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Abstract
Data held within administration records of occupational pension schemes yield a rich source of

information on mortality rates and the statistical predictors (covariates) of longevity. In this paper

we provide, for the first time, a multivariable analysis of post-retirement mortality using the detailed

information held within occupational pension scheme records.

Using the extensive dataset of over one million living pensioners and dependants and 530,000 historic

deaths collected by Club Vita, we investigate the importance of factors including gender, affluence and

lifestyle on the observed period life expectancy of individuals. We describe one approach to constructing

a multivariable model for pensioner baseline mortality, showing how such factors explain a variation

in observed period life expectancy in excess of ten years. The relative importance of each factor on

mortality is analysed and we describe the interactions between these factors and age, answering

questions such as whether the impact of a healthy lifestyle or affluence attenuates with age. Further, we

highlight the importance of the choice of affluence measure in analysing mortality, and show that the

salary at retirement is a better predictor of longevity than the pension amount for male pensioners.

The results of this paper are directly relevant to any pensions actuary advising on an appropriate

baseline assumption (i.e. current mortality rates) for use with occupational pension schemes.
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1. Introduction

1.1 One of the critical assumptions in funding pension schemes, pricing annuity products and

reserving for annuity portfolios is the longevity of the individuals involved.

1.2 Longevity is, in itself, a measure of survival, and so a function of underlying mortality rates.

Modelling mortality rates and, so, in turn, life expectancy has long been the role of actuaries

(in financial arenas) and statistical demographers (in fiscal and social planning).

1.3 In this paper we focus on the statistical predictors of mortality and longevity. Particular focus

is given to pension schemes, since the dataset used relates to occupational pension schemes, and the
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expertise of the authors lends itself to pensions’ applications. However, the conclusions will be

directly applicable to pensions actuaries and be of interest to life actuaries.

1.4 Section 2 provides some context to the problem of predicting pensioner longevity. We proceed

to identify which items of information stored on the administration systems of a typical pension

scheme most strongly predict the mortality experienced by members post retirement. This requires

us to describe the dataset used (Section 3), including the measures taken to ensure the quality of the

data, before we explain, in Section 4, the methods used to disaggregate the effect of multiple

predictors in a heterogeneous dataset.

1.5 The results of our analysis highlight the relative importance of gender, affluence, lifestyle and

retirement health status as predictors for post-retirement mortality, and hence longevity. These

results are presented in Section 5. We also consider the question of how best to measure affluence.

We show that, for men, it is the salary at retirement or at earlier exit, rather than the pension, which

is more informative. This section also describes the way in which the mortality gap between

different individuals attenuates (declines) with age for all factors.

1.6 This paper, by necessity, includes a discussion of a range of techniques, some of which may be

unfamiliar to some readers. We have included a glossary (see Appendix), covering those statistical

terms used which we believe may be unfamiliar to readers. When these terms are first introduced,

we have highlighted them in italics.

2. Predicting post-retirement longevity

2.1 Actuaries advising pension schemes are frequently called upon to advise on appropriate

longevity assumptions – be it for sponsors to use for corporate accounting and for funding purposes,

or trustees, in order that they may make an informed assumption for funding or other purposes. In

particular, the focus is usually on the mortality experienced once a member retires, since, financially,

this is the most important period.

2.2 Usually the post-retirement mortality assumption is split into two parts. The first is current

mortality, the ‘baseline’ in regulatory terms (The Pensions Regulator, 2008). For large groups of

individuals, for example at the national and regional levels, and very large pension schemes, this can be

graduated directly, based upon experience. More usually, it is deduced for a particular scheme by

adjusting a published mortality table to the experience of the scheme, or using adjustments which reflect

the scheme’s broad characteristics (for example using the scheme’s industry, typical pension amounts or

a postcode analysis to deduce an appropriate adjustment factor, based upon wider experience such as

the CMI’s study of self-administered pension schemes and the ONS’s population level analysis).

2.3 The second part of the assumption is how these mortality rates may change in the future,

which is inherently more uncertain. Since it is commonly assumed that mortality rates will fall, this

assumption is often referred to as the ‘future improvement assumption’.

2.4 The focus of this paper is on the baseline post-retirement mortality assumptions and how the

membership of a pension scheme can be profiled (or segmented) by a variety of characteristics, into

groups more homogeneous in terms of mortality experience. Currently, it is usual practice for the future

improvement assumption to be the same for individuals within a scheme, regardless of the characteristics

of different individuals (other than, perhaps, gender). A discussion of how recent improvements have
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differed by longevity characteristic, and how their future evolution might be modelled, is outside the

scope of this paper, although the authors would encourage further research in this area.

2.5 Figure 1 shows, relative to published tables, the potential variability in baseline mortality that

exists between different schemes. For each of the 91 occupational pension schemes, which had

contributed data to Club Vita by December 2008 (see Section 3), the ratio of the observed male

mortality which would be expected, had the experience been in accordance with the ‘00’ series life

office normal retirement pensioner tables (the ‘PNxL00’ tables), is plotted against the corresponding

ratio for women.

2.6 Figure 2 shows that these variations in experience lead to over five years’ difference, at the

scheme level, in observed (period) life expectancy from age 65 for men, and almost six years’

difference for women. It is worth noting that fewer schemes are shown in Figure 2, namely 67, as we

have applied strict criteria to the minimum scheme size (exposed to risk in excess of 1,000 life years)

and to the availability of data at each age (minimum exposed to risk of 100 life years in each age

band up to age 90). We have excluded some schemes, because, for some of the smallest and most

immature schemes, a credible period life expectancy cannot be calculated.

2.7 The ranges of experience seen in Figure 1 and Figure 2 are currently equivalent to a range of

over 15% in liability valuations. At a scheme level this is material. However, each scheme also

aggregates over heterogeneous underlying populations. The individual members of pension schemes

tend to be heterogeneous in terms of occupation (for example, manual and clerical workers in the

same scheme), affluence and lifestyle, and hence in longevity prospects.

2.8 Univariate studies, stratified by gender and age, have shown that mortality rates and life

expectancy are distinctly different for populations segmented by occupation-based social class
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Figure 1. Ratio of actual mortality to expected mortality for pensioners and dependants aged 65
and over for the period 2005 to 2007 for each of the 91 occupational pension schemes within the
Club Vita dataset as at December 2008.
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(ONS 2007), industry (CMI 2007), affluence (CMI 2009b) and geo-demographics (ONS 2008).

However, in all of these studies two issues remain. First, within each group considerable

heterogeneity remains – for example, each of the ‘social class by occupation’ categories historically

reported upon (i.e. ranging from I – Professionals to V – Unskilled Occupations) are likely to

contain a wide spread of incomes. Second, the effects estimated by these studies cannot be readily

combined into an actuarial assumption, owing to the correlations between factors such as income

and social class. Relatively little work which seeks to disaggregate the underlying heterogeneity has

been published to date. Notable exceptions in this regard are Richards & Jones (2004) and Richards

(2008), although this is the first time when such approaches have been applied to data from

occupational pension schemes in particular.

2.9 We use multivariable analysis to model post-retirement mortality in terms of a number of

variables, showing, in Section 5, that these variables explain a difference of over 10 years in life

expectancy from age 65. Crucially, each of the schemes considered in Figure 1 and Figure 2 has a

distinct mix of current pensioners across this range of life expectancies.

2.10 Within this paper, the post-retirement mortality rates are calibrated to the recent experience

of current pensioners. However, by profiling the membership of a scheme in terms of explanatory

variables such as affluence, geo-demographics and retirement health status, the analysis lends itself

to the identification of an appropriate baseline post-retirement assumption for future pensioners as

well as for current pensioners.

2.11 Understanding the profile of a scheme’s membership in terms of predictive variables, and the

mortality rates associated with individuals of like characteristics, enables us:

– to reduce estimation risk in the baseline assumption by reducing the reliance placed on a single,

actual over expected ratio, the confidence interval for which is often large;
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Figure 2. Variation in observed period life expectancy based on data for 2005 to 2007 for 67 of the
91 occupational pension schemes within the Club Vita dataset as at December 2008.
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– to reflect changes in the nature of future pensioners compared to current pensioners

automatically – many companies’ workforces have changed substantially over time. For example,

the printing and car manufacturing industries have, in general, shifted from heavy manual

production to high technology automated production lines. Inferences made about the post-

retirement mortality of the active members and deferred pensioners, of a particular scheme,

based upon the recent experience or general characteristics of the current pensioner population

of that same scheme, can be misleading resulting in inappropriate technical provisions, balance

sheet liabilities, and costings of ongoing accrual;

– to identify whether sub-groups of the scheme’s membership have different longevity

characteristics, which can be important if seeking an equitable sharing of the costs of benefits

accruing (or deficit arising) between employers in multi-employer schemes, or when assessing

debts upon cessation events, such as an employer leaving a scheme; and

– to tailor a mortality assumption to the potential new members arising from a scheme merger,

facilitating more reliable assessments of the impact of any proposed merger, and the terms of any

transfer of liabilities.

2.12 The accurate assessment of baseline mortality is also key to risk-reduction strategies. For

schemes implementing liability-driven investment solutions, it is critical to reliably identify the best

estimate cash-flows against which to construct a hedging portfolio. Where a scheme is contemplating

using derivatives designed to hedge against longevity trend risk, the trustees need a reliable starting

position if they are to appreciate truly the risk-reduction and cost implications of such transactions.

2.13 Some schemes are also seeking to remove concentrated idiosyncratic risk, i.e. where a small

number of members represents a disproportionate amount of the scheme’s liabilities. It is highly

likely that these members are also towards the top end of the life expectancy spectrum. A key first

step in assessing the cost effectiveness of any annuity (or alternative) solution is, therefore, to have a

reliable estimate of the longevity of these members.

3. Dataset used and data preparation

3.1. Dataset Used

3.1.1 The data underlying this paper have been collected by Club Vita, an organisation which

provides longevity analytics to pension schemes, employers and their actuarial advisers. The data

come exclusively from occupational pension schemes, and cover almost five million records,

including current and former active members, deferred pensioners, pensioners, dependants and

deceased members. The analysis in this paper relates specifically to the first 91 schemes for which

data had been cleaned and analysed as at March 2009.

3.1.2 The analysis of this paper focuses on the records of pensioners currently in receipt of benefits;

widows, widowers and children in receipt of pension benefits (collectively known as dependants); and

deceased members (who, at the time of death may have been any one of these types of members). At

the time of analysis there were in excess of 1.6 million such records spanning 1992 to 2008.

3.1.3 Table 1 provides some key indicators of the size of the dataset. Since we will be focussing our

analysis on informing the baseline assumption of recent mortality rates, we have concentrated on

analysing the recent calendar years of 2005 to 2007.

What Longevity Predictors Should Be Allowed for When Valuing Pension Scheme Liabilities?
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3.1.4 The schemes in the dataset relate to a broad mix of industry types, including basic materials,

industrials, consumer goods, consumer services, utilities, financials, technology, local authorities

and charities.

3.1.5 Table 2 provides a summary of the size of schemes in terms of the number of pensioners and

dependants.

3.1.6 Different schemes hold different data on their administration systems. Club Vita collects a

full history of each member’s movement through the scheme, including the key dates required for

exposure calculations. In addition, extensive information is collected on a member’s background,

for example, the nature of the occupation (i.e. manual, non-manual or executive) whilst employed,

the reason for leaving/retirement, salary history, pension amount, etc. This information provides a

rich set of possible longevity differentiators (covariates).

3.1.7 Table 3 provides a summary of the range of two of these covariates, annual pension amounts

and full-time equivalent salaries (revalued to 2008), for pensioners in the dataset.

3.1.8 Administration records include personal information such as name, address and postcode.

This information can be used to verify the data collected, and also to augment the dataset, with

additional covariates available from third party databases. For example, there are a number of

commercial profilers that map United Kingdom postcodes onto geo-demographic profiles using

propensity indices, such as the ACORN system used for the data presented in this paper (CACI, 2009).

Table 1. Summary of Club Vita dataset for the period 2005 to 2007.

Initial exposed to risk Deaths

Male pensioners 1,284,068 45,013

Female pensioners 1,055,802 23,632

Widows 492,051 24,047

Widowers 60,858 1,764

Table 2. Summary of scheme size.

No. of pensioners/dependants No. of schemes

Below 5,000 38

5,000–9,999 18

10,000–29,999 25

30,000 or above 10

Table 3. Summary of affluence measures.

Affluence measure Gender 1st decile Median 9th decile

Pension amount Male £877 £4,318 £15,429

Pension amount Female £420 £2,080 £7,053

Salary (revalued to 2008) Male £13,040 £19,501 £38,222

Salary (revalued to 2008) Female £10,302 £14,529 £25,112

A. M. Madrigal et al.
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These are based on demographic and consumer lifestyle databases, and, whilst designed for marketing

purposes, they have proven to be effective at predicting mortality (see, for example, Richards (2008)

for further discussion).

3.1.9 Risk factors or differentiators are used to search for patterns in the data, and so to identify

types of people who experience similar mortality rates. When analysing mortality and longevity, we

are interested in identifying important predictive covariates from the wide range of covariates

available to us. This paper will focus on analysing the effects of age, gender, retirement health,

pension amount, last known salary (revalued to current monetary terms with RPI), and geo-

demographic indicators on mortality. This is not an exhaustive list of possible differentiators, and

we would expect subsequent analysis to extend the list of material risk factors.

3.1.10 Schemes typically have a provision for members to retire on enhanced benefits if they are

unable to work due to ill-health. This gives rise to a binary covariate, ‘‘ill-health’’ or ‘‘non ill-

health’’, which relates to the health at retirement. Figure 3 shows, using male pensioners as an

example, that the general patterns in mortality are quite different for these two groups. We have,

therefore, stratified (segmented) the population by health at retirement, and have fitted different

models to the ill-health and the non ill-health populations.

3.1.11 We collect two different affluence proxies: the amount of pension and the last known salary,

i.e. the salary at retirement or at earlier exit from active membership. Our a priori belief is that the

pension is, at best, a crude proxy to affluence, owing to its dependence on the service with the employer.

Low pensions, in particular, can be misleading, since they may relate to a low paid but long serving

employee, a short serving higher paid employee, or someone whose accrual was limited through career

breaks, part-time work or the closure of the scheme to future accrual. An element of our analysis is to

identify whether the salary at retirement or at exit (which is commonly stored on occupational pension

Figure 3. Crude mortality rates with beta-binomial 95% credibility intervals in the logit scale for
male pensioners.
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scheme records) is a better longevity predictor. Since the salary at retirement, or at earlier exit, and

pension are reported at different dates for different members, we have adjusted these to a consistent

monetary value basis by rolling-up (or back) to January 2008 and September 2007 respectively.

3.1.12 Whilst occupation is available as a binary variable of manual or non-manual, we have not

included it in the paper, so as to provide as succinct an exposition of the techniques employed as

possible. Our analysis, however, indicates that, where the covariates described above are available,

the occupation provides relatively less additional information than each of the covariates considered

(around 1
2 year extra life expectancy from age 65 for a non-manual versus a manual employee with

otherwise similar characteristics).

3.2. Data Preparation

3.2.1 It is crucial to ensure the quality of the data. Accordingly, before analysis, we screen the data

against a range of quality criteria, to ensure that any obvious errors, inconsistencies, or artificial

biases, which arise as a facet of administrative practices, do not distort our analysis.

3.2.2 It is critical that we have no systematic inconsistencies between the in-force (alive) and the

deaths datasets. For example, during the early years of the computerisation of pensions

administration, it was common practice periodically to ‘purge’ (i.e. delete) the records of deceased

members in order to save on (expensive) disk space. If we were to include these years in our analysis,

we would not be observing all the deaths. We check the frequency of deaths over time to detect

when such events may have occurred, for example by step discontinuities in mortality rates. This

enables us to determine an ‘earliest usable date’ (EUD) for each of the schemes, which is used to

truncate exposures (i.e., only those members exposed to risk after the EUD are considered).

Similarly, to avoid any bias for late notified deaths, we also exclude the last month of data supplied

to allow for incurred, but not reported, deaths, leading to a ‘latest usable date’ (LUD).

3.2.3 It is also necessary to ensure reliable data for each of the covariates which we analyse. The

nature of pension administration records is such that this data may be missing in some cases.

However, simply ignoring these records may distort analyses, particularly if records with unusable

covariates display a systematic bias and are not missing at random. For example, if postcode data

are missing for records for deceased members but not for live pensioners, then the missing postcode

data will be an indicator of old age survival, rather than being of a random group. Using an

‘average’ value for missing numerical covariates, such as the pension or the salary amount, may

similarly introduce distortions.

3.2.4 This issue of missing or erroneous covariates has been addressed. Individual records were

flagged as potentially erroneous, given a set of carefully chosen criteria. These criteria included, for

example, when an individual is recorded to have had a low salary at retirement, but a relatively

large pension, or when an individual has a very low or high salary or pension compared to other

scheme members and the range of salaries reasonably expected, given the nature of the scheme’s

industry. If, under these particular criteria, the proportion of records flagged within a scheme

exceeded a reasonable threshold level, then these records were excluded. For each scheme where the

overall level of missing or erroneous records was excessively high for a specific covariate, or when

these records showed an important imbalance among dead and alive members, we would have

reason to be suspicious about the recording of that covariate. In this circumstance, the records for

the entire scheme would be excluded from analyses involving that covariate, to avoid the scheme

A. M. Madrigal et al.
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introducing a bias. These scheme level exclusions have been set separately for males and females,

and for pensioners and dependants, reflecting differences in some of the administrative practices

which result in variations in quality of covariate coverage between these groups. For instance, some

schemes may show a marked difference in the availability of full-time equivalent salaries for

women, as the salaries are more likely to be part-time than those for men.

3.2.5 In some cases we are able to impute the missing data before applying the above process. For

example, we are reliant upon having postcodes to link members to socio-economic and health

indicators which relate to each one of the U.K.’s 1.7 million postcodes (typically, groups of ten to 15

individual households). However, postcodes are not always held on the records, particularly for

people who died some years ago, and the Post Office changes postcodes from time to time, for

example as new housing developments take place. By using commercial software specifically

designed for the purpose of cleaning addresses, we can use the person’s name, and any partial

address supplied, to impute missing postcodes and correct wrong ones. For a typical scheme, 10%

of records are corrected by this process.

3.3. Duplicate Records

Since our dataset relates to member records, there will be an element of duplication, as certain

individuals may have multiple records, both within and between schemes. Consequently, our

observations of survival and death are not entirely independent observations. The data allowed the

presence of duplicates to be checked for 89% of records. Overall, under 4% of pensioners and

dependants were found to have more than one record. This level of duplication is believed to be low

in comparison with, for example, typical life insurance policy datasets. It is not known how this

level of duplication compares to that in other sets of occupational pension scheme data (for example

the CMI’s SAPS study) as, traditionally, levels of duplication have not been measured in other

studies. Empirical tests undertaken have identified no bias to the crude rates of mortality as a result

of this low level of duplication.

4. Statistical Methods Used

4.1. Overview

4.1.1 Mortality rates can be defined in a number of different ways. A typical mortality table

provides one-year probabilities of death qx, according to age x, of individuals. Crude mortality rates

can be derived directly from death and exposure data at each age. However, mortality rates are

often averaged over time (to smooth the year-to-year variation in crude mortality rates) and/or

smoothed across ages. It is generally accepted that immediate post-natal mortality and the ‘accident

hump’ aside, mortality rates increase with age. Since crude mortality rates are affected by random

variation, they can suggest that a younger age has a higher mortality rate than an older age. Better

estimates of the ‘true’ mortality rate at age x can be obtained by taking crude rates at adjacent ages

into account. This is, effectively, a smoothing process known as a graduation.

4.1.2 Numerous different graduation techniques have been devised over the years, for example using

weighted averages across ages and fitting cubic splines or other functional forms. These techniques

traditionally relate to the problem of graduating across age. In our investigations, we explore and

produce graduations that consider, simultaneously, the effects of multiple variables alongside age.

What Longevity Predictors Should Be Allowed for When Valuing Pension Scheme Liabilities?
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4.1.3 Publicly available population-based data are usually available in the form of summary

statistics, which present counts of deaths and lives for different sub-populations, genders and

age-groups. Life office data have, at least historically, been graduated, by bodies such as the CMI, in

grouped form. This traditional approach of segmenting data into groups, which are assumed to be

homogeneous, and then modelling mortality within those groups, has some drawbacks. For example,

when there is a large number of potential risk factors, this can create more categories than the data

can cope with, for example categories with no observations or with very low expected deaths. It is

often the case that different sub-groups are then amalgamated in order to achieve a number of groups

compatible with the volume of data available. A classical example of this is to group ages so that there

is a minimum of five deaths incurred in each age-group (see, for example, Benjamin & Pollard, 1989).

4.1.4 We can describe individuals in terms of their covariate profile, i.e. the combination of

covariate values considered in the model. Even in a large dataset such as ours, the possible

combinations of age, gender, affluence, geo-demographics and retirement health may result in as

many different covariate profiles as there are records. This is itself not a problem, provided that we

model mortality at the individual rather than at the grouped level. This involves either:

– modelling individual deaths via a Bernoulli model to estimate qx conditional on the characteristics

of an individual, which would usually be done using a generalised linear model (GLM); or

– estimating mx by using a survival model.

4.1.5 In this paper we focus our attention on using GLMs. However, we readily acknowledge

the current debate as to the relative merits of using survival models rather than GLMs, and the

reader is referred to Richards (2008) for an exposition of survival techniques. Our survival

modelling work supports the conclusions in Section 5 of the relative importance of different

covariates in predicting longevity, and our work with the Cox proportional hazards model (Cox &

Oakes, 1984) has also reaffirmed the findings of Richards (2008), that it is preferable to ensure

that any survival models are fully parametric survival models, with a suitable distribution to allow for

the non-proportionality of covariate effects, i.e. that the covariate impacts attenuate with age.

4.1.6 In the rest of this section we describe the methods used to fit our GLM. The fitting consists

of four key steps, namely:

(1) preparing the data for the GLM, including identifying the ages over which the data are

sufficiently credible to fit the model;

(2) the actual fitting;

(3) verifying the fit of the model; and

(4) deciding how to extend the fitted GLM to ages outside of the range to which it is fitted.

Firstly, however, we provide a recap on GLMs.

4.2. A Brief Introduction to GLMs

4.2.1 GLMs are a class of statistical models that generalise classical linear models to include other

outcome types, and are detailed in, for example, McCullagh & Nelder (1989). In particular, GLMs

relate the random distribution of the measured response variable (the distribution function) to the

systematic (non-random) portion of the experiment (the linear predictor or the covariates), through

a function g (the link function).

A. M. Madrigal et al.
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4.2.2 Specifically, suppose that the vector of n observations y is assumed to be the realisation of a

random variable Y with mean m. The systematic part of the GLM is a specification for the vector m,
in terms of a small number of parameters b1,y, bp. This specification takes the form:

gðEðYiÞÞ ¼ gðmiÞ ¼ Zi ¼ b1xi1 þ . . .þ bpxip; i ¼ 1; . . . ; n

where the xij are the jth covariate for observation i, and the bs are parameters whose values are usually

estimated from the data, using iterative procedures to maximise the likelihood of the observations.

4.2.3 In a life table context, the parameter of interest is the probability that a person aged x will

die within one year, denoted by qx, for each age x. Equivalently we can write the random variable Y

as the event that an individual aged x dies within a certain period. When an individual either died

(Y 5 1) in a certain period or survived to the end of the period (Y 5 0), we can write Pr(Yi 5 1)5qx.

The principal objective of our statistical analysis is to investigate the relationship between the

response probability qx and possible explanatory variables x 5 (x1,y , xp).

4.2.4 GLMs for individual mortality are typically based around the Bernoulli model, using qx and

the logistic (or logit) transformation, which has been widely used in actuarial practice. The logistic

mortality law, namely that:

E YijX ¼ xð Þ ¼ qx ¼
eaþbx

1þ eaþbx

is a simplified version of the mortality law proposed by Perks (1932), which can be equivalently

written as:

log
qx

1�qx

� �
� aþ bx

which is an expression of a simple GLM, where age is the only covariate, and the linear predictor is

a linear combination of age and a constant. We introduced a number of different risk factors in

z2.8, which univariate studies have shown to be predictive of mortality. Crucially, the linear

predictor structure in the GLM makes it easy for us simultaneously to model these different risk

factors. We can extend the expression on the right of the above formula to include covariates other

than age. Further, although the linear predictor is a linear combination of predictors and

parameters, the predictors can include functions of covariates, for example, age squared. The

functional form of the linear predictor is discussed in Section 4.4.

4.2.5 One of the benefits of using a logistic link in the model relates to the ease of parameter

interpretation. The transformation qx

1�qx
turns a probability into the equivalent odds in favour of the

event (in this case, death). Thus, the odds that an older individual dies within one year increase over

that of a younger individual with each year of age by exp(b).

4.2.6 GLMs are structured to estimate differences relative to the baseline profile. For example, if

the baseline consisted of manual pensioners, then the fitted model parameters estimate non-manual

mortality as a departure from the manual component of the baseline. In addition, as the fitted model

is calibrated to individual-level data, it can be used to make predictions both at the individual and at

the group level, given a specific covariate profile.

4.2.7 Although the most widely used parametric forms for the GLM are the Binomial and Poisson

distributions, we acknowledge that there are a wide range of possible parametric forms for mortality

(‘‘mortality laws’’) discussed in actuarial literature such as Haberman and Renshaw (1996), Cairns

et al. (2007), Macdonald (1996a, 1996b and 1996c) and Richards (2008). Richards (2007) describes
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a number of mortality laws which can be expressed in GLM terms, and Richards & Jones (2004)

present the results of a GLM for pensioner mortality in a large portfolio of life office annuitants, and

they show that the logistic regression was the best of a variety of choices of GLM. In Club Vita, the

performance of different forms and models is part of our ongoing research.

4.3. GLM Specific Data Preparation

4.3.1 To create the Bernoulli outcome for a given calendar year, we create a response variable ‘Dead

in year t’, which has a value of one if the member died in that calendar year and zero if not. Exposure

to risk is derived from the date of birth, the date retired, the date of death, the date of exit for other

reasons, plus the EUD and the LUD dates. The pensioner population is subject to migration, and left

truncation and right censoring are part of the nature of the data, so that not all members contribute a

full calendar year to the exposure. Dropping all partial exposure cases would be an unnecessary

reduction of information. However, including those records with partial exposure in the binomial

GLM, without adjusting for the part year nature, could lead to a systematic under-estimation of the

qx. We therefore weight the contribution of each of the membership records according to its exposure

to risk in a year, counting as a full observation when the exposed risk is equal to one.

4.3.2 When carrying out statistical modelling to graduate baseline mortality rates, we need to

strike a balance between the resultant rates being as up to date, and hence, relevant to current

mortality as possible, and the need to smooth out fluctuations in mortality pertaining to a specific

calendar year. Therefore, we have modelled mortality based on three whole calendar years for the

period 2005 to 2007. This period is consistent with the length of time used in a typical inter-

valuation experience of a pension scheme, and by the ONS in creating interim life tables.

4.3.3 When looking at a period of time, a common estimate for q̂x, which smoothes the year-to-year

variation, is given by taking the aggregate data over the period, i.e. for the period 2005 to 2007:

q̂x ¼

P2007

t¼2005

Dx;t

P2007

t¼2005

Ex;t

where Dx,t is the number of deaths at age x in calendar year t and Ex,t is the initial exposed to risk at

age x in calendar year t.

4.3.4 An underlying assumption of GLM modelling is that the observations are independent. In

our approach, the same individual can provide exposure for up to three years. The impact of this

lack of independence is reduced, since our models always adjust for age, and an individual never

provides information for the same age in more than one year. We tested the impact of the extra

source of variation introduced by this with a generalised linear mixed model (Gelman & Hill,

2007), and it was not significant, so this was not considered further.

4.3.5 Before modelling, it is necessary to consider the age-ranges which will be included in the

model for each of the different strata, such as the male non ill-health pensioners. As an example,

Figure 4 shows the logit of crude mortality rates with their corresponding 95% confidence intervals

for non ill-health pensioners. We can see, for women (Figure 4(a)), how the intervals widen steeply

for ages less than 60, and gently for older ages between the early 90s and 101, where it jumps. For

males (Figure 4(b)), it can be seen how the intervals increase for ages less than 60, and for ages
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higher than 95. For aggregated models (i.e. if age only was to be considered as a covariate), we may

consider including ages below 60 and above 95. However, we have sought to have a good coverage

and a good fit when different covariate profiles (high salary, low lifestyle, etc.) are taken into

account, so we have fitted models over only those ages with particularly good data coverage.

Consequently, the adopted range for pensioners retiring on non ill-health grounds was from ages

60 to 95. Table 4 shows the age ranges adopted for different strata following similar reasoning.
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Figure 4. Logit of crude mortality rates with 95% confidence intervals for pensioner non ill-health
population.

Table 4. Age ranges over which GLM fitted for different strata.

Sub population Age range

Males/females pensioners non ill-health 60–95 years old

Males/females pensioners ill-Health 50–90 years old

Widows 60–100 years old

Widowers 60–90 years old

What Longevity Predictors Should Be Allowed for When Valuing Pension Scheme Liabilities?

13

https://doi.org/10.1017/S1357321711000018 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321711000018


4.4. Fitting the Model

4.4.1 The formulation of any statistical model is a lengthy process, requiring judgement,

experience and a range of statistical tools/checks. The resulting model should have reasonable

statistical and mathematical properties (accepting that no statistical model is perfect), be consistent

with the knowledge of the process under study, and be able to extrapolate to related datasets (for

example, the pensioners in a particular pension scheme). Even after applying these criteria, however,

there are often several competing models, and a standard statistic is needed for comparing them. A

simpler model with few rather than many parameters is favoured over comparatively complex ones,

provided that they fit the data, broadly speaking, equally well.

4.4.2 Akaike’s Information Criterion (AIC) is a goodness-of-fit statistic, which can be used to assess

alternative models fitted to the same dataset (Akaike, 1974). The AIC for a given model is defined as:

AIC ¼ �2l þ rp;

where l is the log-likelihood of the fitted model, p is the number of parameters in the model, and r is a

penalty term, equal to two. The AIC statistic is therefore a combination of a general measure of model

fit (22l) and the complexity of the model (rp), and its use ensures that over-parameterised models are

penalised.

4.4.3 We also use the Bayesian or Schwarz Information Criterion (BIC) to guide our model

selection. This uses an alternative penalty of r5log(n), where n is the number of observations, so

that the BIC penalises additional parameters more strongly than the AIC does. A lower value of the

AIC (or the BIC) is an indication of a better-fitting model than one whose AIC (or BIC) is higher.

4.4.4 Model choice is usually a compromise between goodness-of-fit and simplicity, and the use of

the AIC and the BIC statistics helps to ensure that a parsimonious model is selected. We wish to

avoid over-fitting to the data, as this will have a detrimental effect on the robustness of the model

and, more crucially, on its ability to predict outside the dataset used. In practice, we use both the

AIC and the BIC to define a set of possible models. Since the AIC penalises complexity less, it will

generally select more complex models. A battery of goodness-of-fit tests commonly used in the

actuarial and the statistical fields (as described in Section 4.5) are then carried out on these models,

and the most suitable model within this set is selected.

4.4.5 Identifying candidate models requires us to consider the functional form and the possible

transformation of variables (e.g., age). This is necessarily a combination of a visual assessment to

understand the features of the mortality rates and goodness-of-fit statistics. The plot of the crude

mortality rates, supplemented with some type of spline or non-parametric smoother, is usually a

very powerful aid to identify candidate functions. Fitting models with different parametric forms,

and comparing AICs and BICs, will complement the evidence of visual assessment.

4.4.6 In order to construct candidate models we also need to identify which covariates are predictive

of mortality. Before doing this, however, we accept that the inclusion of a continuous covariate, or a

discrete covariate made up of many groups, in a regression model can result in an unwieldy number of

fitted curves. To avoid this, we cluster or partition these predictors into discrete covariates formed of

smaller groups, broadly homogeneous in their mortality experience. To remove any subjectivity in the

choice of how to group the data, and the number of groups needed to ensure optimal prediction, we

use statistical criteria to guide the grouping of the data. We use Ward’s method (Ward, 1963) and the
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recursive partitioning and regression tree (rpart) method (Therneau & Atkinson, 1997), in order to

simplify a complex discrete covariate, such as the 57-group ACORN lifestyle covariate, and to

determine the optimal cut points with which to make continuous covariates, such as revalued salary at

exit/retirement and pension amount, discrete. When either method results in more than one simplified

discrete covariate of comparable prediction error (consisting of a different number of groups), the set

of covariates was examined in a GLM, and the covariate grouping which resulted in the lowest AIC/

BIC was selected to be used for the predictive models. Specifically, for the data analysed in this paper,

the process led to five geo-demographic groups, and the affluence groups are described in Table 5.

4.4.7 It is interesting to note that greater granularity is suggested for affluence amongst men than

amongst women. A possible reason for this is that the longevity prospects of those women who are

currently in receipt of pensions may be more strongly determined by the total household income

than by their personal income. The greater emancipation in the workplace of successive generations

of women means that we might reasonably expect greater granularity to emerge over time.

4.4.8 Different explorations and analyses were undertaken to identify covariates that had an

impact on mortality. We begin the selection process with a univariable analysis of each factor,

including correlation/association summaries (Cramer’s V for categorical data), chi-square tests and

individual odds ratios with 95% confidence intervals (Agresti, 2002). A univariable logistic

regression is supplemented with a plot of the smoothed mortality rates by the covariates.

Cleveland’s loess smoother (a locally weighted polynomial regression smoother) is used to smooth

the mortality rates, as it has been shown to perform excellently when the response is binary (Harrell,

2001). A loess smoother plot is helpful in ascertaining the potential importance of the variable, and

the possible presence and effect of extreme observations, but also the appropriate parametric

relationship and/or scale. An example of such a plot is shown later (Section 5, Figure 7). On top of

assessing the relevance of a covariate based on the reduction in AIC and BIC, the coefficients (size

and direction of effects) are also assessed.

4.4.9 Figure 5 shows crude mortality rates for covariates considered one at a time. In general, the

effects observed are consistent with what one would expect intuitively. For instance, younger people

Table 5. Results of discretising affluence measures.

Salary groups (January 2008 terms) Pension groups (September 2007 terms)

Male pensioners ,£15,000 p.a. ,£5,500 p.a.

£15,000 p.a.–£22,500 p.a. £5,500 p.a.–£8,500 p.a.

£22,500 p.a.–£30,500 p.a. £8,500 p.a.–£14,500 p.a.

£30,500 p.a.–£48,500 p.a. £14,500 p.a.–£24,000 p.a.

.£48,500 p.a. .£24,000 p.a.

Female pensioners ,£12,000 p.a. ,£1,500 p.a.

.£12,000 p.a. .£1,500 p.a.

Widows N/A ,£2,000 p.a.

£2,000 p.a–£4,000 p.a.

.£4,000 p.a.

Widowers N/A ,£1,000 p.a.

.£1,000 p.a.
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presenting lower mortality rates than older people, former manual workers presenting higher mortality

rates than former non-manuals, higher affluence (55) presenting lower mortality rates than lower

affluence (51), and upper lifestyle (E) presenting lower mortality rates than lower lifestyle group (A).

Health status at retirement does not seem to have a large overall effect, however its effect is greatly

dependent on age, as ill-health pensioners by definition will retire relatively young.

4.4.10 Upon completion of the univariate analyses, we select variables for the multivariable

analysis, and check for interactions among the variables in the model. The approach which we have

chosen is a stepwise method, in which variables are selected either for inclusion or exclusion from

the model, in a sequential fashion, based solely on the statistical criteria of the AIC and the BIC. The

stepwise approach is useful and intuitively appealing, as it both builds sequentially and readily

considers models which otherwise might not have been examined. The stepwise procedures are used

as a guide, however, as we also believe that the meaningfulness of covariates in the context of the

model application should always be considered. For example, it is possible to reject longevity

Figure 5. Crude mortality rates (proportion of deaths) by different covariates for the male
pensioners population.
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predictors based on the AIC alone, if the covariate is relatively sparse in the overall dataset, and so

the small amount of extra precision in the likelihood is offset by the introduction of extra

parameters. However, if that particular predictor results in a meaningful and financially material

difference in life expectancy, and was particularly prevalent in certain pension schemes, then it

could be important to allow for it in valuing pension scheme liabilities.

4.4.11 The importance of each variable included in the fitted model is verified by examining

the statistical significance of each estimated coefficient. Where variables fail to discriminate

meaningfully between individuals, they are taken out and the model is refitted. This process of

deleting, refitting and verifying continues until it appears that all the important variables are

included in the model and those excluded are actuarially and/or statistically unimportant.

4.5. Verifying the Fit of the Model

4.5.1 There are a variety of summary test statistics and measures which are useful to assess the

goodness-of-fit of the models and a full assessment relies in the exploration of different measures and

plots. Examining a model’s goodness of fit involves determining whether the fitted model’s residual

variation is small, displays no systematic tendency, and follows the variability postulated by the

model. Evidence of lack-of-fit may come from a violation of one or more of these three characteristics.

4.5.2 The chi-squared test is an often used goodness-of-fit statistic. However, as noted by Hosmer

(1991), this test statistic does not follow a chi-square for logistic regression. The limitation of using

the chi-square test with binary data has generated work on alternative goodness-of-fit tests in recent

years. This work has not identified a ‘unique test’ which should be trusted completely as a sole

indicator of goodness of fit for logistic GLMs.

4.5.3 As well as using the AIC and the BIC, we also verify fit by looking at the modified chi-square

statistic, based on deciles of risk proposed by Hosmer & Lemeshow (1980), and the tests familiar

from actuarial literature, including the Kolmogorov-Smirnov test, the signs test, the runs test,

cumulative deviations, serial correlations tests, etc (see Forfar et al. (1988) for details of these tests).

In all cases we perform the test at the 5% level. The large number of covariate profiles means that

we would reasonably expect some profiles to fail some tests. As certain combinations of covariates

will be less populous than others, and as the method is designed to include inferences across

covariate profiles, rather than graduating to specific data segmentation, a pragmatic view needs to

be taken on the results of this battery of tests, i.e. accepting a moderate level of failures which do not

display any systematic tendencies, such as always failing for certain lifestyle groups.

4.5.4 The R-squared (R2) statistic is often used as a goodness-of-fit measure in ordinary linear

regression. No equivalent statistic to R2 exists for logistic regression. However, several pseudo

values,such as Efron’s or McKelvey and Zavoina’s R2 have been developed, reflecting different

interpretations of the aim of the model (see Veall & Zimmermann, 1996), and we include a number

of these in our battery of tests.

4.5.5 In any individual analysis it is also important to assess whether there are any observations

exerting undue influence. We do this by using residual plots in accordance with Hosmer &

Lemeshow (2000). We also assess the performance of the models by comparing crude and fitted life

expectancies, and by verifying the internal consistency of the different mortality curves calibrated –

for example whether, for like covariate profiles, male mortality exceeds female mortality at all ages.
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4.6. Extending the Model to Other Ages

4.6.1 The fitted curves produced by the GLMs span the age range of the data to which the curves

were fitted. However mortality probabilities, which cover a wider age range, are needed, leading to

the issue of how best to extend the curves to older and younger ages.

4.6.2 Since we are modelling logit(qx) it is natural to focus on logit(qx) when extending these

curves. There are a number of features which we consider it is desirable for our extensions to have:

(1) Extensions should have the same value as the fitted curve at the ages where they join.

(2) Extensions should be monotonic increasing with age.

(3) Extensions should not introduce inconsistencies, i.e. crossings between different strata/covariate

profiles.

(4) Extensions should approach a justifiable value at the oldest and youngest ages.

To this list, some readers might add smoothness at the point of extension. However, there is little

statistical justification for this, as the fitting techniques do not focus on the derivatives at the

extremes of the extensions.

4.6.3 In order to achieve our desired features, we have used linear extensions, which is a

deliberately simplistic and pragmatic approach. Further, at advanced ages the linear logistic model

seems to hold reasonably well at overall dataset levels (see, for example, Thatcher et al., 1998).

4.6.4 Logit curves have been linearly extended up to age 125, and the ‘oldest old’ parameter has

been chosen so that the force of mortality at age 125.5 equals one (i.e. m125.5 5 1 and so,

logot(q125) 5 0.54). We have used age 125, as survival beyond age 120 has been verified in the case

of Jeanne Calment (Jenne & Vaupel, 1999). A force of mortality equal to one has been chosen in

light of work by the CMI (2009a) and Thatcher et al. (1998), which suggests that this is an

appropriate order of magnitude for men and women.

4.6.5 For younger ages, curves were extended downwards to age 16. However, extensions take

reference to mortality at age ten to avoid any distortions at age 16 owing to the ‘accident hump’. The

limiting values at age ten are the U.K. population values for the same period as that to which we are

calibrating the curves, as determined by interim English Life Tables. In essence, these are the crude

population rates for the U.K. at age ten, which, currently, are 0.000104 for boys and 0.000095 for girls.

4.6.6 For ill-health graduations, the curves have been extended in a slightly different manner. We

extend to lower ages by keeping logit(qx) constant at all ages xr50 which reflects the flattening of

mortality observed in the data. For older ages, we are conscious that the age range we have fitted to

stops sooner for ill-health than for non ill-health. To avoid inadvertent crossing of the non ill-health

and ill-health curves at older ages, we extend the ill-health curve by linearly reducing the gap

between it and the non ill-health curves.

5. Results of Modelling Pensioner Longevity

5.1. Key Results

5.1.1 We showed in z3.1.10, how retirement health is an important differentiator of mortality,

especially at younger ages, and we explained that, due to fundamental differences in the underlying

pattern of mortality, we have modelled the ill-health and non ill-health subsets of the data separately.
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In this section, we focus on the subset of male pensioners not retiring on grounds of ill-health as a

means of illustrating the methods used. The approaches taken are, however, equally applicable,

and have been applied similarly to other sub-groups, the high level results of which we summarise

at the end of this section.

5.1.2 We begin the modelling process by considering models with intercept and age terms, i.e.

models of the form logit(qx) 5 a 1 f(x), where f(x) is a function of age. After exploring different

polynomial forms (linear, quadratic, cubic, quartic, etc.), a model based on a cubic polynomial in

age, i.e. of the form logit(qx) 5 a 1 bx 1 cx2 1 dx3), was found to result in the lowest AIC (Table 6)

5.1.3 The AIC and the BIC statistics both examine the goodness-of-fit of a model, but with a

different emphasis on model complexity. Their joint use, therefore, allows a range of suitable

candidate models to be considered further, through additional goodness-of-fit tests and visual

assessment of the fitted curves. Based on the models in Table 6, these candidate models would include

the linear, quadratic and cubic models. The mean-fitted mortality estimates from these models,

together with the crude rates from the data to which the models were fitted, are shown in Figure 6.

Table 6. Goodness-of-fit values from model with age (x) only.

Age form No. of parameters AIC BIC

logit(qx) 5 a 1 bx 2 91705 91726

logit(qx) 5 a 1 bx 1 cx2 3 91704 91736

logit(qx) 5 a 1 bx 1 cx2 1 dx3 4 91698 91741

logit(qx) 5 a 1 bx 1 cx2 1 dx3 1 ex4 5 91700 91754

logit(qx) 5 a 1 bx 1 cx2 1 dx3 1 ex4 1 fx5 6 91699 91766

Figure 6. Fitted crude rates from a GLM with age and intercept terms only, with points showing
mean crude rates, together with 95% beta-binomial probability intervals.
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Although the BIC was lower when only a linear or quadratic term in age was chosen, visual

examination of these fitted model curves against the shape of the crude mortality rates revealed a

relatively poor fit at the oldest ages, compared to that of the cubic model (Figure 6). Further

examination revealed that these two forms also performed poorly in some of the goodness-of-fit

tests mentioned in Section 4.5 (namely in the runs, sign and x2 tests), whereas the cubic form did not

and this model was therefore preferred. Overall, the cubic model fits the mean crude rates well, with

the fitted mean lying well within the confidence intervals at all ages.

5.1.4 The aim of a GLM, in the context of this paper, is to predict the current baseline mortality

for pensioners accurately (i.e. to minimise the systematic error between a GLM-based prediction

of mortality and that observed from the data) through the use of explanatory variables, such as

revalued salary at retirement or earlier exit. We use plots of the smoothed logit-transformed

mortality rates to examine both how well a variable explains differences in mortality, and the shape

of these differences over age. Each of the salary, pension and geo-demographic covariates was

examined using loess plots, before being considered for inclusion in the model. In each case the

covariates were grouped according to the methods described in z4.4.6.

5.1.5 Figure 7 shows a plot of the logit-transformed mortality rates by each of these covariates,

smoothed over age using a loess smoother. The crude rates by each of the five geo-demographic

profile groups (as described in z4.4.6) are shown in Figure 7(a). The figure reveals the relatively

large separation in mortality rates for pensioners in different profiles and, therefore, the predictive

value of including this variable in a mortality model. The separation in rates seen in Figure 7(a) is

more pronounced at younger ages, with the differences attenuating (declining) with age for most

profile groups. This ‘funnelling’ highlights a need for differences in the mortality rates between the

groups to be modelled with an appropriate age-dependent form. Figure 7(b) (salary band) and

Figure 7(c) (pension band) plot the smoothed logit of crude rates, and also show considerable

separation of rates between different levels of the affluence covariates. A similar attenuation over

age of the differences between rates for the different salary and pension groups can be seen, again

suggesting the need to model changes in the effect on mortality rates over age appropriately. This

attenuation is unsurprising, given that a constant difference in the logit of mortality (i.e. a model

with no age interaction) broadly corresponds to a stable ratio of qx values and, as many authors

have noted (for example Hoffman, 2008), differences in mortality tend to decline in relative terms

as age increases.

5.1.6 When looking at Figure 7, it is important to note here that large differences in the logit

scale at younger ages translate to only small differences in the real scale, whereas small

differences in logit qx translate to large differences in qx at older ages. It is therefore of great

importance to ensure that the attenuation of differences of qx in the logit scale are captured

appropriately.

5.1.7 The decision of the appropriate form of the interaction of a covariate with age (i.e. what

order exponent of age) is important. We initially included the affluence and geo-demographic

variables in the GLM as a function independent of age. This allows for the broad difference in

mortality for each sub-group of the variable to be modelled, relative to a chosen baseline group for

the variable. The inclusion of an additional interaction term with age allows the possibility of these

differences varying (i.e. diminishing) with age. For all of the variables considered, when an

interaction term between the variable and the age was included, the resultant fit was slightly better

(marked by the lower AIC) than when the interaction term was excluded.
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5.1.8 An example of the process described in z5.1.7, using the salary band variable, is shown

in Table 7. We began by building a model using the functional form described in z5.1.3, and

adding only the main (or age-independent) effect of a covariate, such as a model of the form

logit(qx) 5 a 1 bx1cx2 1 dx3 1 ej salary j, where j 5 1, y, 5 relates to the jth salary group

(Table 7, row A). Thereafter, we tested for improvements in the fit of the model through adding the

interactions between the covariate and either a linear, a quadratic, a cubic or a quartic term in age

Figure 7. Plot of smoothed logit transformed mortality rates over age by each of: (a) geo-
demographic profile groups (A-E, group A corresponds to shortest living pensioners and E the
longest living); (b) salary groups (1: lowest salary band, 5:highest salary band; as per Table 5); and
(c) pension groups (from 1: lowest pension band to 5: highest pension band; as per Table 5).
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(Table 7, rows B-E). The salary and age-linear interaction gave the lowest AIC (row B), however, it

was observed that this resulted in the crossing of curves at older ages. Crossing of this nature is not

only counter-intuitive, but was also not supported by the data, therefore it is likely that this model

was over-fitted. We considered alternative interactions between the covariate and the reciprocal of

linear, quadratic, cubic and quartic terms in age (Table 7, rows F to I) to mirror more closely the

funnel effect generally observed in the underlying data, i.e. the narrowing of differences in logit qx

over the ages observed in Figure 7(b).

5.1.9 The model that best fitted the data in terms of the AIC and maintained good properties,

was one where a cubic reciprocal interaction was used to model the effect of variables as a function

of age. Upon closer examination of the effects and coefficients of the model, it was noted that

once the reciprocal cubic interaction with age was added, the quadratic age term and the age-

independent salary effects were not significantly different from zero. As a simplification, these terms

were removed from the model resulting in the form logit(qx) 5 a 1 bx 1 dx3 1 vjx
23*salaryj; for

j 5 1,y, 5 (Table 7, row J). This simpler model resulted in a modest increase in the AIC but a large

improvement in terms of the BIC, reflecting the relatively parsimonious choice of model (Table 7,

row J). A similar process was carried out for each covariate in turn and, in each case, the final model

resulted in a similar form to that described in row J of Table 7.

5.1.10 Figure 8 shows the resulting AIC and BIC values for the individual covariate and age

interaction models, based on the cubic reciprocal interaction forms described above. The addition

of the salary band covariate to the model including only age resulted in the greatest AIC and BIC

decrease. The addition of the geo-demographic group covariate instead of salary resulted in a

similar reduction, suggesting that both the salary and the geo-demographics are strong predictors of

mortality. Whilst the inclusion of the pension amount also resulted in a large decrease, its impact

was smaller than that of either the salary or the geo-demographics. It is interesting to observe these

differences, given that all three covariates can be considered as proxies for socio-economic status,

with the geo-demographic profiles grouping individuals into postcode-based consumer-type groups,

whilst the pension and the salary represent, more directly, the purchasing power of individuals. This

could be interpreted as the geo-demographic group capturing a ‘lifestyle’ element of socio-economic

status, and the salary and the pension as affluence measures. Given the relatively high correlation

between salary and pension amounts (Cramer’s V statistic 5 0.63), and the fact that they are both

Table 7. Comparison of interaction terms between age and salary bandj (j 5 1,y , 5).

Modely No. of parameters AIC BIC

A Logit(qx) 5 a 1 bx 1 cx2 1 dx3 1 ejsalaryj 9 91417 91514

B Logit(qx) 5 a 1 bx 1 cx2 1 dx3 1 ejsalaryj 1 pjx*salaryj 14 91387 91537

C Logit(qx) 5 a 1 bx 1 cx2 1 dx3 1 ejsalaryj 1 qjx
2*salaryj 14 91388 91538

D Logit(qx) 5 a 1 bx 1 cx2 1 dx3 1 ejsalaryj 1 rjx
3*salaryj 14 91389 91539

E Logit(qx) 5 a 1 bx 1 cx2 1 dx3 1 ejsalaryj 1 sjx
4*salaryj 15 91392 91553

F Logit(qx) 5 a 1 bx 1 cx2 1 dx3 1 ejsalaryj 1 tjx
21*salaryj 15 91388 91548

G Logit(qx) 5 a 1 bx 1 cx2 1 dx3 1 ejsalaryj 1 ujx
22*salaryj 15 91387 91548

H Logit(qx) 5 a 1 bx 1 cx2 1 dx3 1 ejsalaryj 1 vjx
23*salaryj 15 91387 91548

I Logit(qx) 5 a 1 bx 1 cx2 1 dx3 1 ejsalaryj 1 wjx
24*salaryj 15 91387 91548

J Logit(qx) 5 a 1 bx 1 dx3 1vjx
23*salaryj 9 91389 91486

yHighlighted terms in rows B to I correspond to additional terms added to the model given in row A.
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regarded as direct measures of economic affluence, we only consider the inclusion of one or the

other in the models at any given time.

5.1.11 A crucial result is that the salary offers more predictive power for mortality for the male

pensioner population than the pension amount does. This can be seen from Figure 8, in that the

inclusion of the re-valued salary at retirement (or earlier exit) covariate resulted in a better model fit

(lower AIC and BIC) than the inclusion of the pension amount, irrespective of whether the geo-

demographic covariate was included. It suggests that the salary may be a more reliable indicator of

an individual’s relative income position. In many ways this is unsurprising. The pension amount,

principally as a function of the salary and the length of service, is highly correlated with the salary,

but will be a relatively ‘noisier’ covariate, as it is measured in terms of the pension income of an

individual from a particular scheme. For individuals with modest pensions, this could, therefore, be

their total pension income, or it could be one of many pensions which they receive and therefore

suggest a misleadingly low level of affluence.

5.1.12 The lower predictivity of the pension, given a knowledge of lifestyle factors, is also

highlighted by Richards & Jones (2004). Nonetheless, we find that pension amount adds predictive

value in the absence of historic salary information and this reaffirms the findings of Richards that:

‘‘incorporating both geo-demographic type and pension size will usually be better than using either

variable on its own’’ (Richards, 2008).

5.2. An Example of the Application of these Results

5.2.1 Assuming that a pension scheme has information available on all three of the covariates

considered above, we suggest that it would be best (for male pensioners) to use both the salary at

retirement (or earlier exit) and the geo-demographic profile to predict mortality when valuing

pension scheme liabilities. The resulting mortality model can be expressed as:

logitðqxÞ ¼ log
qx

1�qx

� �
¼ aþ bxþ cx3 þ djx

�3 þ ekx�3

-500-450-400-350-300-250-200-150-100-500

Age* (Salary +Geo-dem)

Age* (Pension+ Geo-dem)

Age*Salary

Age*Geo-dem

Age*Pension

Change from Age only model

BIC

AIC

Age

Figure 8. Relative change in the AIC and the BIC from a model containing age terms only.
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where:

– qx is the probability that a life (in the jth salary group and kth geo-demographic group) aged x

exact will die before reaching age x 1 1;

– a is the intercept or constant term of the model;

– b and c are the covariate-independent linear and the cubic terms in age x;

– dj is the covariate-dependent, cubic reciprocal term in age for the jth salary group (j 5 1, 2, y, 5);

and

– ek is the covariate-dependent, cubic reciprocal term in age for the kth geo-demographic group

(k 5 1, 2, y, 5).

Fitting this model to the dataset resulted in the parameter estimates given in Table 8. We also show

their standard errors and associated test statistics and p-values. From the p-values we observe that

all coefficients are significantly different from zero. Although parameter estimates for the

interaction effects appear large in this form, it should be remembered that they are applied to

numbers of the order of 6523 to 9523.

5.2.2 For ease of interpretation, the right side of Table 8 shows the model-based covariate effects

on qx in both the logit and untransformed scale and on the odds of dying for a pensioner aged 75

years, compared to the baseline group. The most populated group was chosen as the baseline,

namely a salary of £15K to £22.5K and geo-demographic group B. So for example, a male pensioner

aged 75, earning a salary of less than £15K p.a. at retirement or at exit, has 12% higher odds of

dying (and an 11% higher probability of dying) before his next birthday than a male pensioner aged

75 earning between £15K and £22.5K p.a. (Table 8). Similarly, the odds of dying for male

pensioners in geo-demographic group E are 26% lower than for those in geo-demographic group B

(and the probability of dying is 25% lower).

5.2.3 We can use these coefficients to produce estimates of qx for each covariate profile. For

example, based on the fitted model, a pensioner aged 75, earning ,£15,000 p.a. (in current terms)

at retirement or at exit and classified as being in geo-demographic group C would have an estimated

logit(q75) of:

logitðq75Þ ¼ �26:641þ 0:332 n 75�0:000008 n753 þ
820455þ 45753

753
¼ �3:060:

This corresponds to q75 ¼
expflogitðq75Þg

1þexpflogitðq75Þg
¼ 0:045. In contrast, the q75 is 0.026 for someone who was

earning, in current terms, in excess of £48,500 p.a. The corresponding q95 values are estimated to be

0.13 and 0.09 respectively. The complete range of predicted qx values for ages 60 to 95 are shown in

Figure 9, both on the logit transformed scale and on the original scale of qx for the top and bottom

salary bands. There is a clear separation between the mean predictions and their associated 95%

confidence intervals, highlighting the statistically significant differences between these two groups

at all ages – we shall return to the confidence intervals in Section 5.3. The funnel shape of the crude

rates observed in Figure 7, that is the narrowing of differences in logit qx over age, is modelled well

by the chosen form.

5.2.4 The significance of the salary and the geo-demographic groups on the pension liability

can be best illustrated by examining their impact on the life expectancy and the annuity values.

Table 9 shows curtailed life expectancies and annuity values (for interest rates of 2.5% and 5%)

for a subset of covariate profiles estimated from the model. In each case, these are joint on a period
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Table 8. Estimated parameters from a GLM, including age, salary and geo-demographic group, based on a subset of male pensioners retiring on non-ill health

grounds.

Effects for member aged 75 relative to an individual

in lifestyle B and earning £15 K to £22.5 K p.a.

Parameter Estimate Std. Error t-value p-value

Change in

logit(qx)y
% change in

odds

% change in

qxz

a (Intercept) 226.641 4.18 26.37 ,0.0001

b Age 0.332 6.19 3 1022 5.37 ,0.0001

c Age3 20.000008 2.33 3 1026 23.44 0.001

d1 Age23:,£15K 46753 9.83 3 103 4.76 ,0.0001 0.11 112% 111%

d3 Age23:£22.5K–£30.5K 236998 1.15 3 104 23.23 0.001 20.09 28% 28%

d4 Age23:£30.5K–£48.5K 298432 1.49 3 104 26.63 ,0.0001 20.23 221% 220%

d5 Age23:£48.5 K1 2199714 3.10 3 104 26.45 ,0.0001 20.47 238% 237%

e1 Age23:LifestyleA 944421 2.21 3 105 4.27 ,0.0001 0.18 120% 119%

e2 Age23:LifestyleB 867090 2.21 3 105 3.93 ,0.0001 – – –

e3 Age23:LifestyleC 820455 2.21 3 105 3.72 ,0.0001 20.11 210% 210%

e4 Age23:LifestyleD 765654 2.21 3 105 3.47 0.001 20.24 221% 221%

e5 Age23:LifestyleE 738072 2.21 3 105 3.34 0.001 20.31 226% 225%

yThe changes in the logit-transformed probability of death are also presented here as it corresponds to the scale in which the outcome is modelled in the GLM.
zRelative to the estimated qx of 0.045 for an individual aged 75, in Lifestyle B and earning £15K to 22.5K.
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of 31 years, i.e. they reflect the life expectancy and annuities over a potential period of payments

of up to, and including, age 95. This reflects the period over which we have fitted the data.

In practice, liabilities include benefits payable after age 95. The ‘uncurtailed’ values are shown

in Section 5.4 as part of our discussion on extending the model to older ages. However, it is useful

to first consider the curtailed values as these are prior to the subjectivity introduced by model

extensions.

5.2.5 Table 9 shows that there is a spread of over six years in the mean life expectancy from the

low salary/low lifestyle group to the high salary/upper lifestyle group.

5.3. Parameter Uncertainty

5.3.1 For any statistical modelling of real data, it is essential to understand the uncertainty around

the estimates obtained and the variability of the phenomena of the study. In the situation considered

Figure 9. Fitted mortality curves for pensioners earning a salary at retirement in the lowest and
highest salary bands, given a geo-demographic profile of C based upon model parameters given in
Table 8 (solid lines show mean estimates; dashed lines show prediction errors of the mean).
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in this paper, the uncertainty around the estimate of the underlying mortality rates for a given

covariate profile and population is needed. The level of uncertainty comes from the parameters and

the predictions related to the model. The 95% confidence intervals for the mean-fitted curves are

presented in Figure 9 for each age. For the purposes of pension scheme valuations, a more

meaningful summary is given in terms of life expectancies and annuity values (Table 10).

5.3.2 We have simulated the fitted life expectancy distribution using a Monte Carlo procedure

based on the model chosen and the data used. A full assessment would start with the simulation of

the predictive distribution for the number of deaths ðD̂Þ in each covariate profile based on the

binomial distribution as:

PðD̂
��Data;ModelÞ ¼

Z
BinomialðE; qÞpðq

��Data;ModelÞdq:::

However, this depends on the exposure profile used and includes both the binomial variation

(i.e. idiosyncratic risk) as well as the parameter uncertainty. In order to isolate the parameter

uncertainty, we take into account just the uncertainty estimated by the statistical model and ignore

Table 9. Life expectancies and annuity (2.5% and 5%) values.

Geo-demographic

Group Salary band _e65:31j a2:5%
65:31j

a5%
65:31j

E-upper £48.5K 20.88 15.88 12.54

E-upper £22.5K–£30.5K 18.74 14.52 11.64

E-upper ,£15K 17.53 13.72 11.11

C- middle £48.5K 19.83 15.22 12.11

C- middle £22.5K–£30.5K 17.55 13.74 11.12

C- middle ,£15K 16.27 12.88 10.53

A- lower £48.5K 18.12 14.11 11.37

A- lower £22.5K–£30.5K 15.63 12.45 10.22

A- lower ,£15K 14.27 11.51 9.55

Table 10. Distributions of curtailed life expectancies from age 65 for given geo-demographic groups and

salary amounts (male pensioners)y.

Simulated distribution

Longevity group Salary Fit mean sd 95% CI

E-upper Highest 20.88 20.87 0.07 (20.73, 21.02)

E-upper Medium 18.74 18.74 0.04 (18.67, 18.81)

E-upper Low 17.53 17.53 0.04 (17.45, 17.60)

C- middle Highest 19.83 19.82 0.08 (19.66, 19.98)

C- middle Medium 17.55 17.55 0.04 (17.47, 17.62)

C- middle Low 16.27 16.27 0.04 (16.19, 16.34)

A- lower Highest 18.12 18.10 0.10 (17.90, 18.30)

A- lower Medium 15.63 15.63 0.07 (15.49, 15.76)

A- lower Low 14.27 14.26 0.07 (14.13, 14.39)

yCurtailed life expectancies based on the age range of 60 to 95 for which model was fitted.
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the extra binomial variability which comes from the predictions for the number of deaths within

each of the covariate profiles. In practice, overall uncertainty within a particular portfolio includes

the idiosyncratic risk derived from the binomial variability, the extent of which will vary from

portfolio to portfolio.

5.3.3 Confidence intervals for the mean life expectancy were generated for each covariate profile,

to represent a range of life expectancy scenarios. The Monte Carlo process starts by obtaining a

sample of the predicted mortality rates (qx) using the mean and variance estimated from the model.

The simulated qx are then used to calculate a sample of the curtailed life expectancies and annuities

at different ages. A selection of summary statistics from this process are presented in Table 10.

5.3.4 Figure 10 gives a graphical representation by showing the 95% confidence intervals for the

different geo-demographic and salary groups. The pattern of increasing mean life expectancy values,

as the salary and the socio-economic status increase, is apparent. We can also appreciate the

uncertainty around these quantities. The less populated covariate profiles have more uncertainty

around the true underlying mortality rate, and therefore around their life expectancy prediction.

Unsurprisingly, the uncertainty is therefore largest for the lowest lifestyle group combined with high

salaries, and vice versa. However, we can see that changing an individual covariate leads to

differences in mean life expectancy, which are much larger than the uncertainty around that mean

Figure 10. Life expectancy 95% intervals for male pensioners non ill-health for different geo-
demographic and salary groups.
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life expectancy, i.e. the differences in life expectancies are real and material, and so warrant

allowance for in valuing pension scheme liabilities.

5.4. Extension of the Model to Older Ages

5.4.1 In practice, the application of the fitted mortality rates needs to cover a wider range of

ages (especially older ages) than we are able to use directly in the fitting process. We have extended

the fitted curves in line with the process described in Section 4.6. The extensions are illustrated in

Figure 11, as applied to the fitted curves shown earlier in Figure 9.

5.4.2 Table 11 shows life expectancies from age 65 for different geo-demographic and salary

combinations based on the extended mortality curves. We can see how, compared to Table 9, the life

Figure 11. Fitted mortality curves post-extension for pensioners given a geo-demographic profile of
C, based upon model parameters given in Table 8.

Table 11. Fitted life expectancies (_e65) under extended model.

Geo-demographic group

Salary A B C D E

,£15k p.a. 14.30 15.59 16.35 17.22 17.65

£15k–£22.5k p.a. 15.08 16.35 17.09 17.95 18.37

£22.5k–£30.5k p.a. 15.69 16.94 17.67 18.51 18.93

£30.5k–£48k p.a. 16.69 17.90 18.62 19.43 19.83

.£48k p.a. 18.27 19.43 20.11 20.88 21.27
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expectancies increase slightly (up to 0.4 years), reflecting the fact that the life expectancy is no

longer curtailed after age 95. The modest increases highlight how the choice of extension to older

ages is unlikely to be a material concern, justifying the adoption of a pragmatic approach. We note,

however, that some care is required when combining baseline curves with projections of future

changes in mortality, especially where these result in material proportions of pensioners reaching

age 95. (The reader is directed to CMI (2009c) for an analysis of the sensitivity of annuities and life

expectancies to the assumptions regarding older ages.)

5.4.3 As would be expected, the range of life expectancies shown in Table 11 has also very slightly

increased compared to Table 9, since those with the greatest chance of surviving to age 95 see the

biggest increases in their life expectancies.

5.5. Summary of Results from Other Strata

5.5.1 So far we have focussed on the results of modelling male pensioners. However, we have

applied the same techniques to the other strata. Table 12 summarises the key results of fitting to

these different strata.

5.5.2 The wide variety of life expectancies within and between strata is evident from Table 12. We

note that:

– the range of life expectancies over all covariates/strata is in excess of ten years;

– this range corresponds to a range of the order of 60% in the single life annuity values; and

– there is a similar level of difference (two to three years) seen between ill-health and non ill-health

retirees, compared to the ranges of life-expectancies seen owing to other covariates.

5.6. Missing Covariate Information

5.6.1 When all information is available, it is simple to model all of the effects together. In practice,

the characteristics used above to predict longevity for male non ill-health pensioners will not all be

stored on the membership records of all members of all schemes. When information is unavailable,

the same approach can be followed for a reduced set of covariates. So if, for example, a pension

Table 12. Range of life expectancies from age 65 for other strata.

Strata

Recommended model for use with

each strata

Range of fitted life

expectancies (_e65)

Range of annuity values

(�a@2:5%
65 )

Male non ill-health

pensioners

Age, salary, geo-demographics 14.30–21.27 11.53–16.04

Male ill-health

pensioners

Age, salary, geo-demographics 12.40–17.66 10.21–13.68

Female non ill-health

pensioners

Age, pension, geo-demographics 18.56–22.46 14.36–16.49

Female ill-health

pensioners

Age, pension, geo-demographics 16.24–19.03 12.89–14.64

Widowers Age, geo-demographics 12.72–17.59 10.44–13.65

Widows Age, pension, geo-demographics 16.52–21.75 12.94–16.23
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scheme does not store the addresses of scheme members, a model would be calibrated to age and

salary or age and pension instead. The idea is to make the most of the relevant information available

to strengthen prediction, but to have the flexibility to adjust when some information is not available.

5.6.2 We have stratified by retirement health. In practice, this is a predictor, which is not always

available when valuing pension scheme liabilities. In these cases a method is needed to model post-

retirement mortality, which is not differentiated by retirement health. One approach is to model the

mortality of all pensioners directly, using the techniques explored in this paper. However, as noted in

z3.1.10, the very different patterns of mortality with age between non ill-health and ill-health

retirees make direct modelling of the aggregate rates as a functional form of age challenging. Below

age 50, we know that post-retirement mortality must relate to ill-health retirees, whilst as the age of

the population increases, the rates applied will be dominated by non ill-health retirees. In light of

this, when the retirement health is not known, we prefer a pragmatic approach of blending the

curves fitted to each of the non ill-health and the ill-health populations, allowing for the propensity

of each retirement type at each age.

6. Allowing for Individual Longevity Predictors when Valuing Pension
Scheme Liabilities

6.1 We saw, in Section 5, how, by analysing the data held within occupational pension scheme

records, we can identify powerful predictors of longevity. In aggregate, these predictors identify over

ten years’ difference in life expectancy between two individuals. These differences are financially

material – some 60% in the value of single life annuities from age 65. Therefore, it seems expedient

that we should allow for these differences when valuing pension scheme liabilities.

6.2 The modelling techniques described in this paper require a large dataset, rich in member

information. Few, if any, individual occupational pension schemes would have the data required to

calibrate these models in isolation. However, by pooling data, sufficient volumes have been reached within

the dataset analysed here. Once calibrated to a dataset, however, the results of the models (i.e. graduated

qx values) can readily and easily be applied to the membership of any occupational pension scheme.

6.3 The most direct way to use the results of this modelling would be to identify the characteristics

of each individual in a portfolio. Each individual can then be valued on the mortality curve

corresponding to his or her covariate profile.

6.4 For pension scheme valuations, this often leads to a larger number of mortality tables being

used in actuarial valuations than has been the case traditionally. In our experience, well-built

valuation systems can, given modern computing power, readily accommodate this approach.

Indeed, this is an approach currently used by a number of occupational pension schemes.

6.5 In practice, some valuation systems may have constraints which prevent the cost-efficient use

of large numbers of mortality tables as part of valuing a portfolio. In addition, for some applications

of mortality tables, such as determining the terms on which members can exercise transfer values,

early retirement options and commutation rights, a balance will need to be struck between precision

and the potential additional administrative costs of member-specific terms.

6.6 In situations where directly using individually-based mortality tables is considered

inappropriate, we would suggest first understanding the membership profile in terms of the key
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longevity characteristics identified here. This enables a suitable composite assumption to be

constructed by appropriately weighting the individual tables.

6.7 When constructing the composite assumption, there are a number of important considerations

including, but not limited to: deciding how granular the composite should remain; the desirable

properties of any aggregated curve, given how it will be used; and the method of aggregation. A full

exposition and analysis of the possible options of constructing a composite assumption is beyond

the scope of this paper. However, the reader is referred to a forthcoming paper on this matter which

will be available from Club Vita.

7. Conclusions

7.1 The observed period life expectancy in occupational pension schemes exhibits a wide range.

For the 91 schemes considered in this paper, the observed period (post-retirement) life expectancy

from age 65 ranged, in 2005 to 2007, from under 15 years to over 20 years for men, and from 18

years to almost 25 years for women.

7.2 The range of life expectancies comes as little surprise. Individuals are heterogeneous in terms

of longevity characteristics, and schemes are, in turn, a heterogeneous mix of such individuals.

7.3 Administration records of pension schemes, coupled with third party databases provide a rich

source of data on potential longevity predictors. Affluence, geo-demographics propensity

indicators, using an individual’s full postcode, retirement health and gender have each been shown

to have a material impact on mortality, and so on longevity. In aggregate, these account for over ten

years’ difference in the life expectancy for different individuals, or, equivalently, lead to annuities

(and so to liability valuations) which differ by 60%.

7.4 We have shown that, where available, the last known salary at retirement or earlier exit (re-

valued with RPI) is a more powerful affluence-based longevity predictor than the pension for men,

and so should be used in preference to the pension.

7.5 Further, by using postcode geo-demographic indicators, we have been able to isolate a

separate, non-affluence related geo-demographic component to longevity, which can be considered

to be a lifestyle effect of ‘how individuals spend their money’, rather than ‘how much money they

have’. Using a postcode geo-demographic indicator, in combination with an affluence indicator,

provides a refinement over using a single indicator.

7.6 The differences in life expectancy between individuals with different characteristics have been

isolated using generalised linear models (GLMs). Since the resulting differences in life expectancy

are large compared to the differences arising from uncertainty in the fitted parameters, we can be

confident that allowing for these longevity predictors leads to more reliable estimates of post-

retirement life expectancy, and, in turn, the valuation of pension scheme liabilities. Considering the

membership of a portfolio in terms of the longevity predictors of the individuals therein also has

particular merit, in that it readily captures the differences between different parts of the portfolio –

for example between current and future pensioners.

7.7 The results of the modelling presented here can be applied directly by using post-retirement

mortality assumptions appropriate to each individual within a pension portfolio. Alternatively,
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by appropriate weighting of the individual assumptions, a proxy can be generated for use across

groups of members.
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Appendix: Glossary of Statistical Terms

A1. 95% Confidence/Credibility Intervals

A 95% confidence interval for a parameter is an interval in which, if you repeated your sampling

exercise and recalculated the interval each time, in 95% of the cases would include the true value of

the parameter. Classical confidence intervals cannot be used to infer that the true value of the

parameter lies within the interval with a given degree of belief, for example 95%. Credibility Intervals

are ranges which contain the true values of parameters with a stated degree of belief or probabilities,

for example, in a 95% credibility interval, the probability that the parameter lies within the interval is

95%. In general, confidence intervals are based only on the data, whilst Bayesian credibility intervals

may incorporate problem-specific contextual information regarding a prior belief about the

distribution of the parameter, and then modify this distribution in light of observed data. For example,

we have used beta-binomial credibility intervals, whereby the beta distribution represents the

uncertainty in the value of the parameter qx, whilst the binomial distribution represents the variability

in the observed number of deaths. Many professional statisticians and decisions scientists, as well as

non-statisticians, intuitively interpret confidence intervals in the Bayesian credibility interval sense.

‘Credible intervals’ are often called ‘confidence intervals’, and it is common to simply use ‘confidence

interval’ as a general term. The choice of the level of confidence/probability is arbitrary, although 95%,

90% and 99% are generally used. The width of the interval reflects the degree of uncertainty, the

smaller the interval the more precise the results.

A2. Chi-squared Test

The chi-squared test is a statistical method used to assess two types of comparisons: a test for

goodness-of-fit or a test for independence in a contingency table. The test is based upon comparing

the chi-squared statistic, calculated as
P observed�expectedð Þ

2

expected , to the x2distribution with the appropriate

degrees of freedom within the problem. The goodness of fit test examines whether an observed

distribution differs significantly from a theoretical distribution; for example, this could be the

deaths observed in a population and those predicted when a specific model and underlying

distribution are assumed. It can also be used to examine whether the distribution of individuals

among the categories of one variable is independent of the distribution of individuals in another; for

example, does the distribution of deaths differ between individuals earning low/high salaries?

A3. Cramer’s V Coefficient

Cramer’s V is a way of calculating correlation in contingency tables of varying sizes. Chi-square says

that there is a significant relationship between variables, but it does not say how significant and

important this is. Cramer’s V gives this additional information. A statistically significant chi-square

can be the result of a large sample size, rather than evidence of any substantive relationship between

the variables. The Cramer’s V statistic is not affected by sample size; it is interpreted as a measure of

the relative (strength of an) association between two variables, X and Y; and it is calculated by:

V ¼ VðX;YÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

n minðM�1;N�1Þ

s

where X2 is the chi-square statistic, M is the number of categories for X, and N is the number

of categories for Y. The coefficient ranges from 0 (no association) to one (perfect association).
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In practice, a Cramer’s V of 0.10 provides a good minimum threshold for suggesting that there is a

substantive relationship between two variables.

A4. Generalised Linear Model (GLM)

In an ordinary least squares (OLS) regression model, a response random variable Y is expressed as a

linear relation of predictor variables x1, y, xn; this approach, however, is not suitable for modelling

probabilities, since they have a limited range, and predictions from an OLS regression could result

in values below zero or above one. GLMs extend the OLS framework by relating the predictor

variables to a response variable via a link function, allowing the mean value of the response to be

expressed as a linear function of the explanatory variables. A commonly used link function for

modelling binomial random variables, and so probabilities such as qx values, is the logistic function:

logitðqxÞ ¼ log
qx

1�qx

� �
:

Modelling probabilities using the logistic transformation ensures that any resulting predictions are

always bounded by zero and one.

A5. Generalised Linear Mixed Model (GLMM)

GLMs are fixed effect models, i.e. they assume that all observations are independent of each other,

and that the only source of randomness arises from these independent random samples. However,

when we have more than one observation of the same individual on an experimental unit (for

example a pension scheme or year of exposure), this assumption may not be appropriate, and the

resulting additional random effects which arise may also need to be modelled. This extra source of

variation can be dealt with by modelling this data structure explicitly with a form of GLMs known

as generalised linear mixed models (GLMMs), or hierarchical generalised linear models, in which

the linear predictor also contains random effects.

A6. Hosmer & Lemeshow Statistic

The Hosmer-Lemeshow Statistic is a measure of goodness of fit or lack of fit. Sufficient replication

within subpopulations is required to make the chi-square goodness-of-fit tests valid. When there are

one or more continuous predictors in the model, the data are often too sparse to get repeated

observations of the same combination of statistics to use this statistic reliably. Hosmer & Lemeshow

(1980) recommend that the observations should be partitioned into ten equally sized groups

according to their predicted probabilities. The Hosmer-Lemeshow statistic is then calculated as the

chi-square statistic from the table of observed and expected frequencies for these ten groups. This

test is available for binary response models.

A7. Linear Predictor

If we assume a response y is observed at fixed values of independent variables x1,y ,xp, then in

a GLM, the independent variables influence the distribution of y through the linear predictor –

Z5 b1x1 1y1 bpxp – a linear combination of the unknown model parameters and the independent

variables.
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A8. Logistic Regression

A logistic regression model is a generalised linear model which uses a logistic link function. See

generalised linear model above for more details.

A9. Loess Smoother

Similar to methods such as spline functions, a scatterplot smoother (or smoother) is used when a

smooth curve is required through a scatter plot of y vs. x. The loess smoother is a type of scatterplot

smoothing method which fits a weighted polynomial regression to data points in a specified region

about each x value, with the nearest points given the most weight, and then uses the values of x

predicted by the model as the smoothed value of x.

A10. Monte Carlo Simulation Procedure

Monte Carlo simulation is a method for iteratively evaluating a deterministic model using sets of

random numbers as inputs. A simulation typically involves over 10,000 evaluations of the model.

By using random inputs, a deterministic model can be turned into a stochastic model. In Monte

Carlo simulation, the inputs are randomly generated from probability distributions designated to

simulate the process of sampling from an actual population. Hence, the distribution for the inputs is

chosen so that it most closely matches data which we already have, or best represents our current

state of knowledge. This method is often used when the model is complex, nonlinear, or involves

more than just a couple of uncertain parameters.

A11. Odds Ratio

The odds ratio is a statistical measure of the likelihood of an event occurring if it is exposed to a

certain factor. It is used as a descriptive statistic, and plays an important role in logistic regression.

The odds ratio is the ratio of the odds of an event occurring in one group to the odds of it occurring

in another group. If the probabilities of the event in each of the groups are p1 (first group) and p2

(second group), then the odds ratio is:

p1

�
1�p1

� �
p2

�
1�p2

� � ¼ p1 1�p2

� �
p2 1�p1

� �

An odds ratio of one indicates that the condition or event under study is equally likely to occur in

both groups, an odds ratio greater than one indicates that the condition or event is more likely to

occur in the first group than in the second, and an odds ratio less than one indicates that the

condition or event is less likely to occur in the first group. The odds ratio must be greater than or

equal to zero, so that it is undefined if p2(12p1) equals zero.

In our case, the event of interest relates to how the odds of dying compare for different conditions/

risk factors.

A12. Recursive Partitioning and Regression Tree (rpart)

A recursive partitioning and regression tree (rpart) is a method of partitioning one or more

covariates into a manageable number of discrete groups in order to maximise the homogeneity of an

outcome, such as the probability of death. The resulting model can be used to predict the response
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with respect to a partitioned covariate, and to inform the optimal clusters with which to simplify a

complex discrete or continuous covariate.

A13. Univariable /Multivariable Analysis

A univariable analysis generally corresponds to an analysis in which the effect of only one variable

at a time is considered on a response variable. A multivariable analysis, therefore involves

examining the effect of a combination of several variables on a response variable. In the context of

the mortality models presented in this paper, univariable effects are examined only after adjusting

for age effects.

A14. Ward’s Method

Ward’s method (like rpart - see above) seeks to form clusters that maximise the homogeneity of an

outcome. Under Ward’s method, each cluster initially relates to an individual observation. These

clusters are then merged, one pair at a time. At each stage the two clusters chosen for merging are

the two for which the resulting model (i.e. with one fewer cluster) has the smallest sum of squared

errors. This continues until all observations are included in one cluster. Incorporating a merging cost

aids the choice of the optimal number of clusters.
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