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When a flexible vesicle is placed in an extensional flow (planar or uniaxial), it
undergoes two unique sets of shape transitions that to the best of the authors’
knowledge have not been observed for droplets. At intermediate reduced volumes
(i.e. intermediate particle aspect ratio) and high extension rates, the vesicle stretches
into an asymmetric dumbbell separated by a long, cylindrical thread. At low reduced
volumes (i.e. high particle aspect ratio), the vesicle extends symmetrically without
bound, in a manner similar to the breakup of liquid droplets. During this ‘burst’ phase,
‘pearling’ occasionally occurs, where the vesicle develops a series of periodic beads
in its central neck. In this paper, we describe the physical mechanisms behind these
seemingly unrelated instabilities by solving the Stokes flow equations around a single,
fluid-filled particle whose interfacial dynamics is governed by a Helfrich energy
(i.e. the membranes are inextensible with bending resistance). By examining the
linear stability of the steady-state shapes, we determine that vesicles are destabilized
by curvature changes on its interface, similar to the Rayleigh–Plateau phenomenon.
This result suggests that the vesicle’s initial geometry plays a large role in its shape
transitions under tension. The stability criteria calculated by our simulations and
scaling analyses agree well with available experiments. We hope that this work will
lend insight into the stretching dynamics of other types of biological particles with
nearly incompressible membranes, such as cells.
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1. Introduction and motivation

In the past 20 years, the biophysics community has demonstrated a keen interest
in characterizing the response of biological particles to various types of mechanical
forces. Vesicles, which are sacs of fluid enclosed by a lipid bilayer, are one example
of such particles. These fluid sacs perform many important biological functions in
living cells, such as the storage and transport of nutrients, as well as the control of
osmotic pressure (Alberts et al. 2004). In biomedical applications, artificial vesicles
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(so-called liposomes) are common encapsulation agents for drug delivery with regard
to cancer treatments (Sharma & Sharma 1997; Medina, Zhu & Kairemo 2004;
Immordino, Dosio & Cattel 2006). In addition, liposomes have been of interest in
areas ranging from self-assembly (Antonietti & Forster 2003) to miniature bioreactors
(Noireaux & Libchaber 2004). Understanding the deformation of these particles under
various forces provides useful knowledge for such applications, as well as insight into
the dynamics of other biological particles characterized by soft, nearly incompressible
membranes.

In this study, we will examine simple vesicles, which are unilamellar lipid
membranes enclosing a Newtonian fluid. These particles are much simpler than
eukaryotic cells, which have a non-Newtonian interior fluid, as well as a membrane
with shear elasticity due to the presence of a cytoskeletal network. Nevertheless,
certain aspects of cell deformation are similar to those of vesicles, and the basic
physics of these motions can be explained through simple vesicle models. Examples
of physics that can be explained through vesicle models include the biconcave shape
of red blood cells, as well as the tank-treading/tumbling/swinging motions of these
cells in shear flow (Abkarian & Viallat 2008; Vlahovska, Podgorski & Misbah 2009).

In the past decade, several authors have extensively studied the single- and
multi-particle dynamics of simple vesicles in shear flow. Such studies include: (a) the
characterization of vesicle tank treading/tumbling/swinging motion (Mader et al. 2006;
Vlahovska & Gracia 2007; Dechamps, Kantsler & Steinberg 2009; Zhao & Shaqfeh
2011); (b) the induced hydrodynamic lift of a single vesicle near a wall (Callens et al.
2008; Podgorski et al. 2011; Zhao, Spann & Shaqfeh 2011); (c) pair interactions
between two vesicles (Kantsler, Segre & Steinberg 2008b; Gires, Danker & Misbah
2012; Levant et al. 2012; Zhao & Shaqfeh 2013a); and (d) the measurement of the
effective viscosity of a dilute vesicle suspension (Kantsler et al. 2008b; Vitkova et al.
2008). Recent studies also examine the role of membrane thermal fluctuations on the
flow dynamics of vesicles (Zabusky et al. 2011; Levant & Steinberg 2012; Abreu
& Seifert 2013). Despite the wealth of information of vesicles in shear flow, we are
only aware of two experiments characterizing these particles in extensional flows, the
details of which we describe below.

When a vesicle of high aspect ratio is placed in a planar extensional flow,
it stretches to a steady-state shape at low extension rate, but appears to extend
indefinitely in a symmetrical fashion above a critical extension rate (Kantsler, Segre
& Steinberg 2008a). This behaviour is similar to the capillary breakup of droplets in
such flows (Rallison 1984; Stone 1994), although the shapes in these two situations
are qualitatively different. After the onset of continuous deformation, the vesicles have
a much more dumbbell-like shape than the droplets, as well as a smaller central neck
(figure 1a,b). As the deformation increases, the vesicles form pearls at the neck, which
are ‘bulges’ with a size characteristic of the neck’s radius (figure 1b). We emphasize
that this pearling takes effect during flow, while such effects for droplets almost
always occur after flow cessation, when the standard Rayleigh–Plateau instability takes
place (Tomotika 1935; Stone, Bentley & Leal 1986). Kantsler et al. characterized the
critical extension rates for these vesicle shape transitions, and they found that the
transitions are sensitive to the initial (no-flow) geometry of the vesicle, particularly
the vesicle’s aspect ratio (Kantsler et al. 2008a). Unlike droplets, vesicles possess
non-spherical initial shapes due to the mechanical properties of their lipid bilayers,
which are nearly incompressible and cannot be described by a simple surface tension.
Although current experiments on vesicles have not examined the dependence of the
critical extension rate on the viscosity mismatch between the inner and outer fluids,
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FIGURE 1. (Colour online) Comparison between droplets and high-aspect-ratio vesicles in
planar extensional flows. (a) Droplet with viscosity ratio λ=µin/µout = 2.4, deforming at
an extension rate of ε̇ = 0.132 s−1. The pictures from top to bottom represent snapshots
in time during continuous deformation (time is non-dimensionalized by ε̇−1). (Reproduced
with permission from Stone et al. (1986).) (b) A DOPC (dioleoyl-phosphatidylcholine)
vesicle with initial aspect ratio 8.8 and matched viscosity ratio, deforming at an extension
rate of ε̇ = 0.31 s−1. The pictures from top to bottom represent snapshots in time during
continuous deformation. The numbers are dimensionless time tε̇, and the scale bar is
10 µm. (Reproduced with permission from Kantsler et al. (2008a).) (c) Stability boundary
for a vesicle, as a function of the vesicle’s initial aspect ratio. Black dots represent
extension rates above which the vesicle deforms continuously, while the white dots
represent extension rates above which pearls are observed. (Reproduced with permission
from Kantsler et al. (2008a).)

we will later show that such a dependence is very weak, which is in strong contrast
to the droplet case (see Bentley & Leal 1986; Stone 1994).

When the vesicle’s aspect ratio is smaller (between three and six), its behaviour
in planar extensional flow appears to be qualitatively different than that described
above. Susan Muller (Spjut 2010) placed an intermediate-aspect-ratio vesicle in a four-
roll mill, and when the extension rate increased above a critical value, the vesicle
transitioned into an unsteady, asymmetric dumbbell separated by a long, cylindrical
thread (figure 2a). Recent simulations by Zhao & Shaqfeh (2013b) observe this same
phenomenon (figure 2b), and they quantify the conditions under which the vesicle
becomes unstable (albeit, only for the case when fluids inside and outside the vesicle
have matched viscosities). The asymmetric shape transition does not occur for droplets
with a clean interface, although a few studies have observed this phenomenon when
surfactants strongly adsorb onto the droplet, creating a nearly incompressible interface
(Janssen, Boon & Agterof 1997; Hu, Pine & Leal 2000).

In this paper, we elucidate the major physics behind the extensional flow instabilities
described in the previous two paragraphs. We solve the Stokes flow equations around
a single vesicle, and determine the conditions under which this flow destabilizes
perturbations to the vesicle’s shape. In § 2, we describe the constitutive model we use
for the vesicle interface, as well as the numerical techniques we employ to solve the
Stokes equations. Section 3 discusses our results in the intermediate-aspect-ratio limit,
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(a)

(b)

FIGURE 2. (Colour online) Intermediate-aspect-ratio vesicles in extensional flows.
(a) Giant, unilamellar vesicle in planar extensional flow during instability. (Reproduced
with permission from Spjut (2010).) The extension rate is ε̇ = 0.7 s−1, and the scale bar
is 5 µm. The inner and outer fluid are viscosity matched. (b) Snapshots of the instability
from boundary integral simulations (reduced volume = 0.65, capillary number = 10).
(Reproduced with permission from Zhao & Shaqfeh (2013b).)

where the shape instability creates asymmetrical dumbbells. Section 4 states the results
in the high-aspect-ratio limit, where symmetric burst and subsequent pearling occurs.
We conclude our findings in § 5, as well as discuss future directions for our work.
The central message from this study is that vesicles are destabilized by curvature
changes at their interface, which can be described as a modified Rayleigh–Plateau
instability.

2. Model and numerical methods
2.1. Equations and choice of constitutive model

We show the geometry and set-up of the problem in figure 3. Suppose we subject a
single vesicle to an extensional flow field:

u∞ = ε̇(zẑ+ (α − 1
2)y ŷ+ (−α − 1

2)xx̂) (2.1)

with the viscosities of the fluids interior and exterior to the vesicle being µin and µout.
In the above equation, α is a parameter that controls what type of extensional flow the
vesicle experiences. In most experiments, the flow field is a planar extensional flow
(α = 1/2). In our study, we will primarily examine uniaxial extensional flow (α = 0),
showing a posteriori that there is very little difference in the results between these
two flow types (see § 3.4, especially figure 13).

In the experiments described in the introduction (Kantsler et al. 2008a; Spjut 2010),
the vesicles are typically of size a∼ 10 µm, and the extension rate is ε̇ ∼ 1 s−1. In
this case, the particle Reynolds number is Re= ρε̇a2/µout ≈ 10−4, and hence the flow
around the particle is governed by the Stokes equations

η∇2u=∇p, ∇ · u= 0 (2.2a,b)

where u is the fluid velocity, p is the pressure, and η is the viscosity of the fluid (µout
for the exterior of the particle and µin for the interior). We will neglect translational
Brownian motion of the vesicle, since the Péclet number is Pe = 6πµouta3ε̇/(kT) ≈
4500. We will also neglect thermal fluctuations of the interface, although recent studies
by Dechamps et al. (2009) suggest that such dynamics may be important in shear flow.
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Reference ellipsoid

Vesicle

(Radial, polar, azimuthal)

FIGURE 3. (Colour online) Geometry of a vesicle in spheroidal coordinates. In uniaxial
extensional flow, the vesicle takes an axisymmetric geometry that can be described
by prolate spheroidal coordinates. The coordinate system is characterized by the triad
(τ , ξ , φ), where a surface of constant τ is a prolate spheroid. The variables θ = cos−1(ξ)
and φ are the polar and azimuthal angles. Every spheroidal coordinate system also has
a reference spheroid (shown in yellow online). We choose the reference spheroid to
be reasonably close to the vesicle’s geometry, so that the radial coordinate τ is nearly
constant along the vesicle’s interface. See (2.8) for conversion between Cartesian and
spheroidal coordinates.

At mechanical equilibrium, the velocity field must be continuous across the
particle’s membrane, as well as satisfy a force balance on the interface. For droplets,
the interfacial forces are surface tension, which leads to the standard result that
the tangential stresses are continuous across the interface, while the normal stresses
are discontinuous with a jump described by the capillary forces (Leal 2007). For a
vesicle, the interface is a thin lipid bilayer that has bending resistance and strongly
resists changes in local area (at least during the flow time scale ε̇−1, which is
the experimentally relevant one (Seifert 1997)). A popular model that takes these
observations into account is the Helfrich model (Helfrich 1973), which states that the
energy of the membrane consists of bending deformation and a constraint on local
area:

E= κ
2

∫
(2H − c0)

2 +
∫
σα dA, where α = (dA− dA0)/dA. (2.3)

In the above equation, κ, H, c0 and σ are the bending modulus, mean curvature,
spontaneous curvature, and surface tension of the membrane. The surface tension is
not a material parameter, but a spatially varying field that forces the local areal strain
to be zero (α = 0). This statement of membrane incompressibility is equivalent to
setting the surface divergence of the velocity to be zero: ∇s · u = 0, where ∇s =
(I−nn) ·∇ is the surface-gradient operator and n is the outward-pointing unit normal
vector. The spontaneous curvature c0 takes into account any bilayer asymmetry due
to differences in chemical composition or embedded proteins. For the experimental
studies described in the introduction, the lipid bilayer is mostly one component, so
c0 is nearly zero. We only consider the case c0 = 0 in our study, although for many
vesicles in vivo, the spontaneous curvature may be significant (Seifert 1997). We note
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that the Helfrich model does not include shear deformation or dilatation, which is
present in more complicated biological membranes, such as those of cells.

The first variation of the interfacial energy (2.3) gives the force per unit area on the
surrounding fluids due to the membrane’s bending and surface tension. These forces,
denoted as f B and f σ , must be balanced by the jump in viscous stresses across the
interface: [[T · n]] = f B+ f σ . Expressions for f B and f σ are (Zhong-Can & Helfrich
1989):

f B = κ(4KH − 4H3 − 2∇2
s H)n

f σ = 2σHn−∇sσ .

}
(2.4)

In the above equation, K is the Gaussian curvature of the interface. The convention
we use is such that the mean curvature for a unit sphere is one.

To determine the motion of the vesicle’s interface, we solve the Stokes velocity field
(2.2) subject to continuity of velocity across the interface, surface incompressibility
∇s · u = 0, and the interfacial force balance [[T · n]] = f B + f σ . In this study, we
characterize the stability of steady-state vesicles by the following procedure.

(a) We find the vesicle shape such that its normal velocity on the interface is zero:
u · n= 0. This shape is the steady-state vesicle shape.

(b) We perturb the shape infinitesimally, and solve for the velocity field on the
interface. If the surface velocity causes the perturbation to amplify, the shape
is unstable. By spanning a large set of possible perturbations, we can construct
a set of normal modes for the deformation, as well as its associated spectrum
(i.e. growth rates).

The details of these two steps depend on the numerical method we implement.
In § 2.3, we describe a multipole technique to solve for the velocity around an
axisymmetric vesicle. We employ this technique for most of this paper, and we will
verify the results with boundary integral simulations that we describe in § 2.4. In the
next section (§ 2.2), we will describe the non-dimensionalization of our equations and
the important dimensionless parameters in our study.

2.2. Non-dimensionalization and dimensionless parameters
Because the vesicle’s membrane and interior fluid are incompressible, the area (A)
and the volume (V) of the vesicle are constant during deformation. We therefore non-
dimensionalize all distances by the equivalent radius a=√A/(4π), time scales by ε̇−1,
velocities by ε̇a, surface tensions by µoutε̇a, and stresses by µoutε̇. With this choice
of non-dimensionalization, we obtain three dimensionless groups that are important in
our study:

ν ≡ 3V
4πa3

, Ca≡ µoutε̇a3

κ
, λ≡ µin

µout
. (2.5a–c)

The first parameter, the reduced volume, measures the degree of asphericity of the
vesicle. It is closely related to the particle’s aspect ratio, with ν = 1 representing a
perfect sphere, while ν � 1 represents a high-aspect-ratio particle. The vesicles in
Kantsler et al. (2008a) have reduced volume in the range ν ≈ 0.25–0.65, while those
in Spjut (2010) have reduced volumes between 0.7< ν < 0.8.

The second parameter is the capillary number, which is the ratio of viscous to
bending stresses at the vesicle’s interface. Most artificially made liposomes have a
bending modulus of order 10−19 J (Rawicz et al. 2000; Pan et al. 2008), which leads
to a capillary number of Ca ∼ O(1) for the experiments we consider. In this study,
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we will examine the entire range of this parameter, from the no-flow limit (Ca= 0)
to the no-bending limit (Ca→∞).

The last dimensionless group is the viscosity ratio between the inner and outer fluid.
For the experiments we described, the inner fluid is the same as the outer one, so
λ = 1. We will examine several viscosity ratios in the range λ ∼ O(1), and we will
show that this parameter has a very weak effect on the critical condition of shape
instability.

In what follows, all quantities will be written in non-dimensional form unless
otherwise specified. The far-field velocity and stress boundary conditions in uniaxial
extensional flow transform to

u∞ = zẑ− 1
2 xx̂− 1

2 y ŷ (2.6)

[[T · n]] = f σ +Ca−1 f B
f B = (4KH − 4H3 − 2∇2

s H)n
f σ = 2σHn−∇sσ .

 (2.7)

2.3. Multipole method
2.3.1. Spheroidal coordinates and multipole expansion

In § 3, we find that the steady-state shape of a vesicle in uniaxial flow approaches
a prolate spheroid in the limit of no bending forces (Ca→∞). Motivated by this
fact, we choose to parameterize the shape of the particle in spheroidal coordinates,
and find a series solution (i.e. multipole expansion) to the Stokes flow equations in
this geometry. We give a brief review of prolate spheroidal coordinates below, and
then develop the multipole expansion shortly afterwards. We expect our multipole
expansion to be accurate as long as the vesicle shape is reasonably close to spheroidal,
which we will verify a posteriori via comparisons with boundary integral simulations
(§ 2.4).

In spheroidal coordinates, a point in space is characterized by the triad (τ , ξ , φ). A
surface of constant τ is an ellipsoid, while φ and θ = cos−1(ξ) are the azimuthal and
polar angles (figure 3). The coordinate system additionally has a reference ellipsoid,
described by a parameter c which is the product between its eccentricity and aspect
ratio. The choice of reference ellipsoid is arbitrary, but we typically choose it to
be reasonably close to the vesicle’s shape. In this situation, the radial coordinate τ
will be close to constant along the vesicle’s interface, which will allow our multipole
expansion to converge more rapidly.

Let b be the semi-minor axis length of a prolate spheroid with a reduced volume
ν (this value is uniquely defined). The conversion between Cartesian and spheroidal
coordinates is

x= cb
√
τ 2 − 1

√
1− ξ 2 cos(φ)

y= cb
√
τ 2 − 1

√
1− ξ 2 sin(φ),

z= cbτξ
τ > 1, −1 6 ξ 6 1, 0 6 φ < 2π. (2.8)

The reference spheroid is a surface of constant τ with τ =√1+ 1/c2. The aspect
ratio of this spheroid is

√
1+ c2, and its focal length is cb.

In this coordinate system, the set of harmonic functions (i.e. functions G that satisfy
∇2G= 0) is (Hobson 1931):

Growing: Sm,(grow)
n = Pm

n (τ )P
m
n (ξ) exp(imφ),

Decaying: Sm,(decay)
n =Qm

n (τ )P
m
n (ξ) exp(imφ).

}
(2.9)
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In the above equation, Pm
n (x) and Qm

n (x) are Legendre functions of the first and
second kind (details of which are given in § A.1). The decaying harmonics vanish
at infinity, but become singular along the focal axis of the reference ellipsoid (when
τ = 1). Conversely, the growing harmonics are finite along the focal axis, but are
singular at infinity. For an axisymmetric geometry, as we consider here for uniaxial
extensional flow, the harmonic functions will have no dependence on the azimuthal
angle φ, so we can set m= 0 in the equations above.

Given a set of harmonic functions, we can derive a series solution (i.e. multipole
expansion) for the Stokes equations in a straightforward fashion (Tran-Cong & Blake
1982; Leal 2007). We omit the details here, and state the final results (see § A.2 for
derivation). The disturbance velocity and pressure fields in axisymmetric flow are

uτ = b

√
τ 2 − 1√
τ 2 − ξ 2

∞∑
n=0

[
1
2
ξcnPn(ξ)

(
Rn(τ )− τR′n(τ )

)− 1
2

dnPn(ξ)R′n(τ )
]

(2.10)

uξ = b

√
1− ξ 2√
τ 2 − ξ 2

∞∑
n=0

[
1
2
τcnRn(τ )

(
ξP′n(ξ)− Pn(ξ)

)+ 1
2

dnRn(τ )P′n(ξ)
]

(2.11)

p = − η̃

c(τ 2 − ξ 2)

∞∑
n=0

cn
[
ξ(τ 2 − 1)R′n(τ )Pn(ξ)+ τ(1− ξ 2)Rn(τ )P′n(ξ)

]
. (2.12)

In the above equations, Rn(τ ) is the radial component of the spheroidal harmonics,
which is equal to Qn(τ ) outside the vesicle and Pn(τ ) inside the vesicle. A prime
on these functions indicates differentiation. The non-dimensional viscosity is η̃, which
is one outside the particle and λ inside the particle. The coefficients {cn, dn} are the
multipole moments, which we have to determine. Outside the vesicle, we solve for
{c0, c1, . . .} and {d0, d1, . . .}. In order to avoid degeneracy in the above sums (Dassios,
Payatakes & Vafeas 2004), we set c0 = c1 = d0 = 0 and solve for {c2, c3, . . .} and
{d1, d2, . . .} inside the vesicle. The series expressions for the viscous stresses are listed
in § A.2.

In the next section, we discuss how we parameterize the vesicle interface, and how
we determine the deformation rate of the interface.

2.3.2. Surface parametrization and evolution equation for vesicle’s shape
In uniaxial extensional flow, the vesicle shape and tensions are independent of the

azimuthal angle φ around the extension axis (the z axis). We can thus parameterize
the shape by the level surface τ = g(ξ , t) and the tension by the function σ = σ(ξ, t),
where t is time. We decompose both of these quantities into Legendre modes

τ =
∞∑

m=0

gm(t)Pm(ξ), σ =
∞∑

m=0

σm(t)Pm(ξ) (2.13a,b)

and attempt to solve for the deformation rate ∂gm/∂t as a function of the current
vesicle configuration gm(t).

To do so, we first decompose the velocity field into a far-field component (2.6)
and a disturbance field which is described by the multipole velocity solution (2.10)
and (2.11). We perform the same decomposition for the viscous stresses (see § A.2).
We then project the following interfacial boundary conditions onto a set of Legendre
modes: continuity of velocity, surface incompressibility (∇s · u = 0), the kinematic
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boundary condition (∂g/∂t=u ·∇(τ −g)), and the interfacial force balance ([[T ·n]]=
f σ +Ca−1 f b). These expressions, along with conservation of area and volume

DA
Dt
=
∫

S
2H(u · n)dA= 0,

DV
Dt
=
∫

S
(u · n)dA= 0 (2.14a,b)

yield a set of linear equations for the multipole moments {cn, dn} inside and outside
the vesicle, the surface tension coefficients {σm}, the constant interior pressure p0,
and the deformation rate of the vesicle’s interface {∂gm/∂t}. We can thus solve for
the deformation rate ∂gm/∂t for a given vesicle configuration gm, which allows us
to determine the evolution of the vesicle’s shape to steady state. We solve for these
quantities with a cutoff mode N for the velocity and surface tension coefficients, and a
cutoff mode M for the vesicle shape coefficients gm. We typically choose N larger than
M (either N=M+10 or M+20), as we need to resolve the velocity and tension fields
more accurately in order to determine the shape at an acceptable level of accuracy.
Although omitted here, § A.3 details how we calculate the bending forces in all of the
calculations above. In the next section, we will describe how to find the steady-state
shape of vesicles, and then follow with a determination of the stability of these shapes.

2.3.3. Determine steady-state shapes
To determine the steady-state shape of the vesicle, we could in principle integrate

the deformation rate ∂gm/∂t from an initial configuration gm(t = 0) to a state where
the shape is nearly steady. This technique is time consuming, so we instead perform a
constrained, adaptive Newton’s iteration, which is a method of root-finding (see Boyd
& Vandenberghe 2004, p. 531). We set the deformation rate {∂gm/∂t} to be zero, and
solve for the velocity coefficients {cn, dn} and surface tension coefficients {σ1, σ2, . . .}
from the velocity boundary conditions and the tangential stress balance. The remaining
boundary condition, the normal stress balance, yields a nonlinear equation for the
vesicle shape gm, the isotropic tension σ0, and the isotropic pressure p0. We solve
this equation subject to the constraints of constant area and volume. At each step
in Newton’s iteration, we calculate the Hessian matrices using a central difference
approximation. We terminate root-finding when the two-norm of the equations and
constraints are between 10−4 and 10−7, and the step size is less than 10−9. To save
computational time, we only solve for the even coefficients of gm due to the symmetry
of the flow.

This root-finding technique is accurate for solving nonlinear equations when the
initial guess is close to the actual solution. To find the steady-state shape of a vesicle
with reduced volume ν and capillary number Ca, we first start with the shape of a
vesicle in the no-flow limit (Ca= 0), which is well known and easily calculable (see
Seifert, Berndl & Lipowsky 1991). At low reduced volumes, there are multiple no-flow
solutions, so we pick the branch that corresponds to a prolate shape, as this branch
will be stable during uniaxial extension. Using the prolate shape as an initial guess,
we use root-finding to determine the shape at a slightly higher capillary number. We
keep repeating this process, i.e. using the latest solution to find the shape at an even
higher Ca, until we march to the desired Ca. We find the shapes calculated from this
method give good agreement with the boundary integral simulations (figure 4).

2.3.4. Calculate growth rates
To determine the stability of a steady-state vesicle, we add an infinitesimal

perturbation δg(ξ , t) to the level shape τ = g(ξ , t), and decompose this perturbation
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(a) (b)

FIGURE 4. (Colour online) Steady-state shapes in uniaxial extensional flow.
(a) Intermediate-aspect-ratio particles. (b) High-aspect-ratio particles. The crosses
(blue online) are boundary integral simulations, while the curves (red online) are results
from a multipole expansion. Both results are indistinguishable from each other. For (a),
the boundary integral simulations are from Zhao & Shaqfeh (2013b), while for (b), the
boundary integral simulations are from this study (see § 2.4 for description). The viscosity
ratio is λ= 1 for all shapes. The number of modes we use for the multipole expansion
is M = 15 even modes for (a) and M = 20 even modes for (b). When compared with
the no-flow solution (Ca= 0), we use a very small capillary number (Ca= 10−3) in the
multipole expansion.

into a set of modes

δg(ξ , t)=
M∑

m=0

am(t)wm(ξ), (2.15)

where each mode wm conserves area and volume up to O(δ2), i.e.∫ 1

−1
(g2 − ξ 2)wm(ξ) dξ = 0,

∫ 1

−1
H(g2 − ξ 2)wm(ξ) dξ = 0. (2.16a,b)

(Note that these equations are a restatement of (2.14) when integrated around
the base-state shape.) For each individual coefficient am, we solve the vesicle’s
deformation rate ∂g/∂t, and project this quantity onto the modes wm, which yields
one column of the dispersion matrix for a linear stability analysis. The eigenvalues of
this matrix give the growth rates of shape perturbations, while the eigenfunctions give
the deformation modes of the vesicle (which are linear combinations of the modes
wm). The magnitude of the deformation we apply in our analysis is am ∼ O(10−5).
When solving for the deformation rates, we linearize all boundary conditions exactly
except the mean curvatures and bending forces, which we approximate using central
differences with perturbation magnitude am. The growth rates we calculate from this
procedure match well with results from boundary integral simulations (figure 5).
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FIGURE 5. (Colour online) Growth rate calculations: multipole versus boundary integral.
The above plot is the growth rate of the most unstable, non-translating mode versus Ca.
The reduced volume is ν = 0.65 and the viscosity ratio is λ = 1. The solid line (blue
online) shows boundary integral results from Zhao & Shaqfeh (2013b), while the symbols
are results from our multipole expansion (§ 2.3). Here M is number of even modes we
use in our expansion. For a discussion, see § 3.4.

2.4. Boundary integral technique
We utilize the boundary integral techniques described in Spann, Zhao & Shaqfeh
(2014) to quantify the dynamics of vesicles in extensional flows, and to compare
with our multipole expansion. We give a brief overview here, and allow the reader
to view the remaining details in that publication.

Under the assumption of Stokes flow, the velocity field on the surface of the vesicle
satisfies the integral equation (Pozrikidis 1992):

1+ λ
2

uj(x0) = u∞j (x0)+ 1
8π

∫
S

Gij(x, x0)[[fi]](x) dS(x)

+ 1− λ
8π

∫
S

Tijk(x, x0)ui(x)nk(x) dS(x). (2.17)

In the above equation, we assume Einstein notation (where repeated indices are
summed). The quantity [[fi]] is the jump in hydrodynamic stresses across the interface,
which for our problem is the sum of surface tension and bending contributions:
[[ f ]] = f σ + Ca−1 f B. The functions Gij and Tijk are the standard point force and
point dipole (stresslet) solutions to Stokes flow in infinite space:

Gij(x, x0)= δij

r
+ x̃ix̃j

r3
, Tijk(x, x0)=−6

x̃ix̃jx̃k

r5
(2.18a,b)

where x̃= x− x0 and r= |x̃|. The boundary integral equations (2.17), along with the
surface incompressibility constraint ∇s · u= 0, is sufficient to determine the velocity
and surface tension fields along the interface.

We discretize the vesicle into piecewise triangular elements, with the number of
faces ranging from 5000 to 20 000 elements depending on the aspect ratio of the
particle. We calculate the bending forces on each element using the virtual work
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principle. We note that care must be taken when evaluating the bending forces on
the surface of the particle, as an accurate estimate for the derivative of the curvature
is necessary. For vesicles, we calculate the bending energy on a smooth C1 surface
constructed by Loop subdivision (Spann et al. 2014). After determining the velocity
fields on the interface, we update the position of each vertex using a standard Forward
Euler scheme: xn+1 = xn +1tun(xn)+ β1tut(xn), where un is the normal velocity, ut
is the tangential velocity, and β is a factor chosen such that the points do not cluster.
A routine for a good choice of the relaxation parameter β is given by Spann et al.
(2014).

To determine the stability of a vesicle at a given capillary number, viscosity ratio
and reduced volume, we first form a cylindrical vesicle, and relax the particle in zero
flow (Ca= 0) until it reaches a prolate equilibrium shape (this shape is locally stable,
but not globally stable at low reduced volumes (see Seifert et al. 1991)). We then
turn on the flow, and allow the vesicle to relax to steady state (in our case, when the
velocity field is O(10−3) or less). To determine the stability of this shape, we add a
small sinusoidal perturbation

r(z)= r0(z)+ ε sin(2πz/zmax) (2.19)

where r is the distance from the interface to the axis of extension, and ε is a small
number, usually of order 0.01 times the original radius r0. We track the normal
component of the surface velocity over time, and if this magnitude grows, the shape
is unstable. To measure the growth rates more accurately for the case of uniaxial
extensional flow, we normalize the vesicle length by zmax and then fit the radius r to
a set of Legendre polynomials (we use 32 modes). The largest growth rate of the
Legendre modes corresponds to the growth rate of the instability. See Spann et al.
(2014) for more details.

The boundary integral technique can handle more general geometries and flow
types than the multipole method discussed in § 2.3. However, the multipole method is
much less computationally intensive. For example, the multipole method determines
the steady-state shape and growth rates of a vesicle (at fixed ν, λ and Ca) in a few
minutes on a single processor, while the full 3D boundary integral simulations takes
approximately 1 day on a computer cluster (≈60 processors). Our boundary integral
simulations show that the two most unstable modes in uniaxial flow are indeed
axisymmetric, so we have confidence in using the multipole method to understand
the stability of a vesicle.

3. Results: intermediate-aspect-ratio vesicles
In this section, we describe the shape transitions of intermediate-aspect-ratio vesicles

in extensional flows, which correspond to the experimental observations in Spjut
(2010). We first examine the limiting case of no bending at the vesicle’s interface
(i.e. Ca → ∞), and determine the physical processes that destabilize the vesicle
shape. We find that the mechanism for instability is similar to the Rayleigh–Plateau
phenomenon (i.e. capillary breakup of a viscous thread). When a vesicle is subject
to an asymmetric shape perturbation, the interface’s curvature change will induce a
pressure-driven flow in the interior of the particle. This flow amplifies the perturbation
when the vesicle is above a critical aspect ratio, which in turn creates an asymmetric
dumbbell. In § 4, we find that this mechanism is the appropriate one even at finite
capillary number. We quantify the critical extension rates for this shape transition and
discuss how the stability criterion depends on the reduced volume and viscosity ratio.
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FIGURE 6. (Colour online) Base-state tensions and pressures: intermediate-aspect-ratio
particles at infinite Ca. (a) Base-state tensions. (b) Base-state outer pressure along the
interface. The quantity L is the length of the vesicle, with z=±L/2 corresponding to the
ends of the vesicle.

3.1. No bending limit: shapes, tensions and growth rates
In two of our previous publications (Spann et al. 2014; Zhao & Shaqfeh 2013b), we
performed boundary integral simulations of vesicles in uniaxial extensional flows, and
determined their steady state shapes for a variety of extensional rates (i.e. Ca) and
aspect ratios (i.e. reduced volume ν). A plot of these shapes is shown in figure 4(a).
As the capillary number increases, we observe that the shapes become more ellipsoidal.
Because these shapes approach a convenient geometry, we can develop an analytical
theory to determine the vesicle shapes in the limit of very high Ca (well beyond
the range in these published papers). We parameterize the shape using spheroidal
coordinates, and then solve for Stokes flow around the shape, using the multipole
expansion discussed in § 2.3. In doing so, we find that the vesicle takes the shape of
an exact spheroid when its interface has no bending resistance (Ca=∞). A vesicle
can achieve such a steady shape due to the incompressibility of its membrane, which
strongly resists deformation at high extension rates. This result is not true for the
standard droplet case, where no steady state exists at very large extension rates, and
hence the droplet breaks.

The derivation of the vesicle shape and its associated tensions, in the limit of no
bending (Ca→∞), is found in § A.4. We plot the base-state tensions and pressures in
figure 6. The surface tensions are parabolic, with the maximum at the middle of the
particle. As the aspect ratio increases (or the reduced volume decreases), the surface
tension gradients become larger. We observe a similar trend for the outer pressure on
the interface, except that the profiles are more ‘blunt’ than the surface tension profiles.
These trends for pressure and tensions make sense physically. The extensional flow
stretches the vesicle by creating a higher-pressure region at the centre of the particle
and a low-pressure region at the ends. Because the membrane is area preserving, this
stretching induces a parabolic tension that attempts to restore the vesicle to its original
(equilibrium) shape. At steady state, these processes balance each other and the net
velocity of the interface is zero. As far as we know, we are unaware of any studies
that have examined the shape, tensions, and pressures of a vesicle in the limit of
no bending. Although most experimental studies examine vesicles with finite Ca, the
results in the Ca→∞ limit provide physical insight into the dynamics and stability of
vesicles with finite bending. Furthermore, an interface with no bending in the Helfrich
model (2.3) corresponds to a particle with only an area-preserving membrane, which
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FIGURE 7. (Colour online) Growth rates for intermediate-aspect-ratio vesicles, no bending
(Ca=∞). The top graph plots the growth rates versus reduced volume for the first five
deformation modes of the vesicle. The modes at ν = 0.7 are at the bottom. Mode 2
corresponds to the pear-shaped instability observed by Spjut (2010). The shapes are not
to scale. All results are at viscosity ratio λ= 1.

is a model for many other types of complex interfaces, such as droplets with strongly
adsorbed surfactants (see Blawzdziewicz, Cristini & Loewenberg 1999; Timmermans
& Lister 2002). For such surfactant-laden interfaces, the limit of large surface tension
gradients, or large Marangoni number, gives the same interfacial force balance as the
Helfrich model with Ca→∞.

We characterize the stability of the base-state vesicle shape by perturbing its
interface infinitesimally, solving the velocity field around the particle, and finding the
conditions under which the velocity amplifies the perturbation (see § 2.3). We can
further decompose the deformation into normal modes and find their corresponding
growth rates. Figure 7 shows the growth rates and shapes of the five most unstable
modes at matched viscosity ratio (λ = 1) and no bending (Ca → ∞). The most
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FIGURE 8. (Colour online) Variation of growth rate with viscosity ratio. This plot
examines the growth rate of the pear-shaped mode (inset) in the limit of no bending
(Ca→∞). We show in § 3.2 that the onset of instability is independent of the viscosity
ratio, as this graph demonstrates.

unstable mode, with growth rate unity, is translation, which is of no concern to us.
This result means that a vesicle will move away from the extensional flow if its
centre of mass no longer coincides with the stagnation point. The second most
unstable mode is an asymmetric ‘pear’ shape, which looks remarkably similar to the
shapes observed by Spjut (2010) at the onset of instability. In fact, if we evolve this
perturbed shape over time, we observe transitions of the form in figure 2(a,b). This
mode is stable (i.e. growth rates are negative) when the vesicle is at low aspect ratio,
but unstable when the aspect ratio exceeds a critical value (ν < 0.75). These results
are consistent with previous simulations by Zhao & Shaqfeh (2013b).

The other modes of the spectrum have lower growth rates, and hence are unlikely
to be observed in experiments (e.g. in the case of Spjut). Nevertheless, the next mode
looks like capillary pinch-off (i.e. formation of a central neck with bulbous ends).
For the rest of this section (§ 3), we will focus our discussion on the experimentally
relevant second mode, which is the asymmetric pear shape.

Figure 8 shows how the growth rate of the pear shape mode varies with viscosity
ratio, in the limit of no bending (Ca → ∞). As the viscosity ratio increases, the
vesicle behaves more like a solid particle, which lowers the growth rate when the
vesicle is unstable. We observe the opposite trend when the viscosity ratio decreases
(or when the vesicle becomes more like a bubble). One interesting fact to note is that
the viscosity ratio does not appear to change the onset of the instability, which is when
the growth rate becomes zero. It turns out that this observation is true for all values
of Ca, as long as the flow around the particle is uniaxial. We prove this statement in
the next subsection, as well as develop a framework to determine the mechanism of
the instability.

3.2. Evolution equation for perturbation energy
In this section, we will prove that the onset of a shape instability is independent of
the viscosity ratio (λ), as long as flow around the particle is axisymmetric. To begin,
let us take the interfacial force balance, multiply by the velocity and integrate over
the surface of the vesicle. This process gives the production and dissipation of energy
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FIGURE 9. (Colour online) Decomposition of flow in § 3.2.

on the membrane’s surface:∫
S

u · [[T · n]] dA=
∫

S
u ·
(

f σ +Ca−1 f B

)
dA. (3.1)

In the above equation, the left-hand side is the rate of energy dissipation due
to viscous forces, while the right-hand side is the rate of energy production due
to bending and surface tension. We will linearize all fields around a steady-state
configuration and determine an evolution equation for the perturbation energy, which
in turn will provide insight into the processes that destabilize the interface.

Before we begin, we will rewrite the energy balance (3.1) in a more convenient
form. Recall the velocity and tangential stress boundary conditions for a vesicle under
extensional flow:

Far field: u→ E · x as x→∞
Continuity of velocity: [[u]] = 0 on interface
Surface incompressibility: ∇s · u= 0 on interface

Kinematic: u · n= 1
‖∇(τ − g)‖

∂g
∂t

on interface

Tangential stress: [[t · T · n]] + t · ∇sσ = 0 on interface.


(3.2)

In the above expressions, E = (∇u∞ +∇u∞,T)/2 is the far-field rate of extension,
while ∂g/∂t is the deformation rate of the membrane when it is parameterized as τ =
g(ξ) in spheroidal coordinates. Let us now define the velocity, tension and stress fields
as follows:

u= u(1) + u(2), T = T (1) + T (2), σ = σ (1) + σ (2), (3.3a–c)

where all terms with a superscript (1) satisfy boundary conditions (3.2) with
∂g/∂t=0, while all terms with a superscript (2) satisfy boundary conditions (3.2) with
E = 0. Physically, flow (1) represents the extensional flow around a non-deforming,
incompressible interface, while flow (2) represents the flow due to a deforming,
incompressible interface that is in a fluid otherwise at rest (see figure 9). These two
flow fields are not independent of each other, as they are linked through the normal
stress boundary condition: [[p]] + 2σH + Ca−1fB = 0. One interesting fact we can
show is that flow (1) is equivalent to flow around a rigid particle, as long as the
extensional flow is axisymmetric. To demonstrate this fact, we note that flow (1)
must vanish on the vesicle’s surface since its normal component is zero and it has
zero surface divergence and zero surface curl.

We now substitute the expressions of (3.3) into the energy balance (3.1). Noting that
the tangential boundary condition is automatically satisfied for flow (1), the energy
expression becomes∫

S
u(2) · [[T (2)

·n]] dA−
∫

S
u(2) · f (2)σ dA=

∫
S

u(2)n

(
Ca−1fB + [[p]](1) + 2σ (1)H

)
dA. (3.4)
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The interpretation of the above expression is as follows. The first term on the left-
hand side is the dissipation due to a purely deforming interface, which is a strictly
negative quantity. The second term is the work done by surface tension when the
interface deforms in the absence of flow. From the virtual work principle, we can
show that this term is strictly zero, as it is the work provided by a constraint force.
On the right-hand side, the first term is the dissipation from bending forces. The last
two terms are energy coupling terms created by the interaction of flow (2) and flow
(1). The coupling is between the interfacial velocity u(2)n and the sum of pressure and
capillary forces from flow (1) (which is flow around a rigid body).

Let us now consider a vesicle at steady state, where the deformation rate of the
membrane is initially zero. We perturb the shape infinitesimally, and expand the energy
balance (3.4) to quadratic order in the perturbations. Let us define the perturbed shape
as τ = gbase(ξ) + δg(ξ) exp(st), where s is the growth rate of the shape perturbation
(s> 0 indicates instability). We expand all terms related to flow field (1) as

u(1) = u(1)base + δu(1) exp(st), σ (1) = σ (1)base + δσ (1) exp(st), T (1) = T (1)
base + δT (1) exp(st).

(3.5a–c)
We similarly expand all terms related to flow field (2) as

u(2) = sδũ(2) exp(st)= sδx exp(st), σ (2) = sδσ̃ (2) exp(st), T (2) = sδT̃
(2)

exp(st),
(3.6a–c)

where δx is the deformation of the interface. All quantities related to flow (2) are
linear in the deformation rate ∂g/∂t, so they are linear in the growth rate s, as
indicated by the above equation. When we substitute the expansions (3.5) and (3.6)
into the energy balance (3.4), we obtain a final expression for the evolution equation
of the perturbation energy:

− s
∫

S
δx · δ[[T̃ (2)

·n]] dA=
∫

S
δxn(−[[δp]](1)−2δσ (1)H−2σ (1)δH−Ca−1δfB) dA. (3.7)

This equation determines the perturbation growth rates of the instability. The
integral multiplying −s is the viscous dissipation due to the deforming membrane,
which is a negative quantity. The first two terms on the right-hand side are the
energy production from the perturbation pressure and surface tension of rigid body
flow (flow 1). The last two terms are the energy production from the perturbation
curvature and bending forces. The shape perturbation is unstable when the growth
rate s is positive and, hence, when the entire right-hand side is positive. Thus, by
examining the energy contributions from pressure, surface tension, curvature, and
bending, we can determine the mechanism by which a steady-state vesicle becomes
unstable. These energy contributions also determine the stability threshold, which is
the condition under which the growth rate s is zero. Since the right-hand side of
(3.7) is independent of the viscosity ratio λ, the stability threshold is independent of
this parameter as well. However, the magnitude of the growth rates depends on λ, as
the viscous dissipation on the left-hand side varies considerably with this parameter.

When we derived (3.7), we made two major assumptions: axisymmetric flow
and an incompressible membrane. If we relax the first assumption (by using planar
extensional flow), the equation does not change. However, the base-state flow u(1)
will no longer be equivalent to flow around a rigid particle and, hence, the stability
threshold will depend on the viscosity ratio, albeit weakly. If we relax the second
assumption, the equation will have additional terms on the right-hand side that involve
the dilatation of the membrane. We do not explore these effects in this paper.
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FIGURE 10. (Colour online) Perturbation energy for intermediate-aspect-ratio vesicles, in
the limit of no bending (Ca→ ∞). We plot the perturbation energies versus reduced
volume for the pear-shaped mode (inset) in the limit of no-bending forces (Ca→∞).
The definitions of the pressure, surface tension and curvature contributions are in (3.7).
The convention we employ is that positive energies are destabilizing. As the aspect ratio
increases (i.e. reduced volume decreases), the curvature energy destabilizes the membrane.
The reference spheroid we choose in our calculations coincides with the vesicle shape.

In the next section, we will examine the energy contributions from pressure, surface
tension, curvature, and bending for the pear shape mode, which is the mode that
corresponds to the shape transitions observed by Spjut (2010). We will find that the
curvature energy is most responsible for the destabilization of the steady-state shape,
and this effect can be explained by a modified Rayleigh–Plateau instability.

3.3. Mechanism for instability: no-bending limit
In this section, we plot the perturbation energies as described by (3.7) for the
pear-shaped mode, which is the mode that corresponds to the shape transitions
observed in experiments by Spjut (2010) and in simulations by Zhao & Shaqfeh
(2013b). By examining how the energy contributions vary with the particle aspect
ratio (or reduced volume), we can determine the physical processes that destabilize
the steady-state vesicle.

Figure 10 shows the perturbation energies for the pear-shaped mode in the limit
of no bending (Ca → ∞). The convention in these plots is that positive energy
destabilizes the shape, while negative energy stabilizes. We see that the pressure
contribution is negative (i.e. stabilizing), while the surface tension contribution is
negligible. What is interesting is that the curvature contribution changes greatly with
the aspect ratio of the particle, being negative (i.e. stabilizing) for nearly spherical
particles, but positive (i.e. destabilizing) for elongated particles. This analysis suggests
that curvature changes on the interface dominate the dynamics and stability of the
vesicle. Below, we offer a physical explanation.

When a steady-state vesicle changes its geometry, the shape change induces a force
on the interface proportional to the curvature-induced pressure δpcurv = 2δHσ , where
σ is the base-state tension, and δH is the change in the interface’s curvature. If this
pressure is low in the regions of swelling, and high in the regions of contraction, the
induced flow will amplify the shape perturbation, and hence create an instability. This
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FIGURE 11. (Colour online) Curvature pressure, no bending limit. (a) Schematic of
base-state shape (solid black line) and pear-shaped mode (dotted line, red online).
(b) Curvature change 2δH induced by the pear-shaped mode. (c) Base-state surface tension
σ . (d) Curvature pressure δpcurv= 2σδH. For low reduced volumes (i.e. high aspect ratios),
the curvature pressure induces a flow indicated by the purple arrows in (a). This flow
amplifies the perturbation and, hence, destabilizes the membrane.

argument is similar to that made for the Rayleigh–Plateau phenomenon (Tomotika
1935), which describes the stability of a cylindrical column of liquid to sinusoidal
perturbations. To see if our intuition is reasonable, we plot the curvature-induced
pressure of the pear-shaped mode, for a wide variety of aspect ratios (i.e. reduced
volumes). Figure 11(a) shows a schematic of an ellipsoidal vesicle perturbed by
the pear-shaped mode. Figure 11(b) presents δH associated with this mode, and
figure 11(c) shows the base-state tensions (σ ). We see that for high-aspect-ratio
particles (i.e. low reduced volume), the curvature decreases in the regions of swelling,
and increases in the regions of contraction (figure 11b). The parabolic tensions amplify
this effect, and thus the curvature-induced pressure (figure 11d) creates a flow that
destabilizes the shape perturbation (as indicated by arrows in figure 11a). When the
aspect ratio is small (i.e. reduced volume is close to one), the curvature change shows
the opposite trend: it increases in the regions of swelling and decreases elsewhere. In
this situation, the curvature-induced pressure stabilizes shape perturbations.

In the next section, we will demonstrate that the instability mechanism is similar
in the finite bending regime as well (i.e. Ca∼ O(1)). Before we proceed, we would
like to make a few points. The mechanism proposed thus far suggests that the
primary physics behind vesicle destabilization is curvature change on the interface,
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which in turn suggests that the vesicle’s initial geometry plays the biggest role in
the instability. If this statement is true, we would expect similar shape transitions
to occur if we apply a different set of forces on the membrane (such as gravity,
electric forces, etc.). In fact, Vlahovska and coworkers have observed a similar set of
shape transitions when they places vesicles in an AC electric field (P. M. Vlahovska,
private communication, 2013). Similarly, Viallat and coworkers observe pear-shaped
transitions when they allow vesicles to settle under the force of gravity (see Huang,
Abkarian & Viallat (2011) for experiments and Boedec, Jaeger & Leonetti (2012) for
simulations). Lastly, it appears that membrane incompressibility plays a large role in
the shape transitions, as similar transitions were observed for droplets, but only in
the case when surfactants are strongly adsorbed to the interface, creating a nearly
incompressible membrane (Janssen et al. 1997; Hu et al. 2000). One hypothesis is
that surface incompressibility admits particle geometries that otherwise could not
be achieved for a simple droplet, and these geometries allow the membrane to be
destabilized by curvature changes on the interface. In the future, it is important to
understand the role that non-zero compressibility plays in this shape transition.

Lastly, we would like to highlight a few subtle differences between the shape
instability and the Rayleigh–Plateau instability. In the classic Rayleigh–Plateau
instability, the surface tension is a constant value, which is a material property
of the interface and the surrounding fluid. In our situation, the tension is a spatially
varying field that depends on the external flow and the base-state geometry. Thus,
the curvature-induced pressure depends indirectly on the external forces via the
extensional flow, which is not the case for the standard theory. Furthermore, there
are other competing factors influencing the stability of our system, such as energy
contributions from pressure, surface tension and bending. In the next section, we will
see that at finite Ca, the membrane stability is primarily governed by a competition
between bending (stabilizing) and curvature (destabilizing).

3.4. Finite bending: shapes, growth rates and mechanism of instability
In this section, we examine the stability of steady-state vesicles with finite bending
(i.e. finite Ca). We will structure this section as before. First, we will determine the
steady-state shapes of vesicles, and explore the modal structure of shape perturbations.
We will then examine the perturbation energies of the most unstable (non-translating)
mode, and use this information to determine the mechanism of instability.

In the no-bending limit (Ca→∞), the steady-state shape of a vesicle is a prolate
ellipsoid. Unfortunately, the steady shapes at finite Ca are not so simple, and we have
to resort to numerical techniques to find them. The procedure we follow is described
in § 2.3. We solve the velocity and tension fields around a non-deforming vesicle in
extensional flow (i.e. flow (1) in (3.3)), and determine the normal stresses on the
vesicle interface: [[p]] + 2σH + fB. Using root-finding, we adjust the shape until this
stress balance vanishes, and hence all boundary conditions are satisfied. The shapes
we obtain from this method agree well with boundary integral simulations (figure 4).
For intermediate-aspect-ratio vesicles (ν > 0.65), the steady-state shapes at low Ca
(i.e. low extension rate) are non-convex. As the capillary number increases, the vesicle
stretches along the extension axis and becomes more ellipsoidal. For high-aspect-ratio
vesicles (figure 4b), the steady-state shapes are qualitatively different. In this situation,
the shapes form a central neck which thins as Ca increases. We will examine these
low reduced volume vesicles in more detail in § 4.

As before, we determine the stability of the steady-state vesicles by perturbing its
interface infinitesimally, and characterizing the modal structure of these perturbations.
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FIGURE 12. (Colour online) Growth rates for intermediate-aspect-ratio vesicles, finite
capillary number. (a) Plot of the growth rates versus capillary number for the first five
deformation modes of the vesicle. The reduced volume is ν= 0.65, and the viscosity ratio
is λ= 1. (b–f ) The modes at Ca= 3. Mode 2 corresponds to the pear-shaped instability
observed by Spjut (2010). The shapes are not to scale.

Figure 12 shows the growth rates and shapes of the five most unstable modes of a
reduced volume ν= 0.65 vesicle at matched viscosity ratio (λ= 1). The most unstable
mode is translation, while the next mode corresponds to the pear-shaped instability.
At low extension rates (low Ca), the pear-shaped mode is stable, while at higher
extension rates, the mode is unstable. All other modes (mode 3 onward) appear to
be stable to shape perturbations. The third mode looks like ‘capillary pinch-off’,
i.e. formation of a central neck with dumbbell-like ends. The fourth and fifth modes
look similar to the pear and pinch-off modes, but with shorter wavelength undulations.

We define the critical capillary number Cac for a given mode as the capillary
number at which the growth rate becomes zero. In figure 13, we plot Cac for the
pear-shaped mode as a function of reduced volume, for the two cases of uniaxial flow
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Uniaxial extension (Zhao and Shaqfeh 2013)

Planar extension stable
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FIGURE 13. (Colour online) Stability boundary, intermediate-aspect-ratio vesicles. We plot
the critical capillary number at which the pear-shaped mode (inset) becomes unstable. Our
multipole expansion (§ 2.3) agrees well with previous computational studies in uniaxial
flow (Zhao & Shaqfeh 2013b). The stability boundary does not appear to change greatly
as we modify the flow type to planar extensional flow (at λ = 1). The critical capillary
number increases as the reduced volume increases, with an asymptote at ν ≈ 0.75.

and planar extensional flow. This analysis suggests that flow type does not modify
the stability threshold significantly. We see that Cac is O(1) for the reduced volume
range ν ≈ 0.60–0.65, but starts rapidly increasing after this range, with an asymptote
at ν = 0.75. These results agree very well with previous uniaxial boundary integral
simulations by Zhao & Shaqfeh (2013b). As proven in § 3.2, the stability threshold
in uniaxial extensional flow is independent of the viscosity ratio.

Figure 14 shows the perturbation energies of the pear-shaped mode as a function
of capillary number. As before, the convention we use is that positive energies are
destabilizing, while negative energies are stabilizing. In this figure, we examine two
sets of reduced volumes: one that is always stable to the pear-shaped mode (ν= 0.79),
and another that is unstable to the mode at large extension rates (ν = 0.65). For
both sets of plots, we find that the pressure contribution to the perturbation energy
is negative (stabilizing), while the surface tension contribution is negligible. The
curvature energy exhibits different behaviour at different reduced volumes. For
reduced volume ν = 0.65, the curvature energy is positive (destabilizing), while
at reduced volume ν = 0.79, the curvature energy is negative (stabilizing), but
non-monotonic in the capillary number. The bending contribution is for the most
part stabilizing, although there is a region of extension rates (i.e. capillary numbers)
where it is weakly destabilizing. Nevertheless, the curvature change on the interface
plays the biggest role in dictating the stretching transition. Indeed, if we plot the
curvature-induced pressure for the two reduced volumes (figure 15), we observe that
the pressure profile destabilizes the shape when the curvature energy is positive, but
stabilizes the shape when the curvature energy is negative. The takeaway message
from this analysis is that the Rayleigh–Plateau argument is similar in the regime of
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FIGURE 14. (Colour online) Perturbation energies of intermediate-aspect-ratio vesicles,
finite Ca. Perturbation energies versus capillary number for the pear-shaped mode at
reduced volume (a) ν = 0.65 and (b) ν = 0.79. The definitions of the pressure, surface
tension, curvature and bending contributions are in (3.7). As the reduced volume decreases
(or the aspect ratio increases), the behaviour of the curvature energy changes qualitatively.
The convention we employ is that positive energies are destabilizing. For results plotted
here, the reference spheroid in our calculations is such that the parameter cb = 0.475L,
where L is the length of the vesicle.
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FIGURE 15. (Colour online) Curvature-induced pressures, finite capillary number. We plot
the curvature-induced pressures δp = 2σδH on the interface for the pear-shaped modes
shown at the top (solid black line = base-state shape; dotted line (red online) = mode).
These curvature pressures induce flows indicated by the arrows (purple online). (a) The
case when the mode is unstable (ν = 0.65, Ca = 3). (b) The case when the mode is
stable (ν = 0.79, Ca = 3). The quantity L is the length of the vesicle, with z = ±L/2
corresponding to the ends of the vesicle.
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finite bending forces (finite Ca), except that now bending resistance is for the most
part an additional stabilizing force.

4. Results: high-aspect-ratio vesicles
In this section, we describe the shape transitions of high-aspect-ratio vesicles

in extensional flows, which correspond to the experimental observations found in
Kantsler et al. (2008a). We first examine the steady-state shapes, and then determine
what physical processes destabilize the interface, allowing the vesicle to extend
without bound in a seemingly symmetric fashion (figure 1b). In § 4.2, we quantify
the critical extension rates for this shape transition, and find that our results agree
reasonably well with available experiments (Kantsler et al. 2008a). In the last section
(§ 4.3), we offer a physical explanation for the pearling phenomenon observed in
experiments, which is when a dumbbell-like vesicle forms a series of beads in its
central neck. We also offer a simplified theory to predict the stability criterion and
the size of the pearls.

4.1. Steady-state shapes and growth rates of modes
Figure 4(b) plots the steady-state shapes of high-aspect-ratio (ν < 0.57) vesicles for
a wide variety of extensional rates (i.e. Ca). At these reduced volumes, the vesicle
takes the form of a dumbbell, whose central neck thins with increasing extension
rate (Ca). We define the aspect ratio for these steady-shapes as the vesicle length
divided by its neck diameter, and we plot this value for a ν = 0.40 vesicle as a
function of capillary number in figure 16(a). One observation from this plot is that
the vesicle deforms rapidly in a narrow range of capillary numbers, so rapidly that
we cannot resolve a steady-state shape beyond a critical extension rate. Above this
critical capillary number, our boundary integral simulations demonstrate that the
vesicle elongates indefinitely, in a fashion similar to the shape transitions observed
by Kantsler et al. (2008a) and the capillary breakup of droplets (see supplementary
movies 1 and 2 available at http://dx.doi.org/10.1017/jfm.2014.248). We note in our
simulations that the vesicle’s membrane remains incompressible after this stretching
transition, even if the neck radii is extremely small (rneck ≈ 0.05). We believe that
vesicles in experiments will extend indefinitely at constant area until the central neck
becomes small enough that the vesicle lyses (due to the membrane tension becoming
exceedingly large). Unfortunately, the experiments by Kantsler et al. (2008a) do
not observe the vesicles for times long enough to offer insight into the long-time
behaviour of these particles. Interestingly, if the vesicles extend indefinitely, we would
expect the extensional viscosity of a vesicle suspension to increase greatly, as this
quantity typically scales as the cube of the particle length for slender bodies.

Figure 16(b) plots the steady-state aspect ratios of vesicles for a wide range of
reduced volumes. When the reduced volume is above ν = 0.65, the vesicles become
more ellipsoidal with increasing extension rate (see figure 4a), which makes the aspect
ratio vary weakly with Ca. In this situation (i.e. the vesicles studied in § 3), a steady-
state shape exists at all extension rates. When the reduced volume is below ν = 0.60,
the vesicle’s central neck thins rapidly during extension (figure 4b), which leads to
the aspect ratio diverging at a critical capillary number. To quantify the nature of this
critical point, we examine the relative extension of the vesicle, defined as L∗=L/L0−
1, where L0 is the no-flow (Ca= 0) length of a vesicle. We plot this value versus a
normalized capillary number, defined as 1−Ca/Cacrit, for a range of reduced volumes
(0.3 < ν < 0.49). We see that the relative extension diverges like a power-law as
Ca→Cacrit, with a best-fit exponent of α=−0.4 (figure 16c). This power-law behaves
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FIGURE 16. (Colour online) Deformation of low-reduced-volume vesicles. (a) The
steady-state aspect ratio of a ν = 0.4 vesicle as a function of capillary number. We define
the aspect ratio L/(2R) as the vesicle length divided by the neck diameter, as shown in
the inset. The aspect ratio increases rapidly with Ca until we reach a critical capillary
number, beyond which we observe no steady-state solution. (b) Aspect ratio versus Ca for
a wide variety of reduced volumes. The aspect ratio varies slowly with Ca for intermediate
reduced volumes (ν > 0.65), but appears to diverge with Ca for low reduced volumes
(ν < 0.60). (c) Steady-state extension of vesicle. The curves (blue online) are the relative
extensions of vesicles with reduced volume between 0.30< ν < 0.49 (which corresponds
to initial aspect ratios between 8.9< L0/(2R0) < 24.5). The line (red online) is the best-fit
power law and the crosses (green online) are experimental measurements by Kantsler et al.
(2008a). We see that the vesicle extension apparently diverges at the critical capillary
number with a best fit slope of (1−Ca/Cacrit)

−0.4.

differently than the coil–stretch transition of polymers (α =−0.5) (de Gennes 1974),
although there is significant scatter in the simulations and experimental measurements.
A more thorough study should be conducted in the future to understand the nature of
this critical point better.

As in § 3, we explore the modal structure of shape perturbations around a
steady-state vesicle shape. Figure 17 plots the growth rates and shapes of the three
most unstable modes of a reduced volume ν = 0.40 vesicle at matched viscosity ratio
(λ= 1). The most unstable mode is translation, while the next mode is an asymmetric
perturbation that increases the size of one of the dumbbell lobes. The third mode
is the standard capillary pinch-off, i.e. symmetric elongation and thinning of the
dumbbell. The second and third modes are stable until we reach the critical capillary
number, which is the extension rate beyond which we observe no steady-state
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FIGURE 17. (Colour online) Growth rates, high-aspect-ratio particles. (a) Plot of the
growth rates versus capillary number for the first three deformation modes of the vesicle.
The reduced volume is ν = 0.40, and the viscosity ratio is λ = 1. (b–d) The modes at
Ca = 1.125. When the capillary number reaches Cacrit, the growth rate of mode 2 is
nearly zero and the vesicle no longer has a steady state above this extension rate. We
believe mode 2 corresponds to the ‘burst’ instability observed by Kantsler et al. (2008a)
(figure 1b). As mode 2 extends indefinitely, any asymmetry in the shape becomes barely
noticeable (see figure 18). The shapes above are not to scale.

shape. At this critical Ca, the growth rate of the asymmetric mode (mode 2) is
nearly zero, which indicates that this mode corresponds to the shape transitions by
Kantsler et al. (2008a). At first glance, this result appears inconsistent with the
experiments, as the experimental shape transitions appear symmetric. However, if we
look closely at Kantsler’s experiments (see time 1.0 and 1.5 in figure 1b), we see
that the initial perturbation is asymmetric, and the shape evolves to a symmetric state
as time progresses well past the instability. We observe the same phenomenon in
our simulations (figure 18). Many times, the asymmetric perturbation is difficult to
visualize, so the casual observer only sees symmetric transitions.

To determine the physical mechanism of the instability, we plot perturbation
energies for the asymmetric mode (mode 2) as a function of capillary number
(see figure 19). As before, the pressure and bending contributions are stabilizing
(negative), while the surface tension contribution is negligible. The curvature energy
is stabilizing at low extension rates, but becomes destabilizing (positive) as the
extension rate increases, almost balancing all other energy contributions at the critical
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FIGURE 18. (Colour online) Snapshots of odd mode instability. We add an asymmetric
perturbation to a steady-state vesicle, and allow the shape to evolve past the instability.
As the aspect ratio of the vesicle increases, the asymmetric perturbation becomes less
noticeable, and the vesicle stretching appears to be more symmetric. (Reproduced with
permission from Spann et al. (2014).)
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FIGURE 19. (Colour online) Perturbation energies, high-aspect-ratio particles. Perturbation
energies versus capillary number for the asymmetric mode (inset) at reduced volume ν =
0.40. The definitions of the pressure, surface tension, curvature and bending contributions
are in (3.7). The convention we employ is that positive energies are destabilizing. The
curvature energy rapidly destabilizes near the critical capillary number Cacrit, which is the
extension rate beyond which we no longer observe a steady state. For results plotted here,
the reference spheroid in our calculations is such that the parameter cb= 0.475L, where
L is the length of the vesicle.

capillary number where the steady shapes are no longer stable. We find that the
curvature energy varies rapidly in the region close to this critical transition, probably
due to the fact that the vesicle’s aspect ratio varies rapidly as well. This analysis
suggests that like before, curvature changes on the interface play the biggest role in
destabilizing vesicle shapes. These curvature-induced instabilities are similar to the
Rayleigh–Plataeau phenomenon discussed in § 3.3.

4.2. Comparison with experiments: stability boundary
In this section, we plot the stability boundary for the asymmetric mode (mode 2), and
compare these results to the experimental measurements by Kantsler et al. (2008a).
The experiments measure the critical extension rate ε̇c as a function of the initial
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Unstable

Black crosses = Kantsler (2008)
Green circles = multipole, no steady-state

Blue dots = multipole, zero growthrate
Red triangles = 3D boundary integral

Purple dotted line = scaling theory

Stable

0 5

101

100

10–1

10 15 20 25 30

FIGURE 20. (Colour online) Comparison with experiments, burst instability. The black
crosses are experimental measurements by Kantsler et al. (2008a), which correspond to
the extension rates at which the vesicle starts to stretch indefinitely like in figure 1.
The dots (blue online) and circles (green online) are the simulation results from our
multipole expansion (§ 2.3). The dots are capillary numbers at which the asymmetric mode
has zero growth rate, while the circles are capillary numbers beyond which we observe
no-steady state shape. At high aspect ratios, these two transitions are indistinguishable, but
at intermediate aspect ratios, these transitions bifurcate. The triangles (red online) are the
stability boundary predicted from our 3D boundary integral simulations. The curve (purple
online) is the scaling theory Ca′c = C ln(L/R)/(L/R) for L/R� 1. We choose C = 4, as
this scaling represents the case when the tensions at the vesicle ends are vanishingly small
compared to the values at its centre. See § A.5.1 for derivation.

aspect ratio L0/(2R0) of the vesicle (i.e. the equilibrium aspect ratio when Ca = 0).
The quantity L0 is the vesicle length, and R0 = √V/(πL0) is the radius (assuming
a cylindrical geometry). Kantsler non-dimensionalizes the extension rates by a time
scale tcap = R2

0L0µout/κ , which yields a critical capillary number Ca′c = 4
3νCa. In

figure 20, we plot the critical capillary number Ca′c as a function of the aspect ratio
L0/(2R0). The black crosses are the experimental measurements by Kantsler et al.
(2008a), which correspond to the extension rates at which the vesicle starts to stretch
indefinitely as in figure 1. The dots (blue online) and circles (green online) are
the simulation results from our multipole expansion (§ 2.3). The dots are capillary
numbers at which the asymmetric mode (mode 2) has zero growth rate, while the
circles are capillary numbers beyond which we observe no steady-state shape. At high
aspect ratios, these two transitions are the same, but at intermediate aspect ratios,
these transitions are distinct. In the intermediate aspect-ratio limit (3< L0/(2R0) < 7),
the lower curve (dots, blue online) corresponds to the pear-shaped instability which
describes the shape transitions observed by Spjut (2010). The upper curve (no
steady-state) is most likely not observed in practice. The triangles are results from
our 3D boundary integral simulations (§ 2.4). These simulations do not distinguish
the type of instability (no steady state versus zero growth rate), but merely indicate
when the vesicle first becomes unstable. We find that the stability boundary from
our simulations varies slowly at high aspect ratios, but varies very rapidly when the
aspect ratio is between 3 and 7. Kantsler states that they cannot observe an instability
at aspect ratios below 4.2, which is reasonably close to the asymptote our simulations
predict (approximately 3). In general, the boundary integral and multipole simulations

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

24
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.248


172 V. Narsimhan, A. P. Spann and E. S. G. Shaqfeh

agree reasonably well with experiments, although our simulations slightly overestimate
the critical extension rates. There can be many reasons for this slight discrepancy,
but we feel the most likely choice is that Kantsler used an order-of-magnitude
estimate of the vesicle bending modulus, which is 20 % larger than the values
measured in experiments (Rawicz et al. 2000; Pan et al. 2008). This effect slightly
lowers Kantsler’s critical capillary number, which is consistent with the results in
figure 20. Our simulations also neglect fluctuations of the membrane, which could
be important near the critical transition. Indeed, Kantsler et al. (2008a) observes
significant fluctuations in the vesicle’s relative extension (i.e. L∗= L/L0− 1) near this
critical region (see figure 3 in paper). Note that in this study, we explore a much
wider range of aspect ratios than in previous computational works (Spann 2013; Zhao
& Shaqfeh 2013b).

Following the discussion of Kantsler et al. (2008a), we can develop a simple
scaling argument to predict how the stability boundary varies with aspect ratio when
this quantity is large. In this regime, vesicles are nearly cylindrical with a length
L and radius R. The bending pressure at the interface thus scales as κ/R3, and the
capillary pressure scales as σ/R, where κ is the bending modulus of the interface, and
σ is the surface tension. We expect an instability to occur when the capillary forces
overcome bending resistance, i.e. σ/R>κ/R3. From the interfacial force balance (2.4),
we see that surface tension gradients balance the tangential stresses on the interface,
so σ/L ∼ Trz ∼ µoutε̇L/(R ln(L/R)) as predicted by slender body theory (Batchelor
1970). Combining these statements yields the criterion Ca′c > C ln(L/R)/(L/R) for
instability, where C is an O(1) constant which must be determined by numerically
solving the Stokes flow around the vesicle. We choose not to perform this task,
but instead estimate this constant using a simpler procedure. We assume the vesicle
is a steady-state cylinder in extensional flow, with no tension on its ends. We
solve for the capillary forces on the interface, and determine when the maximum
value of these forces exceeds the bending resistance. This analysis yields C = 4,
which agrees surprisingly well with Kantsler’s experiments at large aspect ratio (see
figure 20, dotted curve, purple online). We note that Kantsler does the same analysis
as performed here, but appears to determine the constant C by fitting, rather than
offering a detailed analysis for what the constant should be. For more details on the
scaling theory, see § A.5.1.

In the next section, we discuss the physical origin of the pearling phenomenon,
which is the second set of shape transitions observed by Kantsler et al. (2008a).

4.3. Physical mechanism of pearling
When a high-aspect-ratio vesicle is beyond the critical capillary number described in
the previous section, the vesicle starts to extend indefinitely, creating a central neck
that thins continuously in time. If the extension rate is large enough (characterized
by another critical condition), the thinning neck eventually creates pearls, which are
periodic beads in the central thread (see figure 1b, time 3.0 onwards). These shapes
are similar to those found in the capillary breakup of a liquid column, which is
described by the Rayleigh–Plateau instability (Tomotika 1935). We can use this same
framework to describe the shape transitions of a pearling vesicle, as shown below.

When a vesicle thins continuously in time, its aspect ratio becomes very large,
and hence its shape becomes nearly cylindrical. Furthermore, the stresses vary slowly
along the interface (at least on the length scale of the neck’s radius), so we can locally
treat the neck as an infinite cylinder of radius R with constant surface tension σ .
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Black crosses = Kantsler (2008)
Purple dotted line = scaling theory

FIGURE 21. (Colour online) Comparison with experiments, pearling instability. The black
crosses are experimental measurements by Kantsler et al. (2008a), which correspond to
the extension rates at which the vesicle starts to pearl. The curve (purple online) is the
scaling theory Ca′c = C ln(L/R)/(L/R) for L/R� 1. We choose C = 6, as this scaling
represents the case when the tensions at the vesicle ends are vanishingly small compared
with the values at its centre. See § A.5.2 for derivation.

We determine the conditions under which this configuration is unstable by examining
the free energy of the interface, which consists of bending, surface tension and
pressure. Instead of performing the full variational analysis, we examine the simpler
case of perturbing the interface by a constant radius δR, where |δR| � R, as this
procedure gives the same stability limits as the full analysis (see § A.6). The free
energy expansion per unit length is

E= πκ

R
+ 2πR(δR)

[σ
R
− κ

2R3
+1p

]
+πR(δR)2

[
κ

R4
+ 1p

R

]
+O(δR3) (4.1)

where 1p is the pressure jump across the interface (outer minus inner). The first
variation of this energy with respect to δR gives a constraint on the pressure jump
which is exactly the normal component of the stress balance: 1p=−σ/R+ κ/(2R3).
The second variation determines whether the base-state shape is at a local energy
minimum, and hence stable. We find that a cylinder is unstable to shape perturbations
if the surface tension is above a critical value σc = 3κ/(2R2), which is a remarkably
simple local stability criterion for pearling.

Because the critical surface tension scales as κ/R2, we expect the critical capillary
number for the pearling transition to have the same scaling as in the previous section:
Ca′c = C ln(L/R)/(L/R), where C is an O(1) constant. As before, we estimate this
constant by assuming the vesicle is a cylinder in extensional flow, with no tension
at its ends. However, in this situation, the cylinder’s radius is also decreasing in
time, since the vesicle’s neck is rapidly thinning. We solve for the surface tension
distribution on the vesicle, and determine when the maximum value exceeds the
critical condition σc = 3κ/(2R2). This analysis, performed in § A.5.2, yields the
constant C= 6. In figure 21, we plot the results of this scaling analysis, and compare
it with the data of Kantsler et al. (2008a) when they first observe the pearling
transition. We find that our scaling theory again agrees well with the experimental
data.
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FIGURE 22. (Colour online) Growth rates, pearling instability. We examine the stability
of an infinitely long, cylindrical vesicle to infinitesimal perturbations to its interface.
(a, b) Plots of the growth rate s versus the perturbation wavenumber k: (a) examination
of the dependence of s on the applied tension σ ; (b) examination of the dependence of
s on the viscosity ratio λ. (c) Plot of the most unstable wavenumber (i.e. wavenumber
selection) as a function of viscosity ratio and applied tension. For these figures, we
non-dimensionalize growth rates by κ/(µoutR3), tensions by κ/R2, and wavenumbers by
R−1, where R is the radius of the cylinder. In (a), the viscosity ratio is λ= 1, while in
(b), the tension is σ = 5.

To obtain the local growth rates of the pearling modes, we perform a linear stability
analysis on an infinite cylinder with prescribed surface tension σ and bending modulus
κ . This analysis is not novel, as it has been performed many times in the literature
(Goldstein et al. 1996; Powers 2010), with the latest (and most accurate version)
by Boedec, Jaeger & Leonetti (2014). We outline a simplified derivation of the
dispersion relationship in § A.6, and plot the growth rates in figure 22(a,b). We
observe that pearling only occurs for long-wavelength perturbations (kR < 1), as
long as the surface tension is beyond the critical condition σ > σc ≡ 3κ/(2R2). We
can explain this phenomenon using the same arguments in the previous sections,
i.e. curvature changes on the interface destabilize the membrane. If we apply a small
sinusoidal perturbation δR cos(kz) to a membrane with a background tension σ , the
curvature-induced pressure increases by δpcurv ∼ σ [1 − (kR)2]δR/R2 in the regions
pinched by the perturbation. However, bending stabilizes these regions by decreasing
the pressure by δpbend ∼ κ[(kR)2/2 − (kR)4 − 3/2]δR/R4. When the surface tension
is above the critical condition (σ > σc), the curvature-induced pressure dominates,
and long-wavenumber perturbations (kR < 1) create pearls by generating a leakage
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flux away from the pinched regions. From the growth rates plotted in figure 22,
we see that the size of the pearls will be slightly larger than the neck’s radius
R. The wavenumber corresponding to maximum growth varies modestly with the
applied tension σ and viscosity ratio λ, increasing as both of these quantities increase
(figure 22c).

Before we conclude, we would like to highlight several differences between pearling
for vesicle systems and droplets. Droplets rarely go through the pearling transition
during flow, but form pearls after flow cessation (Stone 1994). Vesicles, on the other
hand, do not pearl if the flow rate is turned off, provided that the initial extension
rate is below the critical values indicated by figure 21 (Kantsler et al. 2008a). We
believe that the vesicle’s membrane incompressibility plays a large role in preventing
these transitions. For the vesicle system, the pearling phenomenon is controlled by the
surface tension in the thread (i.e. σ > σc), which in turn is governed by the external
flow due to surface incompressibility. When flow is turned off, the tension decreases,
which stabilizes the thread. For the droplet system, this stabilization mechanism does
not occur, as the surface tension is a material property independent of the flow. We
also note that Kantsler et al. (2008a) does not observe tip streaming, i.e. when satellite
beads eject from the ends of the vesicle. This transition occurs when the ends of the
particle are sharp like a cusp, which is highly unlikely to occur for vesicle systems
due to the bending resistance of the interface.

5. Conclusions and future directions
In this paper, we describe the physics behind the shape transitions of vesicles

in extensional flows. At intermediate aspect ratios (reduced volume ν > 0.65), we
find that the particles stretches to an asymmetric dumbbell, while at higher aspect
ratios (ν < 0.6), the particle extends without bound in a seemingly symmetric fashion,
similar to the capillary breakup of droplets. We find the physical mechanism for shape
destabilization to be similar for these two cases. When the vesicle’s shape is subject
to an asymmetric perturbation, the membrane’s change in curvature generates a flow
field in the interior of the particle that amplifies the perturbation at sufficiently high
extension rates. We quantify the conditions under which the vesicle becomes unstable,
and we find that the stability boundary calculated by our simulations agrees well with
available experimental data (figure 20). We also examine the pearling phenomenon,
i.e. when a rapidly thinning vesicle creates a series of beads in its central neck. We
develop a scaling theory to predict the onset of pearling, as well as the growth rate
and size of the pearls. The scaling theory, which is simple, agrees reasonably well
with available experiments (figure 21).

We note that the physical mechanism behind the shape transitions is remarkably
similar to the Rayleigh–Plateau phenomenon, which describes the curvature-induced
destabilization of an interface. This analysis suggests that the vesicle’s initial geometry
plays the largest role in the shape transitions under tension, regardless of what type of
force is applied (i.e. hydrodynamic, electrical, etc.). In fact, Vlahovska and coworkers
observe similar set of dumbbell-like shapes when they place vesicles in an AC electric
field (P. M. Vlahovska, private communication, 2013). A natural extension would be
to thus use the same mathematical machinery in this paper to understand the stability
of vesicles under electrical forces. Note that previous studies have used spheroidal
coordinates to model the dynamics of vesicles in electric fields, but these studies did
not examine the instability observed by Vlahovska, and they assumed a spheroid shape
throughout the vesicle motion (Zhang et al. 2013). From an experimental standpoint,
it is much easier to manipulate biological particles (such as vesicles) under electric
forces than hydrodynamic forces.
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We hope this paper will be helpful in understanding the dynamics of vesicles
under strong tension, and thus provide insight into the design of these particles for
future biomedical applications. In the future, it is important to see whether the effects
described in this paper occur for a wider range of biological particles enclosed by
phospholipid membranes, such as cells.
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Appendix
A.1. Legendre functions

We define Pn(x) and Qn(x) as Legendre functions of the first and second kind, which
are the linearly independent solutions to the differential equation:

d
dx

(
(1− x2)

dy
dx

)
+ n(n+ 1)y= 0. (A 1)

The Legendre function Pn(x) is regular everywhere except infinity, while the
Legendre function Qn(x) is regular everywhere except x=±1. The first few terms of
these functions are

P0(x)= 1 P1(x)= x

Q0(x)= 1
2

ln
∣∣∣∣1+ x
x− 1

∣∣∣∣ Q1(x)= x
2

ln
∣∣∣∣1+ x
x− 1

∣∣∣∣− 1

Pn+1(x)= 2n+ 1
n+ 1

xPn(x)− n
n+ 1

Pn−1(x)

Qn+1(x)= 2n+ 1
n+ 1

xQn(x)− n
n+ 1

Qn−1(x).


(A 2)

We note that the recursion relation is the same for both types of Legendre functions.
Their asymptotic behaviour as x→∞ is

Pn(x)→ (2n− 1)!!
n! xn as x→∞ (A 3a)

Qn(x)→ n!
(2n+ 1)!!x

−n−1 as x→∞ (A 3b)

where !! is the double factorial function (i.e. (2n+ 1)!! = (2n+ 1)× (2n− 1)× · · · ×
3× 1). Another important recursion relation for the derivatives of these functions is

(2n+ 1)(1− x2)P′n(x)= n(n+ 1)(Pn−1(x)− Pn+1(x)). (A 4)

As before, this recurrence relation holds for Qn(x) as well.
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From Sturm–Liouville theory, the Legendre functions Pn(x) form a complete,
orthogonal set of functions in the domain |x| 6 1. Thus, any bounded function
in |x| 6 1 can be expressed as a linear combination of Pn(x). The orthogonality
relationship between Legendre polynomials is

〈Pn(x), Pm(x)〉 =
∫ 1

−1
Pn(x)Pm(x) dx= 2

2n+ 1
δnm, (A 5)

where δnm is the Kronecker delta (δij = 1 when i= j and zero otherwise).
We numerically evaluate Legendre functions Pn(x) using the forward-recursion

relation (A 2). For Qn(x), we employ the same recursion relation, but iterate backwards
from a large value of n, as this process is numerically stable (Abramowitz & Stegun
1972). We evaluate Qn(x) for large n by expressing it in terms of hypergeometric
functions, which are straightforward to evaluate (Abramowitz & Stegun 1972).

A.2. Derivation of multipole solution
A.2.1. Gradient operator in spheroidal coordinates

In spheroidal coordinates, the gradient operator is (Hobson 1931)

∇= 1
hτ

τ̂
∂

∂τ
+ 1

hξ
ξ̂
∂

∂ξ
+ 1

hφ
φ̂
∂

∂φ
(A 6)

where the stretch factors (hτ , hξ , hφ) are

hτ = cb
√
τ 2 − ξ 2

√
τ 2 − 1

, hξ =−cb
√
τ 2 − ξ 2√

1− ξ 2
, hφ = cb

√
τ 2 − 1

√
1− ξ 2 (A 7a–c)

and the unit vectors are

τ̂ = 1√
τ 2 − ξ 2

(τ
√

1− ξ 2 cos(φ), τ
√

1− ξ 2 sin(φ), ξ
√
τ 2 − 1)

ξ̂ = 1√
τ 2 − ξ 2

(ξ
√
τ 2 − 1 cos(φ), ξ

√
τ 2 − 1 sin(φ), −τ

√
1− ξ 2)

φ̂ = (− sin(φ), cos(φ), 0).


(A 8)

A.2.2. Derivation of multipole solution
The Papkovich–Neuber equations state that the solution to Stokes flow is (Tran-

Cong & Blake 1982; Dassios et al. 2004)

u=Φ − 1
2∇(x ·Φ + χ), p=−η∇ ·Φ, (A 9a,b)

where Φ and χ are harmonic functions, and η is the non-dimensional viscosity of the
medium (in our case, η= 1 outside the vesicle and η= λ inside the vesicle).

In prolate ellipsoidal coordinates, the growing and decaying harmonics are as
follows:

Growing: Sm,(grow)
n = Pm

n (τ )P
m
n (ξ) exp(imφ)

Decaying: Sm,(decay)
n =Qm

n (τ )P
m
n (ξ) exp(imφ)

}
(A 10)

where Pm
n (x) and Qm

n (x) are Legendre functions of the first and second kind (see § A.1).
For our problem, we consider the vesicle and shape perturbations to be axisymmetric
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about the z axis. Thus, we neglect all φ dependence (i.e. set m= 0), and choose our
harmonic potentials to be

χ = cb2
∞∑

n=0

dnRn(τ )Pn(ξ)

Φ = bẑ
∞∑

n=0

cnRn(τ )Pn(ξ)

 (A 11)

where Rn(τ ) equals Pn(τ ) for the growing harmonics, and Qn(τ ) for the decaying
harmonics. We substitute these potentials into the Papkovich–Neuber equations (A 9)
to obtain the velocity and pressure fields shown below:

uτ = cb2

hτ

∞∑
n=0

[
1
2
ξcnPn(ξ)(Rn(τ )− τR′n(τ ))−

1
2

dnPn(ξ)R′n(τ )
]

(A 12)

uξ = −cb2

hξ

∞∑
n=0

[
1
2
τcnRn(τ )(ξP′n(ξ)− Pn(ξ))+ 1

2
dnRn(τ )P′n(ξ)

]
(A 13)

− p
η
= 1

c(τ 2 − ξ 2)

∞∑
n=0

cn[ξ(τ 2 − 1)R′n(τ )Pn(ξ)+ τ(1− ξ 2)Rn(τ )P′n(ξ)]. (A 14)

Now that we have the velocity and pressure fields, let us determine the stress
components. Recall that u = Φ − 1

2∇(x · Φ + χ) in the Papkovich–Neuber
representation (A 9). When Φ =Φ ẑ as is done here, the deviatoric stress is

1
η

T =∇u+∇uT =−z∇∇Φ −∇∇χ =−
∞∑

n=0

(bcnz+ cb2dn)∇∇Rn(τ )Pn(ξ). (A 15)

Thus, to find the components of the deviatoric stress, we need to determine the
components of the double-gradient tensor ∇∇. Details of the gradient operator are
given in § A.2.1. After some tedious algebra, we find that the components of the
deviatoric stress tensor are

1
η

T =−
∞∑

n=0

(cncτξ + cdn)L[Rn(τ )Pn(ξ)], (A 16)

where

Lττ = (1− ξ 2)

c2(τ 2 − ξ 2)2

(
τ
∂

∂τ
− ξ ∂

∂ξ

)
+ τ 2 − 1

c2(τ 2 − ξ 2)

∂2

∂τ 2

Lξξ = (τ 2 − 1)
c2(τ 2 − ξ 2)2

(
τ
∂

∂τ
− ξ ∂

∂ξ

)
+ 1− ξ 2

c2(τ 2 − ξ 2)

∂2

∂ξ 2

Lφφ = 1
c2(τ 2 − ξ 2)

(
τ
∂

∂τ
− ξ ∂

∂ξ

)
Lτξ = Lξτ =

√
τ 2 − 1

√
1− ξ 2

c2(τ 2 − ξ 2)2

(
τ
∂

∂ξ
− ξ ∂

∂τ
− (τ 2 − ξ 2)

∂2

∂τ∂ξ

)
Lτφ = Lφτ = Lφξ = Lξφ = 0.



(A 17)
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A.3. Differential geometry of vesicle interface in spheroidal geometry
A.3.1. Evaluation of the bending force

Suppose we have an axisymmetric vesicle in a prolate spheroidal geometry, whose
shape is parameterized by the level surface τ = g(ξ). If we convert to cylindrical
coordinates, the position vector x on the interface is

x(ξ , φ)= r(ξ)r̂ + z(ξ)ẑ, (A 18)

where
r(ξ)= cb

√
g2 − 1

√
1− ξ 2 z(ξ)= cbgξ

r̂ = [cos(φ), sin(φ), 0] ẑ= [0, 0, 1].
}

(A 19)

Given this position vector, we can calculate the metric and curvature tensors
and their associated geometrical quantities, such as curvatures and differential
areas/volumes. The components of the metric tensor (Λ) and curvature tensor (B) are

Λpq = ∂x
∂p
·
∂x
∂q
, Bpq =−n ·

∂2x
∂p∂q

, (A 20a,b)

where p and q are either the surface coordinates ξ or φ, and n is the outward-pointing
unit normal vector, which is

n= z′ r̂ − r′ ẑ√
r′2 + z′2

. (A 21)

Given the metric and curvature tensors, the principal curvatures of the interface
are the eigenvalues of Λ−1 · B, which are easy to evaluate since both tensors are
diagonal for an axisymmetric shape. The mean curvature H is the mean of the
two principal curvatures, while the Gaussian curvature K is the product of the two
principal curvatures.

To calculate the bending forces on the vesicle, we not only need to calculate the
curvatures on the interface, but the surface Laplacian of the curvature (see (2.4)). In
an axisymmetric geometry, this operator takes a simple form (Veerapaneni et al. 2009).

∇2
s H = 1

J

(
ΛφφH′

J

)′
. (A 22)

In the above equation, J is the differential area of the surface, defined by
J = √det(Λpq). We now have all of the information necessary to calculate the
bending forces on the interface. We first decompose the vesicle shape g(ξ) into
Legendre modes, as described in (2.13), up to a certain cutoff mode M, and evaluate
the principal curvatures analytically. In principle, we can calculate ∇2

s H analytically,
but in spheroidal coordinates, the algebra is complicated, and thus we employ a central
difference approximation instead. In most situations, we only need to calculate one
derivative in the central difference scheme, since when we project the bending force
onto Legendre modes, we can integrate by parts to get rid of higher-order derivatives.

A.3.2. Evaluation of kinematic and surface incompressibility boundary conditions
Let us write the normal (n), tangential (t), and azimuthal (b) vectors in spheroidal

coordinates for a vesicle interface parametrized by the level surface τ = g(ξ):

n= τ̂ −ψ ξ̂√
1+ψ2

, t = ξ̂ +ψ τ̂√
1+ψ2

, b= φ̂ where ψ = hτ
hξ

g′(ξ). (A 23a–c)
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Given these directions, the normal and tangential velocity on the interface is:

un = 1√
1+ψ2

(uτ −ψuξ ), ut = 1√
1+ψ2

(uξ +ψuτ ). (A 24a,b)

In this subsection, we write the kinematic and surface incompressibility boundary
conditions in terms of the normal (un) and tangential (ut) velocities. We can relate
these boundary conditions to the multipole velocity coefficients {cn, dn} by converting
the normal and tangential velocities into uτ and uξ as shown above, and then use the
multipole velocity relations in (2.10) and (2.11).

The kinematic boundary condition is

un =
∂g
∂t

‖∇(τ − g)‖ =
hτ√

1+ψ2

∂g
∂t
. (A 25)

To derive the incompressibility boundary condition, we decompose the velocity
field on the interface into normal (un) and tangential (ut) components, and rewrite
the boundary condition in terms of these fields: ∇s · u = 2Hun + ∇s · (utt) = 0. For
an axisymmetric vector field that lies entirely on the surface of the interface, such as
utt, the surface divergence takes a particularly simple form:

∇s · a=−1
J

d
dξ
(
√
Λφφat), (A 26)

where Λφφ is φφ component of the metric tensor (A 20), and J = √
det(Λpq)

is the differential area. Substituting these expressions, we find that the surface
incompressibility boundary condition is

2HJun = d
dξ
(hφut). (A 27)

When we project this equation onto the set of Legendre modes, we typically remove
the derivatives on the right-hand side via integration by parts.

A.4. Shape and tensions of vesicle with no bending in uniaxial extensional flow
A vesicle in uniaxial flow is a prolate spheroid at steady state, provided that the
reduced volume is not too small (ν > 0.67) and the interface has no bending
resistance. We will prove this fact by assuming the vesicle is a prolate spheroid,
and show that such a shape satisfies the Stokes equations with zero normal velocity
at the interface. We parameterize the vesicle shape in spheroidal coordinates, with
the reference ellipsoid coinciding exactly with the vesicle’s interface. With this
choice of coordinate system, the vesicle’s surface is a surface of constant τ , with
τ = τ ∗ =√1+ 1/c2. The value of c is the product between the vesicle’s aspect ratio
and eccentricity.

Let us solve for the velocity field around the vesicle. In spheroidal coordinates, the
far-field velocity (i.e. uniaxial extensional flow) is

u∞ = c2bτ
hτ

P2(ξ)τ̂ + c2bξ
hξ

P2(τ )ξ̂ , (A 28)
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where τ̂ and ξ̂ are unit vectors, Pn are Legendre polynomials, and b is the semi-minor
axis length of the vesicle. The interfacial boundary conditions for velocity are:

(i) continuity of velocity across interface, [[u]] = 0;
(ii) surface incompressibility, ∇s · u= 0;

(iii) no penetration, u · n= 0.

Because the normal velocity on the interface is zero, we can show that the tangential
velocity must also vanish due to surface incompressibility. (To prove this fact, see
(A 27), coupled with the fact that the tangential velocity must be zero at the ends
of the vesicle due to symmetry.) Thus, the velocity on the interface is exactly zero,
and we can treat the vesicle as if it were effectively rigid at steady state. We define
the disturbance velocity outside the vesicle to be uD = u− u∞, and we solve for this
quantity through the multipole expansion introduced in § A.2 (see (A 12) and (A 13)).
The system of equations for the spectral coefficients of uD are as follows.
Radial disturbance velocity

− cτP2(ξ)=
∞∑

n=0

[ 12ξcout
n Pn(ξ)(Qn(τ )− τQ′n(τ ))− 1

2 dout
n Pn(ξ)Q′n(τ )] at τ = τ ∗. (A 29)

Polar disturbance velocity

cξP2(τ )=
∞∑

n=0

[ 12τcout
n Qn(τ )(ξP′n(ξ)− Pn(ξ))+ 1

2 dout
n Qn(τ )P′n(ξ)] at τ = τ ∗. (A 30)

From examining these two expressions, it is clear that the only non-zero coefficients
are dout

0 , dout
2 , and cout

1 . Solving the equations above yields

dout
2 =

c(3τ ∗2 − 1)
3Q2(τ ∗)

, dout
0 =

1
2 dout

2 Q′2(τ
∗)− cτ ∗

Q′0(τ ∗)
, cout

1 =
−3cτ ∗ + 3

2 dout
2 Q′2(τ

∗)
Q1(τ ∗)− τ ∗Q′1(τ ∗)

.

(A 31a–c)

Now that we have determined the velocity field, let us calculate the surface tension
via the tangential stress boundary condition: [[t · T · n]] = −t · ∇sσ . The shear stress
on the interface can be broken into two fields: T = TD + T∞, where TD is the shear
stress from the disturbance velocity field and T∞ is the shear stress from the far-
field velocity. Using the stress expressions in (A 17), the tangential stress due to the
disturbance velocity is

τ̂ · TD · ξ̂ = −
∞∑

n=0

(cout
n cτξ + cdout

n )Lτξ [Qn(τ )Pn(ξ)]

=
√
τ 2 − 1

√
1− ξ 2ξ

c(τ 2 − ξ 2)
[3cτ + cout

1 (Q1(τ )− τQ′1(τ ))] at τ = τ ∗. (A 32)

Similarly, the tangential stress due to the far-field velocity is

τ̂ · T∞ · ξ̂ = τ̂ · (∇u∞ +∇u∞,T) · ξ̂

= −3ξτ
√

1− ξ 2
√
τ 2 − 1

τ 2 − ξ 2
at τ = τ ∗. (A 33)
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Invoking the tangential stress boundary condition, we now solve for the surface
tension on the interface, which yields

∂σ (0)

∂ξ
=−hξ (τ̂ · T · ξ̂)

σ (0) =−√τ 2 − ξ 2
√
τ 2 − 1cout

1 b
(
Q1(τ )− τQ′1(τ )

)
at τ = τ ∗.

 (A 34)

As a consistency check, we confirm that this surface tension distribution satisfies the
normal stress boundary condition with no bending force: [[p]] + 2σH= 0, where [[p]]
is the viscous pressure jump across the interface, and 2σH is the capillary pressure.
We first calculate the mean curvature of the interface, which for a prolate spheroid is

H = τ

2cb(τ 2 − ξ 2)3/2

[√
τ 2 − 1+ τ 2 − ξ 2

√
τ 2 − 1

]
at τ = τ ∗. (A 35)

We then calculate the viscous pressure on the interface using the multipole solution
described in (A 14):

pout = − 1
c(τ 2 − ξ 2)

∞∑
n=0

cout
n [ξ(τ 2 − 1)Q′n(τ )Pn(ξ)+ τ(1− ξ 2)Qn(τ )P′n(ξ)]

= −cout
1

c
(τQ1(τ )− (τ 2 − 1)Q′1(τ ))

+ τ(τ 2 − 1)
c(τ 2 − ξ 2)

cout
1 (Q1(τ )− τQ′1(τ )) at τ = τ ∗. (A 36)

The pressure inside the vesicle is pin = pout + 2σH. Solving for this quantity
yields pin = −(2τ ∗/c)cout

1 (Q1(τ
∗) − τ ∗Q′1(τ ∗)) − (1/c)cout

1 Q′1(τ
∗), which is a constant.

The velocity, surface tension, and pressure fields are consistent with all boundary
conditions, and thus a prolate ellipsoid is the shape of the vesicle in the limit of no
bending forces (Ca→∞).

A.5. Scaling arguments: asymmetric mode instability and pearling instability
In § 4, we state that the critical capillary numbers for the asymmetric instability and
pearling instability obey the scaling law Ca′c=C ln(L/R)/(L/R), where L is the vesicle
length, R the radius and C is an O(1) constant. We estimate the constants for these
two transitions by approximating the vesicle as a cylinder in uniaxial extensional flow.
For the asymmetric mode, we let the cylinder be at steady state, while for the pearling
mode, we let the cylinder’s radius decrease in time, as the vesicle’s neck continuously
thins before instability. We derive the constants for the two cases below.

A.5.1. Asymmetric instability
Because the vesicle is at steady-state, the velocity on the particle is zero, and thus

the flow field is the same as that around a rigid body. From slender body theory, the
shear stress on the vesicle’s interface is thus

Trz = µoutε̇z
R ln(L/R)

, (A 37)

where z is the coordinate along the flow direction (z= 0 at the centre of the particle
and z=±L/2 at the ends). The tangential stress boundary condition dictates that the
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shear stresses on the interface balance the surface tension gradients: dσ/dz=−Trz. If
we assume no tension at the ends of the vesicle, the surface tension becomes

σ = σcen

[
1− 4

( z
L

)2
]
; σcen = µoutε̇L2

8R ln(L/R)
. (A 38)

We expect the vesicle to become unstable when the capillary forces overcome
the bending resistance of the interface. For a cylindrical membrane, this inequality
corresponds to σcen/R> κ/(2R3), where κ is the bending modulus of the membrane
(see (2.4) for bending force expression). Noting that the capillary number defined by
Kantsler et al. (2008a) is Ca′ =µoutε̇LR2/κ , we obtain the critical condition:

Ca′c > 4
ln(L/R)

L/R
. (A 39)

Thus, for the asymmetric instability, the constant for the scaling relation is C= 4.

A.5.2. Pearling instability
Before the pearling transition, the vesicle extends continuously in flow, creating a

central neck whose radius decreases in time. In this section, we model the vesicle as
a cylinder in uniaxial extensional flow, with its radius R decreasing at a rate Ṙ. We
will calculate the surface tension of this configuration, and determine the conditions
under which the tension becomes larger than the critical condition σc = 3κ/(2R2).

Before we begin, let us perform some simple scaling analysis. We expect the
extensional flow to induce a surface velocity uz on the vesicle, which in turn creates
a radial velocity Ṙ due to the membrane’s incompressibility. The lubrication flow
initiated by these velocities induces a pressure gradient that scales as

p/L∼ λµout
uz

R2
. (A 40)

This pressure should balance the surface tension from the extensional flow (as
determined by slender body theory):

σ/R∼ µoutε̇L2

R2 ln(L/R)
. (A 41)

Balancing the two equations yields uz∼ ε̇L/(λ ln(L/R)). For viscosity ratios of order
unity (which we consider here), the surface velocity uz is smaller than the far-field
velocity u∞z by a factor of ln(L/R). For now, we neglect such logarithmic corrections
and treat the vesicle as essentially rigid when we are solving for the fluid flow outside
the vesicle.

The tangential stress boundary condition states that the jump in tangential stresses
must balance the surface tension gradients: −dσ/dz= Tout

rz − T in
rz . We obtain the outer

stress from slender body theory on a rigid particle, which is the same expression as
(A 37):

Tout
rz =

µoutε̇z
R ln(L/R)

. (A 42)

The shear stress on the inner surface is determined by the flow inside the cylinder,
which is governed by the lubrication equations. The z-velocity satisfies

λµout
1
r
∂

∂r

(
r
∂uz

∂r

)
= ∂p
∂z
, p= p(z) only. (A 43)
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The solution to this velocity field is

uz = 1
4λµout

∂p
∂z
(r2 +C)= f (z)r2 + g(z). (A 44)

To determine f and g, we apply continuity of velocity and surface incompressibility.
The integrated continuity equation is

RṘ+
∫ R

0

∂uz

∂z
r dr= 0. (A 45)

The surface incompressibility condition is ∂uz/∂z = −ur/r on the surface r = R.
Applying these boundary conditions gives the velocity, pressure, and shear-stress fields
on the interface:

uz =− Ṙz
R
, pin = 4µλṘz2

R3
, T in

rz =
4µλṘz

R2
. (A 46a–c)

Now that we have the shear stresses, we solve for the surface tension, assuming no
tension at the ends of the cylinder. Substituting the stresses (A 42) and (A 46) into the
tangential stress boundary condition −dσ/dz= Tout

rz − T in
rz yields

σ = σcen

[
1− 4

( z
L

)2
]
, σcen = µoutε̇L2

8R ln(L/R)
− λµoutṘL2

2R2
. (A 47)

To determine the radial velocity of the interface Ṙ, we invoke the normal stress
boundary condition, which for a cylindrical geometry is

pin + p0 = σR −
κ

2R3
. (A 48)

In the above equation, κ is the bending modulus of the interface. We substitute the
interior pressure pin and the surface tension σ into the above balance, which yields
two equations for the constant pressure p0 and the deformation rate Ṙ:

p0 = σcen − κ

2R3
, Ṙ=− ε̇R

4λ ln(L/R)
. (A 49a,b)

Now that we have the deformation rate Ṙ, we substitute this expression into the
surface tension (A 47) to obtain the final form for the tension at the centre of the
particle:

σcen = µoutε̇L2

4R ln(L/R)
. (A 50)

We expect a pearling instability to occur when this surface tension exceeds the
critical condition σc= 3κ/(2R2). Noting that the capillary number defined by Kantsler
et al. (2008a) is Ca′ =µoutε̇LR2/κ , the stability criteria becomes

Ca′c > 6
ln(L/R)

L/R
. (A 51)

Thus, for the pearling instability, the constant for the scaling relation is C= 6.

A.6. Derivation of growth rates, pearling instability
A.6.1. Problem statement and scaling

Suppose we have an infinitely long cylindrical vesicle of radius R that is initially at
rest in a fluid of viscosity µ. The vesicle’s membrane has a bending modulus κ and
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an applied tension σ0. Furthermore, the vesicle encloses a solution of viscosity λµ. If
the interface experiences a small disturbance, under what conditions will we observe
pearling?

Let us say that the membrane experiences a displacement:

r= R+ bk(t)eikz, |bk| � R, (A 52)

where bk represents a Fourier mode. This deformation creates a disturbance flow both
inside and outside the vesicle, with the flow being linear in the radial velocity dbk/dt.
The pressure from this flow balances the capillary and bending forces on the interface,
leading to a dispersion relation. We derive the dispersion relation for each Fourier
mode in this module.

For the rest of this section, we scale the radial and axial coordinates by the cylinder
radius R, and all wavenumbers by 1/R. We scale stresses by κ/R3, and all surface
tensions by κ/R2. We scale time by the capillary time scale tc = µR3/κ , and all
velocities by R/tc. Lastly, we scale the membrane’s deformation bk by |bk|. The non-
dimensional radius of the cylinder is now:

r= 1+ εbkeikz, ε ≡ |bk|
R
� 1 (A 53)

where ε is the membrane strain, which we assume to be much smaller than unity.
We further posit that the velocity, tension, and pressure fields follow a perturbation
expansion in terms of ε as

u= εu(1), σ = σ0 + εσ (1), p= p(0) + εp(1). (A 54a–c)

Under this assumption, the stress balances on the interface, to O(ε) are

O(1) Normal stress: p(0)in = 2H(0)σ (0) + f (0)B

O(ε) Normal stress: p(1)in − p(1)out = 2H(0)σ (1) + 2H(1)σ0 + f (1)B

O(ε) Tangential stress: T (1)rz,out − T (1)rz,in =−
dσ (1)

dz
.

 (A 55)

In the above expressions, terms with a superscript (1) are perturbed quantities that
are linear in the deformation bk of the interface. Terms with a superscript (0) are base-
state quantities. We solve these balances in the following subsections.

A.6.2. Differential geometry and base state
For a cylindrical surface parameterized by (A 53), the principal curvatures on the

interface to O(ε) are

Υ1 = 1
r
= 1− εbk exp(ikz), Υ2 = εbkk2 exp(ikz). (A 56a,b)

The mean and Gaussian curvatures are H = 0.5(Υ1 + Υ2) and K = Υ1Υ2. The non-
dimensional bending force is fB= 4KH− 4H3− 2∇2

s H. Expressions for these quantities
are thus,

H = 1
2 − 1

2εbkeikz(1− k2) (A 57a)

fB = − 1
2 + εbkeikz( 3

2 − 1
2 k2 + k4). (A 57b)
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Substituting these expressions into the normal stress balance (A 55) yields for the
p(0)in = σ0 − 1/2 for the base state, which states that the equilibrium pressure inside
the vesicle balances the applied tension plus the equilibrium bending force. For no
applied tension, we recover the standard dimensional result p(0)in =−κ/(2R3). At O(ε),
the normal stress balance simplifies to

p(1)in − p(1)out − σ (1) = bkeikz[(k2 − 1)σ0 + 3
2 − 1

2 k2 + k4]. (A 58)

In the next section, we determine the perturbed tensions and pressures by solving
the Stokes flow equations inside and outside the cylinder.

A.6.3. Determine perturbation velocity, tension and pressure fields
To calculate the perturbation stresses on the vesicle’s membrane, we solve the

full Stokes equations inside and outside the cylinder. Recall, the solution to Stokes
equations is (Tran-Cong & Blake 1982; Dassios et al. 2004)

u=∇(x ·Φ + χ)− 2Φ, p= 2η∇ ·Φ, (A 59a,b)

where χ and Φ are harmonic functions, and η is the non-dimensional viscosity of the
medium (in our case, η = 1 outside the cylinder, and λ inside the cylinder). These
equations automatically satisfy incompressibility: ∇ · u = 0. Because we decompose
the surface deformation into Fourier modes (A 53), the appropriate choice of harmonic
functions for a cylindrical geometry is

χin = AI0(kr)eikz, Φin = BI1(kr)eikz r̂
χout = EK0(kr)eikz, Φout = FK1(kr)eikz r̂

}
(A 60)

where A, B, E and F are undetermined constants, and I0, I1, K0 and K1 are modified
Bessel functions. Here I0(x) and I1(x) are finite at the origin, while K0(x) and K1(x)
decay at infinity. We will use the following Bessel function identities to simplify our
algebra:

I′0(x)= I1(x), (xI1(x))′ = xI0(x)
K′0(x)=−K1(x), (xK1(x))′ =−xK0(x).

}
(A 61)

When we substitute our chosen harmonic functions into equations (A 59), we obtain
the following velocity and pressure fields inside and outside the cylinder.

(i) Inside cylinder (r< 1)

ur = eikz[AkI1(kr)+ BkrI0(kr)− 2BI1(kr)]
uz =−ieikz[−AkI0(kr)− BkrI1(kr)]
p= eikz[2BλkI0(kr)].

 (A 62)

(ii) Outside cylinder (r> 1)

ur = eikz[−EkK1(kr)− FkrK0(kr)− 2FK1(kr)]
uz =−ieikz[−EkK0(kr)− FkrK1(kr)]
p= eikz[−2FkK0(kr)].

(A 63)
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We solve for the undetermined coefficients A,B,E and F by applying the kinematic
boundary condition and surface incompressibility boundary condition. The kinematic
boundary condition states that the interface expands and contracts with the radial
velocity ur = ḃkeikz. Surface incompressibility states that (δij − ninj)(∂ui/∂xj) = 0
on the interface, which implies ∂uz/∂z = −ur on r = 1. Applying these boundary
conditions to both flows yields the solutions

A= ḃkα
−1(I1k2 − I0k+ 2I1)

B= ḃkα
−1(I1k− I0k2)

α = k(I2
1k2 − I2

0k2 + 2I0I1k)

 (A 64)

E= ḃkβ
−1(−K1k2 −K0k− 2K1)

F= ḃkβ
−1(K1k+K0k2)

β = k(K2
1k2 −K2

0k2 − 2K0K1k).

 (A 65)

In the above solutions, all Bessel functions are evaluated at the wavenumber k. Now
that we have the disturbance velocity and pressure fields, let us calculate the pressure
jump across the interface r= 1:

p(1)in − p(1)out = eikz[2BλkI0 + 2FkK0]. (A 66)

Similarly, we can calculate the perturbed surface tension, if we note that for each
Fourier mode, −ikσ (1) = [[T (1)rz ]], where T (1)rz is the shear stress (which is equal to
T (1)rz = η((∂uz/∂r)+ (∂ur/∂z)) for a Newtonian fluid). Thus, the surface tension is

σ (1) = eikz[2EkK1 + 2F(kK0 +K1)+ 2λAkI1 + 2λB(kI0 − I1)]. (A 67)

A.6.4. Dispersion relationship
We substitute the pressure and surface tension expressions in (A 66) and (A 67) into

the normal stress balance in (A 58). This operation yields a dispersion relationship for
the Fourier mode bk. If we define the perturbation growth rate s as the ratio of the
deformation rate ḃk to the deformation bk, our dispersion relationship is

s(k)≡ ḃk

bk
= Ω(k)
Λ(k)

,

Ω(k)= (k2 − 1)σ0 + 3
2 − 1

2 k2 + k4,

Λ(k)= 2k(k2 + 1)[β−1K2
1 − λα−1I2

1].
(A 68)

The numerator Ω(k) are contributions from bending and curvature forces, while
the denominator Λ(k) is purely from hydrodynamic stresses on the interface. The
expressions for α and β are in (A 64) and (A 65).

It turns out that the hydrodynamical factor Λ(k) is negative for all wavenumbers
k. Thus, the only way to have an instability is to have the bending and curvature
contribution Ω(k) be less than zero. If the applied tension σ0>3/2, we are guaranteed
a long-wavelength instability in 0< k< 1. This is the pearling instability that we are
attempting to describe. If σ0<−4.328, we are guaranteed an instability for k> 1. This
instability is the buckling/wrinkling instability, as it creates short-wavelength ripples
on the surface due to the creation of negative tensions. These stability margins agree
with all previous studies, as we obtain the same bending factor Ω(k) (Goldstein et al.
1996; Powers 2010; Boedec et al. 2014). Our hydrodynamical factor Λ(k) agrees with
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Boedec et al. (2014), which gives the most accurate dispersion relationship for the
pearling phenomenon. Previous studies computed Λ(k) slightly incorrectly, as they
forgot to take into account the spatially varying tension (i.e. σ (1)) in their derivations
(Goldstein et al. 1996; Powers 2010).
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