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I should like to make it clear at the outset that no complete
solution of the boundary layer equations is given in this paper,'
a complete solution being understood to be one giving numerical
values of the dependent variable (fluid velocity) over the whole
range of the independent variables (for steady motion, the space
coordinates) in question. I have attempted to exhibit the mathe-
matical nature of certain solutions previously unknown, and have
carried out part of the actual calculations—sufficient, in my opinion,
to allow those who will, to judge the practicability of completing
a solution for any definite example. (A summary is given at the
end of the paper.)

1.1. Consider a two-dimensional flow of an incompressible
fluid of small viscosity (or, more generally, a flow at a high
Reynolds number) along a straight or curved wall, or past an
immersed cylindrical body. Let U be a representative velocity
and d a representative length of the system considered. Let yx be
distance measured normally from the boundary, xx distance along
curves orthogonal to the normals (measured from the normal at
the forward stagnation point for flow past a cylinder), ux and Vi
the components of fluid velocity in the directions of xt and yx
increasing, pi the pressure, p the density, and v the kinematic
viscosity of the fluid. Further, let x be xi/d, y be R^yi/d, u be
Mi/£7, v be B^vijU, and p be pi/pU2, where R is Ud/v. Then, on
the assumption that a boundary layer exists in which the viscous
terms in the equations of motion are of the same order of magni-
tude as the inertia terms, the approximate equations for determining
a steady motion in the boundary layer are*

du du dp d2u ...
dx dy ox dy2

* The equations were first given by Prandtl, Verhandl. d. Ill intern. Math.-
Kongresses, Heidelberg, 1904; reprinted in Vier Abhandlungen zur Hydrodynamik
und Aerodynamik, L. Prandtl and A. Betz, Gottingen, 1927. Prandtl's method is
more fully given by Blasius, Zeitschrift f. Math. u. Phys. 56, 1 (1908). Concerning
the derivation of the equations, see also v. Karman, Zeitschrift f. angewandte
Math, und Mech. {Z.A.M.M.) 1, 233 (1921); Polhausen, Z.A.M.M. 1, 252 (1921);
Bairstow, Journal Roy. Aeronautical Society, 29, 3 (1925); and v. Mises, Z.A.M.M.
7, 425 (1927).
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2 Dr Goldstein, Concerning some solutions of the

together with the equation of continuity,

For flow along a curved wall the error in each of the equations
is of order R ~ ̂  a~1, where a is the ratio of the radius of curvature
of the boundary to the length d*; for flow along a straight wall
the errors in (1) and (2) are of the order R~\ and (3) is exact.

1.2. According to 1.1 (2) the pressure in the boundary layer is
independent of y. Its value at any point is consequently the same
as at the corresponding point outside the layer; and the pressure
distribution immediately outside the layer is assumed to have
been independently determined. The theoretical determination is
a matter of difficulty f, since the flow outside the boundary layer
is not everywhere irrotational %. It is usual to find the pressure
distribution experimentally, and then to use the experimental
result so found to calculate the velocity distribution in the boundary
layer, the frictional drag on the wall, and the point at which the
forward flow leaves the wall. The results of the calculations are
then compared with experiment.

1.3. The boundary conditions to be satisfied by u and v must
next be considered. First, u and v must vanish at the wall, i.e. for
y = 0. In general, u is given for x = 0. In addition, the fluid velocity
must pass over smoothly into the velocity in the main stream.
Thus u must become equal to V, and du/dy equal to 0, as we pass
into the main stream. (Here F"is the velocity immediately outside
the boundary layer, divided by U.) These conditions cannot, in
general, be satisfied for a finite value of y; we must take u to be
asymptotically equal to V. Then if we define the limit of the
boundary layer by requiring u to be equal to V to any prearranged
degree of accuracy, this is attained for a finite value of y (though,
of course, the value of y depends on the degree of accuracy
required), and the solutions have the property that the difference
of w from V is quite small for moderate values of y. Further,

* Terms of order R~% multiplied by the gradient of the curvature along the
surface are also neglected. See Bairstow, loc. cit.

t For recent attempts, see Oseen's Hydrodynamik (Leipzig, 1927), including as
appendix two lectures by Zeilon at the International Congress for Technical
Mechanics, Zurich, 1926. Reference may also be made to Burgers, Proc. Roy.
Acad. Set. Amsterdam, 31, 433 (1928).

t In flow along a curved wall there is a region in which the pressure increases
in the direction of motion; in this region the forward flow in the boundary layer is
forced to leave the wall, and the fluid in it, having acquired vorticity, mixes in the
main stream. See Prandtl, loc. cit. and Journal Roy. Aeronautical Soc. 31, 720
(1927). Also Blasios, loc. cit. Many popular and semi-popular expositions have been
published, mainly in connection with the rotor ship (flow past rotating cylinders),
and the effects of suction on the boundary layer. References are given in the Vier
Abhandlungen.
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boundary layer equations in hydrodynamics 3

equation 1.1 (1) shows that if, as y tends to infinity, u tends to
a value independent of y, and dujdy and d2u/dy2 tend to zero, then
the limiting value of u is connected with the pressure by Bernoulli's
equation. It is, then, sufficient to require that u should tend to
a limit.

The velocity v is neglected in the boundary conditions at x = 0
and y = <x>, and this introduces an error of order R ~ *.

1.4. If the velocity and dimensions of the system are sufficiently
large for any given fluid, then it has been experimentally established
that at a sufficient distance downstream the flow in the boundary
layer is turbulent. But the Reynolds numbers at which transitions
to turbulent motion take place are large enough for the laminar
motion to be calculated from the approximate equations*.

1.5. Complete mathematical solutions of the boundary layer
equations for steady motion have been obtained for two problems
only—for flow past an infinitely thin plate along the stream f and
for converging flow between two non-parallel straight walls J. For
the flow past a cylindrical obstacle, the solution has been obtained
by v. Karman's approximate method §; in addition, the velocity
has been expanded in a Taylor power series for x, the coefficients
being functions of y to be determined from ordinary differential
equations||. An obvious, even if laborious, method of attempting
to complete the solution would be to proceed step by step, using

* For experiments on flow along flat plates, containing measurements in the
laminar and turbulent regions, and also in the region of transition, see Burgers and
van der Hegge Zynen, Mededeeling No. 5 uit het Moratorium voor aerodynamica en
hydrodynamica der tecknische hoogeschool te Delft; van der Hegge Zynen, Slede-
deeling, No. 6; Burgers, Proceedings of the First International Congress for Applied
Mechanics, Delft (1924), p. 113; Hansen, Z.A.M.M. 8, 185 (1928). The flow past a
circular cylinder in the critical Eeynolds number interval has been examined by
Page, Phil. Mag. (7) 7, 253 (1929). The discovery that the flow in the boundary
layer may become turbulent apparently dates back to Blasius, Mitteilungeii iiber
Forschungsarbeiten herausg. vom Verein deutsch. Ing. Heft 131, p. 1 (1913), aud
Prandtl, Gottinger Nachrichten (1914), p. 177.

•\ Blasius, loc. cit.
% Polhausen, loc. cit. The exact solution for converging or diverging flow

between non-parallel straight walls was given by Hamel (Jahresberichl der
deutscher Math.-Vereinigung, 25 (1916), p. 34) as a special case of flow in which
the stream-lines are logarithmic spirals, which is the only possible form if they are
to coincide with the stream-lines of a potential flow. See also Oseen, Arkiv for
Math.-Astron. och Fys. 20, 1927, No. 14; Millikan, Math. Ann. 101 (1929), p. 446;
and v. Karman, Vortriige a us dem Gebiete der Hydro- und Aerodynamik (Innsbruck,
1922), p. 150.

§ Polhausen, loc. cit.
|| Blasius, loc. cit.; Hiemenz, Dinglers Polytechn. Journal, Bd. 326 (1911). The

latter used an experimentally determined pressure distribution. See Polhausen's
remarks on Hiemenz's solution, and v. Mises's remarks on Polhausen's solution.

An approximate numerical solution has also been given by A. Thom, Reports
and Memoranda of the Aeronautical Research Committee, No. 1176 (1928). The
region in which the solution holds appears to be almost the same as that for
Hiemenz's solution. Measurements of the velocity distribution in the boundary
layer at the surface of a circular cylinder are also given in the paper cited.
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4 Dr Goldstein, Concerning some solutions of the

the Taylor series to give the solution up to a certain value of x,
and then taking the value so calculated as a new initial value.
This new initial value, w0, will, in general, be given numerically;
to continue the analysis we may approximate to w0 by a polynomial,
so that

«a2/2 + ••• +any
n (1)

In general, however, the solution with (1) as initial value is not
free from singularities, and has not previously been found. If

£ ---, (2)
the conditions for the absence of singularities in the solution are

2a2+p0 = 0, a3 = 0, 5\ai+2a1p1 = 0, Qla6 = 2p0pi, ....
(3)

Thus only cii, a4, a7, and so on are at our disposal. We may then
seek to determine these coefficients so that

as nearly as possible, and continue the analysis with (4) as initial
value. There are several objections to this process. First, the
determination of the coefficients in (4) is usually neither easy nor
accurate. Second, if we determine n coefficients we have a poly-
nomial of order 3n — 2. Third, with (4) as initial value, we find

/y=o ai 4a!3

and the presence of the factorials is unpleasant. It may well be,
then, that the solution with (1) as initial value possesses advantages
for practical calculation; in addition, it has theoretical mathematical
interest. The singularities will invalidate the solution for practical
purposes only in the immediate neighbourhood of x = 0.

Other problems of which mathematical solutions have not yet
been given are that of finding the nature of the solution in the
neighbourhood of the point at which the forward flow leaves the
boundary, characterised by the condition that not only u, but also
du/dy, vanishes for y = 0; and also such a problem as that of the
flow along an infinitely thin plate when the fluid flow has previously
been disturbed. All these problems are included in that of finding
the solution of the equations for a general initial value of u. Thus,
if u0 is the value of u for x = 0, and

«o = do + axy + a2y
2 + a^y3 + ..., (6)
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boundary layer equations in hydrodynamics 5

then for the first problem c&o = 0 and at ± 0, for the second
OQ = % = 0 and a2 i= 0, and for the third a0 ± 0. The solution for
the first is given in § 2, for the third in § 3, and for the second
in § 4.

1.6. The boundary layer equations apply not only when the
motion is being disturbed by the presence of a boundary, but also
when a previously disturbed flow is recovering from the effect of
the disturbance. Such an application is that of calculating the
flow behind a flat plate along the stream. In this case the
boundary conditions u = 0, v — 0 at y = 0 are replaced (because of
symmetry) by v = 0, dujdy = 0 at y = 0. The calculation is carried
out in § 5, and numerical values of the velocity are given. The
extension to a general initial value of u and general pressure
gradient is simple, but it has not been found possible to make
allowance for a finite thickness of the plate.

2.
2.1. It is required to solve the equations

du du d2u
„

(2)

with the boundary conditions u = v=0a,ty = 0, u tends to a limit
as y tends to infinity, and

M = Mo = Oiy + a2y
i + a3y

3 + ... ( « i ^ 0 ) (3)
at x = 0.

2.2. A general transformation of the equations, of which a
special case is required here, will be found useful later. Equation
2.1 (2) is integrated by taking

y
and then we put

l l

£ = *», v = yx~n/n, (2)
and * = r-1 /(£ '?); (3)
so that w=r-2/,/n )

and f satisfies the equation
(n - 2)/,« + ?/,/j, - (n -1 ) / / , , -

(5)
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6 Dr Goldstein, Concerning some solutions of the

2.3. To solve the equations of 2.1, we take n equal to 3 and
assume that

Then « = H(/o ' + £/i' +I 2 / /+•• • ) , (2)
and

A'" + 2/o/i" ~ 3/o'/i' + 3/o"/i= - 27^o
/*'" + 2/o/2" - 4/0'/2' + 4/0"/« = - 3/i// ' + 2//*

/a'" + 2/o/s" - 5/0'/s' + Sfo"A = - ¥2/1" + 5A'A' - 3/i'Tl f' ' '"K)

A'" + 2/0/4" - Qfo'A' + Q/o"A=- 5/3./;" + 6/3'./i' - 8/3"/!

and so on, where dashes denote differentiations with respect to 77.
The conditions w = w = 0 a t ^ = 0 are equivalent to

/ r (0)=/ , ' (0)=0, (4)
while the condition that

Mo = «i(3^) + a 2 ( 3 ^ + . . . + « , ( 3 ^ ) r + (5)
when r)—*-cc and f-*-0 requires that

a,., (6)

where ar = 3r+1ar (7)

The condition to be satisfied when y is infinite will be con-
sidered later (§ 2.4).

The solution for/0 can be written down at once. It is

/o = i«i'72 • (8)
The solution for/z is given in § 2.31; in § 2.32 the complementary
functions for the equation for fr are considered; and the solution
for/2 is completed in § 2.33.

2.31. If we put z = ai*-n, (1)

where 7r0=27/>0 (3)

The general solution having a double zero at the origin is

where /3t is an arbitrary constant, to be determined later from the
condition at infinity, and

. . z* z5 2.4 „ 2 .5 .4 .7 „ 2 .5 .8 .4 .7 .10 ,,
yiK ' 2! 5! 8! 11! 14!

(5)
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gi (z) may be expressed in finite form in two ways. First,

(6)g i
. ' o

where 1F1{a;b;x) = l + ̂ x+£g£±a*+..., (7)

and has been studied by Barnes * and others. Another form is

9i = 3 - Mi*3 - 1} 7 (h K ) + i • 3 *
(8)

where y(n, x) is the incomplete gamma function, namely,

y(n,x)= \Xtn-1e~tdt, (9)
Jo

») - 7 (n , x) ~ r~**f 1 + ^ + ("

so that

) - 7 ( n x) ~ r~**f 1 + ^ + ( " - ' ) ( " - 2 > +
(10)

The limit of z~2dfjdz as z tends to infinity is now easily found
to be

Since from 2.3 (6) this must be equal to a^ax, we must have

A = 3* ̂  (TT0 + 2«2)/r (f) = tfar1 (p0 + 2o,)/r ($)
= 3-1954(^0 + 2^) /^ .

(12)
The asymptotic formula for fx is

where

lttl ~ * exp ( - J H l V { ^ J
(13)

2.32. The equation for/r has the form

2>/'=^)- -a)
* Tran». Cam6. Phil. Soc. 20, 253-269 (1908).
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8 Dr Goldstein, Concerning some solutions of the

Three independent complementary functions are z, gr, and hr,
where

and
r+2 2(r + 2)(r-1) . 2.5(r+2)(r-l)(r-4)J)

r ~ ~3T 6! 9! "•

(3)

The asymptotic expansion of yFx (a; b; — x) is*

+ 2 ! a ; 2 + .

The asymptotic expansion of ̂ r is not immediately deducible,
but may be found by the method used by Barnes. If we consider

taken round a contour consisting of a straight line from — N— § — coi
to — N — % + cci and the part of a circle of infinite radius to the
right of this line, we easily find that

zF(%) K+ I '. r(r + 2) z^2

9 ~ TTTT +|r + 1 3 r - 2

3.6 r-5

r(r-3)(r~6)(r+2)(r-l)(r-4) ̂ - 8

3.6.9 r -

z, ...(6)

when r ^ 3 n —1 (n integral). When r = 3w—1, the term with

* Barnes, loc. eit.
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boundary layer equations in hydrodynamics 9

a zero denominator must be omitted, and the last term (the
multiple of z) replaced by

n J
where i]r (x) is I" («)/r (a?) *, and 0 is Euler's constant, equal
to 0-5772....

We can prove similarly that

when r ^ 3n — 1, and that, when r = 'in — 1, the term with a zero
denominator must be omitted, and the last term replaced by

[logU3 + ̂ (n + 1)-yfr(^)

)r(-i-n)L( ) ( i )
+ - + 21og.3 + c l . ...(9)

n j

The series in (8) is the same as in (6), arid a certain linear com-
bination of the solutions z, gr, and hr is asymptotically equal to
zero. (This is obvious when r =j=- Sn — 1, and is easily proved when
r=Sn — 1.) This corresponds to the fact that the equation (1)
(with the right-hand side omitted) has a normal solution of rank 3
at infinity, consisting of exp( -^ 3 ) multiplied by a descending
series. The further discussion of the solutions is interesting but
irrelevant.

The method of variation of parameters can now be used to
show that the complete solution of (1) is

+ 1J i ; ^ 3 ) Ordz + hrj' \z\Fx ( ^ J fc |*») Ordz

(grhr
r - gr'hr) Gr exp (^3) dz, .. .(10)

but the application of this result is difficult.
* ^ is the recognised symbol for both the stream function in hydrodynamics and

the logarithmic derivative of the gamma function. When it occurs in this paper
with the second meaning, its numerical argument is always specified, so no con-
fusion can be caused.
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10 Dr Goldstein, Concerning some solutions of the

2.33. The equation for/2 is 2.32 (1) with r equal to 2, and

. G2 (z) = A 2 « i " iK2 (z) + A T T O * ! - * Z , ( 4 (1)
where, with

71 = i . 3 - ^ r ( | ) = 0-1565, and ^ = J . 3 " ' T (J) =«0-6440,

. <2>
we have

_ g 3779s11

~2 2 . 3 . 4 . 5 + 4 . 5 . 7 . 8 . 9 3 . 5 . 6 . 7 . 8 . 9 . 1 0 . 1 1 + '"

~ - 6 7 l S ^ 2 + 367!a« + SSi2 - 7 l exp ( - ̂ 3 ) { 3 + 0 (^-3)},

(3)
and

z« z9 z12 z™
2 . 4 . 5 6 . 7 . 8 + 4 . 9 . 1 0 . 1 1 3 . 9 . 1 2 . 1 3 . 1 4 + " "

0(0} (4)
The general solution having a double zero a t the origin is

/ 2 = &#2 + A 2 * ! " * & 2 + &*•<)«!~^2, (5)
where /3Z is a constant to be determined later from the condition
a t infinity, g2 is given by 2.32 (2) with r equal to 2,

, _ 2 17s 888z 92392z14

2~5!~~8T+TT1 14!~ + " " • }

and
7 _ I829 1800ir12 27936Qg15 6519744Qg18

h~ 9! "l^T^^lS! 181 + ( ? )

The complete solution is given by the right-hand side of (5) plus
arbitrary multiples of z and h2.

Now let

(8)
Then the asymptotic expansion of g2 is (see 2.32 (6) and (7))

9 " \izi + ¥ ( 1 + 2 l0g3 +
(9)
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The formal asymptotic expansion satisfying the differential equation
for/2 and the condition 2.3 (6) is

} (10)

The constant 7 a ' is arbitrary. In addition there is a normal solution
of rank 3, consisting of a factor exp (— ^z3) multiplying a descending
series, which also contains an arbitrary constant. If we replace
a^^^ by a third arbitrary constant, we have the solution at
infinity in its full generality. Comparing this with the complete
solution obtained by adding arbitrary multiples of z and h2 to (5),
and remembering that A2 is asymptotically equal to a multiple
of g2 plus a multiple of z, we deduce that there are constants
S2, T2, 72 and 82» such that

h - Stg, + 72* ~ 37A*2 + i V - 127l
2P (11)

and 12-T2g2 + S2z iS^ 2 + 27 lP. (12)

The constants S2 and T2 were determined numerically from the
formulae

S2 ~ (k2" - 6-yA + 127l
2P")/<72", (13)

and T2~(l2" + 81-27lP")/g2", (14)

where dashes denote differentiation with respect to z. The constants
72 and 82 were then found numerically from the formulae

y 1 ~6 7 l 8 l . s -127i I P ' + S f 0 , ' -k ' , (15)

and 82~-81z + 2y1P' + T2g2'-l2' (16)

g2 and g2" were calculated from the asymptotic expansion (9);
k2, k2 and k2" were calculated from the series (6) for z = 06, 07,
0*8, 0-9 and l"0, and then computed for higher values of z by the
numerical solution of the differential equation*. A similar pro-
cedure (except that the series was used up to the value 1*3 for z)
was carried out for l2. The limiting values of the right-hand sides
of (13), (14), (15) and (16) were thus found, with the following
results:

S2 = 0-044, T2 = 0203, 7 a = 0-757, S2 = -0-493. ...(17)

* The process adopted for the numerical solution of differential equations was
that of Adams, described in Chap, xiv of Whittaker and Eobinson's Calculus of
Observations, and by Kriloff in the Proceedings of the First International Congress
for Applied Mechanics, Delft (1924), p. 212. The method is so much less laborious
than others in use (that of Bunge and Kutta for example) that the numerical work
in this paper was possible only because it was available.
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12 Dr Goldstein, Concerning some solutions of the

The value of ./92 can now be found by comparing the asymptotic
expansion of (5) with (10). The result is

= 17*804030! - * - 0-216 (p0 + 2a2)
2a1 " * -

The asymptotic expansion of/2 is

where

• (18)

<?i+....... (19)

20£a3,

G =sr(*> a2(Po
2 2r(|) CH

^(Po + 2

D2' = 1803/% - 6a2 (^, + 2a2)/a1
2,

D2 = a ^ 1 {603 - 2a2 (p0 + 2a2)} log %
x (4 loge 3 - 2 + 7r/V3 + 0)

- 2a2 (p0 + 202)} log ax + 2

2a2) - 7-73ar2 (p0 + 2a2)
2

(20)

2.34. When rj is small, the velocity may be calculated from
2.3 (2). In particular

fdu\ =l(d% oVi . « # £ . \

di?+ (1)
where

O-i :; ^ 1

i 2

-*_0104o!-'(j9o + 2a2)
2

- 0-450%~*£>0 (Po + 2a2),
and
di = 24a4o1~

1 + terms vanishing with a3 and po + 2a2.)

(2)
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We are now in a position to consider the question discussed in
§ 1.5—is the method a practicable one for step by step calculations ?
The answer must depend on the values of the coefficients au a^,
a3, etc. If the initial velocity u0 can be represented by a cubic, or
if the coefficients after 03 are small, then it is likely that the terms
already calculated will give a good approximation up to values of x
sufficiently large for step by step calculations to be possible, though
it would be safer to proceed one, or even two, stages further. If u0
can be represented by a quartic, or if the coefficients after a4 are
small, it is imperative to proceed one stage further, and safer to
proceed two or three stages further.

The solution for f3 with general values of p0 and of the co-
efficients a0, «!, a2, etc., involves the numerical calculation of six
particular integrals, and may be possible; but any such general
calculation for ft will be difficult, and for f5 appears to be out of
the question without elaborate machinery or many co-workers.
On the other hand, it is certainly not out of the question to
calculate f3, ft and fs when the coefficients have given numerical
values, since each calculation requires the solution of only one
equation.

On the whole, there seems a reasonable chance that step by
step calculations by this method may be possible, even if laborious.

2.4. When TJ is large, fr' increases rapidly with r, and for-
mula 2.3 (2) is unusable. We must therefore use a different
development for y(r. Now if we restrict ourselves to three terms,
the equation 2.2 (3) for i/r, combined with 2.3 (1) and the asymptotic
developments for/i and/2> gives the formula
f = A0?r? + ? (AlV* + GlV + A)

+ £4 (Air,* + C2V
2 + Dz'v log V + D2V + E* + G2T2 +.. .) ,

(1)
where Ao is 9<Zi/2, and the other coefficients are given by 2.31 (14)
and 2.33 (20). If we assume that rearrangement is permissible, we
can write this as

+ A j

{D1 4- ( A - Di log 3) (|y) + D2'y log y + ... \

+ ?(E»+...)+ (2)
We therefore assume, as a form valid for sufficiently large values
of yx~^, that _

(3)
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14 Dr Goldstein, Concerning some solutions of the

where to" = u0 = axy + a2y* + a^y* + ..., (4)
and

• " •
( }

= 6Dt.+ 2 (JDt - Di log 3 ) y + 2D2'y log y + ...,[

The substitution of (3) into 2.1 (1) gives

to'ta' — to' tn= 0,
to't3'-to"t3 = 0,

to' W + Hz)~to" (ts + its) = 6(fo'" ...(6)

where dashes denote differentiations with respect to y. Hence
yp-2 = constant \}ro' = constant (a,\y + aiy'i + ...) (7)

Comparison of the coefficient of y with that in the first equation
of (5) gives

and then we verify that the coefficient of y2 is f C2.

Similarly -$•, = -"^0 (9)

Next t 3 + i t 3 = 6Vro/)'T". ;/"rfy, (10)
J yo

or, since ^3 is a multiple of i/r0',

^ ^ ^ ' f ^ ^ ^ <U>
Now

(12)
We therefore write

V( \ = W +P° P° + 2a* f6tt3 2 a 2 (P° + 2a*)} 1

* W to'2 « ! 2 / l«i2 «i3 \y'
(13)

and
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where K is a constant to be determined. The expansion of
(14) is

Qpo±2a1(Kai_6a2(po + 2ai))

We verify that the constant term and the coefficient of ylogy are
6Z>i and 2i)2' respectively, and find that

Kax = 2 (D2 - D2' log 3) - 6ar2a2 (p0 + 2a2). .. .(16)

Finally, by using (8), we prove that

^ 4 = |<71
2a1-

2i|r0" + constant^', (17)

and verify that the constant term is 24i?2, but we cannot deter-
mine the constant from (5).

This solution does not satisfy the boundary conditions for
y = 0, and is valid only when yx ~ & is sufficiently large. On the
other hand, it is simple to verify analytically that the boundary
condition at infinity is satisfied as far as our series will take us, as
indeed it must be from our method of calculation.

3.

3.1. It is required to solve the equations 2.1 (1) and (2), with
the boundary conditions u = v = 0 at y = 0, u tends to a limit
independent of y as y tends to infinity, and

u = uo = ao + a1y + a2y
2+ ... (ao^O) (1)

at x = 0.
Take n equal to 2 in the equations of § 2.2, and expand f in

the form 2.3 (1). Then

\, (2)
where

A'" +/0/1" -fo'fi + 2/o"/i = 0, I >(3)

/•'" +/0/2" - 2/0'/,' + 3/o"/, =/i'2 - 2/xVi - 8^o, J

and so on.
The boundary conditions are

/ r (0) = / / (0) = 0, and lim / / (n)/V
r = 2r+1ar (4)
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16 Dr Goldstein, Concerning some solutions of the

3.11. The equation for/0 has been studied by Blasius (JLoc. cit.)
and Toepfer*, whose solution may be written

and f0~A0T1+Bo + <:o\be-a°1<'-aoiv I e~u* du + ...k...(2)
aoir,

where /30 = l-32824a0*, (3)

and A0=2a0, £o = -l'72O75ao
4, 60 = 0-92300* (4)

3.12. The solution for/i having a double zero at the origin is

and the solution satisfying the boundary condition at infinity is

f^Arf + Bn + d (2)
where A1=2a1, B1 = 2a1a0-

1B0 = -34!415a1a0-l (3)

The constants /3i and Ci must be determined numerically (as in § 5,
for example).

The solutions for/2,/3 and so on are to be found in a similar
way.

3.2. When rj is large,

.} + (1)
We therefore assume, as a form valid for large values of rj, that

^ = fo + ̂ h+fff + (2)
and find, by substituting in 2.1 (1), that

^o>2 ' - Kf 2 = 2 (po + ^o'") + ^ i t i " - *i 2,J '"{

and so on.

Thus fi = constant yfr0', (4)
and comparison of the constant term with its value in (1) gives

i/ri = BQylr0'/aQ.

We verify that the coefficient of y is %BX.

* Zeitschrift f. Math. u. Physik, 60, 397-98 (1912).
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The solution for yjrz is

** = 2*o' I" ^ t t " " d3/ + ̂ oa«o-2^o" + ity,', ...(5)
Jo yo

and comparison with (1) gives
B<?a<r!ia1 = 2C1 (6)

•^3- ^4 a n ( i a o o n c a n ^e found similarly when fz, ft and so on
have been found.

4.

4.1. It is required to solve 2.1 (1) and (2) with the same
boundary conditions as before, except that*

«o = «22/2 + <hV3 + • • • 0*2^0) (1)
Take n equal to 4 in § 2.2, and expand/as in 2.3 (1). Then

w = i£ 2 l /o ' i v ) + f/i '(v) + P/2'(v) + •••}> (2)
and

JO "r djojo — 4/0 — 7̂ 0»

fi" + 3/o/i" - 5/o'Z!' + 4/07i = 0, (3)
"«'" + 3/o/i" - 6/0'/!' + 5/0"/2 = ;

and so on, where 7ro = —64p0 (4)
The boundary conditions are

ft (0) = / , ' (0) = 0, and lirn / ' r_2 (v)/vr = 4r+1«r. • • .(5)

4.11. The solution for/0 with a double zero at the origin is

+ 31O5TTO/3O
3 ^ + 3780V/808 ^ j - ^

- 75284l7ro/3o4 ^g-, + 2515725TTO2/3O3 J £ ,

+ (14648817y30
6 -29106007r0

3/3o2) y ^

?, + ..., (1)
where /3o is an arbitrary constant.

* A glance at equation 1.5 (5) shows that when, as here, at is zero, the con-
ditions 1.5 (3) for the absence of singularities are by no means sufficient. The
conditions required are complicated. If we suppose u expanded in a power series
in x, u = wo + «,a: + j/2x2 + ... , with «,, v2 as power series in y, «1 = 6]i/ + 62)/2+...,
V2 — ci V + C22/2 + • • • i we find that we must have

2n2+J>o=O. o3 = 0> «4=°. °s = 0, 6!a 6 = 2p0p2, a ,=0 , o9=0,

VOL. XXVI. PART I. 2
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18 Dr Goldstein, Concerning some solutions of the

The solution satisfying the boundary condition at infinity is

/„ ~ AoV
3 + BoV* + CoV + D0 + EOT,-1 + FoV-2 + (2)

where
J o = 6403/3, C0 = B<?/3A0, Do = BO

3I27AO\) , „
t (o)

Eo = (•*<>-QA0)/MA0, F0 = -B0E0/3A0,...,)
and Bo is arbitrary. 0o and Bo must again be determined
numerically, but it is evident that the work will, in general, be
much more difficult than in the other cases.

4.12. The problem* simplifies considerably if TT0 is zero; the
numerical work is then similar to that carried out in § 5. Hydro-
dynamically, this special case will not be interesting, since if the
pressure gradient vanishes, there will be no return flow, and no
separation of the forward flow from the wall.

4.2. If u0 has a zero of order m at the origin, and po is zero, we
can find a solution by taking n equal to ni+ 2 in § 2.2. But if p0
is not zero, the method will not give a solution when m is greater
than 2. The problems with m greater than 2 do not appear to
have any physical meaning.

5.

5.1. In this paragraph the laminar flow behind an infinitely
thin plate of length I along the stream will be calculated numerically.

Let xx be distance from a plane perpendicular to the plate
through its rear edge, yx distance from the plane of the plate, and
iii a n d vi the components of velocity in the directions x\ and yx
increasing. Let R be 4<Ul/v, where U is the undisturbed velocity

and so on. Only as, a12, aw, a20. ... are at our disposal. In addition 6,, c,, d,, ...
are determined, not from the equations for u,, u,, u3, ... respectively, but from the
conditious for the absence of singularities in u2, «„, M4, ... respectively. Further,
there is an ambiguity of sign which can be decided only from physical considerations.
A little more light, but not much, is shed on the matter by considering the equation
in the form

du du [» r/d2u dp\ 1 "I /d2u

! i w ) / u y +
* It is hot suggested that the above solution of the problem is always valid.

When /o has the asymptotic expansion given by 4.11 (2), in which Ao must not
vanish, then the equation for/, has three asymptotic solutions, giving/, of order ij4,
of order r;2, and exponentially small respectively. The method used fails if the
general solution for /, with a double zero at the origin does not involve the
solution of order rf at infinity. This happens, for example, when j)0 + 2a2 = 0 or
J7ro = 64a2. The solution for fa is then 7rO7;3/3!, and the general solution for / ,
with a double zero at the origin is any arbitrary multiple of rp. This difficulty
may occur, of course, in solving for any function fr, and, though the matter may be
tested by numerical computation in any given case for the first few of the fr,
a theoretical discussion of the general equation appears too difficult to be possible.
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of the stream, x be xJU, y be R^yx/U, u be U\\JJ and v be
The initial velocity distribution is given by*

«o = »<fy (1)

where a9+^=0' W
% has a double zero at the origin and d^/dy tends to 2 as y tends
to infinity.

«o may be expanded in a series, with the result
uo = a1y + aly

i+a1y
1+ ..., (3)

where

a1 = %a, a4 = -£a2/4!, a7=5-5a3/7!, alo = - 187-5a4/10!, ...

(4)
and a = 132824 (5)

The flow outside the boundary layer is uniform, and the pressure
gradient zero.

5.2. Take n equal to 3 in the equations of § 2.2, and assume
that

f=fo(v) + ^Mv) + ^Mv) + - , (i)
so that u = M{fo(v) + Z%'(v) + Z6fe(v)+-} (2)
where

/o"' + 2/o/o"-/o'2=O, •)
fz" + 2/0/3" - 5/0'/3' + 0/0"/, = 0, (3)

A'" + 2/o/6" - 8/0'/,' + 8/0"/, = 4/3'* - 5f3f3")
and so on.

The boundary conditions v = 0, dujdy = 0 at y = 0 are equi-
valent to

/ r (0 )= / r " (0 ) = 0, (4)

while the condition u = «o at x = 0 requires that

lira / „ ' (V)/n3r+1 = «3r+i, (5)

where er3r+i = 33r+2O3r+i (6)

In particular,
/o'A? -* «i = 9a/2 = 5-97708, / 37T;4 -* a4 = - 35a2/2.4! = - 8-9313G,
and fe'/v

f!-*-a7 = 3a.ll.a.3/2. 7! = 167777 (7)

5.21. The required solution of the first equation of 5.2 (3) is

(1)
* Blasius, loc. cit.
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20 Dr Goldstein, Concerning some solutions of the

where /30 is to be determined from 5.2 (7). Let Fo (v) be the
solution for which F0(0) and Fo" (0) both vanish, and .Fo'(O) is 1.
This solution is given by the right-hand side of (1) with /90 equal
to 1. Then

fo(v) = ̂ K(^v), (2)
so that

V} -

< = fo* Km Fo'(v)/v = foi Km Fo"(v). ...(3)

Hence /30 = {en/\im Fo" {v)\* (4)

Asymptotically, the equation is satisfied by

- ] . (5)
where v' = V + $o, (6)
and 70, So and e0 are arbitrary constants.

By numerical solution of the equation it was found that

F0(r])~ 0-42356 (T; + 0-65364)2 .(7)

Hence /30 = 3-67869, (8)
and Mv)~i«iv't, (9)
where rf is given by (6) and

8o = 0-3408 (10)

The work was checked, and/0,/0 ' and/0" tabulated, by solving the
differential equation numerically with the value of /So given by (8)
as initial value ioTfo-

5.22. The required solution of the second equation of 5.2 (3) is
@aF3 (v), where

f £ £ ] + ..., ...(1)
and /33 is to be determined from 5.2 (7).

Asymptotically, the equation is satisfied by

73{V5+20arV(V-S3)}> (2)
where exponentially small terms have been neglected, y3 and Sa

are arbitrary constants, and r{ is given by 5.21 (6) with Bo equal to
03408 as in 5.21 (10).

By numerical solution of the differential equation it was found
that

5Fa(n)~ 2-5219 {7,'5 + 20«1-V0?'-0-3822)} (3)
so that F3'(ri)/r)* tends to 2-5219. Hence

/33=-8-93136/2-5219 = -3-54i5, (4)

and 5f3^ai{v'
5+20arW(v'-^)}, (5)

where S3 = 0-3822 (6)
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The values of f3, f3 and f3" were tabulated by multiplying the
values of Fs, F3 and F3" by - 3-5415.

5.23. Let f33
2G6(i)) be a particular integral of the third

equation of 5.2 (3), and F6(T)) the complementary function for
which F6 (0) = F6" (0) = 0 and F6' (0) = 1.

Then

+2*I3O fl+U2{3of] + ..., (1)

and we may take

The required solution is then

where /36 is to be determined from 5.2 (7).
Asymptotically, the equation is satisfied by

+ 6 / 3 | i + 132 / 3
2 ^ + (2)

(3)

280arV!!)
1 S 3

2 ) > • • • ( * )

where exponentially small terms have been neglected, and <ye and
Sg are arbitrary constants.

If this is to represent a solution satisfying 5.2 (7), then
76 = a-,. Hence we have the following asymptotic equality for /36:

10arV 3 + lOar2) + 8a4
2ar2

 (5T/3 - 6S3T,'2

(v) (5)
.FeC?;) and G&{ri), and the first two derivatives of each, were
tabulated by numerical solution of the differential equation, and
the limiting value of the right-hand side of (5) was thus found,
with the result

(6)

The value of S« was then found by comparing the derivative
of (4) with /33

2G6 (r)) + @eF'(v) for sufficiently large values of->;,
with the result

S6 = -8-291 (7)

The asymptotic expansion of fe is given by (5) with this value
of S6 and with ye equal to a7.

/6' was tabulated from the equality /a'=/33
2 (r6' + @6F6'.

5.24. For small values of tj the ratio u may now be calculated
from 5.2 (2). The first three coefficients have been tabulated;
further coefficients were not calculated. It is impossible to form
any theoretical estimate of the error introduced by stopping after
three terms: the best we can do is to consider the magnitudes of
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the three terms separately. For this purpose the following table
(Table I) is inserted. The values of u calculated from 5.2 (2) are
shown in Table III, pp. 26, 27. In some cases, two values of u are
recorded in this table. The upper one is then the value calculated
from the first three terms of 5.2 (2); the lower one, in italics,
is calculated by making an estimate of the probable effect of the
terms after the third, combined with extrapolation and the need
for a smooth passing over into the values of Table IV.

TABLE I. Coefficients

V

0
o-l
0-2
0-3
0-4
0-5
0-6
0-7
0-8
0-9
1-0
1 1
1-2
1-3
1-4

i/o'

1-2262
1-2486
1-3143
1-4186
1-5550
1-7157
1-8934
2-0816
2-2759
2-4731
2-6717
2-8707
3-0699
3-2691
3-4683

in the series

-if,'

1-181
1-289
1-615
2-160
2-930
3-942
5-223
6-820
8-795

11-225
14-197
17-807
22-156
27-354
33-514

5.2 (2) for u.

J/o'

2-706
3-192
4-700
7-394

11-582
17-782
26-796
39-807
58-493
85-148

122-833
175-566
248-545
348-433
386-444

5.3. For large values of rj,

fs (V) ~ A3V
5 + BsV* + C3V

3 + Z W + E3V + F3,
U (v) ~ AeV» + Brf + C6V

6+D,rf + E^ + FBV
3+ G6V* + H,v + 76>

(1)
where the A, B, C, etc. are known. Then, for large values of 77,

(2)
if the legitimacy of rearrangement for large rj be assumed. This
leads to the assumption that for large values of rj, i]r may be
expanded in the form

-J + SXF + W
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where i/r0, i/^, etc. are functions of y satisfying the equations

and so on, dashes denoting differentiations with respect to y. Now
•</r0' is equal to \g, where f satisfies 5.1 (2). By using this last
equation the equations (4) may all be integrated in finite form.
The constants of integration are found by expanding the integral
in a series and comparing with (2). At each stage we can verify
that the coefficients in the series not used to determine the constant

. of integration are the same as in (2). The derivatives of integrals
so found are given below.

2| 2 2!

3! * 3 !

±L-.
7 ! ~ ;

8! $ 8 r 5! y& 4!

+ ( ^ + 2AB) y^ + (AC+ B*) ?'".

(5)

J., B and C have been written for brevity instead of SBo, 3S0 — 1'5S3,
9S0 + 86/3a respectively, where Bo is given by 5.21 (10), S3 by
5.22 (6), 86 by 5.23 (7) and a by 5.1 (5).

f, {,' and f". were tabulated by numerical solution of the
differential equation 5.1 (2) with a as initial value of f" ; and f"'
and higher derivatives were tabulated from the equation and
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equations obtained from it by repeated differentiation. Then
tyo, V'V. e tc- w e r e tabulated. The results are given in the table
above (Table II).

(yjr9 could also have been determined from the solution for f6,
but the gain in accuracy in the calculation of the velocity would
not have justified the labour.)

The ratio u was then computed from the formula

The results are in Table IV, p. 28. yjre', yfr7' and \fra' were not
computed for odd values of lOy. For these values of ICh/, u was
obtained by interpolating either for the difference in the values
obtained for two neighbouring values of £, or for the difference in
the values obtained from six terms and from the full nine terms.

When two values of u for one pair of values of y and f occur in
Table IV, the remarks on p. 22 concerning Table III apply.

When f is greater than or equal to 0"35 the last figure of u
becomes uncertain. For these values of £ entries in the table that
would have been the same, to the accuracy obtainable, as the
corresponding entries for £ equal to 0'3, have been omitted.

The widening of the "boundary" layer at a sufficient distance
behind the plate is so gradual that the process cannot, unfortunately,
be followed by calculations of the accuracy obtained.

5.4. The only singularities occur at .* = 0, and if the value of u
for any other value of x be expanded in a series of ascending
powers of y2, there is no theoretical difficulty in continuing the
solution by step-by-step calculations, or by successive approxima-
tion. But all sufficiently accurate methods are laborious, and
I have been content to find a first approximation up to £ equal to
0'7 by extrapolation—a process always dangerously liable to give
inaccurate results.

The results are all collected in Fig. 1. The velocity along the
axis is shown in Fig. 2.

My thanks are due to Prof. Prandtl, at whose suggestion the
investigation was undertaken.
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FIGS. 1 AND 2. T H E VELOCITY DISTRIBUTION IN THE TWO-DIMENSIONAL 
LAMINAR FLOW OP INCOMPRESSIBLE VISCOUS FLUID AT H I G H REYNOLDS 
NUMBERS BEHIND A FLAT PLATE AT ZERO INCIDENCE IN A UNIFORM STREAM. 

Curves are shown with u as abscissa and y as ordinate, drawn for 
various values of xjl. Here « is tbe ratio o f the fluid velocity at any point to 
the undisturbed velocity, U, of the stream ; I is the length of the plate; xt is 
distance from the plane perpendicular to the plate through its rear edge, and 
V is il/i(U/vl)i, where v is the kinematic viscosity of the fluid, and yt is 
distance from the plane of the plate. 

Thosecurves or parts of curves shown dotted were obtained by extrapolation. 
O 
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Here the values of u along the axis, y=0, are shown plotted against xjl.
The part dotted was obtained by extrapolation.
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/
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"
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Pig. 2.

SUMMARY.

The boundary layer equations for a steady two-dimensional
motion are solved for any given initial velocity distribution (distri-
bution along a normal to the boundary wall, downstream of which
the motion is to be calculated). This initial velocity distribution
is assumed expressible as a polynomial in the distance from the
wall. Three cases are considered: first, when in the initial distri-
bution the velocity vanishes at the wall but its gradient along the
normal does not; second, when the velocity in the initial distribu-
tion does not vanish at the wall; and third, when both the velocity
and its normal gradient vanish at the wall (as at a point where the
forward flow separates from the boundary). The solution is found
as a power series in some fractional power of the distance along the
wall, whose coefficients are functions of the distance from the wall
to be found from ordinary differential equations. Some progress is
made in the numerical calculation of these coefficients, especially in
the first case. The main object was to find means for a step-by-step
calculation of the velocity field in a boundary layer, and it is thought
that such a procedure may possibly be successful even if laborious.

The same mathematical method is used to calculate the flow
behind a flat plate along a stream. The results are shown in
Figures 1 and 2, drawn from Tables III and IV.
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