ d), and so (5.16) reads

r
G(y)

L(y)
i
G(y)

L(y)
∼= id⊕Ads .

This is true: the functors on the right-hand side are isomorphic to Harish-Chandra

functors as in Example 2.10, and the above formula is the usual Mackey formula for

these functors.

Case 4B. Take x = [ 0 10 0 ] and y = diag (x,−xt). We need only consider g = 1. As in

case 3B, the right-hand side of (5.16) is id⊕Ads, while the left-hand side is r
G(y)

L(y)
i
G(y)

L(y)
.

Since U(y) and V(y) commute, the latter functor is isomorphic as in Example 2.15 to

the tensor product with the H(L(y))-bimodule

eU(y)eV(y)H(G(y))eU(y)eV(y)
∼= H((U(y)×V(y))\G(y)/(U(y)×V(y))

= H((U(y)×V(y))\G(y)),

with the last equality holding because U(y)×V(y) is normal in G(y). The semidirect

product decomposition of G(y) given in § 5.3 for this case implies that

H((U(y)×V(y))\G(y)) ∼= H(L(y)oS) ∼= H(L(y))⊕H(L(y))s

as H(L(y))-bimodules, and so the corresponding tensor product functor r
G(y)

L(y)
i
G(y)

L(y)
is

isomorphic to id⊕Ads as required.

This completes the proof of (5.16) and hence, by Corollary 5.13, of Theorem 5.2.

5.5. Comparison with parahoric induction

We now come to the second corollary of the analysis of §§ 5.1–5.3. In addition to the

virtual Iwahori decomposition (U, L, V) of G that we have been considering until now,

we shall also consider the triple (U0, L, V), which is a virtual Iwahori decomposition

of G because the subgroup U0 ⊂ U is normalised by L. This second virtual Iwahori

decomposition gives rise to a second induction functor iU0,V : R(L)→ R(G) which, as

we shall see below, is an example of Dat’s parahoric induction ([10], cf. Example 2.12). It

follows immediately from the definitions that we have a natural inclusion iU,V ⊆ iU0,V .

We shall show that this inclusion is proper, and then we shall explain why this gives a

negative answer to [10, Question 2.15].

Corollary 5.17. Let x ∈M2(k) and consider y = diag (x,−xt) ∈ l. The restrictions of the

functors

iU,V , iU0,V : R(L)→ R(G)

to the subcategory R(L)ϕy are mutually nonisomorphic if x is nonzero and nilpotent; and

these restrictions are mutually isomorphic if x is zero or non-nilpotent.
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Proof. The computations of § 5.2, in particular Lemma 5.9, show that there are

commutative (up to natural isomorphism) diagrams

R(L)ϕy
iU,V // R(G)ϕy

R(L(y))
iU(y),V(y) //

FLy ∼=

OO

R(G(y))

FGy∼=

OO
and R(L)ϕy

iU0,V // R(G)ϕy

R(L(y))
iV(y) //

FLy ∼=

OO

R(G(y))

FGy∼=

OO

(In the second diagram we have used the fact that the group U0 is trivial, so that

iU0(y),V(y) = iV(y).)

If x is semisimple then G(y) is a finite reductive group, and U(y) and V(y) are the

unipotent radicals of an opposite pair of rational parabolic subgroups with common Levi

subgroup L(y). The functor iV(y)is the Harish-Chandra induction functor associated to

the parabolic subgroup L(y)V(y) of G(y), and as in Example 2.10 the natural inclusion

iU(y),V(y) ⊆ iV(y) is an isomorphism.

If x is neither semisimple nor nilpotent, as in Case 4A, then the groups U(y) and V(y)

are both trivial, G(y) = L(y), and the functors iU(y),V(y) and iV(y) are both isomorphic

to the identity.

We are left to consider the case where x is nilpotent; say x = [ 0 10 0 ]. In this case we have

G(y) = (U(y)×V(y))o (L(y)oS),

from which it follows (cf. Example 2.15) that the functors iU(y),V(y) and iV(y) are

isomorphic, respectively, to the compositions

iU(y),V(y) : R(L(y))
inf
↘ R((U(y)×V(y))oL(y))

ind
↘ R(G(y)),

iV(y) : R(L(y))
inf
↘ R(V(y)oL(y))

ind
↘ R(G(y)).

The functor iU(y),V(y) thus scales the C-dimension of representations by a factor of

[G(y) : (U(y)×V(y))oL(y)] = |S| = 2,

while iV(y) scales the dimension by

[G(y) : V(y)oL(y)] = |S| · |U(y)| = 2|k|.

Thus iU,V is not isomorphic to iU0,V as functors on R(L)ϕy .

The above proof also shows that the parahoric induction and restriction functors do

not satisfy the analogue of Theorem 5.2:

Corollary 5.18. Let x ∈M2(k) be nonzero and nilpotent, and let y = diag (x,−xt). The

restriction of the functor

rU0,V iU0,V : R(L)→ R(L)

to the subcategory R(L)ϕy is not isomorphic to id⊕Ads.
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Proof. The proof of Corollary 5.17 showed that for each nonzero M ∈ R(L)ϕy there is a

proper inclusion iU,V (M) ( iU0,V (M), and hence a proper inclusion

HomL (M,M⊕Ads (M)) ∼= EndG ( iU,V (M)) ( EndG ( iU0,V (M))

∼= HomL (M, rU0,V iU0,V (M)).

Thus rU0,V iU0,V (M) is not isomorphic to M⊕Ads (M).

Remarks 5.19. (1) A straightforward computation with the functors iV(y) and rV(y),

using the semidirect product decomposition of G(y), shows that for each irreducible

M ∈ R(L)ϕy one has

dimC EndG ( iU0,V (M)) =

|k|+ 1 if M ∼= Ads (M),

|k| if M 6∼= Ads (M).

(2) The nilpotent orbit L ·y is the only one on which the Mackey formula fails to hold

for the functors iU0,V and rU0,V : on all of the other orbits our proof of Theorem 5.2

carries over to the parahoric functors, thanks to Corollary 5.17.

Let us now explain the connection to parahoric induction. Let F be a non-archimedean

local field with ring of integers o, maximal ideal p and residue field k of odd characteristic.

As usual, we let o` = o/p`. Let G be the group Sp4, realised as a subgroup of GL4 as in

(5.1). Let P = LU be the Siegel parabolic subgroup of block-upper-triangular matrices,

and let Q = LV be the opposite parabolic subgroup of block-lower-triangular matrices,

as above.

The group G(o) = Sp4 (o) is the stabiliser of a point in the Bruhat–Tits building of

G(F) lying in the apartment associated to the diagonal torus D. The pro-p radical of

G(o) is equal to the congruence subgroup

K1 = ker (G(o)→ G(k)).

We have U(F)∩G(o) = U(o), and likewise for L and V. Let U(o)+ = U(o)∩K1.

We consider two induction functors R(L(o))→ R(G(o)): the parahoric induction

functor iU(o)+,V(o) defined by Dat, and the functor iU(o),V(o). There is a natural inclusion

iU(o),V(o) ⊆ iU(o)+,V(o) . (5.20)

As we explained in Example 2.12, an affirmative answer to [10, Question 2.15] would

imply that this inclusion is in fact an equality.

Corollary 5.21. The inclusion (5.20) is proper, and so [10, Question 2.15] has a negative

answer in this case.

Proof. Reduction modulo p2 gives a surjective homomorphism G(o)→ G(o2), which

restricts to surjective homomorphisms on the subgroups U, L and V. Let K2 ⊂ G(o)

denote the kernel of this homomorphism. The triple (U(o)∩K2,L(o)∩K2,V(o)∩K2) is
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an Iwahori decomposition of K2: this follows easily from the corresponding decomposition

of the second congruence subgroup of GL4 (o) (cf. Example 2.5). Recalling the notation

G, L, U, V, etc. from previously in this section, and noting that U0 is the image of U(o)+

under the reduction map U(o)→ U(o2), we conclude from Theorem 2.18(5) that the

diagrams

R(L(o))
iU(o),V(o) // R(G(o))

R(L)
iU,V //

inf

OO

R(G)

inf

OO
and R(L(o))

iU(o)+,V(o) // R(G(o))

R(L)
iU0,V //

inf

OO

R(G)

inf

OO

commute. Corollary 5.17 shows that iU,V is a proper subfunctor of iU0,V , and so the

inclusion (5.20) is proper.

6. Representations of the Iwahori subgroup of the general linear group

Let o be a compact discrete valuation ring with maximal ideal p. In this section we shall

present a simple application of the functors iU,V and rU,V to the representation theory

of the Iwahori subgroups

In = In(o) = {g ∈ GLn (o) | g is upper-triangular modulo p}.

We shall relate the representations of In to representations of its block-diagonal

subgroups. Before stating the main result let us establish some notation (borrowed from

[3]) for these subgroups.

Let Pn denote the set of compositions (also called ordered partitions) of n: an element

α ∈ Pn is thus an ordered tuple of positive integers (α1, α2, . . . , αm) having
∑
αi = n.

The blocks of α are the subsets

b1(α) = {1, . . . , α1}, b2(α) = {α1+ 1, . . . , α1+α2}, etc.

of {1, . . . , n}. We shall usually write n, instead of (n), for the composition with one block.

The set Pn is partially ordered by refinement: α 6 β if each block of β is a union of

blocks of α. This partial order makes Pn into a lattice, the greatest lower bound α∧β

of two compositions being the composition whose blocks are the nonempty intersections

bi(α)∩bj(β) of the blocks of α and β. We also have an associative order-preserving

product

Pn×Pm→ Pn+m, (α,β) 7→ α ·β

given by concatenation.

Given a composition α ∈ Pn we denote by

Iα = {g ∈ In | gij = 0 unless i and j lie in the same block of α}

the closed subgroup of α-block-diagonal matrices in In. These groups are compatible

with the concatenation product:

Iα·β ∼= Iα× Iβ (6.1)

https://doi.org/10.1017/S1474748017000305 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748017000305


1040 T. Crisp et al.

in an obvious way, and this gives an equivalence on smooth representations,

R(Iα)×R(Iβ)
(Mα,Mβ)7→Mα⊗Mβ

↘∼=
R(Iα·β).

We also consider the groups

Uα =

{
g ∈ In

∣∣∣∣∣ g is upper triangular; gii = 1 for every i; and

gij = 0 if i 6= j and i and j lie in the same block of α

}
, and

Vα = Utα ∩ In.

If β is a second composition with α 6 β, we define

Uβα = Uα ∩ Iβ and Vβα = Vα ∩ Iβ.

If α 6 β ∈ Pn and γ 6 δ ∈ Pm, then the isomorphism Iβ·δ ∼= Iβ× Iδ of (6.1) restricts to

isomorphisms

Uβ·δα·γ
∼= Uβα×U

δ
γ and Vβ·δα·γ

∼= Vβα ×V
δ
γ. (6.2)

Example 6.3. If α = (2, 1) and β = (3), then

Iα =

[
o× o
p o×

o×

]
, Uβα =

[
1 o
1 o
1

]
, Vβα =

[
1
1

p p 1

]
where the blanks indicate zeros.

Lemma 6.4.

(1) For each pair of compositions α 6 β in Pn, the triple (U
β
α, Iα, V

β
α ) is an Iwahori

decomposition of Iβ.

(2) For each triple of compositions α 6 β 6 γ one has

Uγα = UβαnU
γ
β and Vγα = Vβα nV

γ
β .

(3) For each pair of compositions α,β ∈ Pn one has

Uαα∧β = Uβ ∩ Iα and Vαα∧β = Vβ ∩ Iα.

Proof. Part (1) is well known, and can be established by elementary linear algebra as in

[3, 3.11]. Part (2) follows immediately from the Iwahori decompositions. Part (3) boils

down to the (manifestly true) assertion that for integers i and j lying in the same block

of α, i and j lie in the same block of α∧β if and only if they lie in the same block of

β.

Definition 6.5. For each pair of compositions α 6 β in Pn, consider the functors

iβα = i
U
β
α,V

β
α
: R(Iα)→ R(Iβ) and rβα = r

U
β
α,V

β
α
: R(Iβ)→ R(Iα).

The functors i
β
α and r

β
α are examples of parahoric induction as defined in [10].

Theorems 2.18 and 2.23 give some basic properties of these functors. Let us mention

two that will be used below:
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Lemma 6.6. (1) If α 6 β 6 γ are compositions of n, then

iγα
∼= i
γ
β iβα and rγα

∼= rβα r
γ
β .

(2) If α 6 β ∈ Pn and γ 6 δ ∈ Pm, then the diagram

R(Iα)×R(Iγ)
iβα × iδγ //

⊗

��

R(Iβ)×R(Iδ)

⊗

��
R(Iα·γ)

iβ·δα·γ // R(Iβ·δ)

commutes up to natural isomorphism, as does the corresponding diagram of adjoint

functors r.

Proof. Part (1) follows from part (2) of Lemma 6.4 and part (7) of Theorem 2.18. Part

(2) follows from the compatibility of the decompositions (6.1) and (6.2).

Definition 6.7. An irreducible representation M of In will be called primitive if rnα (M) =

0 for every composition α ∈ Pn except for α = n. We denote the set of isomorphism

classes of primitive irreducible representations by Prim (In).

The following lemma is key to our analysis of the functors i and r.

Lemma 6.8. Let α,β ∈ Pn be compositions of n, and let M be an irreducible

representation of In. If rnα (M) and rnβ (M) are both nonzero, then so is rnα∧β (M).

Proof. Since the representation M is irreducible and smooth, it factors through the

quotient map In(o)→ In(o/p`) for some `. The functors i and r commute with inflation

(Theorem 2.18(5)), and so we may replace o by o/p` and assume throughout the proof

that In is a finite group.

We know that N := rnα (M) is nonzero. Therefore, up to isomorphism, we can write

M = inα (N) = H(In)eUαeVα ⊗H(Iα)N = H(In)eUαeVαeUαeVα ⊗H(Iα)N.

(In the last equality we used Proposition 2.16.)

We know that the subspace

rnβ (M) = eUβeVβH(In)eUαeVαeUαeVα ⊗H(Iα)N (6.9)

of M is nonzero. By part (2) of Lemma 6.4 we know that each element of Vα ⊆ Vα∧β

can be written as the product of an element of Vβ with an element of V
β
α∧β = Vα ∩ Iβ.

Therefore, using the Iwahori decomposition of In with respect to α, we get that In =

VαIαUα = VβV
β
α∧βIαUα, which allows us to replace H(In) by H(V

β
α∧β) in (6.9) and

write

rnβ (M) = eUβeVβH(V
β
α∧β)eUαeVαeUαeVα ⊗H(Iα)N

= H(V
β
α∧β)eUβeVβeUαeVαeUαeVα ⊗H(Iα)N,
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where the second equality holds because the elements of H(V
β
α∧β) ⊂ H(Iβ) commute

with eUβ and eVβ . So we see that rnβ (M) is generated as a representation of Iβ by its

subspace

eUβeVβeUαeVαeUαeVα ⊗H(Iα)N (6.10)

and hence that this subspace is nonzero.

We now write eVβ = eVβeVαα∧β . We use the fact that elements of H(Vαα∧β) ⊂ H(Iα)

commute with eUα and that eVαα∧βeVα = eVα∧β (by part (2) of Lemma 6.4), to obtain

eVβeUαeVα = eVβeVαα∧βeUαeVα = eVβeUαeVαα∧βeVα = eVβeUαeVα∧β .

A similar argument shows that eUβeVβeUα = eUα∧βeVβeUα , and so the subspace (6.10)

is equal to

eUα∧βeVβeUαeVα∧βeUαeVα ⊗H(Iα)N.

This nonzero subspace of M is contained in the subspace

eUα∧βH(In)eVα∧βeUαeVα ⊗H(Iα)N = eUα∧βH(Iα∧β)eVα∧βeUαeVα ⊗H(Iα)N

= eUα∧βeVα∧βeUαeVα ⊗H(Iα)N,

where we have used the Iwahori decomposition of In with respect to α∧β, and the

inclusion Iα∧β ⊆ Iα. But this last nonzero subspace of M is exactly rnα∧β (M), so we

are done.

Let us now present the main results of this section:

Theorem 6.11. Let M be an irreducible representation of the Iwahori subgroup In ⊂

GLn (o). There is a unique composition α = (α1, . . . , αm) of n, and unique primitive

irreducible representations Mi ∈ Prim (Iαi), such that

M ∼= inα (M1⊗ · · ·⊗Mm).

Proof. First note the following consequence of part (2) of Lemma 6.6: if M1, . . . ,Mm
are irreducible representations of Iα1 , . . . , Iαm , then

Mi is primitive for all i ⇐⇒ rαγ (M1⊗ · · ·⊗Mm) = 0 for all γ � α. (6.12)

Consider the set

Q = {α ∈ Pn | rnα (M) 6= 0},

which is nonempty since it contains the composition n. Let α = (α1, . . . , αm) be the

greatest lower bound of Q in the lattice Pn; Lemma 6.8 implies that α ∈ Q. The (nonzero)

irreducible representation rnα (M) of the group Iα decomposes uniquely as a tensor

product

rnα (M) ∼=

m⊗
i=1

Mi

of irreducible representations of the factors Iαi of Iα (cf. (6.1)). If γ � α then

rαγ
(⊗

Mi
)
∼= rnγ (M) = 0
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by Lemma 6.6 part (1) and the minimality of α, and so all of the Mi’s are primitive by

(6.12). Since by part (3) of Theorem 2.23 we have M ∼= inα rnα (M), we are done with the

‘existence’ part of the proof.

The uniqueness follows from (6.12): if rnβ (M) ∼= N1⊗ · · ·⊗N`, where the Ni are all

primitive, then we must have β = α by minimality, and then Ni ∼=Mi for each i by the

uniqueness of the tensor product decomposition.

Lemma 6.8 also implies the following simple formula for the composition of induction

and restriction:

Proposition 6.13. For all α,β ∈ Pn and all M ∈ Irr (Iα) one has

rnβ inα (M) ∼= i
β
α∧β rαα∧β (M).

Proof. If rnβ ( inα (M)) is nonzero, then—since rnα ( inαM) ∼=M is also nonzero—Lemma 6.8

implies that

rαα∧β (M) ∼= rnα∧β ( inα (M)) 6= 0.

In other words, if rαα∧β (M) = 0, then rnβ inα (M) = 0 too.

If rαα∧β (M) 6= 0, then we can use Theorem 2.23 and Lemma 6.6(1) to compute

rnβ inα (M) ∼= rnβ inα ( iαα∧β rαα∧β (M)) ∼= rnβ inα∧β rαα∧β (M) ∼= rnβ inβ ( i
β
α∧β rαα∧β (M))

∼= i
β
α∧β rαα∧β (M)

as claimed.

Theorem 6.11 has the following corollary, which gives a neat description of the way

the representations of all the groups In (for n > 0) fit in together. Namely, let K :=⊕
n>0 K0(Rf(In)) denote the direct sum of the Grothendieck groups of the categories of

finite-dimensional smooth representations of the groups In, with the convention that I0
is the trivial group. The maps induced on Grothendieck groups by the functors

R(In)×R(Im)→ R(In+m), (M1,M2) 7→ in+m
(n,m)

(M1⊗M2)

equip K with a graded multiplication structure. It follows from Lemma 6.6 that this

multiplication is associative. Since the irreducible representations of In constitute a

Z-basis for K0(Rf(In)), Theorem 6.11 implies the following result:

Corollary 6.14. The ring K is isomorphic to Z〈
⊔
n>0 Prim (In)〉, the non-commutative

polynomial algebra with indeterminates the primitive irreducible representations.
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Appendix A. Centralisers for the adjoint action of Sp4 (k)

In this section we give proofs of the assertions in § 5.3 regarding the centralisers G(y)

and L(y) and the spaces L\G(y, l)/G(y). Part of the computations here can be deduced

from [42], where the cardinalities of the centralisers of elements of Sp4 (k) are computed,

by using the Cayley map. As we require the precise structure of the centralisers we give

a detailed computation below.

Fix x ∈M2(k), and let y = diag (x,−xt) be the corresponding element of l. Clearly we

have

L(y) = {diag (a, a−t) | a ∈M2(k)(x)},

where M2(k)(x) denotes the centraliser of x in the algebra M2(k). Elements of M2(k)

are either scalar or regular (in the sense of admitting a cyclic vector in k2). We therefore

have

M2(k)(x) =

M2(k) if x is a scalar matrix,

k[x] if x is non-scalar.

Turning to the centralisers in G = Sp4 (k), let us first note that the matrices x and −xt

give rise to two k[T ]-module structures on k2, and that the centraliser of y in GL4 (k) is

isomorphic, in an obvious way, to the automorphism group of the direct sum k2x⊕k2−xt
of these modules.

Lemma A. 1. For each x ∈M2(k) with tr (x) = 0, the centraliser GL4 (k)(y) of y =

diag (x,−xt) ∈M4(k) inside GL4 (k) is given by

GL4 (k)(y) = Σ ·GL2 (M2(k)(x)) ·Σ−1

where σ = [ −1
1

] ∈ GL2 (k) and Σ = [ 1 σ ] ∈ GL4 (k).

Proof. If tr (x) = 0 then σxσ−1 = −xt, and so id⊕σ : k2x⊕k2x→ k2x⊕k2−xt is

a k[T ]-module isomorphism. Conjugating GL2 (M2(k)(x)) = Aut (k2x⊕k2x) by this

isomorphism gives the asserted description of GL4 (k)(y).

We now proceed to the computation of L(y), G(y) and L\G(y, l)/G(y) in each of the

cases listed in § 5.3. Note that tr (x) 6= 0 in the ‘A’ cases, while tr (x) = 0 in the ‘B’ cases.

Case 1. x = diag (µ, µ).

We have M2(k)(x) =M2(k), so L(y) = L. For G(y) and L\G(y, l)/G(y) there are two

subcases to consider:

1A: µ 6= 0. Since x and −xt share no eigenvalue, there are no nonzero morphisms between

the k[T ] modules k2x and k2
−xt

, and consequently we have G(y) = L(y) = L.

We claim that L\G(y, l)/G(y) = {1, s,w}. This is equivalent to the claim that there are,

up to conjugacy by L, three G-conjugates of y lying in l: namely y itself, s ·y, and w ·y.

Indeed, any G-conjugate of y in l must be split and semisimple, and must therefore be

L-conjugate to a diagonal matrix z whose entries form a permutation of the entries of y.

Since z lies in l, and hence is of the form diag (z1, z2,−z1,−z2), the only possibilities for

z are

diag (µ, µ,−µ,−µ), diag (−µ,−µ, µ, µ), diag (−µ, µ, µ,−µ), or diag (µ,−µ,−µ, µ).
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The first three are equal to y, s ·y and w ·y respectively, while the last is L-conjugate to

w ·y.

1B: µ = 0. Obviously H(y) = H for all H ⊆ G, and G(y, l) = G(y).

Case 2. x = diag (µ, ν), µ 6= ν.

We have M2(k)(x) = {[α β ] |α,β ∈ k} ∼= k⊕ k, and so L(y) = D is the group of

diagonal matrices in G. There are three subcases to consider:

2A. ν 6= ±µ, µ 6= 0 6= ν. Similar arguments to those of Case 1A show that G(y) = L(y),

and that L\G(y, l)/G(y) = {1, s,w,wt}.

2A?. ν = 0. The space Homk[T ] (k2x,k2−xt) is one-dimensional, spanned by p = [ 0 1 ], and

so we have

GL4 (k)(y) =

{[
a b

c d

] ∣∣∣∣a, d ∈ D, b, c ∈ kp} .
Applying the condition j−1gtj = g−1 defining Sp4 (k) to a matrix of the above form, we

find that

G(y) =



α1

α2 β

δ1
γ δ2

 ∈ GL4 (k)

∣∣∣∣∣∣∣∣ α1δ1 = 1 = α2δ2−βγ

 ∼= GL1(k)×SL2 (k).

The Weyl group of SL2 (k) with respect to its diagonal torus is generated by the matrix

σ, and so the Weyl group of G(y) with respect to D is generated by the matrix
1

0 −1

1

1 0

 = t−1wt.

Up to L-conjugacy, the G-conjugates of y lying in l are y and −y = w ·y, and so

L\G(y, l)/G(y) = {1,w}.

2B. ν = −µ. Let z = diag (−µ,−µ, µ, µ), so that y = w · z. Then G(y) = Adw (G(z)),

and G(z) = L as in Case 1A. Since Ad−1
w (U)∩L = V ′, and Ad−1

w (V)∩L = U ′,

we have U(y) = Adw (V ′) and V(y) = Adw (U ′). The argument of Case 1A gives

L\G(y, l)/G(y) = {1,w,wt}.

Case 3. x =
[ α β
µβ α

]
, µ ∈ k non-square, α ∈ k, β ∈ k×.

In this case M2(k)(x) =
{[ α1 β1
µβ1 α1

]
| α1, β1 ∈ k

}
is a quadratic field extension of k,

which we shall denote by k2. There are two subcases to consider.

3A. α 6= 0. Similar arguments to those of case 1A (considering the eigenvalues in k2)

show that G(y) = L(y), while L\G(y, l)/G(y) = {1, s}.

3B. α = 0. Since tr (x) = 0, Lemma A. 1 implies that AdΣ−1 : GL4 (k)(y)→ GL2 (k2) is

an isomorphism. Observing that AdΣ−1 (j) = [ σ−1

σ−1 ], and that Σt = Σ−1, we find that

the isomorphism AdΣ−1 sends G(y) to

AdΣ−1 (G(y)) = {g ∈ GL2 (k2) | g∗g = 1},
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where [
a b

c d

]∗
=

[
σdtσ−1 σbtσ−1

σctσ−1 σatσ−1

]
.

The map a 7→ σatσ−1 is a nontrivial k-algebra automorphism of k2, and so is equal to

the nontrivial element a 7→ a|k| in Gal (k2/k).

Let k denote an algebraic closure of k2. The above computations show that AdΣ−1

restricts to an isomorphism from G(y) to the (unitary) group GU2 (k) of fixed points of

the automorphism

GL2 (k)→ GL2 (k),

[
a b

c d

]
7→

[
d|k| b|k|

c|k| a|k|

]−1
.

The subgroup L(y) corresponds under this isomorphism to the non-split rational

maximal torus of diagonal matrices {diag (a, a−|k|) | a ∈ k×2 } in GU2 (k), while U(y)

and V(y) correspond to the unipotent radicals of rational Borel subgroups of upper-

/ lower-triangular matrices. The Weyl group of GU2 (k) with respect to its diagonal

torus is generated by the matrix [ −1
−1 ] = AdΣ−1 (s).

The argument of case 1A shows that all of the G-conjugates of y lying in L are already

L-conjugate, and so we have L\G(y, l)/G(y) = {1}.

Case 4. x = [µ 1µ ].

We have M2(k)(x) = {
[
α β
α

]
| α,β ∈ k} ∼= k[ε]/(ε2). There are two subcases to

consider.

4A. µ 6= 0. Arguing as in case 1A once again, we find that G(y) = L(y), while

L\G(y, l)/G(y) = {1, s}.

4B. µ = 0. Arguing as in case 3B, we find that the isomorphism

AdΣ−1 : GL4 (k)(y)→ GL2 (k[x])

of Lemma A. 1 restricts to an isomorphism between G(y) and the group Q ⊂ GL2 (k[x])
of fixed points of the involution

GL2 (k[x])→ GL2 (k[x]),
[
a b

c d

]
7→

[
d# b#

c# a#

]−1
where # denotes the k-automorphism x 7→ −x of k[x]. We have furthermore

AdΣ−1 (L(y)) =

{[
a

a−#

]
∈ GL2 (k[x])

∣∣∣∣ a ∈ k[x]×} =: H,

AdΣ−1 (U(y)) =

{[
1 b

1

]
∈ GL2 (k[x])

∣∣∣∣ b ∈ xk[x]} =: X, and

AdΣ−1 (V(y)) =

{[
1

c 1

]
∈ GL2 (k[x])

∣∣∣∣ c ∈ xk[x]} =: Y.

Let S denote the two-element subgroup of G(y) generated by s, and let R denote the

subgroup AdΣ−1 (S) of Q; thus R is the two-element group generated by r = AdΣ−1 (s) =

[ −1
−1 ].
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The subgroups X and Y commute in Q, because x2 = 0. Since H normalises X and Y,

this implies that the product XHY is a subgroup of Q, equal to (X× Y)oH. Explicitly,

XHY =

{[
a b

c a−#

] ∣∣∣∣ a ∈ k[x]×, b, c ∈ xk[x]} ,
i.e. the group of q ∈ Q such that q is diagonal modulo x.

Now, for each q ∈ Q, the reduction of q modulo x is a fixed point of the involution

GL2 (k)→ GL2 (k),

[
a b

c d

]
7→

[
d b

c a

]−1
and so q modulo x is either of the form [a a−1 ] or [ b

b−1 ]. Thus the homomorphism

Q→ {±1}, q 7→ det (q modulo x)

has kernel XHY, and is split by the homomorphism

{±1}→ Q, −1 7→ r.

This gives a decomposition Q = ((X× Y)oH)oR. Since conjugation by r preserves H

and permutes X and Y, we may rewrite this decomposition as Q = (X× Y)o (HoR).

Applying AdΣ gives

G(y) = (U(y)×V(y))o (L(y)oS).

As in Case 3B we have G ·y∩ l = L ·y, and so L\G(y, l)/G(y) = {1}.
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