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1. Introduction

Considering two Riemannian manifolds (M, g) and (N, γ) and a map φ : M → N , one
defines the Ricci–harmonic map flow as the coupled system of the Ricci flow with the
harmonic map flow of φ given by the following system of equations:

∂

∂t
g(x, t) = −2 Ric(x, t) + 2α(t)∇φ(x, t) ⊗ ∇φ(x, t),

∂

∂t
φ(x, t) = τgφ(x, t).

⎫⎪⎬
⎪⎭ (1.1)

Here α is a positive non-increasing time-dependent coupling function, while τgφ rep-
resents the tension field of the map φ with respect to the metric g(t). We will call
this system the (RH)α flow and denote by (g(x, t), φ(x, t)), with t ∈ [0, T ], a solution
to this flow. As a result of the coupling, it may be less singular than both the Ricci
flow (to which it reduces when α(t) = 0) and the harmonic map flow. Assuming that
the curvature of M remains bounded for all t ∈ [0, T ], we further consider a function
h : M × [0, T ) × M × [0, T ) → (0,∞) that is defined implicitly from the expression
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H(x, t; y, T ) = (4π(T − t)−n/2)e−h, where n is the dimension of M and H is the funda-
mental solution of the conjugate heat equation

�∗H =
(

− ∂

∂t
− Δ + S

)
H = 0 (1.2)

for S = R − α|∇φ|2. The goal of this paper is to study the behaviour of the heat kernel
H and to prove a Harnack inequality involving the function h.

The study of the (RH)α flow proves to be useful, since it encompasses in greater
generality other flows, for example, the Ricci flow on warped product spaces.

Historically, it first appeared in [17], where Müller proved short-time existence and
studied energy and entropy functionals, existence of singularities, a local non-collapsing
property, etc. His inspiration was a version of this flow, which appeared earlier in the
work of List [14], where the case of φ being a scalar function and α = 2 was analysed,
and where it was shown to be equivalent to the gradient flow of an entropy functional,
whose stationary points are solutions to the static Einstein vacuum equations.

As mentioned above, another case in which the (RH)α flow arises is when one studies
the Ricci flow on warped product spaces. More precisely, given a warped product metric
gM = gN + e2φgF on a manifold M = N × F (where φ ∈ C∞(N)), if the fibres F are
m-dimensional and μ-Einstein, the Ricci flow equation on M , ∂gM/∂t = −2 RicM , leads
to the following equations on each component:

∂gN

∂t
= −2 RicN +2m dφ ⊗ dφ,

∂φ

∂t
= Δφ − μe−2φ.

Clearly, this is a particular version of the (RH)α flow, where the target manifold is one
dimensional, and has been studied by Williams in [24] and by Tran in [22] (when μ = 0).

As in the Ricci flow case, the scalar curvature of a manifold evolving under the (RH)α

flow satisfies the heat equation with a potential (depending on the Ricci curvature of M ,
the map φ and the Riemann curvature tensor of N). Therefore, the study of the heat
equation and its fundamental solution becomes relevant for understanding the behaviour
of the metric under the (RH)α flow.

A Harnack inequality is one of the primary tools used to study the heat equation, since
it compares values at two different points at different times of the solution. A milestone
in the field was Li and Yau’s seminal paper [13], where the authors proved space-time
gradient estimates, now called Li–Yau estimates, which, by integration over space-time
curves give rise to Harnack inequalities for the heat equation. A matrix version of their
result was later proved by Hamilton in [10], who also initiated the study of the heat
equation under the Ricci flow [9–11]. Later this was pursued in [4,8,18,26]. Notably, in
his proof of the Poincaré conjecture, following Hamilton’s program, Perelman established
in [19] a Li–Yau–Hamilton inequality for the fundamental solution of the conjugate heat
equation. Most recently, gradient estimates for the heat equation under the Ricci flow
were analysed in [3,15,21].
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The technique used in this paper is inspired by Perelman’s monotonicity formula
approach to prove the pseudolocality theorem, and in particular we derive estimates
for the fundamental solution of the corresponding conjugate heat equation, which will
lead to a Harnack inequality.

Since it is relevant to our approach, let us recall Perelman’s result. For (M, g(t)),
0 � t � T , a solution to the Ricci flow on an n-dimensional closed manifold M , define
H = (4π(T − t))−n/2e−h to be the fundamental solution of the conjugate heat equation

�∗H = (−∂t − Δ + R)H = 0

centred at (y, T ). Then the quantity

v = ((T − t)(2Δh − |∇h|2 + R) + h − n)H

satisfies v � 0 for all t < T . This inequality proves to be crucial in the study of the func-
tionals developed by Perelman. Moreover, Cao and Zhang recently used this inequality [5]
to study the behaviour of the type I singularity model for the Ricci flow: they proved
that, in the limit, one obtains a gradient-shrinking Ricci soliton.

The Harnack inequalities that we obtain in our paper are stated in the following
theorem and corollary.

Theorem 1.1. Let (φ(x, t), g(x, t)), 0 � t � T , be a solution to (1.1). Fix (y, T ) and
let H = (4π(T − t))−n/2e−h be the fundamental solution of (−∂t − Δ + S)H = 0, where
S = R − α|∇φ|2. Define v = ((T − t)(2Δh − |∇h|2 + S) + h − n)H. Then for all t < T

the inequality v � 0 holds true.

Corollary 1.2. Under the above assumptions, let γ(t) be a curve on M and let
τ = T − t. Then the following Li–Yau–Hamilton-type Harnack estimate holds:

−∂th(γ(t), t) � 1
2 (S(γ(t), t) + |γ̇(t)|2) − 1

2(T − t)
h(γ(t), t),

∂τ (2
√

τh) �
√

τ(S(γ(t), t) + |γ̇(t)|2). (1.3)

One may try a different approach to estimate the heat kernel, by means of a Sobolev
inequality. This method was used by the first author in [2] to bound the heat kernel
under the Ricci flow, using techniques developed by Zhang in [26], where the Perelman
conjugate heat equation was studied. This approach requires fewer conditions on the
curvature, and, in a particular case when at the starting time of the flow S = R−α|∇φ|2
is positive, one obtains a bound similar to the one in the fixed metric case. This technique
is quite useful as it connects an analytic invariant (the best constant in the Sobolev
embedding theorem in R

n) to the geometry of the manifold M .
The estimates are stated as follows.
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Theorem 1.3. Let Mn and Nm be two closed Riemannian manifolds, with n � 3, and
let (g(t), φ(t)), t ∈ [0, T ], be a solution to the (RH)α flow (1.1), with α(t) a non-increasing
positive function. Let H(x, s; y, t) be the heat kernel, i.e. the fundamental solution for
the heat equation ut = Δu. Then there exists a positive number Cn, which depends only
on the dimension n of the manifold, such that

H(x, s; y, t)

� Cn

( ∫ (s+t)/2

s

(
m0 − cnτ

m0

)−2 e(2/n)F (τ)

A(τ)
dτ

)−n/4( ∫ t

(s+t)/2

e−(2/n)F (τ)

A(τ)
dτ

)−n/4

for 0 � s < t � T . Here,

F (t) =
∫ t

s

[
B(τ)
A(τ)

− 3
4

1
m0 − cnτ

]
dτ,

where 1/m0 = inft=0 S, the infimum of S = R − α|∇φ|2 taken at time 0, and A(t) and
B(t) are two positive-time functions, which depend on the best constant in the Sobolev
embedding theorem stated above.

Notice that there are no curvature assumptions but B(t) will depend on the lower
bound of the Ricci curvature and the derivatives of the curvature tensor at the initial
time, as will follow implicitly from Theorem 5.1.

The estimate may not seem natural but in a special case, when the scalar curvature
satisfies R(x, 0) > α(0)|∇φ(x, 0)|2, one obtains a bound similar to the fixed metric case.
Recall that Wang obtained [23] that the heat kernel on an n-dimensional compact Rie-
mannian manifold M , with fixed metric, is bounded from above by N(S)(t − s)−n/2,
where N(S) is the Neumann–Sobolev constant of M , coming from a Sobolev embedding
theorem. Our corollary exhibits a similar bound.

Corollary 1.4. Under the same assumptions as in Theorem 1.3, together with the con-
dition that R(x, 0) > α(0)|∇φ(x, 0)|2, there exists a positive number C̃n, which depends
only on the dimension n of the manifold and on the best constant in the Sobolev embed-
ding theorem in R

n, such that

H(x, s; y, t) � C̃n
1

(t − s)n/2 for 0 � s < t � T.

The exact expression of C̃n is (4K(n, 2)/n)n/2, where K(n, 2) is the best constant in
the Sobolev embedding in R

n. Let us note that this result, in fact, improves the result
in [2], since in this case the constants are sharper.

As an application, we can prove the following theorem, connecting the functional Wα

(which is analogous to Perelman’s entropy functional) to the best constant in the Sobolev
embedding.
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Theorem 1.5. Let (φ(x, t), g(x, t)), 0 � t � T , be a solution to the (RH)α flow
and let Wα be the entropy functional defined in § 2. If μα is the associated functional
μα(g, φ, τ) = inff Wα(g, φ, τ, f), then

μα(g, φ, τ) � τD

3
ln[(4π)n/2C̃n],

where D = infM×{0} S and C̃n = (4K(n, 2)/n)n/2.

The paper is organized as follows. In § 2 we introduce the notation and explain the
setting for our problem, while in § 3 we prove some lemmas and a proposition needed in
the proof of the Harnack inequalities. We continue with § 4, which presents the proof of
Theorem 1.1 and its corollary. We then present in § 5 the Sobolev embedding theorems
used in the proof of Theorem 1.3, while its proof, together with the corollary and proof
of Theorem 1.5, are presented in § 6.

Remark. After writing this paper it came to our attention that Theorem 1.1 has also
been proven in [28]. It is worth noting that our paper gives some applications of the
theorem, and relates it to a Sobolev embedding theorem.

2. Preliminaries

We present a review of the basic equations and identities for the (RH)α flow, together
with the more detailed setting of the problem.

Consider (Mn, g) and (Nm, γ), respectively, as two n-dimensional and m-dimensional
manifolds without boundary, which are compact, connected, oriented and smooth. We
also let g(t) be a family of Riemannian metrics on M , while φ(t) is a family of smooth
maps between M and N . We assume that N is isometrically embedded into the Euclidean
space R

d (which follows by Nash’s embedding theorem) for large enough d, so one may
write φ = (φμ)1�μ�d.

For T > 0, denote by (g(t), φ(t)), t ∈ [0, T ], a solution to the following coupled system
of Ricci flow and harmonic map flow, i.e. the (RH)α flow, with coupling time-dependent
constant α(t):

∂

∂t
g(x, t) = −2 Ric(x, t) + 2α(t)∇φ(x, t) ⊗ ∇φ(x, t),

∂

∂t
φ(x, t) = τgφ(x, t).

⎫⎪⎬
⎪⎭ (2.1)

The tensor ∇φ(x, t) ⊗ ∇φ(x, t) has the expression (∇φ ⊗ ∇φ)ij = ∇iφ
μ∇jφ

μ in local
coordinates, and the energy density of the map φ is given by |∇φ|2 = gij∇iφ

μ∇jφ
μ,

where we use the convention (from [17]) that repeated Latin indices are summed over
from 1 to n, while the Greek are summed from 1 to d. All the norms are taken with
respect to the metric g at time t.

We assume the most general condition for the coupling function α(t), as it appears
in [17]: it is a non-increasing function in time, bounded from below by ᾱ > 0, at any
time.

https://doi.org/10.1017/S0013091516000523 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000523
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We choose a small enough T > 0 such that a solution to this system exists in [0, T ]
(Müller proved the short-time existence of the flow in [17], so we just pick T < Tε, where
Tε is the moment where there is possibly a blowup).

Following the notation in [17], it will be convenient to introduce the following quanti-
ties:

S := Ric −α∇φ ⊗ ∇φ,

Sij := Rij − α∇iφ∇jφ,

S := R − α|∇φ|2.

2.1. Heat kernel under (RH)α flow

Our proof will focus on obtaining bounds on the heat kernel H(x, s; y, t), which is the
fundamental solution of the heat equation(

Δ − ∂

∂t

)
u(x, t) = 0, x ∈ M, t ∈ [0, T ]. (2.2)

Such a heat kernel does indeed exist and it is well defined, as was shown in [8] by
Guenther, who studied the fundamental solution of the linear parabolic operator

L(u) =
(

Δ − ∂

∂t
− f

)
u

on compact n-dimensional manifolds with time-dependent metric, where f is a smooth
space-time function. Guenther proved uniqueness, positivity, the adjoint property and
the semigroup property of this operator, which thus behaves like the usual heat kernel.
As a particular case (f = 0), she obtained the existence and properties of the heat kernel
under any flow of the metric.

Given a linear parabolic operator L, its fundamental solution H(x, s; y, t) is a smooth
function H(x, s; y, t) : M × [0, T ] × M × [0, T ] → R, with s < t, which satisfies two
properties:

(i) L(H) = 0 in (y, t) for (y, t) �= (x, s),

(ii) limt→s H(x, s; ·, t) = δx for every x, where δx is the Dirac delta function.

In our case, L is the heat operator, so H satisfies the heat equation in the (y, t)
coordinates

ΔyH(x, s; y, t) − ∂tH(x, s; y, t) = 0,

whereas in the (x, s) coordinates it satisfies the adjoint or conjugate heat equation

ΔxH(x, s; y, t) + ∂sH(x, s; y, t) − [R(x, s) − α|∇φ|2]H(x, s; y, t) = 0

or
ΔxH(x, s; y, t) + ∂sH(x, s; y, t) − S(x, s)H(x, s; y, t) = 0
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(see [17] for a proof of this fact), where R(x, s) is the scalar curvature, measured with
respect to the metric g(s).

We therefore denote by �∗ = −∂t − Δ + S the adjoint heat operator, adapted to the
(RHα) flow.

We fix T , which is the final time of the flow, and we look backwards in time, so we
introduce the backward time τ = T − t > 0 and we consider another function h : M ×
[0, T ) × M × [0, T ) → (0,∞) that is defined implicitly as

H(x, t; y, T ) = (4π(T − t)−n/2)e−h = (4πτ)−n/2e−h,

where n is the dimension of M . This function h is the centre of our investigation.
As t → T the heat kernel exhibits an asymptotic behaviour, as one can see from the

following theorem, which was proven for the Ricci flow but the arguments can be applied
verbatim to the (RH)α flow.

Theorem 2.1 (Chow et al . [7, Theorem 24.21]). For τ = T − t,

H(x, t; y, T ) ∼ e−d2
T (x,y)/4τ

(4πτ)n/2

∞∑
j=0

τ juj(x, y, τ).

More precisely, there exists t0 > 0 and a sequence uj ∈ C∞(M × M × [0, t0]) such that

H(x, t; y, T ) − e−d2
T (x,y)/4τ

(4πτ)n/2

k∑
j=0

τ juj(x, y, T − l) = wk(x, y, τ),

with
u0(x, x, 0) = 1

and
wk(x, y, τ) = O(τk+1−n/2)

as τ → 0 uniformly for all x, y ∈ M .

2.2. The entropy functional

Next, we recall the Wα entropy functional, as it was defined in [17], since it will be
used in our future proofs.

Definition 2.2. Along the (RH)α flow given by (2.1), one defines the entropy func-
tional restricted to functions f satisfying

∫
M

(4πτ)−n/2e−f dμM = 1 as

Wα(g, φ, τ, f) =
∫

M

(τ(|∇f |2 + S) + (f − n))(4πτ)−n/2e−f dμM . (2.3)

There are two more associated functionals, which are defined similarly as follows:

μα(g, φ, τ) = inf
f

Wα(g, φ, τ, f), (2.4)

υα(g, φ) = inf
τ>0

μα(g, φ, τ). (2.5)
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838 M. Băileşteanu and H. Tran

Remark 2.3. It is trivial to show that these functionals are invariant under diffeo-
morphisms and scaling:

Wα(g, φ, τ, f) = Wα(cg, φ, cτ, f),

μα(g, φ, τ) = μα(cg, φ, cτ),

υα(g, φ) = υα(cg, φ).

We next present some lemmas whose proofs are identical to the counterpart for the
Ricci flow.

Lemma 2.4. We consider a closed Riemannian manifold (M, g) and a smooth function
φ : M 
→ N and τ > 0.

(a) Along the flow (2.1), with α(t) ≡ α > 0, τ(t) > 0, dτ/dt = −1, we have that
Wα(g, φ, τ, f) is non-decreasing in time t.

(b) There exists a smooth minimizer fτ for Wα(g, φ, τ, ·), which satisfies

τ(2Δfτ − |∇fτ |2 + S) + fτ − n = μα(g, u, τ).

In fact, μα(g, u, τ) is finite.

(c) Along the flow (2.1), with α(t) ≡ α > 0, τ(t) > 0, dτ/dt = −1, we have that
μα(g, φ, τ) is non-decreasing in time t.

(d) lim
τ→0+

μα(g, u, τ) = 0.

Proof. Parts (a) and (b), (c) follow from [17, Propositions 7.1 and 7.2], respectively.
The proof of part (d) is almost identical to that of [20, Proposition 3.2] (see also [7,

Propositions 17.19 and 17.20]), so we give a brief argument here.
First, by the scaling invariance,

Wα(g, φ, τ, f) = Wα

(
1
τ

g, φ, 1, f

)
.

In addition, we have Sg/τ = τSg and we can construct a test function such that

lim
τ→0

Wα(g(τ), φ(τ), τ, f(τ)) = 0.

Finally, the equality follows from a contradiction with Gross’s logarithmic Sobolev
inequality on a Euclidean space using a blow-up argument as g/τ converges to the
Euclidean metric. �

Let’s now note an identity that is essential for our future computations.

Lemma 2.5. Along the flow (1.1), with α(t) � 0 and non-increasing, we have

∂

∂t
S = ΔS + 2α|τgφ|2 + 2|Sij |2 − α′(t)|∇φ|2. (2.6)

Proof. See [17, Theorem 4.4]. �
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2.3. The Lφ-length of a curve

Definition 2.6. Given τ(t) = T − t, define the Lφ-length of a curve γ : [τ0, τ1] 
→ M ,
[τ0, τ1] ⊂ [0, T ], by

Lφ(γ) :=
∫ τ1

τ0

√
τ(S(γ(τ)) + |γ̇(τ)|2) dτ. (2.7)

For a fixed point y ∈ M and τ0 = 0, the backward reduced distance is defined as


φ(x, τ1) := inf
γ∈Γ

{
1

2τ1
Lφ(γ)

}
, (2.8)

where Γ = {γ : [0, τ1] 
→ M, γ(0) = y, γ(τ1) = x}.
Finally, the backward reduced volume is defined as

Vφ(τ) :=
∫

M

(4πτ)−n/2e−�φ(y,τ) dμτ (y). (2.9)

We conclude this section with a technical lemma, which will prove a useful bound for
the heat kernel in terms of the reduced distance. We will only sketch the proof as the
arguments are standard.

Lemma 2.7. Define Lφ(x, τ) = 4τ
φ(x, τ). Then the following hold.

(a) Assume that there are k1, k2 � 0 such that −k1g(t) � S(t) � k2g(t) for t ∈ [0, T ].
Then Lφ is smooth almost everywhere and a locally Lipschitz function on M × [0, T ].
Moreover,

e−2k1τd2
T (x, y) − 4k1n

3
τ2 � Lφ(x, τ) � e2k2τd2

T (x, y) +
4k2n

3
τ2.

(b) We have

�∗
(

e−Lφ(x,τ)/4τ

(4πτ)n/2

)
� 0.

(c) For H(x, t; y, T ) = (4πτ)−n/2e−h, we have h(x, t; y, T ) � 
φ(x, T − t).

Proof.

(a) This is a direct consequence of [16, Lemma 4.1] for general flows.

(b) The result follows from [16, Lemma 5.15], where the key to the proof is given by
the non-negativity of the quantity

D(S, X) = ∂tS − ΔS − 2|S|2 + 4(∇iSij)Xj − 2(∇jS)Xj + 2(Rc −S)(X, X).

In our case, applying (2.6) and the identity 4(∇iSij)Xj − 2(∇jS)Xj = −4ατgφ∇jφXj

(a generalized second Bianchi identity) yields

D(S, X) = 2α|τgφ(x, t)|2 + 4∇iSijX
j − 2∇jSXj + 2α∇iφ∇jφXiXj − α′(t)|∇φ|2

= 2α|τgφ − ∇Xφ|2 − α′(t)|∇φ|2

� 0,

assuming that α(t) > 0 is non-increasing.
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(c) A detailed argument for this inequality can be found in [6, Lemma 16.49]. First
observe that part (a) implies limτ→0 Lφ(x, τ) = d2

T (y, x) and, hence,

lim
τ→0

e−Lφ(x,τ)/4τ

(4πτ)n/2 = δy(x),

since locally a Riemannian manifold looks like the Euclidean space. Using part (b) and
the maximum principle one obtains that

H(x, t; y, T ) � e−Lφ(x,τ)/4τ

(4πτ)n/2 =
e−Lφ(x,T−t)/4τ

(4π(T − t))n/2 .

Finally, one concludes that

h(x, t; y, T ) � Lφ(x, τ)
4τ

= 
φ(x, τ) = 
φ(x, T − l). �

3. Heat kernel and gradient estimates

Having presented the background of our problem and introduced the notation, we are
now ready to prove some results that will lead to the proof of Theorem 1.1.

First we deduce a general estimate on the heat kernel, inspired by the proof in the
Ricci flow case in [5].

Lemma 3.1. Let B = − inf0<τ�T μα(g, φ, τ) (B is well defined, as proven in [17])
and let D = min{0, infM×{0} S}. Then the following inequality holds:

H(x, t; y, T ) � eB−(T−t)D/3(4π(T − t))−n/2.

Proof. We may assume without loss of generality that t = 0. Denote by Φ(y, t) a
positive solution to the heat equation along the (RH)α flow. First, we obtain an upper
bound for the L∞-norm of Φ(·, T ) in terms of the L1-norm of Φ(·, 0).

Set p(l) = T/(T − l) = T/τ ; then p(0) = 1 and liml→T p(l) = ∞. For

A =

√∫
M

Φp dμ, v = A−1Φp/2 and ∇Φ∇(v2Φ−1) = (p − 1)p−24|∇v|2,

integration by parts yields

∂t(ln ‖Φ‖Lp) = −p′p−2 ln
( ∫

M

Φp dμ

)
+

(
p

∫
M

Φp dμ

)−1

∂t

( ∫
M

Φp dμ

)

= −p′p−2 ln
( ∫

M

Φp dμ

)

+
(

p

∫
M

Φp dμ

)−1( ∫
M

Φp(pΦ−1Φ′ + p′ lnΦ − S) dμ

)

= −p′p−2 ln(A2) + p−1A−2
( ∫

M

A2v2
(

pΦ−1Φ′ + p′ 2
p

ln (Av) − S

)
dμ

)
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=
∫

M

v2Φ−1ΔΦ dμ + p′p−2
∫

v2 ln v2 − p−1
∫

M

Sv2 dμ

= p′p−2
∫

M

v2 ln v2 dμ − (p − 1)p−2
∫

M

4|∇v|2 dμ − p−1
∫

M

Sv2 dμ

= p′p−2
( ∫

M

v2 ln v2 dμ − p − 1
p′

∫
M

4|∇v|2 dμ − p − 1
p′

∫
M

Sv2 dν

)

+ ((p − 1)p−2 − p−1)
∫

M

Sv2 dμ.

Setting v2 = (4πτ)−n/2e−h, the first term becomes

−p′p−2
Wα

(
g, u,

p − 1
p′ , h

)
− n − 1

2n ln
(

4π
p − 1

p′

)
.

Notice that

p′p−2 =
1
T

,
p − 1

p′ =
l(T − l)

T
and (p − 1)p−2 − p−1 = − (T − l)2

T 2 .

For 0 < t0 < T , τ(t0) = t0(T−t0)/T and dτ/dt = −1, we have 0 < τ(0) = t0(2T−t0)/T <

T . Using Lemma 2.4, we find that

−p′p−2
Wα

(
g(l), u,

p − 1
p′ , h

)
� − 1

T
Wα(g(0), u, τ(0), h) � − 1

T
inf

0<τ�T
μα(g(0), τ) =

B

T
.

Therefore,

T∂t(ln ‖Φ‖Lp) � B − n − 1
2n ln

(
π

t(T − t)
T

)
− (T − t)2

T
D,

since, by (2.6), the minimum of S is non-decreasing along the flow. By integrating the
above inequality one obtains

T ln
‖Φ(·, T )‖L∞

‖Φ(·, 0)‖L1
� T (B − n − 1

2n(ln (4πT ) − 2)) − T 2

3
D.

Then
‖Φ(·, T )‖L∞ � eB−TD/3(4πT )−n/2‖Φ(·, 0)‖L1 .

By the definition of the heat kernel,

Φ(y, T ) =
∫

M

H(x, 0, y, T )Φ(x, 0) dμg(0)(x), (3.1)

so, together with the fact that the above inequality holds for any arbitrary positive
solution to the heat equation, we obtain

H(x, 0, y, T ) � eB−TD/3(4πT )−n/2. �

The next result is a gradient estimate for the solution of the adapted conjugate heat
equation.
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Lemma 3.2. Assume that there exist k1, k2, k3, k4 > 0 such that the following hold
on M × [0, T ]:

− Rc(g(t)) � k1g(t), −S � k2g(t), |∇S |2 � k3, |S | � k4.

Let q be any positive solution to the equation �∗q = 0 on M × [0, T ] and let τ = T − t.
If q < A, then there exist C1, C2 depending on k1, k2, k3, k4 and n such that for
0 < τ � min{1, T} we have

τ
|∇q|2

q2 � (1 + C1τ)
(

ln
A

q
+ C2τ

)
. (3.2)

Proof. We start by computing(
− ∂

∂t
− Δ

)
|∇q|2

q
= S

|∇q|2
q

+
1
q

(
− ∂

∂t
− Δ

)
|∇q|2 − 2

|∇q|4
q3 + 2∇(|∇q|2)∇q

q2 . (3.3)

Observing that

∇(|∇q|2)∇q = ∇(gij∇iq∇jq)∇q = 2gij∇(∇iq)∇jq · ∇q = 2∇2q(∇q, ∇q),

while

Δ(|∇q|2) = 2|∇2q|2 + 2Rij∇iq∇jq + 2∇iq∇i(Δq),

∂

∂t
(|∇q|2) = 2Sij∇iq∇jq + 2∇q · ∇

(
∂

∂t
q

)
,

one can turn the second term in (3.3) into

1
q

(
− ∂

∂t
− Δ

)
|∇q|2 =

1
q
[−2(S + Rc)(∇q, ∇q) − 2∇q∇(Sq) − 2|∇2q|2].

Thus, (3.3) now becomes(
− ∂

∂t
− Δ

)
|∇q|2

q
=

−2
q

(
|∇2q|2 − 2

1
q
∇2q(∇q, ∇q) +

|∇q|4
q2

)2

+
−2(S + Rc)(∇q, ∇q) − 2S∇q∇q − 2q∇q∇S

q
+ S

|∇q|2
q

=
−2
q

∣∣∣∣∇2q − ∇q ⊗ ∇q

q

∣∣∣∣
2

+
−2(S + Rc)(∇q, ∇q) − 2S∇q∇q − 2q∇q∇S

q
+ S

|∇q|2
q

� −2(S + Rc)(∇q, ∇q) − 2S∇q∇q − 2q∇q∇S
q

+ S
|∇q|2

q

� (2(k1 + k2) + nk2)
|∇q|2

q
+ 2|∇q| |∇S |

� (2k1 + (2 + n)k2 + 1)
|∇q|2

q
+ k3q,
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where we have used the assumption that there exist k1, k2, k3, k4 > 0 such that

− Rc(g(t)) � k1g(t), −S � k2g(t), |∇S |2 � k3 and |S | � k4.

Furthermore, we have(
− ∂

∂t
− Δ

)(
q ln

A

q

)
= −Sq ln

A

q
+ Sq +

|∇q|2
q

� |∇q|2
q

− nk2q − k4q ln
A

q
.

Let Φ(x, τ) = a(τ)(|∇q|2/q) − b(τ)q ln(A/q) − c(τ)q. Then(
− ∂

∂t
− Δ

)
Φ � |∇q|2

q
(a′(τ) + a(τ)(2k1 + (2 + n)k2 + 1) − b(τ))

+ q ln
A

q
(k4b(τ) − b′(τ))

+ q(k3a(τ) − c′(τ) + nk2b(τ) + c(τ)k4).

We are free to choose the functions a, b, c appropriately such that (−∂t − Δ)Φ � 0. For
example,

a(τ) =
τ

1 + (2k1 + (2 + n)k2 + 1)τ
,

b(τ) = ek4τ ,

c(τ) = (ek5k4τnk2 + k3)τ.

Define k5 = 1 + k3/nk2. By the maximum principle, noticing that Φ � 0 at τ = 0,

a
|∇q|2

q
� b(τ)q ln

A

q
+ cq.

Then one can conclude that there exist C1, C2 depending on k1, k2, k3, k4 and n such
that for 0 < τ � min{1, T} we have

τ
|∇q|2

q2 � (1 + C1τ)
(

ln
A

q
+ C2τ

)
. (3.4)

�

Finally, we will need the following lemma, where the lφ-distance, introduced in § 2, will
be used.

Lemma 3.3. Using the notation in the previous lemma, the inequality∫
M

hHΦ dμM � 1
2nΦ(y, T )

holds, that is, ∫
M

(h − 1
2n)HΦ dμM � 0.
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Proof. By Lemma 2.7, we have

lim sup
τ→0

∫
M

hHΦ dμM � lim sup
τ→0

∫
M


w(x, τ)HΦ dμM (x)

� lim sup
τ→0

∫
M

d2
T (x, y)

4τ
HΦ dμM (x).

Using Lemma 2.1,

lim
τ→0

∫
M

d2
T (x, y)

4τ
HΦ dμM (x) = lim

τ→0

∫
M

d2
T (x, y)

4τ

e−d2
T (x,y)/4τ

(4πτ)n/2 Φ dμM (x).

Either by differentiating twice under the integral sign or using the following standard
identities on Euclidean spaces∫ ∞

−∞
e−ax2

dx =
√

π

a
and

∫ ∞

−∞
x2e−ax2

dx =
1
2a

√
π

a
,

we find that∫
Rn

|x|2e−a|x|2 dx = n

( ∫ ∞

−∞
x2e−ax2

dx

)( ∫ ∞

−∞
e−ax2

dx

)n−1

=
n

2a

(
π

a

)n/2

.

Therefore,

lim
τ→0

d2
T (x, y)

4τ

e−d2
T (x,y)/4τ

(4πτ)n/2 = 1
2nδy(x),

and so

lim
τ→0

∫
M

d2
T (x, y)

4τ

e−d2
T (x,y)/4τ

(4πτ)n/2 Φ dμM (x) = 1
2nΦ(y, T ).

The result now follows. �

4. Proof of Theorem 1.1

The procedure will be standard—we will apply the maximum principle. In order to do
so, we need to prove the non-positivity of �∗v.

4.1. Evolution of the Harnack quantity

Lemma 4.1. Let v = ((T − t)(2Δh − |∇h|2 + S) + h − n)H. Then

�∗v = −2(T − t)
(∣∣∣∣S + Hess h − g

2τ

∣∣∣∣
2

+ 2α(〈∇φ,∇h〉2 + |τgφ|2)
)

H � 0. (4.1)

Proof. Let q = 2Δh − |∇h|2 + S. Then

H−1�∗v = −(∂t + Δ)(τq + h) − 2〈∇(τq + h), H−1∇H〉
= q − τ(∂t + Δ)q − (∂t + Δ)h + 2τ〈∇q, ∇h〉 + 2|∇h|2.
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As H satisfies �∗H = 0, we have (∂t + Δ)h = −S + |∇h|2 + n/2τ . We compute

(∂t + Δ)Δh = Δ
∂h

∂t
+ 2Sij∇i∇jh + Δ(Δh)

= Δ
(

−Δh + |∇h|2 − S +
n

2τ

)
+ Δ(Δh) + 2〈S, Hess(h)〉

= Δ(|∇h|2 − S) + 2〈S, Hess(h)〉,

where we used the formula for the evolution of the Laplacian under the (RH)α flow, and

(∂t + Δ)|∇h|2 = 2S(∇h, ∇h) + 2
〈

∇h, ∇∂h

∂t

〉
+ Δ|∇h|2

= 2〈∇h, ∇(−Δh + |∇h|2 − S)〉 + 2S(∇h, ∇h) + Δ|∇h|2.

Recall from (2.6) that (∂t + Δ)S = 2ΔS + 2|S|2 + 2α|τgφ|2 − α′(t)|∇φ|2 and

2S(∇h, ∇h) = 2 Rc(∇h, ∇h) − 2α∇φ ⊗ ∇φ(∇h, ∇h)

= 2 Rc(∇h, ∇h) − 2α〈∇φ,∇h〉2

Δ|∇h|2 = 2 Hess(h)2 + 2〈∇h, ∇Δh〉 + 2 Rc(∇h, ∇h),

where the second equation is by Bochner’s identity.
Combining the above yields

(∂t + Δ)q = 4〈S, Hess(h)〉 + Δ|∇h|2 − 2S(∇h, ∇h)

− 2〈∇h, ∇(−Δh + |∇h|2 − S)〉 + 2|S|2 + 2α|τgφ|2 − α′(t)|∇φ|2

= 4〈S, Hess(h)〉 + 2〈∇h, ∇q〉 + 2 Hess(h)2

+ 2|S|2 + 2|τgφ|2 + 2α〈∇φ,∇h〉2 − α′(t)|∇φ|2

= 2|S + Hess(h)|2 + 2α(|τgφ|2 + 〈∇φ,∇h〉2) + 2〈∇h, ∇q〉 − α′(t)|∇φ|2.

Thus,

H−1�∗v = q + S − |∇h|2 − n

2τ
+ 2|∇h|2

− 2τ(|S + Hess(h)|2 + α(|τgφ|2 + 〈∇φ,∇h〉2))

= −2τ

(∣∣∣∣S + Hess(h) − g

2τ

∣∣∣∣
2

+ α(|τgφ|2 + 〈∇φ,∇h〉2) − 1
2α′(t)|∇φ|2

)
.

The result follows by the positivity of α(t) and the fact that it is non-increasing. �

The only remaining ingredient needed for the proof is the following proposition.

Proposition 4.2. Let v = ((T − t)(2Δh − |∇h|2 + S) + h − n)H. For Φ a smooth
positive solution to the heat equation, if

ρΦ(t) =
∫

M

vΦdμM ,

then
lim
t→T

ρΦ(t) = 0.
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Proof. Integration by parts yields

ρΦ(t) =
∫

M

(τ(2Δh − |∇h|2 + S) + h − n)HΦ dμM

= −
∫

M

2τ∇h∇(HΦ) dμM −
∫

M

τ |∇h|2HΦ dμM +
∫

M

(τS + h − n)HΦ dμM

=
∫

M

τ |∇h|2HΦ dμM − 2τ

∫
M

∇Φ∇hH dμM +
∫

M

(τS + h − n)HΦ dμM

=
∫

M

τ |∇h|2HΦ dμM − 2τ

∫
M

HΔΦ dμM +
∫

M

(τS + h − n)HΦ dμM

=
∫

M

τ |∇h|2HΦ dμM +
∫

M

hHΦ dμM − 2τ

∫
M

HΔΦ dμM +
∫

M

(τS − n)HΦ dμM .

For the first term, one can use Lemmas 3.1 and 3.2 on M × [τ/2, τ ] to find that

τ

∫
M

|∇h|2HΦ dμM � (2 + C1τ)
∫

M

(
ln

(
C3e−Dτ/3

H(4πτ)n/2

)
+ C2τ

)
HΦ dμM

� (2 + C1τ)
∫

M

(
lnC3 − Dτ

3
+ h + C2τ

)
HΦ dμM ,

with C1, C2 as in Lemma 3.2 and C3 = eB/2n/2.
Applying Lemma 3.3, we have

lim
τ→0

( ∫
M

τ |∇h|2 dμM +
∫

M

hHΦ dμM

)
� 3

∫
M

hHΦ dμM + 2 lnC3Φ(x, T )

�
(

3n

2
+ 2 lnC3

)
Φ(x, T ).

Observe that, except for the first two, all terms approach −nΦ(y, T ) as τ → 0. Therefore,

lim
t→T

ρΦ(t) � C4Φ(x, T ).

Furthermore, as Φ is a positive smooth function satisfying the heat equation ∂tΦ = ΔΦ,
one obtains that

∂tρΦ(t) = ∂t

∫
M

vΦdμM =
∫

M

(�Φv − Φ�∗v) dμM � 0. (4.2)

The above conditions imply that there exists β such that

lim
t→T

ρΦ(t) = β.

Hence

lim
τ→0

(
ρΦ(T − τ) − ρΦ

(
T − τ

2

))
= 0.

By (4.2) and the mean-value theorem, there exists a sequence τi → 0 such that

lim
τi→0

τ2
i

∫
M

(∣∣∣∣S + Hess h − g

2τ

∣∣∣∣
2

+ α(|τgφ|2 + 〈∇φ,∇h〉2) − 1
2α′(t)|∇φ|2

)
HΦ dμM = 0.
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Using standard inequalities yields( ∫
M

τi

(
S + Δh − n

2τi

)
HΦ dμM

)2

�
( ∫

M

τ2
i

(
S + Δh − n

2τi

)2

HΦ dμM

)( ∫
M

HΦ dμM

)

�
( ∫

M

τ2
i

∣∣∣∣S + Hess h − g

2τ

∣∣∣∣
2

HΦ dμM

)( ∫
M

HΦ dμM

)
.

Since

lim
τi→0

∫
M

HΦ dμM = Φ(y, T ) < ∞ and α(|τgφ|2 + 〈∇φ,∇h〉2) − 1
2α′(t)|∇φ|2 � 0,

we have

lim
τi→0

∫
M

τi

(
S + Δh − n

2τi

)
HΦ dμM = 0.

Therefore, by Lemma 3.3,

lim
t→T

ρΦ(t) = lim
t→T

∫
M

(τi(2Δh − |∇h|2 + S) + h − n)HΦ dμM

= lim
t→T

∫
M

(τi(Δh − |∇h|2) + h − 1
2n)HΦ dμM

= lim
t→T

( ∫
M

−τiHΔΦ dμM +
∫

M

(h − 1
2n)HΦ dμM

)

=
∫

M

(h − 1
2n)HΦ dμM

� 0.

Hence, β � 0. To show that equality holds, we proceed by contradiction. Without loss of
generality, we may assume that Φ(y, T ) = 1. Let HΦ = (4πτ)−n/2eh̃ (that is, h̃ = h−lnΦ).
Then integration by parts yields

ρΦ(t) = Wα(g, u, τ, h̃) +
∫

M

(
τ

(
|∇Φ|2

Φ

)
− Φ lnΦ

)
H dμM . (4.3)

By the choice of Φ, the last term converges to 0 as τ → 0. So if limt→T ρΦ(t) = β < 0, then
limτ→0 μw(g, u, τ) < 0, which thus contradicts Lemma 2.4. Therefore, the only possibility
is that β = 0. �

Proof of Theorem 1.1. Recall from (4.2) that

∂t

∫
M

vΦdμM =
∫

M

(�hv − h�∗v) dμM � 0.

By Proposition 4.2, limt→T

∫
M

vΦdμM = 0. Since Φ is arbitrary, v � 0. �

Proof of Corollary 1.2. This follows from standard arguments due to Perelman [19].
�
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5. Sobolev embedding theorems

Now we turn our attention to a different approach: that of bounding the heat kernel
by means of a Sobolev embedding theorem under the (RH)α flow. We first present the
Sobolev inequalities that form the basis of our investigation.

Sharpening a result by Aubin [1], Hebey proved the following theorem [12].

Theorem 5.1. Let Mn be a smooth compact Riemannian manifold of dimension n.
Then there exists a constant B such that, for any ψ ∈ W 1,2(M) (the Sobolev space of
weakly differentiable functions),

‖ψ‖2
p � K(n, 2)2‖∇ψ‖2

2 + B‖ψ‖2
2.

Here K(n, 2) is the best constant in the Sobolev embedding (inequality) in R
n and

p = (2n)/(n−2); B depends on the lower bound of the Ricci curvature and the derivatives
of the curvature tensor.

Note that Hebey’s result was shown for complete manifolds, and in that situation B

depends on the injectivity radius. However, we are interested in compact manifolds, so
B will not depend on the injectivity radius.

Later, along the Ricci flow, Zhang proved the following uniform Sobolev inequality [27].

Theorem 5.2. Let Mn be a compact Riemannian manifold, with n � 3, and let
(M, g(t))t∈[0,T ] be a solution to the Ricci flow ∂g/∂t = −2 Ric. Let A and B be positive
numbers such that for (M, g(0)) the following Sobolev inequality holds: for any v ∈
W 1,2(M, g(0)),

( ∫
M

|v|2n/(n−2) dμ(g(0))
)(n−2)/n

� A

∫
M

|∇v|2 dμ(g(0)) + B

∫
M

v2 dμ(g(0)).

Then there exist positive functions A(t), B(t) depending only on the initial metric g(0)
in terms of A, B and t such that, for all v ∈ W 1,2(M, g(t)), t > 0, the following holds:

( ∫
M

|v|2n/(n−2) dμ(g(t))
)(n−2)/n

� A(t)
∫

M

(|∇v|2 + 1
4Rv2) dμ(g(t)) + B(t)

∫
M

v2 dμ(g(t)).

Here R is the scalar curvature with respect to g(t). Moreover, if R(x, 0) > 0, then A(t)
is independent of t and B(t) = 0.

The proof of this theorem relies on the analysis of λ0, which is the first eigenvalue of
Perelman’s F-entropy, i.e.

λ0 = inf
‖v‖2=1

∫
M

(4|∇v|2 + Rv2) dμ(g(0)).
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Recently, it has been proven that the same theorem holds for the Ricci flow coupled
with the harmonic map flow (see [25]), where the analysis is now based on

λα
0 = inf

‖v‖2=1

∫
M

(4|∇v|2 + Sv2) dμ(g(0)),

for S = R − α|∇φ|2. In the new setting, at time t there are positive functions A(t) and
B(t) such that

( ∫
M

|v|2n/(n−2) dμ(g(t))
)(n−2)/n

� A(t)
∫

M

(|∇v|2 + 1
4Sv2) dμ(g(t)) + B(t)

∫
M

v2 dμ(g(t)).

Moreover, if λα
0 > 0, which is automatically satisfied if at the initial time R(0) >

α(0)|∇φ(0)|, then A(t) is a constant and B(t) = 0.
Recall that Müller introduced in [17] the Fα and Wα functionals, which are the natural

analogues of the F and W functionals for the Ricci flow, introduced by Perelman.

6. Proof of Theorem 1.3 and its corollary

We start the proof by assuming, without loss of generality, that s = 0. By the semigroup
property of the heat kernel [8, Theorem 2.6] and the Cauchy–Bunyakovsky–Schwarz
inequality, we have that

H(x, 0; y, t) =
∫

M

H(x, 0; z, 1
2 t)H(z, 1

2 t; y, t) dμ(z, 1
2 t)

�
[ ∫

M

H2(x, 0; z, 1
2 t) dμ(z, 1

2 t)
]1/2[ ∫

M

H2(z, 1
2 t; y, t) dμ(z, 1

2 t)
]1/2

.

The key of the proof consists in determining upper bounds for the following two quan-
tities:

α(t) =
∫

M

H2(x, s; y, t) dμ(y, t) (for s fixed),

β(s) =
∫

M

H2(x, s; y, t) dμ(x, s) (for t fixed).

We will find an ordinary differential inequality for each of the two.
We first deduce a bound on α(t) by finding an inequality involving α′(t) and α(t). Note

that we will treat H as being a function of (x, t); the (y, s) part is fixed.
Since

d
dt

(dμ) = −S dμ = (−R + α|∇φ|2) dμ,
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one has

α′(t) = 2
∫

M

H · Ht dμ(y, t) −
∫

M

H2(R − α|∇φ|2) dμ(y, t)

= 2
∫

M

H · (ΔH) dμ(y, t) −
∫

M

H2(R − α|∇φ|2) dμ(y, t)

= −2
∫

M

|∇H|2 dμ −
∫

M

H2(R − α|∇φ|2) dμ

� −
∫

M

[|∇H|2 + (R − α|∇φ|2)H2] dμ(y, t). (6.1)

In estimating
∫

M
|∇H|2 dμ we will make use of the Sobolev embedding theorem, which

gives a relation between
∫

M
|∇H|2 dμ and

∫
M

H2 dμ, and the Hölder inequality to bound
the term involving H2n/(n−2):∫

M

H2 dμ(y, t) �
[ ∫

M

H2n/(n−2) dμ(y, t)
](n−2)/(n+2)[ ∫

M

H dμ(y, t)
]4/(n+2)

. (6.2)

By Theorem 5.1, one gets that at time t = 0 the following inequality holds for any
v ∈ W 1,2(M, g(0)) (hence also for H(x, s; y, t), which is smooth) and for some B > 0:( ∫

M

|v|2n/(n−2) dμ(g(0))
)(n−2)/n

� K(n, 2)2
∫

M

|∇v|2 dμ(g(0)) + B

∫
M

v2 dμ(g(0)).

Then by Theorem 5.2 (applied to the (RH)α flow) it follows that, at any time t ∈ (0, T ]
and for all v ∈ W 1,2(M, g(t)),

( ∫
M

|v|2n/(n−2) dμ(g(t))
)(n−2)/n

� A(t)
∫

M

(|∇v|2 + 1
4 (R − α|∇φ|2)v2) dμ(g(t)) + B(t)

∫
M

v2 dμ(g(t)),

where A(t) is a positive function depending on g(0) and K(n, 2)2, while B(t) is also a
positive function, depending on B, which in turn depends on the initial Ricci curvature
on M and on the derivatives of the curvatures on M at time 0.

Applying the above to the heat kernel, one can relate the right-hand side of (6.2) to
the Sobolev inequality:∫

M

H2 dμ(y, t)

�
[ ∫

M

H2n/(n−2) dμ(y, t)
](n−2)/(n+2)[ ∫

M

H dμ(y, t)
]4/(n+2)

�
[
A(t)

∫
M

(|∇H|2 + 1
4 (R − α|∇φ|2)H2) dμ(y, t) + B(t)

∫
M

H2 dμ(y, t)
]n/(n+2)

×
[ ∫

M

H dμ(y, t)
]4/(n+2)

. (6.3)
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We will now focus our attention on J(t) :=
∫

M
H(x, s; y, t) dμ(y, t). By the definition

of the fundamental solution,
∫

M
H(x, s; y, t) dμ(x, s) = 1, but this is not true if one

integrates in (y, t). Our goal will be to obtain a differential inequality for J(t), from
which a bound will be found:

J ′(t) =
∫

M

Ht(x, t; y, s) dμ(y, t) +
∫

M

H(x, s; y, t)
d
dt

dμ(y, t)

=
∫

M

ΔyH(x, s; y, t) dμ(y, t) −
∫

M

H(x, s; y, t)S(y, t) dμ(y, t)

= −
∫

M

H(x, s; y, t)S(y, t) dμ(y, t),

where the first term is 0, since M is a compact manifold without boundary.
Recall that S satisfies [17, Theorem 4.4]

∂S

∂t
= ΔS + 2|Sij |2 + 2α|τgφ|2 − ∂α

∂t
|∇φ|2.

But |Sij |2 � S2/n (this is true for any 2-tensor) and α(t) is a positive function, non-
increasing in time, so one obtains

∂S

∂t
− ΔS − 2

n
S2 � 0.

Since the solutions of the ordinary differential equation dρ/dt = 2ρ2/n are ρ(t) =
n/(nρ(0)−1 − 2t), by the maximum principle we get a bound on S for s � τ � t:

S(z, τ) � n

n(inft=0 S)−1 − 2τ
=

1
(inft=0 S)−1 − 2τ/n

:=
1

m0 − cnτ
.

(Here and later, if inft=0 S � 0, then the above is regarded as zero.)
Using this lower bound for S (for τ ∈ (s, t]), we obtain

J ′(τ) � − 1
m0 − cnτ

J(τ).

After integrating the above from s to t, while noting that for J(s) one understands that

J(s) = lim
t→s

∫
M

H(x, s; y, t) dμ(y, t) =
∫

M

lim
t→s

H(x, s; y, t) dμ(y, t)

=
∫

M

δy(x) dμ(x, s)

= 1,

one obtains

J(t) �
(

m0 − cnt

m0 − cns

)n/2

:= (χt,s)n/2.
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Hence,
∫

M
H(x, s; y, t) dμ(y, t) � (χt,s)n/2 and (6.3) becomes

∫
M

H2 dμ(y, t)

�
[
A(t)

∫
M

(|∇H|2 + 1
4SH2) dμ(y, t) + B(t)

∫
M

H2 dμ(y, t)
]n/(n+2)

(χt,s)2n/(n+2).

From this it follows immediately that

∫
M

|∇H|2 dμ(y, t)

� 1
χ2

t,sA(t)

[ ∫
M

H2 dμ(y, t)
](n+2)/n

− B(t)
A(t)

∫
M

H2 dμ(y, t) − 1
4

∫
SH2 dμ(y, t).

Combining this with the inequality from (6.1), one obtains the following differential
inequality for α(t):

α′(t) � − 1
χ2

t,sA(t)
α(t)(n+2)/n +

B(t)
A(t)

α(t) − 3
4

∫
SH2 dμ(y, t).

Note that the above is true for any τ ∈ (s, t]. For the following computation we will
consider t to be fixed as well. Recall that for τ ∈ (s, t], S(·, τ) � 1/(m0 − cnτ). Defining

f(τ) :=
B(τ)
A(τ)

− 3
4

1
m0 − cnτ

,

we obtain

α′(τ) � − 1
χ2

τ,sA(τ)
α(τ)(n+2)/n + f(τ)α(τ).

Let F (τ) be an antiderivative of h(τ). By the integrating factor method, one finds that

(e−F (τ)α(τ))′ � − 1
χ2(τ)A(τ)

(e−F (τ)α(τ))(n+2)/ne(2/n)F (τ).

Since the above is true for any τ ∈ (s, t], by integrating from s to t and taking into
account that

lim
τ↘s

α(τ) =
∫

M

lim
τ↘s

H2(x, τ ; y, s) dμ(x, τ) =
∫

M

δ2
y(x) dμ(x, s) = 0,

one obtains the first necessary bound,

α(t) � CneF (t)
( ∫ t

s

e(2/n)F (τ)

χ2(τ)A(τ)
dτ

)−n/2

,

where Cn = (2/n)n/2.
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The next step is to estimate β(s) =
∫

M
H2(x, t; y, s) dμ(x, s), for which the compu-

tation is different due to the asymmetry of the equation. As stated above, the second
entries of H satisfy the conjugated equation:

ΔxH(x, s; y, t) + ∂sH(x, s; y, t) − SH(x, s; y, t) = 0.

Proceeding just as in the α(t) case, we obtain

β′(s) = 2
∫

M

HHs dμ(x, s) −
∫

M

SH2 dμ(x, s)

= 2
∫

M

H(−ΔH + SH) dμ(x, s) −
∫

M

SH2 dμ(x, s)

= −2
∫

M

H(ΔH) dμ(x, s) +
∫

M

SH2 dμ(x, s)

= 2
∫

M

|∇H|2 dμ(x, s) +
∫

M

SH2 dμ(x, s)

�
∫

M

|∇H|2 dμ(x, s) +
∫

M

SH2 dμ(x, s).

Hence,

β′(s) �
∫

M

(|∇H|2 + SH2) dμ(x, s).

But this time, by the property of the heat kernel,

J̃(s) :=
∫

M

H(x, s; y, t) dμ(x, s) = 1,

so by applying Hölder (as for α(t)) and relating it to the Sobolev inequality, we obtain∫
M

H2 dμ(x, s) �
[
A(s)

∫
M

(|∇H|2 + 1
4SH2) dμ(x, s) + B(s)

∫
M

H2 dμ(x, s)
]n/(n+2)

×
[ ∫

M

H dμ(x, s)
]4/(n+2)

=
[
A(s)

∫
M

(|∇H|2 + 1
4SH2) dμ(x, s) + B(s)

∫
M

H2 dμ(x, s)
]n/(n+2)

.

Following the same steps as for α(t), one finds that

β′(s) � 1
A(s)

β(s)(n+2)/n − f(s)β(s),

where f(s) denotes, as before, B(s)/A(s) − 3
4 (1/(m0 − cns)).

The above is true for any τ ∈ [s, t). We will apply again the integrating factor method,
with F (τ) being the same antiderivative of f(τ) as above. For τ ∈ [s, t), the following
holds:

(eF (τ)β(τ))′ � 1
A(τ)

(eF (τ)β(τ))(n+2)/ne−(2/n)F (τ).
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Integrating between s and t and taking into account that

lim
τ↗t

β(τ) =
∫

M

lim
τ↗t

H2(x, t; y, τ) dμ(y, τ) =
∫

M

δ2
y(x) dμ(y, t) = 0,

we get the second desired bound:

β(s) � Cne−F (s)
( ∫ t

s

e−(2/n)F (τ)

A(τ)
dτ

)−n/2

.

From the estimates of α and β we obtain

α(t/2) =
∫

M

H2(x, 0; z, t/2) dμ(z, t/2)

� CneF (t/2)
( ∫ t/2

0

(
m0 − cnτ

m0

)−2 e(2/n)F (τ)

A(τ)
dτ

)−n/2

,

β(t/2) =
∫

M

H2(z, t/2; y, t) dμ(z, t/2)

� Cne−F (t/2)
( ∫ t

t/2

e−(2/n)F (τ)

A(τ)
dτ

)−n/2

.

Here, we may choose

F (t/2) =
∫ t/2

0

[
B(τ)
A(τ)

− 3
4

1
m0 − cnτ

]
dτ,

since the relation is true for any antiderivative of

f(τ) =
B(τ)
A(τ)

− 3
4

1
m0 − cnτ

.

The conclusion follows from multiplying the relations above.

6.1. Proof of the corollary

In the special case in which S(x, 0) > 0, we have S(x, t) > 0 for all t > 0, so it follows
that J ′(τ) � 0. J(τ) is decreasing, so J(τ) � J(s) = 1, which leads to the differential
inequality for α(t) to be

α′(t) � − 1
A(t)

α(t)(n+2)/n +
B(t)
A(t)

α(t).

And from this the bound for α(t) becomes

α(t) � CneF (t)
( ∫ t

s

e(2/n)F (τ)

A(τ)
dτ

)−n/2

,

where F (τ) is the antiderivative of B(τ)/A(τ) such that F (s) �= 0 and F (t) �= 0.
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Similarly, one obtains for β(s) that

β′(s) � 1
A(s)

β(s)(n+2)/n − B(s)
A(s)

α(s),

and, from this,

β(s) � Cne−F (s)
( ∫ t

s

e−(2/n)F (τ)

A(τ)
dτ

)−n/2

,

where F (τ) is the same antiderivative of B(τ)/A(τ) as above.
By (5.2), in the case in which S(x, 0) > 0 the function A(t) is a constant, while

B(t) = 0. Recall that A(t) = A(0) is in fact K(n, 2), where K(n, 2) is the best constant
in the Sobolev embedding.

One has then that F (t) = (B/A)t = 0. Using this, we obtain

H(x, s; y, t) � Cn

( ∫ (s+t)/2

s

1
A(0)

dτ

)−n/4( ∫ t

(s+t)/2

1
A(0)

dτ

)−n/4

=
Cn

[((t − s)/2A)2]n/4

=
C̃n

(t − s)n/2 ,

where C̃n = Cn(2A)n/2 = (4K(n, 2)/n)n/2.
This proves the desired corollary.

6.2. Proof of Theorem 1.5

It is interesting to compare the two estimates on the heat kernel, the one appearing
in Lemma 3.1 and the one in this last corollary. Assuming that S(x, 0) > 0, Lemma 3.1
showed that

H(x, t; y, T ) � eB−(T−t)D/3(4π(T − t))−n/2,

where B = − inf0<τ�T μα(g, φ, τ) and D = infM×{0} S.
However, by the corollary to Theorem 1.3, one has that

H(x, t; y, T ) � C̃n(T − t)−n/2.

Since C̃n is a universal constant, one can conclude that

B � (T − t)D
3

ln[(4π)n/2C̃n].

Therefore, one has the inequality

μα(g, φ, τ) � τD

3
ln[(4π)n/2C̃n],

where μα is the associated functional μα(g, φ, τ) = inff Wα(g, φ, τ, f), D = infM×{0} S

and C̃n = (4K(n, 2)/n)n/2.
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