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Flow of a viscous incompressible fluid after
a sudden point impulse near a wall

B. U. FELDERHOF†
Institut für Theoretische Physik A, RWTH Aachen University, Templergraben 55, 52056 Aachen,

Germany

(Received 5 December 2008 and in revised form 9 February 2009)

The flow of a viscous incompressible fluid generated by a sudden impulse near a
wall with no-slip boundary condition is studied on the basis of the linearized Navier–
Stokes equations. It turns out that the flow differs significantly from that for the
perfect slip boundary condition, except far from the wall and at short times. At short
time the flow is irrotational and can be described by a potential which varies with the
square root of time. Correspondingly the pressure disturbance is quite large at short
times. It shows an oscillation at later times if the impulse is directed parallel to the
wall and decays monotonically for impulse perpendicular to the wall.

1. Introduction
If a viscous fluid, which is initially at rest, is set in motion by a sudden small impulse

at a point, it quickly develops a flow extending over large distances (Lighthill 1986).
In the limit in which the fluid is incompressible, with hydrodynamics described by
the linearized Navier–Stokes equations, the flow at short time is irrotational and may
be derived from a potential which depends strongly on the shape of the container.
The flow at later times is affected significantly by the boundary condition imposed at
the wall of the container. In the following we study the time-dependent motion for a
half-space bounded by a plane wall with either a perfect slip or a no-slip boundary
condition.

The analysis amounts to a study of the Green function of the linearized Navier–
Stokes equations for the geometry under consideration. For the perfect slip boundary
condition the Green function, as a function of spatial coordinates and time, is derived
easily from that for infinite space by the method of images (Pagonabarraga et al.
1998; Frydel & Rice 2007). For the no-slip boundary condition the Green function is
much more complicated. In earlier work it has been calculated as a Fourier transform
with respect to the Cartesian coordinates parallel to the wall and with respect to time
(Jones 1981). Pozrikidis (1989) derived an alternative form in terms of derivatives
of scalar functions and a Bessel transform with respect to the Cartesian coordinates
parallel to the wall. This form is similar to that derived by Sommerfeld (1909) and
Sommerfeld & Renner (1942) for electromagnetic radiation from a monochromatic
dipole antenna opposite a dielectric and conducting half-space.

We show here that the Fourier transform with respect to time at fixed wavenumber
can be inverted analytically. This allows evaluation of the flow field and the pressure
at any point in space and time from a few one-dimensional numerical integrations
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426 B. U. Felderhof

with respect to the wavenumber. Thus for the chosen initial condition one can follow
in detail the evolution of the non-stationary viscous boundary layer in the framework
of linear theory, starting from potential flow at short time (Schlichting 1987).

The Green function is relevant for the calculation of the velocity autocorrelation
function of a Brownian particle located near a wall. The effect of the wall on the
motion of the particle can be found approximately in terms of a reaction field
tensor derived from the Green function at the position of the particle. In earlier
work (Felderhof 2005a) we found the reaction field tensor for the no-slip boundary
condition by first integrating over spatial wavenumber. This left a complicated
frequency-dependent Fourier transform, requiring careful inversion to find the time
dependence of the velocity autocorrelation function (Felderhof 2005a; Kraus 2007).
The present formalism allows a much simpler calculation.

The theory is restricted to flow at low Reynolds number. For a discussion of the
physical relevance we refer to the monographs by Happel & Brenner (1973) and by
Kim & Karrila (1991).

2. Linear hydrodynamics in a half-space
We consider a viscous incompressible fluid of shear viscosity η and mass density ρ

located in the half-space z > 0. For time t < 0 the fluid is at rest at constant pressure
p0. At time t =0 an impulse P is imparted to the fluid at the point r0 = (0, 0, h) at
height h on the z-axis. We study the resulting motion of the fluid for time t > 0.

For small-amplitude motion the flow velocity v(r, t) and the pressure p(r, t) are
governed by the linearized Navier–Stokes equations

ρ
∂v

∂t
= η∇2v − ∇p + Pδ(r − r0)δ(t), ∇ · v = 0. (2.1)

The pressure p(r, t) is determined by the condition of incompressibility.
We consider first the case in which perfect slip boundary conditions apply at the

plane z = 0. Then the flow velocity is easily found from the Green function T(r, t) for
the infinite fluid. It is given by

v(r, t) =
1

4πη
[T(r − r0, t) · P + T(r − r0, t) · P] (slip), (2.2)

where r0 is the image point r0 = (0, 0, −h) and P = (Px, Py, −Pz) is the image
impulse. The explicit expression for the Green function T(r, t) is known (Oseen
1927; Cichocki & Felderhof 2000):

T(r, t) = 1
1√

4πνt3/2
exp

(
− r2

4νt

)
+ ν∇∇erf(r/

√
4νt)

r
, (2.3)

where ν = η/ρ is the kinematic viscosity. The tensor satisfies ∇ · T(r, t) = 0. The
pressure corresponding to (2.2) is

p(r, t) = p0 +
1

4π

[
(r − r0)

|r − r0|3 · P +
(r − r0)

|r − r0|3 · P

]
δ(t) (slip). (2.4)

The long-range pressure field is established instantaneously, because the fluid is
incompressible. In the limit t → 0+ one finds from (2.3)

T(r, 0+) = 4πν1δ(r) + ν
−1 + 3r̂ r̂

r3
, (2.5)
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Flow after a sudden point impulse near a wall 427

so that at very short time the flow field v(r, t) is a superposition of two dipolar
potential flows.

For the no-slip boundary condition the flow velocity must vanish at the plane
z = 0, and the solution is much more complicated. We write the flow velocity and the
pressure in the form

v(r, t) = G(r, r0, t) · P,

p(r, t) = p0 + Q(r, r0, t) · P (no-slip). (2.6)

In order to find v(r, t) and p(r, t) we perform a Fourier transform with respect to
the horizontal coordinates (x, y) and also with respect to time. After Fourier analysis
in time we find that the equations for the Fourier components

vω(r) =

∫ ∞

0

eiωtv(r, t) dt, pω(r) =

∫ ∞

0

eiωt [p(r, t) − p0] dt (2.7)

are

η(∇2vω − α2vω) − ∇pω = −Pδ(r − r0), ∇ · vω = 0, (2.8)

where we have used the abbreviation

α = (−iωρ/η)1/2, Reα > 0. (2.9)

The solution of (2.8) is expressed as

vω(r) = Gω(r, r0) · P, pω(r) = Qω(r, r0) · P . (2.10)

Both Green functions Gω(r, r0) and Qω(r, r0) can be expressed as Fourier integrals
with respect to the (x, y) coordinates:

Gω(r, r0) =

∫
exp[ik · (s − s0)] Ĝ(k, ω, z, h) dk,

Qω(r, r0) =

∫
exp[ik · (s − s0)] Q̂(k, ω, z, h) dk, (2.11)

with two-dimensional vectors s = (x, y) and k = (kx, ky). The elements of the tensor
Gω satisfy the reciprocity relation (Jones 1981)

Gω,αβ(r, r0) = Gω,βα(r0, r). (2.12)

Correspondingly the elements of the Fourier-transformed tensor are related by

Ĝαβ(k, ω, z, h) = Ĝβα(−k, ω, h, z). (2.13)

It turns out that the inverse transform with respect to the frequency of Ĝ(k, ω, z, h)

and Q̂(k, ω, z, h) can be found in closed form. The calculation of the flow field
v(r, t) and the pressure p(r, t) can be reduced to a few single quadratures with
respect to the wavenumber k. It will be convenient to consider separately the cases in
which the impulse P is directed perpendicular and parallel to the wall. We note that
corresponding results for a rotlet can be found by taking the curl of the solution.

3. Vertical excitation
In order to find the elements of the tensor Ĝ(k, ω, z, h) one must solve a set of

ordinary differential equations. We consider first the case in which the impulse P is in
the z-direction, and consequently the flow is axially symmetric about the z-axis. For
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428 B. U. Felderhof

this case it suffices to consider the elements Ĝzz(k, ω, z, h) and Ĝxz(k, ω, z, h). The
expression for the element Ĝzz(k, ω, z, h) is (Felderhof 2005a)

Ĝzz(k, ω, z, h) =
k

8π2ηs(k − s)α2

[
s(k + s)e−kh−kz + s(k − s)e−k|z−h| − k(k − s)

× e−s|z−h| + k(k + s)e−sh−sz − 2kse−kh−sz − 2kse−sh−kz
]

(3.1)

with the abbreviation

s =
√

k2 + α2. (3.2)

The expression (3.1) agrees with that derived by Jones (1981) for a viscous
compressible fluid, in the limit in which the fluid is incompressible. The expression
for the element Ĝxz(k, ω, z, h) is

Ĝxz(k, ω, z, h) =
−ikx

8π2η(k − s)α2

[
(k + s)e−kh−kz ± (k − s)e−k|z−h| ∓ (k − s)

× e−s|z−h| + (k + s)e−sh−sz − 2se−kh−sz − 2ke−sh−kz
]
, (3.3)

with the upper sign for z > h and the lower sign for z <h.
In order to perform the inverse Fourier transform of the above elements we use an

identity derived elsewhere (Felderhof 2008),∫ ∞

0

eiωtS0(q, 2k; x − 2νkt, t) dt =
e−ζx

ζ − q
, (3.4)

where the function S0(q, 2k; x − 2νkt, t) is given by

S0(q, 2k; u, t) =

√
ν

πt
exp

[
− u2

4νt

]
+ ν(q + k)e−qu+νq2terfc

(
u√
4νt

− q
√

νt

)
, (3.5)

and the variable ζ is defined by

ζ = −k +
√

k2 + α2 = −k + s. (3.6)

The identity (3.4) holds, provided the integral on the left converges, i.e. provided
the imaginary part of the complex variable ω is positive and sufficiently large. The
identity follows from item 12 in Appendix V of Carslaw & Jaeger (1959) and use
of theorem VI in § 12.2 in the same monograph. We note from (3.6) that α2 can be
expressed as

α2 = ζ (ζ + 2k). (3.7)

Taking the derivative in (3.4) with respect to q and putting q = 0 we find the related
identity ∫ ∞

0

eiωtU (k; x − 2νkt, t) dt =
e−ζx

ζ 2
, (3.8)

with the function U (k; u, t) given by

U (k; u, t) =
2k

√
νt√

π
exp

[
− u2

4νt

]
+ (1 − ku)erfc

u√
4νt

. (3.9)

We use cylindrical coordinates (R, ϕ, z) and write

8π2ρ Ĝzz(k, z, h, t) = Vzz(k, z, h, t), 8π2ρ Ĝxz(k, z, h, t) = −iVRz(k, z, h, t) cos ϕk,

(3.10)
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Flow after a sudden point impulse near a wall 429

where ϕk is the angle between the vector k and the x-axis. Decomposing the expression
in (3.1) into partial fractions in the complex variable ζ we find for the inverse Fourier
transform with respect to frequency

Vzz(k, z, h, t) = 2k2

√
τ

π
e−k2τ

(
e−kh−z2/4τ + e−kz−h2/4τ − e−(h+z)2/4τ − e−k(h+z)

)

− 1

2
k

[
e−k(h+z)

(
(2 + 4k2τ ) erf(k

√
τ ) + (1 − 2kh + 4k2τ ) erf

h − 2kτ

2
√

τ

+ (1 − 2kz + 4k2τ ) erf
z − 2kτ

2
√

τ
+ (2kh + 2kz − 4k2τ ) erf

h + z − 2kτ

2
√

τ

)

+ ek(h−z)

(
erf

h − z + 2kτ

2
√

τ
− erf

h + 2kτ

2
√

τ

)

− e−k(h−z)

(
erf

h − z − 2kτ

2
√

τ
+ erf

z + 2kτ

2
√

τ

)]
,

(3.11)

where we have abbreviated τ = νt . Similarly we find for the second element

VRz(k, z, h, t) = Vzz(k, z, h, t) + ke−k(h+z)

(
erf

h + z − 2kτ

2
√

τ
− erf

z − 2kτ

2
√

τ

)

− ke−k(h−z)

(
erf

h − z − 2kτ

2
√

τ
+ erf

z + 2kτ

2
√

τ

)
= −1

k

∂Vzz(z, k, t)

∂z
.

(3.12)

Both these expressions tend to zero as t → ∞ for h, z and k positive. The axially
symmetric flow generated by an impulse P = P ez in the z-direction has z-component

vzz(r, t) =
P

4πρ

∫ ∞

0

Vzz(k, h, z, t)J0(kR)k dk (3.13)

and R-component

vRz(r, t) =
P

4πρ

∫ ∞

0

VRz(k, h, z, t)J1(kR)k dk, (3.14)

with Bessel functions Jl(kR). The ϕ-component vanishes. The one-dimensional
integrals are easily evaluated numerically. The second equality in (3.12) guarantees
that the incompressibility condition ∇ · v =0 is satisfied. It can be checked that
both components vRz(r, t) and vzz(r, t) vanish at the plane z = 0, so that the no-slip
boundary condition is satisfied.

On account of the axial symmetry the flow may be derived from a Stokes
streamfunction (Acheson 1990) according to

vz(r, t) = ∇ ×
(

Ψ (R, z, t)

R
eϕ

)
. (3.15)

The two non-vanishing components of the flow velocity are given by

vRz(r, t) = − 1

R

∂Ψ (R, z, t)

∂z
, vzz(r, t) =

1

R

∂Ψ (R, z, t)

∂R
. (3.16)
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430 B. U. Felderhof

From (3.13) one finds

Ψ (r, t) =
P

4πρ
R

∫ ∞

0

Vzz(k, h, z, t)J1(kR) dk. (3.17)

The Stokes streamfunction is constant along the streamlines. This may be used to
plot the streamlines.

The corresponding pressure is found from

pz(r, t) = p0 +
νP

4π

∫ ∞

0

Πz(k, h, t)J0(kR)e−kzk dk, (3.18)

where the function Πz(k, h, t) is calculated from the equation

ηkΠze
−kz = ρ

∂Vzz

∂t
+ η

(
k2Vzz − ∂2Vzz

∂z2

)
. (3.19)

One finds

Πz(k, h, t) = 2k

[
e−k2τ

√
πτ

(
e−h2/4τ − e−kh

)
− k e−kh erf(k

√
τ ) − ke−kh erf

h − 2kτ

2
√

τ

]
. (3.20)

At any time the pressure satisfies Laplace’s equation ∇2pz = 0.
It is of interest to consider the behaviour of the amplitudes VRz, Vzz and Πz at

short time. The time scale of our problem is τh = h2/ν. Keeping only the dominant
terms as τ → 0 one finds for z > 0

V sh
Rz (k, z, h, t) = ±ke−k|z−h| − ke−k(z+h) − 4k2e−k(z+h)

√
τ

π
+ O(τ ),

V sh
zz (k, z, h, t) = k

[
e−k|z−h| − e−k(z+h)

]
− 4k2e−k(z+h)

√
τ

π
+ O(τ ),

Πsh
z (k, h, t) = −2ke−kh

[
1√
πτ

+ k

]
+ O(

√
τ ), (3.21)

with sign convention as in (3.3). The corresponding short-time expressions for flow
and pressure can be derived from the dipole potentials

φ(r) = Φ(r − r0), φ(r) = Φ(r − r0), (3.22)

with the abbreviation

Φ(r) =
1

4πρ

zP

r3
. (3.23)

In cylindrical coordinates

φ(r) =
z − h[

R2 + (z − h)2
]3/2

P

4πρ
, φ(r) =

z + h

[R2 + (z + h)2]3/2
P

4πρ
. (3.24)

In terms of these potentials the short-time flow velocity is

vsh
Rz(r, t) = − ∂φ

∂R
+

∂φ

∂R
− 4

√
τ

π

∂2φ

∂R∂z
+ O(τ ),

vsh
zz (r, t) = −∂φ

∂z
+

∂φ

∂z
− 4

√
τ

π

∂2φ

∂z2
+ O(τ ), (3.25)
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Flow after a sudden point impulse near a wall 431

and the short-time pressure is

psh
z (r, t) = p0 +

2η√
πτ

∂φ

∂z
− 2η

∂2φ

∂z2
+ O(

√
τ ). (3.26)

Alternatively we may write in vector form

vsh
z (r, t) = −∇φ + ∇φ − 4

√
τ

π
∇∂φ

∂h
+ O(τ ). (3.27)

Therefore, up to terms of order τ , the short-time flow is irrotational. The short-time
flow velocity and the short-time pressure are related by

ρ
∂vsh

z

∂t
= −∇psh

z + O(1). (3.28)

We note that (3.27) and (3.28) must be regarded as asymptotic expansions in τ valid
for fixed z > 0. The short-time correction to the pressure is clearly due to viscous
effects. It may also be written as

δpsh
z (r, t) =

2η√
πτ

∂φ

∂h
− 2η

∂2φ

∂h2
+ O(

√
τ ). (3.29)

The short-time pressure disturbance diverges in the limit t → 0, and it follows from
(3.24) that it extends over large distances. In cylindrical coordinates

∂φ

∂h
=

R2 − 2(z + h)2[
R2 + (z + h)2

]5/2

P

4πρ
. (3.30)

For P < 0, i.e. for an impulse directed towards the plane, there is an increase of
pressure in the plane z = z0 within a circle of radius R0 =

√
2(z0 + h). Outside the

circle there is a decrease of pressure, falling off as R−3 at large distance from the
z-axis. The integral over the plane vanishes.

The flow pattern and pressure at any time t may be evaluated by numerical
integration in (3.13), (3.14) and (3.18). We choose units such that η = 1, ρ = 1, h= 1.
The impulse generates an axially symmetric vortex ring. In figure 1 we show the
streamlines in the Rz-plane at time t = 0.5. At this time the centre of the vortex ring,
where vRz and vzz vanish, is at (R, z) = (1.77, 1.83). At short times the flow pattern is
well approximated by (2.2) for perfect slip boundary conditions, except close to the
wall, where it is strongly suppressed. At later times the flow is still qualitatively the
same as that for slip boundary conditions, except close to the wall, though reduced in
magnitude. As an example we show in figure 2 the z-component of the flow velocity
in the xz-plane at z = 0.5 and t = 0.5 as a function of x and compare with that for the
slip boundary condition. In figure 3 we present results for the x-component of the
flow velocity and make the same comparison. At any fixed time the flow far from the
wall is nearly identical with that for the slip boundary condition.

The main qualitative difference with the flow for the perfect slip boundary condition
is that for the no-slip condition there is a pressure disturbance at all times. At short
times the pressure disturbance is large. In figure 4 we plot the pressure disturbance in
the xz-plane at time t = 0.5. The pressure disturbance decays monotonically in time.
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2 4 6 8 10
R

0

2

4

6

8

10

z

Figure 1. Streamlines in the Rz-plane at time t = 0.5 after a sudden impulse in the z-direction
at time t = 0 at the point r0 = (0, 0, 1) for the no-slip boundary condition at the plane z =0.

–4 –2 0 2 4
x

–0.05

0

0.05

0.10

0.15

0.20

0.25

vzz

Figure 2. The z-component of the flow velocity in the xz-plane at height z =0.5 at time
t = 0.5 after a sudden impulse of strength P =4π in the positive z-direction at time t =0 at
the point r0 = (0, 0, 1) for the no-slip boundary condition at the plane z = 0 (solid curve),
compared with that for the perfect slip boundary condition (dashed curve).

4. Horizontal excitation
Next we consider the case in which the impulse P is in the x-direction. In this case

the axial symmetry about the z-axis is lost. In order to find the flow pattern we must
consider the three elements Ĝxx(k, ω, z, h), Ĝyx(k, ω, z, h) and Ĝzx(k, ω, z, h).

The expression for the element Ĝxx(k, ω, z, h) is (Felderhof 2005a)
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–4 –2 0 2 4
–0.2

–0.1

0

0.1

0.2

x

vxz

Figure 3. The x-component of the flow velocity in the xz-plane at height z = 0.5 at time
t =0.5 after a sudden impulse of strength P = 4π in the positive z-direction at time t = 0
at the point r0 = (0, 0, 1) for no-slip boundary condition at the plane z = 0 (solid curve),
compared with that for the perfect slip boundary condition (dashed curve).

0

2
0

0.25

0.5

0.75

1.00

z

0

0.2

0.4

|δpz
|

–2

x

Figure 4. Plot of the pressure disturbance |δpz| in the xz-plane at time t = 0.5 after a sudden
impulse of strength P = 4π in the z-direction at time t = 0 at the point r0 = (0, 0, 1) for the
no-slip boundary condition at the plane z = 0.

Ĝxx(k, ω, z, h) =
1

8π2ηkα2

[
k

k − s
(k(k + s)e−kh−kz − k(k − s)e−k|z−h| + s(k − s)e−s|z−h|

+ s(k + s)e−sh−sz − 2kse−kh−sz − 2kse−sh−kz)

+
k2

y(k + s)

α2s
(s(k + s)e−kh−kz − s(k − s)e−k|z−h| + k(k − s)e−s|z−h|

− (k2 − ks − 2s2)e−sh−sz − 2s2e−kh−sz − 2s2e−sh−kz)

]
(4.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
00

65
21

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009006521


434 B. U. Felderhof

with k2
y = k2 − k2

x . We write

8π2ρĜxx(k, z, h, t) = Vxx0(k, z, h, t) + Vxxc(k, z, h, t) cos2 ϕk, (4.2)

where Vxxc(k, z, h, t) cos2 ϕk originates from the terms in proportion to k2
x , and

Vxx0(k, z, h, t) originates from the remaining terms. We find

Vxx0(k, z, h, t) =
1√
πτ

e−k2τ
(
e−(z−h)2/4τ − e−(z+h)2/4τ

)
(4.3)

and

Vxxc(k, z, h, t) = Vzz(k, z, h, t)+ke−k(h+z)

(
2erf

h + z − 2kτ

2
√

τ
− erf

z − 2kτ

2
√

τ
− erf

h − 2kτ

2
√

τ

)

− ke−k(h−z)

(
erf

h − z − 2kτ

2
√

τ
+ erf

z + 2kτ

2
√

τ

)

+ kek(h−z)

(
erf

h − z + 2kτ

2
√

τ
− erf

h + 2kτ

2
√

τ

)
. (4.4)

Both these expressions tend to zero as t → ∞ for h, z and k positive. The flow
generated by an impulse P = P ex in the x-direction has x-component

vxx(r, t) = vxx0(r, t) +
P

4πρ

[ ∫ ∞

0

Vxxc(k, h, z, t)J1(kR)/R dk

− cos2 ϕ

∫ ∞

0

Vxxc(k, h, z, t)J2(kR)k dk

]
(4.5)

with the first term given by

vxx0(r, t) =
P

4πρ

∫ ∞

0

Vxx0(k, h, z, t)J0(kR)k dk

=
P

4πρ

e−R2/4τ

√
4πτ 3/2

(
e−(z−h)2/4τ − e−(z+h)2/4τ

)
. (4.6)

The expression for the element Ĝyx(k, ω, z, h) is

Ĝyx(k, ω, z, h) =
kxky

8π2ηk(k − s)α2
[s(k+s)e−kh−kz−s(k−s)e−k|z−h|+k(k−s)e−s|z−h|

− (k2 − ks − 2s2)e−sh−sz − 2s2e−kh−sz − 2s2e−sh−kz]. (4.7)

We write

8π2ρĜyx(k, z, h, t) = Vyx(k, z, h, t) sinϕk cos ϕk (4.8)

and find

Vyx(k, z, h, t) = Vxxc(k, z, h, t). (4.9)

The flow generated by an impulse P = P ex in the x-direction has y-component

vyx(r, t) = − P

4πρ
sinϕ cos ϕ

∫ ∞

0

Vxxc(k, h, z, t)J2(kR)k dk. (4.10)

The element Ĝzx(k, ω, z, h) may be found from (3.3) by use of the reciprocity
relation (2.13). This yields

Ĝzx(k, ω, z, h) = −Ĝxz(k, ω, h, z). (4.11)
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We write

8π2ρĜzx(k, z, h, t) = iVzx(k, z, h, t) cosϕk (4.12)

and find

Vzx(k, z, h, t) = Vzz(k, z, h, t) + ke−k(h+z)

(
erf

h + z − 2kτ

2
√

τ
− erf

h − 2kτ

2
√

τ

)

+ kek(h−z)

(
erf

h − z + 2kτ

2
√

τ
− erf

h + 2kτ

2
√

τ

)
. (4.13)

The flow has z-component

vzx(r, t) = − P

4πρ
cosϕ

∫ ∞

0

Vzx(k, h, z, t)J1(kR)k dk. (4.14)

It can be checked that the three components vxx(r, t), vyx(r, t) and vzx(r, t) vanish at
the plane z = 0, so that the no-slip boundary condition is satisfied. The three elements
are related by

ikxĜxx(k, z, h, t) + ikyĜyx(k, z, h, t) +
∂

∂z
Ĝzx(k, z, h, t) = 0, (4.15)

so that the condition of incompressibility is satisfied.
The pressure corresponding to the above flow velocity is found from

px(r, t) = p0 − νP

4π
cos ϕ

∫ ∞

0

Πx(k, h, t)J1(kR)e−kzk dk, (4.16)

where the function Πx(k, h, t) is calculated from the equation

ηkΠxe
−kz = ρ

∂Vzx

∂t
+ η

(
k2Vzx − ∂2Vzx

∂z2

)
. (4.17)

One finds

Πx(k, h, t) = Πz(k, h, t) +
h√

πτ 3/2
e−k2τ−h2/4τ . (4.18)

At any time the pressure satisfies Laplace’s equation, ∇2px = 0. It follows from (4.16)
that in the yz-plane the pressure disturbance δpx = px − p0 vanishes at any time.

It is of interest to consider the behaviour of the amplitudes Vxx0, Vyx, Vzx and Πx

for short time. Keeping only the dominant terms as τ → 0 one finds for z > 0

V sh
xx0(k, z, h, t) = 0, V sh

xxc(k, z, h, t) = −ke−k|z−h| − ke−k(z+h) − 4k2e−k(h+z)

√
τ

π
+O(τ ),

V sh
yx (k, z, h, t) = −ke−k|z−h| − ke−k(z+h) − 4k2e−k(h+z)

√
τ

π
+ O(τ ),

V sh
zx (k, z, h, t) = ∓ke−k|z−h| − ke−k(z+h) − 4k2e−k(h+z)

√
τ

π
+ O(τ ),

Πsh
x (k, h, t) = −2ke−kh

[
1√
πτ

+ k

]
+ O(

√
τ ). (4.19)

The corresponding expressions for short-time flow and pressure can be derived from
the dipole potentials

φ(r) = Φ(r − r0), φ(r) = Φ(r − r0), (4.20)
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–4 –2 0 2 4
x

–0.04

–0.02

0

0.02

0.04

vzx

Figure 5. The z-component of the flow velocity in the xz-plane at height z = 0.5 at time
t = 0.5 after a sudden impulse of strength P = 4π in the positive x-direction at time t = 0
at the point r0 = (0, 0, 1) for the no-slip boundary condition at the plane z = 0 (solid curve),
compared with that for the perfect slip boundary condition (dashed curve).

with the abbreviation

Φ(r) =
1

4πρ

xP

r3
. (4.21)

In terms of these potentials the short-time flow velocity is

vsh
x (r, t) = −∇φ − ∇φ + 4

√
τ

π
∇∂φ

∂h
+ O(τ ), (4.22)

and the short-time pressure is

psh
x (r, t) = p0 − 2η√

πτ

∂φ

∂h
+ 2η

∂2φ

∂h2
+ O(

√
τ ). (4.23)

Therefore, up to the terms of order τ , the short-time flow is irrotational. The short-
time flow velocity and the short-time pressure are related as in (3.28). In Cartesian
coordinates

∂φ

∂h
=

−3x(z + h)

[x2 + y2 + (z + h)2]5/2
P

4πρ
. (4.24)

For P > 0 there is at short times a pressure increase for x > 0 and a decrease for
x < 0.

The flow pattern and pressure at any time t may be evaluated by numerical
integration in (4.5), (4.10) and (4.14). At short times the flow pattern is well
approximated by (2.2) for perfect slip boundary conditions, except close to the
wall, where it is strongly suppressed. At later times the flow is still qualitatively the
same as that for slip boundary conditions, except close to the wall, though reduced in
magnitude. As an example we show in figure 5 the z-component of the flow velocity
in the xz-plane at z = 0.5 and t = 0.5 as a function of x and compare with that for
the slip boundary condition. In figure 6 we present results for the x-component of the
flow velocity and make the same comparison. At any fixed time the flow far from the
wall is nearly identical with that for the slip boundary condition.
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–4 –2 0 2 4
x

0

0.1

0.2

0.3

0.4

0.5

0.6

vxx

Figure 6. The x-component of the flow velocity in the xz-plane at height z = 0.5 at time
t = 0.5 after a sudden impulse of strength P = 4π in the positive x-direction at time t = 0
at the point r0 = (0, 0, 1) for no-slip boundary condition at the plane z = 0 (solid curve),
compared with that for the perfect slip boundary condition (dashed curve).

–1

0

1

2

x

0

0.25

0.50

0.75

1.00

z

–2

0

2

–2

δpx

Figure 7. Plot of the pressure disturbance δpx in the xz-plane at time t = 0.1 after a sudden
impulse of strength P = 4π in the positive x-direction at time t = 0 at the point r0 = (0, 0, 1)
for the no-slip boundary condition at the plane z = 0.

There is a pressure disturbance which shows an oscillation in time. At short times
the pressure disturbance is large. In figure 7 we plot the pressure disturbance in the
xz-plane at time t = 0.1. We show in figure 8 how it has evolved at time t = 0.5.

5. Reaction field tensor
In earlier work (Felderhof 2005a) we have evaluated the velocity autocorrelation

function of a Brownian particle of mass mp near a wall with the no-slip boundary
condition in the limit in which the radius a of the particle is small compared to the
distance h from the wall. The velocity autocorrelation function may be evaluated
as the Fourier transform of the frequency-dependent admittance tensor. The latter
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Figure 8. Plot of the pressure disturbance δpx in the xz-plane at time t = 0.5 after a sudden
impulse of strength P = 4π in the positive x-direction at time t = 0 at the point r0 = (0, 0, 1)
for no-slip boundary condition at the plane z = 0.

gives the mean velocity response of the particle to an applied harmonic force. The
admittance tensor differs from that for infinite space due to the no-slip boundary
condition applied at the wall. For a � h the difference may be expressed in terms of
a reaction field tensor F(r0, ω) defined by

F(r0, ω) = lim
r→r 0

(Gω(r, r0) − G0ω(r − r0)), (5.1)

where G0ω(r − r0) is the Green function tensor for infinite space. The tensor takes
account of the backflow at the position of the particle. It follows from the reciprocity
relation (2.12) that the tensor is symmetric. In the earlier work the two Green functions
were expressed by spatial Fourier integrals as in (2.11). The subsequent integral over
wave vector k could be evaluated in closed form as a function of frequency. The
dependence on frequency is quite complicated, and the numerical calculation of
the inverse Fourier transform, needed to obtain the reaction field as a function of
time, requires care (Felderhof 2005a; Kraus 2007). The present formalism provides a
simpler calculation of the reaction field.

The admittance tensor for a particle centred at r0 is

Y(r0, ω) = Y0(ω)

[
1 + 6πηa

(
1 + αa +

1

3
α2a2

)
F(r0, ω)

]
, (5.2)

where Y0(ω) is the scalar admittance for infinite space:

Y0(ω) =

[
− iωmp + 6πηa

(
1 + αa +

1

9
α2a2

)]−1

. (5.3)

In the theory of Brownian motion the velocity autocorrelation function of the particle
is defined by

C(t) = 〈U(t)U(0)〉, (5.4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
00

65
21

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009006521


Flow after a sudden point impulse near a wall 439

where the angle brackets denote the equilibrium ensemble average. According to the
fluctuation-dissipation theorem its Fourier transform is given by

Ĉ(ω) =

∫ ∞

0

eiωtC(t) dt = kBT Y(r0, ω). (5.5)

We consider first the case of vertical excitation. The analogue of (3.11) for the
infinite space Green function is given by

V0zz(k, z, h, t) =
1

2
k

[
ek(h−z)

(
1 − erf

h − z + 2kτ

2
√

τ

)
+ e−k(h−z)

(
1 + erf

h − z − 2kτ

2
√

τ

)]
.

(5.6)
The difference function at z = h

δVzz(k, h, t) = Vzz(k, h, h, t) − V0zz(k, h, h, t) (5.7)

is given by

δVzz(k, h, t) = −k

[
1 + 2k

√
τ

π

(
e−2kh−k2τ − 2e−(h+2kτ )2/4τ + e−k2τ−h2/τ

)

+ (1 + 2k2τ )e−2kherf k
√

τ + (1 − 2kh + 4k2τ )e−2kherf
h − 2kτ

2
√

τ

+ 2(kh − k2τ )e−2kherf
h − kτ√

τ
− erf

h + kτ√
τ

]
. (5.8)

The corresponding relaxation function, characterizing the time-dependent reaction
field, is defined by

ψz(τ ) =
3

2

∫ ∞

0

δVzz(k, h, t)k dk. (5.9)

The reaction field factor is given by

Fzz(r0, ω) =
1

6πρ

∫ ∞

0

eiωtψz(τ ) dt. (5.10)

At time t = 0

δVzz(k, h, 0) = −ke−2kh. (5.11)

Hence the initial value of the relaxation function is

ψz(0) = − 3

8h3
, (5.12)

in agreement with the earlier result found from the high-frequency behaviour of the
Fourier transform. From the low-frequency behaviour of the Fourier transform we
found that at long times the relaxation function decays as

ψz(τ ) ≈ − 1

2
√

π
τ−3/2 as τ → ∞, (5.13)

independent of the distance from the wall. The behaviour at intermediate times is
found easily from (5.9) by numerical integration. In figure 9 we plot log[ψz(τ )/ψz(0)]
as a function of log10(τ/h2).

Next we consider the case of horizontal excitation. The analogue of (4.4) for the
infinite space Green function is given by

V0xxc(k, z, h, t) = −V0zz(k, z, h, t). (5.14)
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Figure 9. Plot of ln[ψz(τ )/ψz(0)] for the no-slip boundary condition (solid curve) and for
perfect slip boundary condition (dashed curve) as functions of log10(τ/h2).

We define the difference function

δVxx(k, h, t) = Vxxc(k, h, h, t) − V0xxc(k, h, h, t). (5.15)

It is given by

δVxx(k, h, t) = δVzz(k, h, t) + 2k erfc
h + 2kτ

2
√

τ
+ 2ke−2kh

(
erf

h − kτ√
τ

− erf
h − 2kτ

2
√

τ

)
.

(5.16)
The corresponding relaxation function, characterizing the time-dependent reaction
field, is defined by

ψx(τ ) = − 3

4
√

πτ 3/2
e−h2/4τ +

3

4

∫ ∞

0

δVxx(k, h, t)k dk. (5.17)

The first term arises from the function Vxx0 in (4.3) and from the corresponding

V0xx0(k, h, t) =
1√
πτ

e−k2τ−(z−h)2/4τ . (5.18)

The reaction field factor is given by

Fxx(r0, ω) =
1

6πρ

∫ ∞

0

eiωtψx(τ ) dt. (5.19)

At time t = 0

δVxx(k, h, 0) = δVzz(k, h, 0). (5.20)

Hence the initial value of the relaxation function is

ψx(0) = − 3

16h3
, (5.21)

in agreement with the earlier result found from the Fourier transform. From the
low-frequency behaviour of the Fourier transform we found that at long times the
relaxation function decays as

ψx(τ ) ≈ − 1

2
√

π
τ−3/2 as τ → ∞. (5.22)
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Figure 10. Plot of ln[|ψx(τ )/ψx(0)|] for the no-slip boundary condition (solid curve) and for
perfect slip boundary condition (dashed curve) as functions of log10(τ/h2).

The behaviour at intermediate times is found easily from (5.17) by numerical
integration. In figure 10 we plot log[ψx(τ )/ψx(0)] as a function of log10(τ/h2). The
amplitude of the long-time tail in (5.13) and (5.22) is such that the t−3/2 long-time
tail in the velocity autocorrelation function of a Brownian particle in infinite space is
precisely cancelled. Thus the wall has a strong effect on the long-time behaviour. We
predicted in particular that the autocorrelation function of the vertical component
of velocity decays with a t−5/2 long-time tail of negative amplitude. The theoretical
predictions have been confirmed by experiment (Jeney et al. 2008).

It is of interest to compare with the corresponding relaxation functions for the
perfect slip boundary condition. From (2.2) and (5.1) we find

ψsl
x (τ ) =

3

2ν
Txx(r0 − r0, t), ψsl

z (τ ) =
−3

2ν
Tzz(r0 − r0, t). (5.23)

From the explicit expression (2.2) one finds for the first function

ψsl
x (τ ) =

3

4
√

π

(
1

2h2
√

τ
+

1

τ 3/2

)
e−h2/τ − 3

16h3
erf

h√
τ

, (5.24)

and for the second function

ψsl
z (τ ) =

3

4h2
√

πτ
e−h2/τ − 3

8h3
erf

h√
τ

. (5.25)

These functions have the same initial values as in (5.12) and (5.21),

ψsl
x (0) = − 3

16h3
, ψsl

z (0) = − 3

8h3
, (5.26)

as one would expect. The long-time behaviour is given by

ψsl
x (τ ) ≈ 1

2
√

π
τ−3/2, ψsl

z (τ ) ≈ −1

2
√

π
τ−3/2, as τ → ∞. (5.27)

Thus at long times the relaxation function for parallel excitation has the sign opposite
that for the no-slip boundary condition. This implies that for perfect slip at the wall
the velocity autocorrelation function of a Brownian particle Cxx(t) decays with a t−3/2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
00

65
21

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009006521


442 B. U. Felderhof

long-time tail rather than with a t−5/2 tail. At long times

Cxx(t) ≈ kBT

6ρ[πν]3/2
t−3/2 as t → ∞ (slip). (5.28)

The amplitude is twice that for infinite space without wall.
In figure 9 we compare the behaviour of log[ψz(τ )/ψz(0)] as a function of

log10(τ/h2) for the no-slip boundary condition with that for perfect slip. In figure 10
we make the same comparison for log[|ψx(τ )/ψx(0)|]. In this case the normalized
relaxation function γ sl

xx(τ ) = ψsl
x (τ )/ψsl

x (0) for perfect slip passes through zero and
decays with a negative τ−3/2 long-time tail.

6. Discussion
We have found an efficient way of calculating the flow of a viscous incompressible

fluid generated by a sudden impulse near a wall with the no-slip boundary condition.
Far from the wall the flow is nearly the same as for the perfect slip boundary
condition, but near the wall it is significantly different. For the perfect slip boundary
condition the pressure disturbance vanishes immediately after the impulse, but for the
no-slip boundary condition there is a space- and time-dependent pressure disturbance.
At short times the pressure disturbance is large, and it even diverges in the limit of
vanishing time.

Frenkel and co-workers have studied the dynamics of a viscous fluid near a wall
with the no-slip boundary condition (Hagen et al. 1997) or confined between plane
walls (Pagonabarraga et al. 1999) and have performed lattice Boltzmann simulations,
with particular attention to the long-time tail of the velocity autocorrelation function
of a Brownian particle. They have pointed out that the no-slip boundary condition
couples the vorticity mode with the pressure. In confined geometry this leads to an
over-damped sound mode if the fluid is compressible. Frydel & Rice (2006) have
studied the effect of the perfect slip boundary condition.

In earlier works we have studied the velocity autocorrelation function of a Brownian
particle immersed in a compressible fluid near a plane wall (Felderhof 2005c) or
between plane walls (Felderhof 2006). It would be desirable to obtain also the time-
dependent Green function for a compressible fluid near a wall or between plane walls,
but the analysis becomes more complicated than for the incompressible fluid studied
here.
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