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Three-dimensional instabilities in tornado-like
vortices with secondary circulations
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Tornadoes and other intense atmospheric vortices are known to occasionally transition
to a flow structure with multiple vortices within their larger circulations. This
phenomenon has long been ascribed to fluid dynamical instability of the inner-core
circulation, and many previous studies have diagnosed low-wavenumber unstable
modes in tornado-like vortices that resemble the observed structures. However,
relatively few of these studies have incorporated the strong vertical motions of the
inner-core circulation into the stability analysis, and no stability analyses have been
performed using a complete, frictionally driven secondary circulation with strong
radial inflow near the surface. Stability analyses are presented using the complete
circulations generated from idealized simulations of tornado-like vortices. Fast-growing
unstable modes are found that are consistent with the asymmetric structures present
in these simulations. Attempts to correlate the structures and locations of these modes
with instability conditions for vortices with axial jets derived by Howard & Gupta
and by Leibovich & Stewartson produce only mixed results. Analyses of perturbation
energy growth show that interactions between eddy fluxes and the radial shear of
the azimuthal wind contribute very little to the growth of the dominant modes.
Rather, the radial shear of the vertical wind and the vertical shear of the vertical
wind (corresponding to deformation in the axial direction) are the primary energy
sources for perturbation growth. Relatively weak axisymmetric instabilities are also
identified that have some similarity to symmetric oscillations that have been observed
in tornadoes.
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1. Introduction
The tornado is a naturally occurring example of a columnar vortex with strong

axial and azimuthal flow. Other phenomena which are conceptually and dynamically
similar to tornadoes are waterspouts (weaker, narrower vortices that occur over the
ocean), dust devils (smaller and weaker vortices generated in dry convective boundary
layers over land), and vortices generated in laboratory experiments and in numerical
simulations. In each case the vortex is first formed by forced convergence of a larger-
scale rotating flow near a lower boundary. Frictional retardation of the swirling flow
adjacent to the lower boundary leads to a stronger, low-level radial inflow which
causes the low-level circulation to contract even further, and as a result the peak
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azimuthal velocities are achieved at small radius at the top of this frictional boundary
layer (Rotunno 1979; Howells, Rotunno & Smith 1988; Fiedler 1993; Lewellen &
Lewellen 2007a). This intensification process is also known as ‘vortex collapse’
(Shtern & Hussain 1999; Lewellen & Lewellen 2007b).

The boundary layer fluid that converges toward the centre axis must turn upward
and in doing so it generates a strong axial (upward) flow along the inside edge of
the annulus of peak azimuthal winds. As a result the tornado is similar to vortices
that have been studied extensively in the context of the vortex breakdown phenomenon
(Hall 1972; Leibovich 1984). Laboratory models of tornadoes can show distinct vortex
breakdown structures (Ward 1972; Church et al. 1979; Church & Snow 1993). In
the atmosphere, the challenges of interpreting fast vortical flow motions by tracking
debris and cloud condensate interfaces have made identifying vortex breakdown more
difficult. Lugt (1989) provides a discussion and review of observations of tornadoes
and waterspouts clearly showing the vortex breakdown structure. However, it is
believed that many tornadoes (especially the largest ones) have a ‘two-celled’ structure
with downward flow along the centre axis that reaches the surface. Such a flow would
not qualify as a vortex breakdown.

Much as vortex breakdown in the laboratory is often dominated by asymmetries, it
is well established from numerous observations that the tornado vortex often ‘breaks
down’ into multiple vortices. These multiple vortices can occur on several scales
compared to the tornado itself. Many tornadoes contain within them smaller-scale,
transient, ‘suction vortices’ (Fujita 1970; Agee et al. 1977) that evidently contain
substantially increased wind speeds relative to the azimuthal-mean wind of the tornado
itself. In addition, the tornado vortex sometimes separates into more pronounced,
longer-lasting multiple vortices that rotate around each other (Pauley & Snow 1988;
Bluestein & Pazmany 2000; Wurman 2002)). In some cases these may become so
distinct as to appear as separate, multiple tornadoes embedded within a broader
circulation. Laboratory models of tornadoes also show multiple vortices (Ward 1972;
Church & Snow 1993) as do numerical simulations (Fiedler 1998; Lewellen, Lewellen
& Xia 2000).

The multiple vortex phenomenon has long been ascribed to dynamical instability of
the primarily axisymmetric flow of the tornado vortex itself. Early work on vortex
stability by Michaelke & Timme (1967) showed that an annulus of elevated vorticity
could be unstable to modes with azimuthal wavenumbers n greater than 2. Rotunno
(1978) showed that a ‘hollow vortex’ (zero circulation surrounded by potential flow,
equivalent to a cylindrical vortex sheet) could also be unstable to lower wavenumbers
(n = 1 and n = 2) if an axial flow, also discontinuous along the inner-core interface,
was added to the basic state. Staley & Gall (1979) performed a numerical stability
analysis of an azimuthal wind profile as a function of radius V(r) based on an
observed tornado and also found rapidly growing modes with wavenumbers of 2
or greater. Gall (1983) added vertical wind W(r) to the analysis, using V(r) and
W(r) obtained from numerical simulations modelled after laboratory experiments that
produced tornado-like circulations with multiple vortices. As with Rotunno (1978),
Gall (1983) found that adding W(r) caused the unstable modes to assume a spiral
structure with the fastest growth occurring for vertical wavelengths that are several
times greater than the horizontal wavelengths. The interpretation of Gall (1983) and
later Gall (1985) and Steffens (1988) was that the multiple vortex phenomenon results
from instability that is primarily due to the radial shear of the azimuthal wind: the
primary effect of the radial shear of the vertical wind is to change the structure of
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Instabilities in tornado-like vortices 63

the modes (i.e. spiral versus two-dimensional) rather than to change their fundamental
dynamics.

A more complete approach was taken by Walko & Gall (1984, hereafter referred to
as WG84). Their basic-state flow was taken from axisymmetric, nonlinear numerical
simulations designed after a laboratory model, and the linearized stability analysis
was performed for the entire, vertically varying circulation with radial flow U(r, z) as
well as V(r, z) and W(r, z). Harmonic variation was presumed only in the azimuthal
direction, so that the unstable modes were also allowed to have arbitrary variation in
the vertical, i.e. u′(r, λ, z, t) = un(r, z) exp{inλ − iωt}, where λ is the azimuth angle
and ω is the (possibly complex) frequency. The unstable modes were identified by
‘growing’ disturbances from random initial conditions evolved forward using linearized
versions of the model equations. As in previous studies, fast-growing unstable modes
were identified with spiral structures that ‘tilt back’ against the primary circulation,
expanding and weakening upward from the surface (excellent illustrations of these
modes can be see in figures 6–8 of WG84). The structure and apparent behaviours
of these modes were consistent with the multiple vortex phenomenon in observed
tornadoes as well as in the contemporary numerical simulations of Rotunno (1984).

However, the numerical simulations used to generate the basic-state vortices of
Gall (1983) and WG84 were highly unrealistic in one important aspect: they used
a ‘free-slip’ lower boundary condition. Beginning with the work of Rotunno (1979)
and then later by Howells et al. (1988) and Fiedler (1993), it has been recognized
that a strongly frictional lower boundary condition (either a no-slip condition or a
bulk drag-law condition with a significant roughness length) is necessary to generate a
realistic tornado-like vortex. Without sufficient surface stress, the radial inflow will be
much weaker and the low-level flow will ‘separate’ from the surface at large radius,
generating a broad vortex with nearly stagnant flow and weak downward recirculation
along and near the centre axis. Modern large-eddy simulations (Lewellen, Lewellen
& Sykes 1997; Lewellen et al. 2000) and observations (Bluestein et al. 2003; Lee &
Wurman 2005), however, support the existence of significant radial inflow at the lowest
levels, although not necessarily all the way to the vortex centre. It suffices to say
that the frictional boundary layer is an essential component of a realistic tornado-like
vortex circulation.

Preliminary work by Nolan & Montgomery (2002a) attempted to address this
limitation of the aforementioned stability studies. For their basic-state vortex they used
time-averaged output from axisymmetric numerical simulations with a no-slip lower
boundary condition using the model of Nolan & Farrell (1999b, hereafter referred
to as NF99b). Nolan & Montgomery (2002a) did find unstable modes with some
similarities to those of WG84 but generally with more complex structures, especially
near the surface where there are large variations of U, V and W in height as well as
radius. While the NF99b basic-state flows were an improvement, they were still not
quite appropriate in the following sense: the time mean of an axisymmetric simulation
that is unstable to asymmetric disturbances will not be the time mean of an equivalent
three-dimensional simulation.

As discussed by Hall & Sardeshmukh (1998), there are advantages and
disadvantages to studying the linearized dynamics about each of these two states:
the temporal mean of a symmetric model and the azimuthal- and temporal mean of a
simulation with eddies. In the former case, the interpretation is very straightforward
and the evolution of any small-amplitude perturbation is accurately depicted by
linearization about the mean state. However, the symmetric temporal mean may be
quite different from the three-dimensional temporal mean (it fact, in may not even be

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

36
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.369


64 D. S. Nolan

close to a realizable azimuthal-mean state), so the modes and dynamics identified in
this analysis may not be relevant to the eddies that actually occur. While linearization
about the azimuthal and temporal mean of a flow with eddies seems more likely
to diagnose asymmetric motions that actually occur, such linearization neglects the
effects of the full eddy field on small-amplitude perturbations themselves. Most studies
presume this effect can be neglected.

In this paper we present fully three-dimensional stability analyses of the azimuthal-
and temporal-mean flows of tornado-like vortices generated from the numerical
simulations of Fiedler (2009). These simulations are fully three-dimensional and
performed with greater resolution and at Reynolds number higher than has been
used before for stability analyses. (To be more specific, if we choose the radius
of maximum winds as the length scale and the peak wind speed as the velocity
scale, then Re = 22 for most of the results of Walko & Gall (1984); for Nolan
& Montgomery (2002a) Re = 222; and this study uses vortices with Re = 125, 345
and 1500.) An additional basic state is also considered which is the temporal mean
of an axisymmetric simulation. Relevant details on the numerical simulations and
the four basic-state vortices are presented in § 2. Section 3 describes the linearized
equations and the numerical methods for extracting the modes. Section 4 shows results
of stability analyses for each vortex and shows the three-dimensional structures of
some of these unstable modes. Section 5 analyses the dynamics of the unstable modes,
their interactions with the basic state, and their mechanisms for perturbation energy
growth. Summary and conclusions are presented in § 6.

2. Basic-state vortices
2.1. Temporal and azimuthal means of three-dimensional simulations

For tornado-like vortices we use three of the vortices produced in the idealized,
three-dimensional numerical simulations of Fiedler (2009, hereafter referred to as F09).
The numerical model used in that study is the same as that described in Fiedler
(1998), which extends to three dimensions the modelling strategy used in Fiedler
(1993) and Fiedler (1994). In this approach, a tornado-like vortex is generated by
imposing a specified vertical forcing function Fz(r, z) at the centre axis of a cylinder
(for axisymmetric flow) or a box (for three-dimensional simulations) that is rotating at
a constant angular velocity Ω . Upward motion around the centre axis forces low-level
convergence that generates a swirling flow in the lower levels of the domain. For
certain ranges of Ω and eddy viscosity ν such a flow will contract into a quasi-steady,
intense vortex that, despite the simplicity of the model, shows structure and behaviours
that are similar to observed tornado wind fields.

The three-dimensional simulations of F09 use a rectangular domain in the range
−2 6 x 6 2,−2 6 y 6 2, 0 6 z 6 1. The vertical forcing is centred at x= 0, y= 0 with
the form

Fz(x, y, z)= 1.262 exp{−10(x2 + y2)− 20 (z− 1/2)2}. (2.1)

The amplitude is chosen so that an undisturbed fluid parcel accelerating upward along
the centre axis would reach a velocity of 1.0. This provides the scale of the peak
velocities of the simulated vortices (the so-called ‘thermodynamic speed limit’; Lilly
1969; Fiedler & Rotunno 1986). All units are non-dimensional. The environmental
rotation Ω is incorporated by adding a Coriolis parameter f = 2Ω to the equations of
motion. F09 uses a stretched grid with much larger grid spacing in the upper parts of
the domain, thereby requiring increased ν for numerical stability. For this reason, ν
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FIGURE 1. Time- and azimuthal-mean flows, V and [U,W], computed from three of the
numerical simulations of tornado-like vortices by Fiedler (2009): (a) the one-celled vortex
(OCV), max V = 1.00,min = −0.64, interval = 0.10, max vector = 1.64; (b) the drowned
vortex jump (DVJ), max V = 0.92,min = −0.10, interval = 0.10, max vector = 0.64; (c)
the two-celled vortex (TCV), max V = 1.03,min = −0.04, interval = 0.10, max vector =
0.67; (d) the axisymmetric drowned vortex jump (AXI-DVJ), max V = 0.83,min = −0.11,
interval = 0.10, max vector = 0.55. Meridional flow vectors are plotted at every other grid
point from the mean-flow data set, which is equally spaced in the radial direction and
stretched in the vertical, except for AXI-DVJ, where the vectors are plotted every sixth
point on a grid that is equally spaced in both directions. Only the part of the domain from
r = 0 to r = 1 is shown.

varies with height, ranging from ν = 0.001 in the upper part of the domain to values
such as ν = 0.0004 or ν = 0.0001 in the lower part.

As found by NF99b and Nolan (2005b), the structure of the tornado-like vortex
is strongly controlled by a dimensionless parameter often called the vortex Reynolds
number ReV = ΩL2/ν, where L is a horizontal length scale of the vertical forcing
and ν is the kinematic viscosity; this is equivalent to the rotational Reynolds
number ΩR2/ν that controls the flow in rotating-lid experiments of vortex breakdown
(Escudier 1984; Serre & Bontoux 2002). For relatively low values of ReV , the
simulated vortex has a steady, columnar appearance near the lower surface that
transitions through a vortex breakdown into an unsteady, asymmetric circulation. Such
a configuration, where a substantial volume of low-level inflow penetrates toward
r = 0 and there is a pronounced axial updraft in the low-level core, is often called
a ‘low-swirl vortex’ or a ‘one-celled vortex’ (hereafter, we use the designation OCV).
The simulation of F09 with f = 0.05 and ν = 0.0004 at low levels generates an
OCV. Averaging the output of this simulation temporally and azimuthally around the
centre axis produces the vortex shown in figure 1(a). Below z = 0.2, the flow is
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very steady and the vortex remains nearly fixed at the centre of the computational
domain. Above z = 0.2, the vortex oscillates with an n = 1 asymmetry that spirals
backward against the flow with height (turning clockwise upward) as shown in figure
5(b) of F09.

As either f is increased or ν is decreased, the boundary layer becomes shallower
causing the mass flux of the central updraft to decrease. As a result, the vortex
breakdown descends, bringing its central downdraft and localized recirculation towards
the surface. The vortex configuration that has this central downdraft just above the
vortex surface has been called a ‘drowned vortex jump’ (hereafter referred to as
DVJ: Maxworthy 1973; Snow 1982). F09 generates such a flow with f = 0.20 and
ν = 0.0004 and its temporal–azimuthal mean is shown in figure 1(b). This vortex also
exhibits n = 1 spirals that, unlike for the OCV, reach to the surface (see figure 5e
of F09). As a result of these asymmetries, the DVJ was observed to wander away
from the centre axis. Similar wandering was observed in a laboratory vortex model
by Zhang & Sarkar (2012). For the DVJ case, the temporal–azimuthal mean was
computed relative to the centre of the displaced circulation.

For the slightly smaller value of f = 0.15 and the significantly smaller value of
ν = 0.0001, the simulations of F09 produce a ‘high swirl’ or ‘two-celled vortex’
(hereafter, TCV) with the mean flow shown in figure 1(c). Here, the central downdraft
has penetrated very close to the surface and there is a very large overshoot of the
radial inflow in the boundary layer followed by a large rebound out to a larger
updraft radius. The designation of a vortex as ‘two-celled’ is usually meant to imply
that the radial inflow layer fully separates at non-zero radius and there is downward
recirculation all the way to the surface, and perhaps even low-level outflow at small
radius. These numerical simulations and others with no-slip lower boundary conditions
(e.g. Fiedler 1998; Nolan 2005b) produce transient flow structures with full separation
but they are not sustained in the time mean. Simulations with a turbulent ‘bulk
drag law’ or other ‘semi-slip’ lower boundary conditions such as those of Lewellen
et al. (2000) appear to come closer to separation of the boundary layer and a fully
two-celled structure, but in the time mean there still appears to be some radial
inflow reaching the centre axis (see figure 1e of Lewellen et al. 2000). In any
case, while low-reflectivity regions observed in tornadoes by portable Doppler radar
are good indications of TCV structure above the surface (the so-called ‘weak echo
hole’: Wurman, Straka & Rasmussen 1996; Bluestein & Pazmany 2000), whether or
not radial inflow in the lowest 0–50 m consistently penetrates to the centre axis or
separates from the surface in real tornadoes remains unknown.

More to the point, the dynamics of the vortex we designate here as the TCV are
quite different from the OCV and DVJ. For the OCV, there is an axial jet extending
from the surface to z = 0.16 with peak W = 1.6; for the DVJ, this extends to z = 0.1
with a peak W = 0.32; while for the TCV it extends only to z = 0.035 with peak
W = 0.05. More importantly, the TCV does indeed break down into multiple vortices
that attach to the surface, as shown in figure 4(e) of F09.

2.2. Temporal mean of a symmetric simulation
We also consider the temporal-mean state of a purely axisymmetric simulation using
the domain and parameters of the DVJ. This simulation was performed using the
axisymmetric incompressible flow model of NF99b, modified to allow for vertically
varying viscosity. Rather than the stretched grids of Fiedler (2009), this model
uses regular grid spacing with 256 points in each direction; the grid spacings are
1r = 0.0078 and 1z = 0.0039. These spacings are about twice as large as the
minimum grid spacings of Fiedler (2009), but those smaller grid spacings are only
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necessary to resolve the boundary layer of the TCV. The time-mean flow generated
by this simulation, hereafter referred to as AXI-DVJ, is shown in figure 1(d). The
low-level structure is very similar to that of DVJ, but peak wind speed is slightly less,
the vortex is slightly larger, and the flow field is slightly more peaked (in both V and
W) across the updraft axis. Inside the updraft region, the flow is much weaker. Above
the vortex core, the ‘outflow’ turns outward toward larger radius at a much sharper
angle for AXI-DVJ than for all of the other vortices.

3. Linear stability analysis
The numerical method for linearized stability analysis is nearly identical to that used

in Nolan (2005a), so we will only summarize the procedure here. The incompressible
equations of motion in cylindrical coordinates are linearized about basic-state flows
U(r, z), V(r, z) and W(r, z). (Variables with capital letters refer to the basic-state
wind field about which the equations are linearized.) This produces equations for the
perturbation velocity fields u′(r, λ, z, t), v′(r, λ, z, t),w′(r, λ, z, t) and the perturbation
pressure p′(r, λ, z, t), where λ is the angle around the azimuth. Each of the four
perturbation variables are then decomposed into their contributions from a Fourier
series for each azimuthal wavenumber n, e.g.

u′(r, λ, z, t)= un(r, z, t)einλ. (3.1)

For each wavenumber n, including n = 0 (corresponding to axisymmetric
perturbations), this generates three momentum equations for un, vn and wn, and an
incompressibility condition; the momentum equations also contain the perturbation
pressure field pn. For n > 1, vn and pn can be eliminated using the incompressibility
condition and the two equations that result are for un and wn. For n = 0, vn does not
appear in the incompressibility equation, so it cannot be eliminated. Instead, the u0 and
w0 equations are cross-differentiated and then combined to eliminate the symmetric
perturbation pressure p0. Using the symmetric incompressibility equation, the resulting
equation can be expressed as an equation for the axisymmetric streamfunction ψ0.

For this study, the equations of Nolan (2005a) were modified to incorporate the
effect of the background rotation rate via the Coriolis parameter f = 2Ω , where
here Ω is the non-dimensional background rotation rate that varies among the F09
numerical simulations. This turns the angular velocity term 2Ω = 2V/r in the Nolan
(2005a) equations into 2V/r + f . The diffusion terms were extended to allow for
spatially varying ν in the diffusion operators, to match the vertically varying ν of F09.

The linearized equations are solved on an Arakawa-C-type staggered grid that covers
the (r, z) domain defined by 0 6 r 6 2 and 0 6 z 6 1. For computational efficiency
(and necessity), the grid-stretching algorithm described in Appendix B of Nolan
& Montgomery (2002b) is used. This algorithm generates a smoothly varying grid
spacing that follows the shape of the hyperbolic tangent function between the regions
of small and large grid spacing. The grids are defined by the ratios (αr and αz) of
the smallest to largest grid spacing, and the location of transition region between them
(σr and σz). The staggered, stretched grids and their parameter values are shown in
figure 2. The same grid is used for the OCV and the DVJ, while for the TCV the
parameters were adjusted to bring even more grid points closer to the surface. The
grids used for the actual computations have 81× 81 points, four times as many points
in each direction as the grids shown in figure 2. The smallest radial grid spacing for
all cases is 1r = 0.01; for the OCV and DVJ, the smallest 1z = 0.005, while for the
TCV the smallest 1z= 0.0027.
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FIGURE 2. The domain and stretched grid configurations for the analyses of the unstable
modes, for (a) OCV and DVJ with stretching parameters αr = 0.2, σr = 0.5, αz = 0.5 and
σz = 0.25; and (b) for the TCV with αr = 0.2, σr = 0.5, αz = 0.1, σz = 0.25. Contours of the
mean azimuthal flow are also shown for the DVJ and TCV cases. (+) marks the locations of
u velocities, (×) marks the locations of w, (◦) marks the locations of v and p, and (4) marks
the locations of h and y. These figures have 41 points in the radial and vertical directions on
the ‘master grid’, which contains all four subgrids, each of which have half the points of the
master grid. The actual grids used for calculations in this paper had four times as many points
in both directions.

Rather than growing unstable modes from time evolution of the linearized equations,
these stability analyses are performed by constructing a matrix operator representation
of a finite-difference approximation to the linearized dynamics. Unstable modes
are selected from the complete set of eigenvalues and eigenvectors of the time
evolution operator as computed by standard methods. (Matlab 7.11 was used for
all calculations.) While computationally demanding, this has the advantage that it
identifies all the modes of a particular configuration, e.g. the ‘second most unstable’
and ‘third most unstable’ modes can be examined.

The boundary conditions used in the linearized stability calculations are as in F09:
the lower boundary condition is impermeable for wn and no-slip for un, vn, while
the upper and outer boundaries are impermeable for normal velocities and free-slip
for parallel velocities. The implementation of free-slip, no-slip, and r = 0 boundary
conditions is discussed in Appendix B of Nolan & Grasso (2003) and § 3.2 of Nolan
(2005a).

4. Results
Figure 3 shows the growth rates of the most unstable modes (MUMs) for n = 0

to n = 8 for each of the four vortices. First, we consider the stability properties and
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FIGURE 3. The growth rates of the most unstable modes (MUMs) for each azimuthal
wavenumber, in units of non-dimensional inverse time, for the one-celled vortex (OCV), the
drowned vortex jump (DVJ), the two-celled vortex (TCV), and an axisymmetric simulation of
the drowned vortex jump (AXI-DVJ).

MUMs for the three mean states from the three-dimensional model. The AXI-DVJ
case will be discussed in the final subsection.

4.1. The one-celled vortex (OCV)
For the OCV, there is a weak instability for n= 0, and then much greater growth rates
for n= 1, 2 and 3. The growth rates are in units of inverse non-dimensional time, and
the inverses of the growth rates are e-folding times. For n= 1, 2 and 3, these e-folding
times are 1.48, 1.78 and 1.88, respectively. Given that the peak non-dimensional wind
speed of the OCV is ∼1.0 at a radius of maximum azimuthal winds (hereafter, RMW)
of 0.05 (see figure 1a), the vortex circulation time scale τcirc = (2π×0.05)/1.0= 0.318.
Thus, the e-folding times of these modes correspond to ∼5 circulation times in the
vortex core.

To visualize the structure of the MUM, figure 4(a,b) depicts radius–height plots of
the real and the imaginary parts of the perturbation velocities for n = 1, shown as
contours of vn and vectors [un,wn] of the meridional circulation. The stability analysis
assumes the following harmonic form:

vn(r, λ, z, t)= vn(r, z) exp{st + inλ} = vn(r, z) exp{srt} exp{inλ+ isit} (4.1)

where sr and si are the real and imaginary parts of the eigenvalue s. All the
asymmetric modes shown here and below have negative si and thus turn in the
counterclockwise (cyclonic) direction with the basic-state flow. (This is opposite to the
usual convention which uses exp{inλ + iωt} and counterclockwise turning is indicated
by a positive real part of ω.) At each angle λ the physical solution is presumed to be
the real part of (4.1); for λ = 0 (i.e. along the x-axis in the positive direction) this is
equal to

vn(r, λ, z, t)= exp(srt)[Re{vn} cos(sit)− Im{vn} sin(sit)]. (4.2)
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FIGURE 4. Structure of the MUM for n = 1 in the OCV: (a) r–z cross-section of the real
part, with contours of azimuthal velocity and wind vectors of radial and vertical velocity;
(b) r–z cross-section of the imaginary part; (c) horizontal cross-section at z = 0.25, with
contours of w1 and vectors of horizontal flow; (d) horizontal cross-section at z= 0.5. Extreme
values of the contoured fields, the amplitude of the largest vector, and the contour interval
are: (a) max = 1,min = −0.43, int = 0.1,maxvec = 0.56; (b) max = 0.49,min = −0.32,
int = 0.1,maxvec = 1; (c) max = 0.35,min = −0.35, int = 0.10,maxvec = 0.33; (d) max =
0.59,min=−0.59, int= 0.10,maxvec= 0.94.

Thus for negative si, vn(r, λ, z, t) along λ = 0 evolves in time from Re{vn} →
Im{vn} → −Re{vn} → −Im{vn}. In other words, the imaginary part corresponds to
the structure that is 90◦ in phase ‘upstream’ of the real part (or, 90◦ into the ‘future’),
so as the mode rotates cyclonically, it is the phase that will appear next. Each mode
has been normalized so that the maximum of the absolute value of vn is 1, and is
rotated so that this value occurs for azimuth angle λ= 0.

For n = 1 it is apparent that the MUM exists entirely above the low-level vortex
core. Although the time- and azimuthal-mean flow is unstable in the global sense,
these instabilities do not grow near the surface, such that the low-level flow remains
essentially laminar. Fiedler & Rotunno (1986) and Fiedler (1989) have argued that it
is the strong vertical advection by the axial jet coming up out of the low-level vortex
that prevents downstream influence. An additional stabilizing factor may be the strong
radial inflow itself. Nolan & Farrell (1999a) and Nolan (2001) found that radial inflow
damps the growth of asymmetric modes on an unstable vortex.
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FIGURE 5. Three-dimensional renderings of surfaces of constant perturbation pressure
±0.075 for the MUMs in the OCV: (a) n= 1; (b) n= 2.

Figure 4(a) also shows that the n = 1 mode has large perturbation values at the
r = 0 axis. This is a special property of n = 1 asymmetries, in that they can (and
usually do) exhibit flow across the centre axis, while for all other modes (n = 0 and
n > 1) perturbation velocities go to zero at the centre axis. For this reason, n = 1
modes are almost always associated with some degree of displacement of the vortex
centre from its original axis.

The flow across the centre axis is better illustrated by horizontal cross-sections, as
seen in figure 4(c,d), which shows contours of wn and horizontal flow vectors [vx, vy],
where vx and vy are the flow speeds in Cartesian coordinates. The cross-sections
are shown at z = 0.25 and z = 0.5. At the lower level, the asymmetric structure
of the mode is typical for a quasi-two-dimensional barotropic instability, with two
asymmetric waves at different radii, phase shifted so that each wave is favourably
configured to amplify the other wave (Staley & Gall 1979; Schubert et al. 1999; Nolan
& Montgomery 2002b; Terwey & Montgomery 2002). At the upper level, the mode
exhibits a very different structure. While there is strong flow across the axis, the
vertical velocities consist of a single wave that spirals outward.

Returning to figure 4(a), it can be seen that there are three overturning circulations
in [un,wn] extending upward and outward along the outflow of the basic-state vortex.
In fact, these overturnings along the upper-level outflow are produced by a single
spiral vortex that turns clockwise with height. The structure of the mode can be
seen better with a three-dimensional visualization of a surface of constant perturbation
pressure. Swirling motion around an axis of strong vorticity generates negative or
positive dynamic pressures, depending whether the sign of the vorticity perturbation is
the same or opposite to the basic-state flow, respectively (see § 8.4.5 of Markowski &
Richardson 2010). For the MUM for n = 1, figure 5(a) shows surfaces of perturbation
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FIGURE 6. Structure of the MUM for n = 1 in the DVJ vortex: (a) r–z cross-section
of the real part, with contours of azimuthal velocity and wind vectors of radial and
vertical velocity; (b) r–z cross-section of the imaginary part; (c) horizontal cross-section at
z = 0.10, with contours of w1 and vectors of horizontal flow; (d) horizontal cross-section at
z= 0.27. (a) max= 1,min=−0.76, int= 0.1,maxvec= 1.4; (b) max= 0.75,min=−0.83,
int = 0.1,maxvec = 1.1; (c) max = 1.30,min = −1.30, int = 0.10,maxvec = 0.85; (d)
max= 0.68,min=−0.68, int= 0.10,maxvec= 0.64.

pressure equal to 0.075 and −0.075 non-dimensional units. The spiral structure of
the mode and its clockwise turning with height can be seen. The corresponding plot
for the MUM for n = 2 is shown in figure 5(b). This mode is more compact and it
does not extend as far upward as the n = 1 mode, but like the n = 1 mode it has no
signature below z= 0.2.

As seen in figure 3, the stability analysis also finds that there is an unstable
symmetric mode. The symmetric modes for each of the three vortices will be
discussed together in § 4.5.

4.2. The drowned vortex jump (DVJ)
As shown in figure 3, the MUM occurs for n= 1 in the DVJ, but it is nearly matched
in growth rate by the most unstable node for n = 2. The e-folding times of the n = 1
and n = 2 MUMs are 2.06 and 2.08, respectively; τcirc = 1.06 for this vortex. The real
and imaginary parts of the n= 1 mode, normalized and rotated as above, are shown in
figure 6. Also shown are horizontal cross-sections of the mode at z= 0.1 and z= 0.27.
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FIGURE 7. Structure of the MUM for n = 2 in the DVJ vortex: (a) r–z cross-section
of the real part, with contours of azimuthal velocity and wind vectors of radial and
vertical velocity; (b) r–z cross-section of the imaginary part; (c) horizontal cross-section at
z = 0.25, with contours of w2 and vectors of horizontal flow; (d) horizontal cross-section at
z= 0.50. (a) max= 1,min=−0.53, int= 0.1,maxvec= 1.1; (b) max= 0.53,min=−0.40,
int = 0.1,maxvec = 1; (c) max = 1.14,min = −1.14, int = 0.10,maxvec = 1.14; (d) max =
0.95,min=−0.95, int= 0.10,maxvec= 0.57.

At the lower level, the mode has strong flow across the centre axis, indicating that the
mode would excite a growing displacement of the vortex core. The mode has a spiral
structure with upward and outward spiral arms of meridional overturning both at the
lower and upper levels.

As shown in figure 7, the n= 2 mode is quite different. The mode exists well above
the low-level vortex core, indicating that n = 2 asymmetries would only appear above
the boundary layer. At z = 0.25, the mode has the structure of a two-dimensional
instability with two phase-shifted asymmetric waves at different radii. At z = 0.5 and
above the mode transitions to spiral overturnings.

These differences in the n = 1 and n = 2 modes for the DVJ vortex are further
illustrated in three-dimensional isosurfaces of perturbation pressure (figure 8). In
each case, the value of perturbation pressure used for the surfaces has been chosen
subjectively to best illustrate the structures. For n= 1, a ‘low and tight’ spiral structure
is revealed. For n= 2, the mode has the more two-dimensional, barotropic structure at
low levels (although still tilting back against the shear). Above z = 0.35, it transitions
to spiral overturnings, as indicated in figure 7(d).
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FIGURE 8. Three-dimensional renderings of surfaces of constant perturbation pressure for
the MUMs in the DVJ vortex: (a) n= 1, ±0.125 isosurfaces; (b) n= 2, ±0.075 isosurfaces.

4.3. The two-celled vortex (TCV)
The MUMs for the TCV consist entirely of ‘low and tight’ spirals that exist just
above the low-level wind speed maximum at r = 0.14, z = 0.04 (see figure 1c).
The vertical and horizontal structures of the n = 2 and n = 3 MUMs are shown in
figure 9. The peak vertical velocities (1.32, and 1.59, respectively) are significantly
larger than the peak azimuthal velocities (normalized to 1 for both modes), indicating
that the spiral overturning motions dominate the two-dimensional asymmetric motions.
It is noteworthy that the locations of these modes match closely with the region of
maximum velocity variance in the TCV simulations of Lewellen et al. (2000, see their
figure 1a), even though those simulations had a pronounced n= 7 asymmetry.

These structures are also shown as isosurfaces of perturbation pressure in figure 10.
For n = 3, the low-level spiral appears to be attached to more upright structures that
emanate upward at a smaller angle from the vertical. These correspond to the upward
extension of vn as seen near r = 0.175, z= 0.25 in figure 9(a).

Looking at the structure of the basic-state wind field for the TCV (figure 1c), there
are two distinct maxima of V . The first is associated with the low-level jet, with
strong radial inflow and outflow immediately below and above it, respectively. The
second is the elevated wind maximum around r = 0.25, z = 0.3, with a strong updraft
on its radially inward side. Such dual maxima of the azimuthal wind field were
recently inferred in observational analyses by Wakimoto, Atkins & Wurman (2011).
The upward extension of the n = 3 MUM suggests that it is trying to exploit the
potential for energy extraction from this flow region. As it turns out, the ‘second
MUM’ for n = 3 primarily taps into the instability of this region. This mode, which
has a growth rate of 0.31 (∼1/6th of the MUM), is shown in figure 11. The existence
of this mode suggests that the TCV is susceptible to two distinct sets of instabilities.
The first and most unstable set of modes are the ‘low and tight’ spirals that live on
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FIGURE 9. Structures of the n = 2 and n = 3 MUMs in the two-celled vortex: (a) r–z
cross-section of the real parts of u and [v,w] for n = 2 and (b) for n = 3; (c) horizontal
cross-section of w and [u, v] at z = 0.10 for n = 2 and (d) for n = 3. (a) max = 1,min =
−0.86, int = 0.1,maxvec = 1.7; (b) max = 1,min = −0.79, int = 0.1,maxvec = 1.7; (c)
max = 1.32,min = −1.32, int = 0.10,maxvec = 1.05; (d) max = 1.59,min = −1.59, int =
0.10,maxvec= 1.13.

the low-level wind maximum, as exemplified by figure 10(a). A second set of less
unstable modes may appear further above in the secondary, elevated wind maximum
and its associated axial jet. Like some of the modes shown previously, these modes are
a mix of quasi-two-dimensional and spiral structures.

4.4. Symmetric modes
We first examine the n = 0 MUM for the OCV. The eigenvalues and eigenvectors
for this mode also have both real and imaginary parts. When the eigenvalues and
eigenvectors for n = 0 have imaginary parts, they are always paired with a conjugate
eigenvalue and eigenvector. When the two conjugate modes are summed together, the
imaginary parts of the two solutions exactly cancel, ensuring that the perturbations
are entirely real, with the same time evolution as (4.2). If we choose the symmetric
mode with si < 0, the time evolution of the symmetric perturbations will also evolve as
Re{vn} → Im{vn} →−Re{vn} →−Im{vn}.

Figure 12 shows the real and imaginary parts of the n = 0 MUM with si < 0.
The real part shows a symmetric overturning with radial inflow near the centre axis
between z = 0.1 and z = 0.2, with compensating radial outflow above. Accompanying
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FIGURE 10. Three-dimensional renderings of surfaces of constant perturbation pressure for
MUMs in the two-celled vortex: (a) for n = 2, perturbation pressure = ±0.05; (b) for n = 3,
perturbation pressure =±0.02, at a different viewing angle.
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FIGURE 11. Vertical structure of the second-MUM for n= 3 in the two-celled vortex: (a) r–z
cross-section of the real parts of v3 and [u3,w3] (max= 1,min=−0.53, int= 0.1,maxvec=
0.77); (b) isosurfaces of constant perturbation pressure =±0.0015.

the radial inflow and outflow is a couplet of intensification and weakening of the
azimuthal wind below and above z = 0.2, respectively. Comparing this structure to the
basic-state flow (figure 1a), it appears that this phase of the mode corresponds to an
intensification and upward expansion of the peak azimuthal wind in the vortex core,
while at the same time the circulation immediately above is weakened. Interestingly,
the meridional flow vectors of the mode extend the full length of the outflow,
suggesting that this phase of the oscillation corresponds to an intensification of the
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FIGURE 12. Real (a) and imaginary (b) parts of the MUM for symmetric (n = 0) motions
in the OCV, v0 and [u0,w0]. (a) max = 0.68,min = −1, int = 0.1,maxvec = 0.85; (b)
max= 0.068,min=−0.12, int= 0.1,maxvec= 0.23.

entire inner-core circulation. After showing this phase, the mode would then evolve
to the imaginary part shown in figure 12(b). This phase contains an overturning that
is in the reverse direction to the previous phase, but also shifted slightly upward.
There is virtually no perturbation v0, with the previous anomalies apparently having
been cancelled out due to advection by the reversing circulation. The next phase
would be the opposite of the real part shown in figure 12(a), which would indicate a
lowering of the inner-core vortex and a weakening of the overall circulation, followed
by a transition to the amplifying phase and a positive circulation leading again to
amplification of the inner-core vortex.

The growth rate is much slower than for the asymmetric modes, with an e-folding
time of 25.5 or ∼80τcirc, so it would probably equilibrate at a fairly low amplitude and
it would not play a significant role in the nonlinear evolution of the vortex. However,
its peak amplitude occurs around z= 0.15, which is well below the peak amplitude of
the n= 1 and n= 2 modes. We would expect this mode to reveal itself as a symmetric
oscillation of the depth and intensity of the low-level, inner-core vortex below the
asymmetric spiral modes shown in figure 5. The frequency of this oscillation would be
2π/si = 11.8 non-dimensional time units, corresponding to ∼37τcirc.

Symmetric oscillations of tornado wind fields have in fact been observed. Bluestein
et al. (2003) show the time evolution of the azimuthal-mean winds of a tornado
observed by portable Doppler radar. The peak winds were observed to increase
and decrease on a time period of 1 to 2 min, and these variations were correlated
with decreases and increases (respectively) of the RMW. Using their observed peak
azimuthal-mean wind speeds of 25 m s−1 and RMW of 200 m the fastest τcirc in that
tornado was approximately 50 s. Therefore, the oscillations occur on the order of
1–2τcirc, which is clearly much faster than the oscillation frequencies computed above.

Tanamachi et al. (2007) also observed oscillations in the size of the low-reflectivity
core of a tornado that can be taken as an indicator of changes in the size of the
inner core. The periods of these oscillations ranged between 1 and 2 min. The peak
azimuthal-mean wind also showed oscillations with a time scale of 1 to 2 min, and
at some times (but not all) the wind maxima were correlated with size minima. This
tornado was smaller (RMW ∼ 60 m) and stronger (V ∼ 40 m s−1) so its τcirc was
approximately only 9 s. In this case the period of the oscillations corresponds to
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FIGURE 13. The MUM for symmetric (n= 0) motions v0, [u0,w0] in the DVJ vortex.
max= 0.6,min=−1, int= 0.1,maxvec= 1.

7–14τcirc, still rather far from the oscillation time scale for the n = 0 MUM described
above.

However, the OCV supports additional n = 0 modes that oscillate with higher
frequencies. The third most unstable mode has an e-folding time that corresponds
to 102τcirc and an oscillation period of 26τcirc; the fourth most unstable mode has an
e-folding time of 320τcirc and an oscillation period of 21τcirc. The structures of these
modes are nearly identical to the MUM shown in figure 12. All of the symmetric
modes, including the MUM, grow very slowly and thus are effectively neutral modes.
In this case the mode that dominates may instead be the mode with a frequency
that matches best to external forcings. Also, the faster modes would be more easily
observed since their time scales would be distinct from the evolution of the tornado
vortex itself which can change on times scales of a few minutes or less.

Figure 13 shows the structure of the n = 0 MUM for the DVJ. The e-folding
time of this mode is 34.2 and τcirc = 1.06 for the DVJ, so again the growth rate
is fairly slow. Unlike for the OCV, both the eigenvalue and the eigenvector have
only real parts. Thus, the interpretation of the n = 0 MUM for the OCV, where the
real and imaginary parts represent phases of an undulation, does not apply. Rather,
the result suggests that the basic-state flow of the DVJ vortex (figure 1b) would
develop a growing symmetric overturning combined with the couplet of decreasing and
increasing azimuthal velocities that are shown in figure 13.

How can we physically interpret this mode? It tells us that the basic state, which is
a time and azimuthal mean of an unsteady simulation, would not be a stable solution
for an equivalent purely axisymmetric numerical simulation. Rather, it would evolve
toward something that is the sum of the basic state plus the flow structure of the
mode (multiplied by some unknown amplitude). The difference between the desired
steady state of the purely symmetric dynamics and the actual basic state is due to the
accumulated effects of the linear and nonlinear waves and eddies. This will be shown
explicitly in a later section.

The TCV supports unstable modes of both the stationary and oscillating types.
The MUM for n = 0 has eigenvalue s = 0.0316, corresponding to an e-folding time
of ∼34τcirc (where τcirc = 0.90 for the TCV). The structure of this mode (figure 14a)
suggests that purely axisymmetric dynamics would favour a wider and more intense
circulation in the low-level jet, and a smaller and more intense circulation aloft. The
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FIGURE 14. Real parts of the structures of the first (a) and eighth (b) MUMs for the
n = 0 in the TCV, for v0 and [u0,w0]. (a) max = 0.75,min = −1, int = 0.1,maxvec = 1;
(b) max= 1,min=−0.71, int= 0.1,maxvec= 3.2.

second MUM (not shown) is a complex pair with an e-folding time of 56τcirc and
an oscillation period of 53τcirc. As for the OCV, weaker n = 0 instabilities exist with
much faster time scales. The eighth MUM has an e-folding time of ∼1900τcirc (i.e.
nearly zero growth rate), but an oscillation frequency of 20τcirc. The real part of this
mode is shown in figure 14(b), indicating that the oscillation would take the form
of a contraction and expansion of the wind field above the boundary layer, with
corresponding variations in the intensity of the secondary circulation. This mode does
have some similarity with the oscillation observed by Tanamachi et al. (2007).

4.5. Comparing to the simulations
As noted above, the nonlinear simulations of F09 exhibit behaviours that are consistent
with the results of our stability analyses: (i) the OCV and DVJ primarily show
n = 1 asymmetric motions; (ii) the OCV is primarily laminar and axisymmetric at
the surface, whereas the n = 1 asymmetries reach the surface in the DVJ vortex; and
(iii) the TCV breaks down into two smaller vortices that spiral at large angles relative
to the axis.

It is natural to wonder whether asymmetric structures similar to the unstable modes
presented above actually appear in the simulations. For this purpose, the azimuthal-
mean fields of figure 1 were interpolated back to Cartesian grids and then subtracted
from three-dimensional model output to generate perturbation wind and pressure fields.
As above, we find that perturbation pressure is the best field for viewing the structures
of the asymmetries. Figure 15 shows such fields from arbitrarily selected times from
the OCV, DVJ and TCV simulations. In each case, the viewing angle has been set
to be the same as in the corresponding previous illustrations of the MUMs. Two
plots are shown for the TCV, each having been chosen for their similarities with
the renderings in figure 10(a,b), which emphasize the low-level and the mid-level
structures, respectively. While the output from the nonlinear simulations is noisy and
turbulent, there are clearly similarities with the linear modes.

4.6. The axisymmetric drowned vortex jump (AXI-DVJ)
While the stability curve for AXI-DVJ (see figure 3) is similar to that of DVJ, there
are some significant differences in its stability and its modes. The MUM for n = 1 is
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FIGURE 15. Isosurfaces of perturbation pressure from the nonlinear simulations of Fiedler
(2009): (a) from the OCV simulation; (b) from the DVJ simulation; (c) from the TCV
simulation; (d) from the TCV simulation, for a smaller pressure value and from a different
viewing angle. Data for these images were only available from z = 0 to z = 0.5. (a–c)
Perturbation pressure =±0.08, (d) perturbation pressure =±0.05.

less unstable so that n = 2 has the fastest growing MUM, and n = 3 and n = 4 are
slightly more unstable. Figure 16 shows the real parts of the n = 1 and n = 2 MUMs.
Although slightly elevated and at larger radius, the n = 2 MUM is similar in both
vertical and horizontal (not shown) structure to its counterpart for DVJ (see figure 7).
For n = 1, however, the MUM is very different from DVJ (see figure 6): it sits well
above the low-level core, and its structure is quite similar to n = 2. This n = 1 mode
does not generate a displacement of the low-level centre, and it appears that the mean
state of AXI-DVJ is supercritical to all asymmetric modes. This does not necessarily
imply that if ‘released’ into three-dimensional motions that AXI-DVJ would remain
laminar and symmetric at low levels. Most likely, n = 2 eddies aloft would modify
the flow to be more susceptible to low-level waves, and asymmetries would propagate
downward.

The symmetric modes represent realizable motions of AXI-DVJ. The n= 0 MUM is
not unstable, having a very slightly negative growth rate of −0.0033 and a decay time
scale corresponding to nearly 300τcirc, indicating that the mode is essentially neutral.
This suggests that the oscillation indicated by the real and imaginary parts of the n= 0
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FIGURE 16. MUMs for AXI-DVJ: (a) real part of the MUM for n = 1, v1 and [u1,w1];
(b) real part of the MUM for n = 2, v2 and [u2,w2]; (c) real part of the MUM for
n = 0, v0 and [u0,w0]; (d) imaginary part of the MUM for n = 0. (a) max = 0.87,min =
−0.92, int = 0.1,maxvec = 1.7; (b) max = 0.87,min = −0.90, int = 0.1,maxvec = 1.3;
(c) max = 1,min = −0.80, int = 0.1,maxvec = 1.2; (d) max = 0.5,min = −0.82, int =
0.1,maxvec= 1.3.

MUM (see figure 16) would persist for long times, perhaps after being excited
by small perturbations swept into the vortex or other nonlinear interactions. NF99b
discussed symmetric waves propagating downward along the updraft for a very similar
vortex; similar waves are present for the AXI-DVJ simulation (not shown). While the
attempt of NF99b to reproduce these waves with a linear stability analysis was not
successful, the present analysis appears to be: if we examine the evolution of the
symmetric oscillations from Re{v0} → Im{v0} → −Re{v0} → −Im{v0}, we can follow
the propagation of a negative v0 anomaly downward, from r = 0.55, z = 0.75, to
r = 0.35, z = 0.62, to r = 0.25, z = 0.55, to r = 0.2, z = 0.38, and perhaps continuing
into the lowest levels of the vortex.

5. Analysis of the instabilities
5.1. Isolating the dynamics in vertically homogeneous vortices

Of interest is the extent to which the unstable modes of a tornado-like vortex are
simply modified forms of the essentially two-dimensional instabilities identified in
earlier studies, or whether the horizontal shears of the vertical and radial winds are
fundamental to their existence. In the next subsection, the energetics of the modes will
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be computed explicitly. However, a more intuitive way to understand the dynamics
of these instabilities is to simplify the basic states into flows that do not vary with
height. We take radial sections of V(r, z) and W(r, z) selected altitudes and construct
vertically homogeneous vortices with the same velocity profiles. For this exercise, the
radial velocities are neglected.

The most appropriate way to solve for unstable modes on a vertically homogeneous
vortex is to re-cast the linearized equations so that the perturbations are presumed
to have harmonic variations in the vertical as well as azimuthal directions (e.g.
Howard & Gupta 1962; Gall 1983; Leibovich & Stewartson 1983). However, to take
advantage of the numerical framework already in place, an alternative approach is
to change the vertical boundary conditions so that the perturbations are periodic in
the vertical direction. This has some disadvantages: first, the computations are much
more demanding than those which would be based on state vectors that are a function
of radius only (i.e. un(r)einλ+ikz, where k is a vertical wavenumber); and second, the
resulting modes must have vertical wavelengths that correspond to integer vertical
wavenumbers of the domain size. To explore the dependence on vertical wavenumber
it is necessary to change the domain size and repeat the computations. There are
also advantages: first, it is not necessary to develop a new equation set and new
discretization; and second, the instability analysis will immediately identify the vertical
wavelength that is most unstable (subject to the integer wavenumber constraint). To
identify the most unstable vertical wavenumber we do not have to perform stability
calculations for each possible value of k.

We focus on the DVJ (figure 1b) and consider the flow at two altitudes, z = 0.25
and z = 0.4, where there are large radial gradients of V and W but U is nearly zero.
As shown in figure 17(a), both profiles show local maxima in V and W, with the peaks
being more prominent for z = 0.25. The profiles of vertical and azimuthal vorticity,
shown in figure 17(b), have multiple changes in the signs of their gradients at both
levels. Hereafter, we refer to the vortex using V only at z= 0.25 and z= 0.4 as VO25
and VO40, while the vortices using both V and W are labelled VW25 and VW40. We
also show results for vortices using W only, labelled WO25 and WO40.

To perform the calculations, we used a domain with the same outer radius (r = 2.0)
but with a vertical depth of z = 0.5. In preliminary tests using vertical extents of the
domain ranging from 0.25 to 2.0, we found that the unstable modes typically had
a vertical wavenumber of 1. Therefore we chose a vertical depth that results in a
modal structure that has a similar vertical depth to the modes identified in the previous
stability analyses. In particular, the MUM for n = 2 for the DVJ vortex has a vertical
wavelength of approximately 0.5 (see figure 7a). The computational grid uses the
same 81 stretched grid points in the radial direction as in the previous calculations.
In the vertical direction 41 evenly spaced points are used. The eddy viscosity is set
throughout the domain to the low-level value ν = 0.0004 used in the DVJ simulation.

Figure 17(c) shows the growth rates for the MUMs for the VW25, VW40, VO25,
VO40, WO25 and WO40 vortices. These growth rates can be compared to those
shown for the DVJ vortex in figure 3. It is evident that the VW vortices are much
more unstable than the VO vortices. For the VO vortices, only n = 1 and n = 2 have
growth rates comparable to the DVJ vortex. The VW vortices have unstable modes
out to and beyond n = 8. The fastest growth rates for VW25 and VW40 occur for
n = 3 to n = 5 and are about twice as fast as the MUMs of the DVJ vortex. This is
not surprising, since the modes in the periodic vortices are not restricted by the finite
vertical extent of the strongly sheared regions or the presence of boundaries.
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FIGURE 17. Analysis of vertically homogeneous vortices: (a) profiles of azimuthal and
vertical wind in the DVJ at z = 0.25 and z = 0.4; (b) profiles of vertical and azimuthal
vorticity at the same levels. (c) Growth rates as a function of wavenumber for the MUMs
using either only the azimuthal wind (VO25 and VO40), the vertical wind (WO25 and
WO40), or both the vertical and azimuthal wind (VW25 and VW40) at z= 0.25 and z= 0.40.
(d) Stability parameters HG (equation (5.1)) and LS (equation (5.2)) for the VW25 and
VW40 vortices.

Some guidance on when to expect instability in a vortex with axial flow is provided
by two classic papers. Howard & Gupta (1962) derived a sufficient condition for the
stability of a vortex to symmetric perturbations:

(1/r3)(∂Γ 2/∂r)

(∂W/∂r)2
>

1
4
, (5.1)

where Γ = rV is the basic-state circulation, while Leibovich & Stewartson (1983;
see also Emanuel 1984) derived a sufficient condition for instability to asymmetric
perturbations:

V
∂Ω

∂r

[
∂Ω

∂r

∂Γ

∂r
+
(
∂W

∂r

)2
]
< 0, (5.2)

where here Ω = V/r is the basic-state angular velocity. Both of these conditions were
derived assuming inviscid dynamics, and the Leibovich & Stewartson condition is
only formally valid for asymmetries with large azimuthal and vertical wavenumber.
Figure 17(d) shows radial profiles for the VW25 and VW40 vortices of the two
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homogeneous vortices and periodic boundary conditions: structure of the n = 0 mode v0
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0.1,maxvec= 3.1; (b) max= 1,min=−1, int= 0.1,maxvec= 7.8.

expressions (5.1) and (5.2), hereafter referred to as HG and LS, respectively. HG falls
below 1/4 for both vortices in approximately the region 0.3 < r < 0.5. LS falls below
0 in two regions for both vortices, each on either side of their respective W(r) maxima
near r = 0.2.

Despite the violation of the sufficient condition for stability to symmetric modes,
neither the VW25 or the VW40 vortex profiles are unstable for n = 0. More
interestingly, we see that only the VO40 and WO25 vortices have unstable n = 0
modes, while their counterparts VO25 and WO40 do not. (The HG condition is
not well-posed for vortices without meaningful values of both V and W.) Figure 18
shows that the vertical structures of the n = 0 instabilities for VO40 and WO25 are
quite different. The eigenvalue of the VO40 mode is real, indicating a stationary
overturning circulation. To understand why VO40 has an n= 0 instability while VO25
does not, we can compare their profiles of azimuthal velocity and vertical vorticity
(the thick solid lines in figure 17a,b). Beyond r = 0.25 V decays a bit more quickly
for z = 0.40 than for z = 0.25. In fact, both of these V profiles decay slightly faster
than 1/r, indicating the presence of negative basic-state vorticity as can be seen in
figure 17(b). However, when accounting for the contribution of the Coriolis parameter
(f = 0.2), only the z = 0.4 profile contains a small area of negative absolute vertical
vorticity η = ζ + f in the range 0.34 < r < 0.48 with a minimum value of η = −0.14.
Negative η indicates the possibility of purely inertial instability, and this explains the
appearance of the symmetric mode for VO40 and the absence of a similar mode
for VO25.

The WO25 symmetric unstable mode comes as a conjugate pair that is shifted by
1/4-wavelength in the vertical, indicating that it is propagating upward with time.
Another feature is that its overturning circulation is ∼8 times stronger than the
azimuthal circulations. In fact, given that the basic state for this mode is an axial jet
with no azimuthal flow, one might wonder why or even how this mode should contain
any azimuthal motion at all. These motions come from the Coriolis force inherited
from the underlying equations of F09. To assess the effect of f on the stability of
WO25, the stability analysis was repeated for f = 0. Remarkably, the growth rates and
structures were very similar for every wavenumber, indicating that background rotation
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FIGURE 19. Structures of the n = 2 unstable modes for the vertically homogeneous vortices:
(a) isosurface of perturbation pressure = ±1.1 × 10−1 for the MUM for VW25 ; (b)
for the second MUM of VW25 (±8 × 10−3); (c) MUM for VO25 (±1.3 × 10−1); (d)
MUM for WO25 (±5.8 × 10−2). (e) Horizontal section at z = 0.24 of vertical velocity
(contours) and horizontal velocity (vectors) for the second MUM of VW25 (shown in b);
(f ) for the MUM for WO25. (e) max = 0.71,min = −0.71, int = 0.10,maxvec = 1.30; (f )
max= 1.23,min=−1.23, int= 0.10,maxvec= 1.08.

has a very small effect on the dynamics of inner-core instabilities. The structure of
the MUM for n = 0, WO25, and f = 0 is nearly identical to that shown for f = 0.2
(figure 18b) but with the azimuthal velocities exactly equal to zero (not shown).

Turning to the asymmetric modes, we first consider the MUM for n = 2 for
VW25. A rendering of its perturbation pressure is shown in figure 19(a). The mode
consists of an overturning circulation with vortex lines, and lines of constant phase,
that spiral counterclockwise in the upward direction, roughly parallel with the total
vorticity vector of the basic-state flow on the outside of the updraft maximum.
This suggests that the mode is of the type previously identified by Leibovich &
Stewartson (1983) and Emanuel (1984), located on the outside edge of the axial
updraft where the azimuthal vorticity is positive and the inertial stability is weak.
Similar modes have been identified in numerical simulations and stability analyses
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of vortex breakdown in rotating-lid experiments (Serre & Bontoux 2002; Gallare &
Chomaz 2003; Oberleithner et al. 2011). However, it is hard to see how a mode of
this type could exist in the DVJ. All the unstable modes identified by stability analyses
of the OCV, DVJ and TCV spiral in the opposite direction, as would seem necessary
given the rapid decrease with height of V(r, z).

While the non-dimensional growth rate for this mode is 0.61, it happens in this
case that the second MUM is nearly as strong with a growth rate of 0.55. As shown
in figure 19(b), the structure of this mode is quite different, spiralling clockwise in
the upwards direction and at a much smaller angle relative to the vertical. The mode
exists at a smaller radius, indicating that it is associated with wind shear on the inside
of the updraft. As shown in figure 17(d), the LS sufficient condition for instability
is met on the inside of the updraft, where not only is ∂W/∂r significant, but ∂Ω/∂r
is also locally negative (not shown) due to a local dip in the V(r) profile around
r = 0.2. In this sense, this mode is rather different from the ones originally envisioned
by Leibovich & Stewartson (1983) for trailing vortices with axial wind profiles that
decrease monotonically from r = 0. Remarkably, their instability condition identifies
the location of these modes just as well.

Also shown in figure 19 are renderings of perturbation pressure for the MUMs
of VO25 and WO25. The MUM for VO25 is completely two-dimensional, while
the structure of the MUM for WO25 is remarkably similar to that of VW25. The
strong similarities in the structures of the second mode for VW25 and first mode for
WO25 suggest that one of these modes could be an idealization of the n = 2 mode
for the DVJ vortex that encapsulates the mechanism of its instability. However, the
details of their inner-core flow structures, as shown in figure 19(e,f ), do not compare
well with the structures of the n = 2 mode of the DVJ vortex as shown in figure 7.
At first, figure 19(e) might appear very similar to figure 7(c), but closer inspection
shows that the relative orientations of the phase-shifted waves is opposite between the
two cases.

All the asymmetric modes for VW40 are similar in structure to the mode in
figure 19(a), suggesting these also would not be viable mechanisms for instability
in the DVJ vortex. For n> 2, the MUMs for VW25 were higher-wavenumber versions
of the second MUM for n = 2 (figure 19b). If these modes are indeed viable in
an environment of negative ∂V/∂z, the results suggest that the DVJ vortex should
be unstable to higher wavenumbers. Instead the growth rates cut off sharply for
n > 3 (figure 3). An explanation for the high-wavenumber cutoff could stem from
the vertical propagation speeds of these waves. As these waves spiral clockwise in
the upward direction, their phase lines should propagate upward as the modes turns
counterclockwise (cyclonically), and indeed all the modes for VW25 for n = 2 to
n= 6 were found to have fast upward phase speeds. To identify the actual propagation
of the modes requires the group velocity. While our numerical method does not
specify vertical wavenumber, the wavenumbers can be changed by adjusting the
vertical extent of the periodic domain. Group velocities were computed for the ‘inner’
modes (as shown in figure 19b) by finite-differencing their eigenvalues for domains of
different vertical length Lz = 0.5 and Lz = 0.55, i.e. approximating ∂ω/∂k = 1ω/1k,
where k = 2π/Lz. The vertical group velocities for the inner modes for n = 2 to n = 6
turn out to be positive but quite small, with values of 0.078, 0.080, 0.082, 0.096 and
0.117, respectively. This shows that the modes remain nearly stationary relative to the
vertical flow, which is consistent with the fact that these modes straddle the location
where W(r) = 0. There is a small increase in upward group speed with wavenumber,
consistent with the notion that the higher wavenumbers would not be able to remain
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embedded in the strongest part of the updraft, but the increase is very small and this
does not offer a robust explanation for why the DVJ is increasingly stable for n > 2.
Nonetheless, we did find previously that the physical location of the MUMs in the
DVJ vortex does shift upward for n = 1, 2 and 3 (see figures 6 and 7; n = 3 not
shown), consistent with the hypothesis that the flow in the most unstable region is
supercritical for higher wavenumber modes.

5.2. Wave–mean flow interactions and energetics
For effectively two-dimensional flows perhaps the easiest way is to interpret the
structure and growth of an unstable mode is in terms of vorticity perturbations
that ‘live’ along vorticity gradients and amplify each other through their induced
circulations. However, the previous results suggest that for vortices with strong radial
and vertical circulations the dynamics of their instabilities are not so easily interpreted.
Another way to understand an instability is to consider the way in which it interacts
with the basic state. An asymmetric wave interacts with the symmetric flow via
azimuthally averaged eddy fluxes. For incompressible flow in cylindrical coordinates,
these can be diagnosed as:

∂u

∂t
= · · · − 1

r

∂

∂r
(ru′2)− ∂

∂z
(u′w′)+ (v

′v′)
r
= · · · + u̇efd, (5.3)

∂v

∂t
= · · · − 1

r2

∂

∂r
(r2u′v′)− ∂

∂z
(v′w′)= · · · + v̇efd, (5.4)

∂w

∂t
= · · · − 1

r

∂

∂r
(ru′w′)− ∂

∂z
(w′2)= · · · + ẇefd, (5.5)

where we have left out the advection and pressure force terms (· · ·) that complete the
equations and the terms u̇efd, v̇efd and ẇefd represent the tendencies due to the eddy-flux
divergences. Here, the bars over the un-primed variables refer to the azimuthal-mean
flow (note that here we do not restrict ourselves to the basic-state flows U, V and
W, since (5.3)–(5.5) are valid for time-evolving azimuthal-mean circulations and also
for large-amplitude asymmetries), while the bars over the products of primed variables
refer to azimuthal-mean eddy correlations.

Figure 20 shows the eddy-flux tendency on the symmetric flow caused by the
n = 1 and n = 2 MUMs for the OCV. For n = 1, the eddy tendencies show large
accelerations of the azimuthal and vertical winds near the centre axis. This is a
typical tendency structure for n = 1 perturbations which can be better interpreted as a
displacement of the vortex centre: when the vortex is displaced off its original axis,
the azimuthal-mean v and w velocities at smaller radius (relative to the original axis)
increase. For n = 2, the azimuthal tendencies have the effect of locally intensifying
the wind field along r = 0.12 between z= 0.3 and z= 0.5, while decelerating the flow
along r = 0.06 in the same range. The eddy tendencies on u and w appear to force
outward and downward motion and upward and inward motion where the v tendencies
are positive and negative, respectively, but the physical effects of these are difficult
to interpret. (Unlike forcings on the azimuthal wind, forcings on the meridional flow
[u,w] are subject to the incompressibility constraint. To the extent that this forcing
is divergent in the r–z plane, pressure forces would appear to exactly cancel such
motions. Thus it is virtually impossible to decipher the effects of these forcings on
the symmetric mean flow without additional calculations with a symmetric model.) In
general, it appears that this n = 2 mode acts to redistribute the small local maximum
in V near r = 0.1, z= 0.35 (see figure 1a).
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FIGURE 20. Eddy-flux tendencies for U,V,W (from left to right) from the MUMs for the
OCV for (a) n = 1 and (b) n = 2 . The contour intervals are indicated at the top of each
plot, and the shading range is centered on zero and extends from negative to positive of the
absolute value of the maximum or minimum value, whichever is larger.

Figure 21 shows eddy-flux tendencies for the DVJ. The n = 1 mode also acts to
accelerate the low-level flow radially inward of the low-level jet, again consistent
with a growing displacement of the low-level circulation. For n = 2 the azimuthal
tendencies are trying to reshape V(r, z) by ‘filling in’ the low-velocity notch around
r = 0.25, z = 0.25, while the eddy tendencies on u and w around this location are
again outward/downward and inward/upward. Further aloft, the eddy tendencies appear
to be accelerating the relatively quiescent flow inside the outflow jet.

Figure 22 shows the eddy tendencies for the MUM for n= 2 and n= 3 for the TCV.
For both wavenumbers, all three eddy tendencies show acceleration of the flow radially
inward and above the radial outflow jet that emanates from the origin to near r = 0.2,
z = 0.1 (see figure 1c). These unstable modes are working to ‘spin up’ the relatively
motionless region just inside the region of peak winds.

What influence do these modes have on the mean flows of the tornado-like vortices?
The differences in structure between DVJ and AXI-DVJ indicate that asymmetries and
their eddy tendencies do indeed change the mean flow. If we presume that the rate
of change of the temporal-azimuthal mean is zero, we can diagnose the mean eddy
tendencies as the residual of the momentum equation for symmetric motions:

−v̇efd =−U

(
∂V

∂r
+ V

r
+ f

)
−W

∂V

∂z
+ ν

[
∂

∂r

(
1
r

∂

∂r
(rV)

)]
+ ν ∂

2V

∂z2
+ ∂ν
∂z

∂V

∂z
(5.6)
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FIGURE 21. As in figure 20, but for the DVJ.
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FIGURE 22. As in figure 20, but for the TCV, for (a) n= 2 and (b) n= 3.
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FIGURE 23. Symmetric advective and diffusive tendencies from (5.6) and their residuals
(from left to right: radial V advection, vertical V advection, frictional V tendency and negative
of residuals), computed for the time-mean flows for (a) the DVJ, (b) the TCV and (c) the
AXI-DVJ, with labels and shading as in figure 20.

where here we have assumed that the viscosity ν only varies in the z-direction.
Figure 23 shows each of the terms on the right-hand side of (5.6) and the negative
of the resulting residuals for DVJ, TCV, and AXI-DVJ. For the first two cases, the
residuals are significant, with peak values 20–30 % of the peak values of advection. At
some locations above the corner flow region, the residuals are about half as large as
the advective tendencies.

If one compares the structure of the negative residual for the DVJ to the plots of
v̇efd for n = 1 and n = 2 (figure 21), it is apparent that the residual contains structures
that are similar to v̇efd for each wavenumber. There is an axis of positive tendency
emanating upward from the origin that matches v̇efd for n = 1, and there is a local
negative maximum in tendency near r = 0.1, z = 0.3 that closely matches a similar
feature in the eddy tendency for n = 2. In other words, the residuals of the symmetric
momentum equation diagnosed from (5.6) are fairly well approximated by a linear
combination of the eddy tendencies of the two most unstable modes. Similarly, it is
not hard to see the negative residual for the TCV as some combination of v̇efd for
n= 2 and n= 3 as shown in figure 22.
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Interestingly, the residuals for AXI-DVJ are much smaller, being less than the
advective tendencies by more than one order of magnitude. In other words, the time
mean of the symmetric simulation is quite close to being a steady solution of the
symmetric equations.

5.3. Energetics of the unstable modes
A more comprehensive way to analyse the interaction between an instability and
its basic state is in terms of the exchange of energy between the basic-state flow
and the growing perturbations. As discussed in WG84 and Nolan (2005a), for three-
dimensional asymmetric perturbations to a symmetric vortex an equation may be
derived for the rate of change of total perturbation kinetic energy (KE):

∂E′

∂t
=−

∫∫ {[
u′v′

(
∂v

∂r
− v

r

)]
vr

+
[

u′w′
∂w

∂r

]
wr

+
[

u′u′
∂u

∂r
+ v′v′ u

r

]
ur

+
[
v′w′

∂v

∂z

]
vz

+
[

w′w′
∂w

∂z

]
wz

+
[

u′w′
∂u

∂z

]
uz

+ [u′F′r + v′F′λ + w′F′z]F
}

2πr dr dz. (5.7)

The F terms refer to the frictional tendencies on u, v and w, respectively. The terms
have been grouped into brackets and labelled. Except for the frictional term, each of
these terms represents an eddy flux across a shear. Generally, growth in perturbation
KE occurs when the eddy fluxes transport momentum from a faster part of the mean
flow to a slower part. As a result, the kinetic energy of the mean flow decreases,
and the eddy energy grows correspondingly. Each of the integrands in (5.7) can be
computed locally and volume integrated to get the total contribution from each term to
the energy growth.

However, a more physically intuitive form of this equation can be obtained by
integrating each of the eddy-flux terms by parts. Alternatively, the same equation
can be found by starting from the full equations for the symmetric motions as in
(5.3)–(5.5), multiplying each by ū, v̄ and w̄, summing the equations and integrating.
This gives an equation for the kinetic energy of the symmetric flow, which must be
balanced by the gain or loss of eddy energy, except for the eddy friction terms, which
can be carried over from (5.7). Thus the alternative form is:

∂E′

∂t
=
∫∫ {[

v
1
r2

∂

∂r
(r2u′v′)

]
vr

+
[

w
1
r

∂

∂r
(ru′w′)

]
wr

+
[

u

(
∂

∂r
(u′u′)+ v

′v′

r

)]
ur

+
[
v
∂

∂z
(v′w′)

]
vz

+
[

w
∂

∂z
(w′w′)

]
wz

+
[

u
∂

∂z
(u′w′)

]
uz

+ [u′F′r + v′F′λ + w′F′z]F
}

2πr dr dz. (5.8)

The integrands in (5.7) and (5.8) are not pointwise equal and the term-by-term equality
only comes after volume integration over the domain. This latter form of the equation
is more intuitive because, as will be shown below, plotting the spatial structure of each
term also shows where and in what sense the eddies are changing the basic-state flow.
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FIGURE 24. Energy exchange terms for the first two MUMs for n= 2 in the VW25 vortex.

Before proceeding to the energetics of instabilities in the tornado-like vortices, we
briefly discuss the energy exchange terms for some of the modes from the vertically
homogeneous vortices above. For these only the vr, wr, and frictional terms are non-
zero. Recalling that they seemed to capture two distinct dynamical growth mechanisms
in the DVJ, we consider the first MUM and the second MUM for n = 2 in the VW25
vortex as shown in figure 19(a,b). Figure 24 shows radial profiles of the vr and wr
terms for these modes. The percentages in the legend show the fraction of the total
positive energy contribution that comes from each term.

The first MUM exists at larger radius and gains all of its energy from the vr term.
The wr term acts to only slightly dampen the growth rate. The instability works to
decelerate V around r = 0.3 and to accelerate V around r = 0.425, thereby ‘flattening’
the wind profile outside the RMW and thus increasing the inertial stability there. The
mode also works to increase w around r = 0.275 and decrease it around r = 0.35,
perhaps shifting the largest negative values of ∂W/∂r to larger radii.

As expected, the dynamics of the second MUM are quite different. This mode gains
74 % of its energy from the wr term and just 26 % from the vr term. While larger in
amplitude the oppositely signed peak values of the vr term evidently cancel each other
when integrated. The second mode works to accelerate V near r = 0.15 and decelerate
it near r = 0.1, thereby bringing V(r) closer to solid-body rotation. This mode also
works to make W less negative near r = 0.1 and less positive near r = 0.17, leading to
a weaker gradient of W.

Returning to the vortices of F09, it would take far too much space to show all seven
terms for the many modes that we have discussed, so we will discuss the energetics
of selected MUMs for each case: n = 1 for the OCV, n = 2 for the DVJ vortex, and
n = 2 for the TCV. Table 1 summarizes the numerical values of the energy exchange
terms for each of these modes. Each mode is normalized as above so that the peak
perturbation azimuthal wind is equal to 1. The last two rows of each column show the
total energy conversion computed from summing the exchange terms in (5.8) and the
rate of energy increase predicted by the growth rate, dE′/dt = 2srE′. The close matches
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Energy conversion term: Mode:
n= 1, OCV n= 2, DVJ n= 2, TCV

ur −0.34 (−15 %) −0.61 (−12 %) −0.56 (−14 %)
uz 0.02 (−0.01 %) 0.05 (1 %) 0.57 (14 %)
vr 0.03 (1.4 %) 0.003 (0.07 %) −0.02 (−0.6 %)
vz 0.29 (13 %) 0.69 (14 %) 1.88 (47 %)
wr 0.70 (31 %) 2.16 (44 %) −0.03 (−0.06 %)
wz 1.27 (55 %) 1.98 (41 %) 1.55 (39 %)
F −0.74 (−32 %) −2.07 (−42 %) −0.82 (−21 %)
Total 1.21 2.21 2.57
Predicted 1.27 2.23 2.45

TABLE 1. Energy conversion terms (×10−2) for some of the most unstable modes. Fraction
of total positive conversion is shown in brackets.

in these values indicates that the energy calculations are consistent. Values computed
from (5.7) agreed within a few per cent for each term (not shown). Also shown
are the percentage contribution that each conversion term makes relative to the total
positive conversion, i.e. the ratio between that term and the sum of all the positive
terms.

Table 1 shows that the radial shear of azimuthal wind (the vr term) plays a very
small role in the dynamics of the unstable modes for all three vortices. The wr
term is significant for the MUMs for the OCV and DVJ, contributing 31 % and
44 %, respectively, of the perturbation kinetic energy production. The term which is
consistently significant for all three modes is the wz term, contributing 55 %, 41 % and
39 % of the energy production in the OCV, DVJ and TCV, respectively.

Thus we find that the consistently important physical process for the growth of
asymmetric modes in tornado-like vortices is the eddy tendency of vertical velocity
perturbations to accelerate or decelerate the basic-state vertical velocity. For the OCV
and DVJ, the wr term is also significant, while for the TCV, it is the vz term that is
also significant. The spatial structures of the top two positive energy production terms
for each of the three vortices are shown in figure 25. Where these terms are positive,
the growing unstable modes are acting to decelerate the basic-state flow, and they act
to accelerate the basic state where these terms are negative.

For the n = 1 mode of the OCV, the largest energy conversions come from
deceleration of the basic-state vertical flow along the centre axis and in the upper
outflow region. However, the n = 1 mode primarily represents a displacement of the
vortex off its centre axis, and the energy exchanges are simply those which are
consistent with such displacements, such that some of the symmetric flow projects
onto n= 1 asymmetries and increases the asymmetric energy.

For the DVJ, the n = 2 mode grows primarily by decelerating the vertical updraft
that lies along r = 0.18 in the range 0.2 < z < 0.4, through both radial and vertical
eddy fluxes. To some extent, the positive tendencies of the wr term are being
diminished by the localized area of negative tendencies of the wz term.

For the TCV, the n = 2 mode grows primarily by decelerating the intense azimuthal
and vertical flows that lie along the radial outflow jet directly above the low-level wind
maximum. Both the vz and wz terms are acting to displace the jet upward, as indicated
by the eddy tendencies in figure 22. As reported in table 1, the uz term is the third
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FIGURE 25. The top two energy production terms for MUMs from each vortex: (a) wr term
(31 % of total positive perturbation energy production), and (b) wz term (55 %) for the n = 1
MUM for the OCV; (c) wr (44 %) and (d) wz (41 %) terms for the n = 2 MUM for the DVJ
vortex; (e) vz (47 %) and (f ) wz (39 %) terms for the n = 2 MUM for the two-celled vortex.
Units are arbitrary but consistent among the plots, as each mode has been normalized to
have a peak azimuthal wind perturbation of 1.0. (a) max = 3.73,min = −0.44, int = 0.46;
(b) max = 0.76,min = −0.42, int = 0.13; (c) max = 2.21,min = −1.73, int = 0.44; (d)
max = 4.75,min = −1.76, int = 0.72; (e) max = 1.26,min = −0.16, int = 3.20; (f ) max =
8.25,min=−5.71, int= 1.55.
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largest contributor, and it is also associated with an upward spreading of the outflow
jet (not shown).

6. Summary and conclusions
The multiple vortex phenomenon has been well documented in tornado-like vortices

of all scales, from laboratory vortices on the scales of centimetres to large tornadoes
on the scales of hundreds of metres. From their earliest recognition, multiple vortices
have been presumed to arise from dynamical instability of the tornado-like vortex
(Ward 1972; Davies-Jones 1973). However, the lack of dynamical consistency between
the basic states previously used for linear stability analysis and the dynamics of real
tornado-like vortices has left some doubt as to whether prior results and interpretations
would apply to more realistic tornado-like vortices. In this study, linearized stability
analyses have been performed for basic-state flows that are more consistent with real
tornado-like vortices, most especially in regard to the presence of a frictional boundary
layer and strong low-level inflow.

The linear stability analyses correctly predict the wavenumber of the dominant
modes for each vortex and the general structures and locations of the asymmetries
that result, supporting the widely held notion that the multiple vortex phenomenon is
a result of fluid-flow instability. Analysis of the tendencies on the symmetric flow due
to the eddy fluxes of the most unstable modes showed how these modes contribute to
the mean state: the asymmetries work to ‘spin up’ the flow inside the vortex, bringing
the flow closer to solid-body rotation. These results are consistent with the differences
between the mean states generated by three-dimensional simulations and the mean
state of a purely axisymmetric simulation.

However, some prior conclusions on the fundamental nature of the instabilities
and the relative roles of their interactions with the radial shears of the azimuthal
and vertical winds have been contradicted. The unstable modes identified here, found
to bear meaningful similarities to the strong asymmetric motions in the underlying
nonlinear simulations, gain a large part of their energy through eddy interactions with
the vertical gradient of the vertical wind. For the OCV and DVJ, the other important
term is the eddy interaction with the radial shear of the vertical wind, and for the TCV
it is the vertical gradient of the azimuthal wind.

A distinctly new result is the possible contribution of global symmetric instabilities
to the dynamics of tornadoes. Symmetric modes were identified for each vortex
that have some similarities with symmetric oscillations observed in real tornadoes
by Bluestein et al. (2003) and Tanamachi et al. (2007). While the periods of the most
unstable symmetric oscillations are considerably longer than the observed periods in
those two cases, the linear model also identifies less unstable (nearly neutral) modes
with periods that are closer the observed oscillation periods. Another possibility is that,
due to limitations in resolution and to smoothing in the analysis process, the radar
observations are underestimating the azimuthal-mean winds of the tornadoes. This
would mean that their circulations times (τcirc) are shorter, and would bring the ratio
of the observed symmetric oscillation periods to the observed circulation times more in
agreement with the results here (H. Bluestein, personal communication).

It is important to discuss some caveats regarding whether the results shown
here accurately depict the dynamics of the multiple vortex phenomenon in real
atmospheric vortices. The underlying simulations of Fiedler (2009) that provide the
basic-state flows are essentially direct-numerical-simulation (DNS) representations of
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low-Reynolds-number (Re ∼ 1000) tornado-like vortices. The simulations also use a
simple no-slip lower boundary condition. In these ways, the simulations are probably
closer to laboratory model simulations than to actual tornadoes which have vastly
larger Reynolds numbers and often occur over rough terrain that would be better
modelled with a turbulent-drag-law lower boundary condition. A linearized stability
analysis of the wind field and the spatially varying effective eddy viscosity field
generated from a fully three-dimensional large-eddy simulation, such as those by
Lewellen et al. (1997, 2000), could possibly produce structures even more like those
observed.

It is possible that in many real tornadoes the boundary layer is even thinner and
the mass flux even smaller than what is depicted in the TCV used here. In this
case, much of the swirling flow above the boundary layer might indeed be more like
those simulated and analysed by Rotunno (1984) and Walko & Gall (1984). In turn,
prior conclusions about the energetics and dynamics of the multiple vortices in these
tornadoes – that they rely mostly on the radial shears of the vertical and azimuthal
winds – could turn out to be correct for those types of vortices.

This paper has explored the extent to which the unstable modes can be understood
in terms of ‘classic’ stability analysis of vortices with an axial jet as developed
by Howard & Gupta (1962) and Leibovich & Stewartson (1983). While the HG
necessary condition for symmetric instability is met well in some parts of the DVJ, a
vertically homogeneous version of this vortex does not show symmetric instabilities,
while the full version of the DVJ shows a weak symmetric instability in a region
where HG is not satisfied. In contrast, the LS condition was successful in identifying
where asymmetric unstable modes would occur in the vertically homogeneous vortices,
including modes which are rather different in structure from the modes originally
identified by Leibovich & Stewartson.

Further limitations of using the HG and LS conditions as guidance can be seen
by plotting where these conditions are satisfied in the full basic-state flow fields
(figure 26). Both conditions are met over large regions outside of each vortex, and yet
in these areas strong symmetric or asymmetric overturnings were not observed. This
could be due to the larger viscosity values (ν = 0.001) in the upper part of the domain
or the presence of significant radial inflow and outflow. In the TCV, fast-growing
instabilities occurred for n= 2 and n= 3 in the ‘corner flow region’. Yet in this region
the LS condition is only marginally met at scattered locations. This is consistent with
the fact that the MUMs for the TCV were entirely dependent on the vertical shears
of U, V and W, which do not exist in the framework of columnar vortex stability
analysis.

These findings simply highlight the fact that while classic vortex theory for both
two-dimensional and three-dimensional flows is a useful way to begin to understand
the dynamics of tornado-like vortices, the presence of large radial velocities and the
very large vertical gradients of all three velocity fields precludes this theory from
making complete or even accurate predictions. The tornado-like vortex is a complex
circulation that involves balances between friction, momentum transport, eddy fluxes,
and large non-hydrostatic pressure gradients. Any analysis, linear or nonlinear, should
treat it as single, complex entity.
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