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A pressure impulse model is presented for wave impact on vertical circular cylinders.
Pressure impulse is the time integral of the pressure during an impact of short
time scale. The model is derived for a simplistic geometry and has relative impact
height, crest length and cylinder radius as effective variables. The last parameter,
the maximum angle of impact, is free and can be calibrated to yield the right
force impulse. A progression of simpler pressure impulse models are derived in
terms of a three-dimensional box generalization of the two-dimensional wall model
and an axisymmetric model for vertical cylinders. The dependence on the model
parameters is investigated in the simpler models and linked to the behaviour of the
three-dimensional cylinder model. The model is next validated against numerical
results for a wave impact for a phase- and direction-focused wave group. The
maximum impact angle is determined by calibration against the force impulse. A
good match of the pressure impulse fields is found. Further comparison to the force
impulse of two common models in marine engineering reveals improved consistency
for the present model. The model is found to provide a promising representation of
the pressure impulse field, based on a limited number of input parameters. Its further
validation and potential as a robust tool in force and response prediction is discussed.

Key words: wave breaking, wave–structure interactions

1. Introduction

In the design process of offshore structures, slamming wave load calculations play
an important role. Several engineering models are commonly used in the industry as
an extension to standard force models such as Morison (1953) and Rainey (1989,
1995, 2007). One of the most commonly used approaches for vertical circular
cylinders is based on the work of Goda, Haranaka & Kitahata (1966) formulated
as

FI(t)= ληbπρRC2

(
1−

C
R

t
)
, (1.1)
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where ληb is the height of the impact zone, ηb is the crest height of the breaking
wave and λ is defined as the curling factor. Further, C is the wave celerity, ρ is
the fluid density and R is the cylinder’s radius. The time interval of this equation is
from 0 to R/C. The breaker front is vertical and moves with the celerity of the wave.
Very often the maximum inline force per unit height is described as a function of a
slamming coefficient, Cs, where FI,max = CsρRV2. In the formulation of Goda et al.
(1966), Cs =π, according to the von Karman (1929) model, which does not account
for the deformation of the free surface. The latter causes the immersion of the cylinder
to occur earlier, resulting in a decrease of the impact duration and an increase of the
impact peak force/pressure. This behaviour is included in the model of Wagner (1932),
who developed a solution for the peak pressure during the impact of a solid object
on a still fluid in two dimensions. The solution predicted a slamming coefficient of
Cs = 2π. Later Cointe & Armand (1987) applied the method of matched asymptotic
expansions to solve the boundary condition problem of the velocity potential and
free surface of the flow around the structure. The model provides the same result as
Wagner’s theory for the slamming coefficient, Cs = 2π. The study further included
the decay of the impact force on the cylinder in time. More recently, Wienke &
Oumeraci (2005) proposed a new formulation which extends the model of Wagner
(1932) for the total duration of the impact in three dimensions. Hallowell, Myers
& Arwade (2016) used measurements from a site test campaign of the Blyth wind
farm off the coast of England to categorize and identify breaking waves and quantify
the variability of their impact loads. The accuracy of several breaking wave criteria
and impact force models were analysed, and the impact force models were shown to
represent the measurements with varying accuracy and to be sensitive to modelling
assumptions. Their results showed that the mudline moments calculated using the
model developed by Goda et al. (1966) were most consistent with the measurements;
however, this consistency was claimed to be site- and structure-specific.

Since the duration of the impact on the structure is usually very short, the
time-integrated force impulse may be sufficient for an accurate response prediction.
The pressure impulse theory is relevant in such cases. Further, the theory gives the
spatial distribution of the pressure impulse over the structure. In Cooker & Peregrine
(1995), the pressure impulse theory was derived for wave impact on a vertical wall
in two dimensions. A parametric study was performed to identify the dependence on
the ratio of the breaker height to total depth and the length of the breaker. Later this
model was extended to three dimensions by Wood & Peregrine (1998). The model
was not validated against measurements or other more comprehensive models. The
approach was extended to more complicated configurations such as breaking wave
impact on a wall by Iafrati & Korobkin (2006), impact on an elastic wall by Korobkin
& Malenica (2007), wave impact on perforated structures by Korobkin (2008) and
breaking wave impact on permeable barriers by Cooker (2013). In a more general
form, Scolan & Korobkin (2001) addressed the three-dimensional (3D) problem of
blunt-body impact onto the free surface of an ideal incompressible liquid within the
Wagner theory. The method provides a wide range of exact analytical solutions in the
case of an elliptic contact region. They suggested to use strip theory for elongated
cases such as cylinders. The work did not include validations against experiments.
Korobkin & Scolan (2006) addressed the same problem with asymptotic analysis
of the linearized Wagner problem for close-to-axisymmetric bodies such as cones
and pyramids. Korobkin (2004) reviewed the models available for the prediction
of the hydrodynamic pressure distribution and the force on a body entering liquid.
Particular attention was given to analytical models based on the velocity potential
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given by the classical Wagner theory. He modified the Wagner solution by including
the nonlinear terms in the Bernoulli equation and compared the results between the
original and modified Wagner solution to the original and modified Logvinovich
model (Logvinovich & Yakimov 1973; Korobkin & Malenica 2005). He validated
these results against simulations and experiments and concluded that the modified
Logvinovich model is well suited for practical calculations of impact loads acting
on an arbitrary blunt body. Most recently Chatjigeorgiou et al. (2016b) presented
a 3D steep wave impact onto a vertical plate with finite width and obtained the
time variation of the slamming load on a vertical cylinder by combination with
strip theory. Later they validated the model against laboratory data for a 3D wave
impact onto a rectangular column with the wave front resembling the face of a steep
wave (Chatjigeorgiou, Cooker & Korobkin 2016a). In a further paper, Chatjigeorgiou,
Korobkin & Cooker (2017) treated the 3D hydrodynamic slamming problem on a
vertical cylinder as a set of two-dimensional (2D) problems in the vertical direction.
They found a closed-form solution for the time-dependent potential, the pressure
impulse, the shape of the wave front and the slamming force as a function of time.
More thorough reviews of the previous work can be found in the papers presented by
Peregrine (2003), Faltinsen, Landrini & Greco (2004) and Dias & Ghidaglia (2018).

In the present paper a 3D pressure impulse model for a wave impact of a wedge-
shaped geometry is derived. A 3D box generalization of the 2D wall model of Cooker
& Peregrine (1995) is presented in § 2 along with an axisymmetric impact model.
The effective parameters of the 3D impact model are investigated with reference to
the behaviour of the two simpler models. The role of the maximum impact angle,
and of the model parameters, is discussed and a comparison to a realistic numerical
wave impact is presented in § 3. A summary and further discussion of the model
applications are presented in § 4.

2. Mathematical formulation

The peak pressure of an impulse event can vary substantially between impacts
with the same nominal characteristics. Linked to the overall momentum conservation,
however, the time integral of the pressure – the pressure impulse – can be expected to
show a smaller variability. Hence, Cooker & Peregrine (1995) suggested that pressure
impulse is a better quantity to model an impact event than the peak pressure. Further,
for impacts of small duration relative to the structure’s natural frequency, the response
is governed by the impulse rather than the detailed time history of force and pressure.
The pressure impulse P is defined by

P(x)=
∫ ta

tb

p(x, t) dt, (2.1)

where tb and ta are the times immediately before and after impact, respectively, and
pressure is denoted by p. The speed of the fluid is often much less than the speed
of sound, so the incompressibility assumption can be applied. In addition, the effect
of viscosity is negligible. Further, since the impact occurs in a very short time, the
convective terms and gravity are negligible, so Euler’s equation reads

∂u
∂t
=−

1
ρ

∇p. (2.2)
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FIGURE 1. Definition sketch for 3D block impact on a flat plate.

After integration with respect to time through the impact interval, the equation
becomes

ua − ub =−
1
ρ

∇P. (2.3)

This equation can be rewritten by taking the divergence of both sides, which leads to
the Laplace equation for the pressure impulse ∇2P= 0. Following Cooker & Peregrine
(1995), the pressure impulse field satisfies the boundary conditions P = 0 at a free
surface, ∂P/∂n= 0 at a stationary rigid-body boundary and ∂P/∂n= ρunb where the
liquid meets a solid boundary during impact. Here unb is the fluid impact velocity
projected to the normal direction of the boundary.

2.1. Impact of an idealized finite-width wave on a vertical wall
The simplest case in three dimensions is to have a box-shaped volume of fluid
impacting a flat vertical wall. The domain and the boundaries for this problem are
shown in figure 1. The flat plate is located at x= 0. At the time of impact, the fluid
touches the wall in the region −H 6 z6−µH and hits the wall with normal velocity
U in the region −µH 6 z6 0. Note that µ is defined as the ratio of the height of the
impacting fluid to the whole fluid height until the bed. Hence, it is slightly different
from the curling factor, λ, which is associated with the crest height. Other limits of
the domain are 0 6 x 6 b and −W 6 y 6 W. The boundary conditions on the flat
plate and on the bed are shown in figure 1. On the other boundaries, P= 0 must be
satisfied.

The Laplace equation is solved using separation of variables and Fourier series
analysis. The solution can be written as

P(x, y, z)

=

∞∑
m=1

∞∑
n=1

Amn cos
(

Lm
y
W

)
sin
(

kn
z
H

) sinh

√L2
m

(
H
W

)2

+ k2
n

(
b
H
−

x
H

)
cosh

√L2
m

(
H
W

)2

+ k2
n

b
H



 ,
(2.4)
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FIGURE 2. Pressure impulse of a finite-width fluid block on a flat vertical plate at x= 0
for µ= 0.5, W/H = 0.5 and b/H = 1.

where Lm = (m− 1/2)π, kn = (n− 1/2)π and

Amn = 4ρUH
(cos(knµ)− 1) sin(Lm)

knLm

√
L2

m

(
H
W

)2

+ k2
n

. (2.5)

Similar results for the same problem were presented by Wood & Peregrine (1998).
For W → ∞, (2.4) and (2.5) reduce to the 2D solution of Cooker & Peregrine
(1995). Additional to the 2D properties, (2.4) has an extra dependence on the
second horizontal direction through the term cos(Lmy/W) and the coefficients in the
hyperbolic functions. The normalized pressure impulse field can thus be seen to
depend on three dimensionless parameters as follows:

P
ρUH

( x
H
,

y
W
,

z
H

)
= f

(
b
H
, µ,

W
H

)
. (2.6)

These parameters are the relative length of the impacting block b/H, the relative
height of the impact zone µ and the relative width of the block W/H. As an example,
the result for µ = 0.5, W/H = 0.5 and b/H = 1 is shown in figure 2. The pressure
impulse extends in the middle of the block to lower heights than −µH, which means
that part of the pressure impulse is carried by the bottom fluid. Convergence was
achieved in this case with 30 components in each summation in (2.4).

The dependence of the pressure impulse on the width of the impacting block of
fluid is shown in figure 3 at the depth of z/H =−µH/2 as a function of y/W. The
pressure impulse is maximum at the centre of the plate (y/W = 0) and increases with
width until the 2D limit is reached as marked by the solid line. At the middle of
the plate this is achieved for W/H ≈ 2 in the present case and is gradually achieved
for larger W/H values towards the sides of the wall. In figure 4 the pressure impulse
at the vertical centreline of the plate is plotted as a function of height for the same
parameters. As the width of the fluid box is increased to W/H = 10, the results of
the box impact approach the 2D case results.
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FIGURE 3. Pressure impulse as a function of width of the impacting block, plotted at the
mid-height on the flat wall (z/H =−µ/2 and x/H = 0).
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FIGURE 4. Pressure impulse as a function of width of the impacting block, plotted at the
mid-width on the flat wall (y/W = 0 and x/H = 0).

2.2. Impact of an idealized all-directional wave on a cylinder
With the insight from the 3D box impact problem, we proceed to impacts on cylinders.
First the simple case of an axisymmetric impact is studied. An idealized wave front
hits the cylinder from all directions with a normal velocity of U in the vertical zone
−µH 6 z 6 0. Below this zone, in −H 6 z 6 −µH, the fluid touches the cylinder
at impact. The outer radius of the impacting fluid is denoted by b, and the cylinder
radius by a. A sketch of the domain and the boundary conditions is provided in
figure 5. The boundaries on the walls are shown in the figure, while at all other
boundaries P= 0.

The Laplace equation is solved in the cylindrical coordinate system to yield

P=
∞∑

n=1

An

I0

(
kn

r
H

)
+ αnK0

(
kn

r
H

)
∂r

(
I0

(
kn

r
H

)
+ αnK0

(
kn

r
H

))
r=a

sin
(

kn
z
H

) , (2.7)

where kn= (n− 1/2)π, ∂r is the partial derivative with regards to r, I0 and K0 are the
first and second kind modified Bessel functions of zeroth order, and

An = 2ρU
1− cos(knµ)

kn
. (2.8)
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FIGURE 5. Definition sketch for axisymmetric impact on a vertical cylinder.
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FIGURE 6. Pressure impulse of an axisymmetric wave impact on a cylinder with
increasing a/b.

The modified Bessel functions I0 and K0 were chosen for the radial dependence due
to their non-oscillatory variation, which is suitable for the impact problem. A linear
combination of the two functions is used here to assure compliance with the boundary
condition P= 0 at r= b using the multiplier

αn =
−I0(knb/H)
K0(knb/H)

. (2.9)

From (2.7), the non-dimensional pressure impulse on the cylinder wall depends on
the relative outer radius of the impacting fluid b/H, the relative height of the impact
region µ and the ratio of the inner to outer radius a/b:

P
ρUH

( r
H
,

z
H

)
= f

(
b
H
, µ,

a
b

)
. (2.10)

The axisymmetric pressure impulse solution is shown in figure 6 for b/H = 1,
µ= 0.5 and varying radius ratio. When the inner radius is increased, the cylinder wall
absorbs a larger amount of incident momentum and the pressure impulse increases.
For the present values of µ and b/H, it reaches a maximum at a/b around 0.7 and
decreases thereafter due to the reduced initial momentum for a/b→ 1.

The axisymmetric solution can be compared to the 2D wall case of Cooker &
Peregrine. Good similarity can be expected when the radius of the cylinder is so
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FIGURE 7. Pressure impulse (with µ= 0.5) for (a) an axisymmetric cylinder (b/H= 10.4
and a/b= 0.96) and (b) a 2D vertical wall (b/H = 0.4).
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FIGURE 8. Definition sketch for wedge-shaped 3D impact on a vertical cylinder.

large that the effect of curvature, 1/a, is negligible. The pressure impulse field for
the axisymmetric case of b/H= 10.4, a/b= 0.96 and the wall case of b/H= 0.4 are
compared in figure 7. For both cases µ= 0.5. A very similar appearance of the two
fields can be seen.

2.3. Impact of an idealized wave on a cylinder with azimuth limits
We now proceed to the 3D model of impact on a cylinder. The domain of the problem
and its boundary conditions are shown in figure 8. In this case, the fluid is wedge-
shaped in the azimuthal direction with limits −θmax 6 θ 6 θmax. In the lower region
−H 6 z6−µH the fluid touches the cylinder, while in the upper region −µH 6 z6 0
it impacts on the cylinder with velocity U cos(θ) in the negative radial direction. At
boundaries θ =±θmax, z= 0 and r = b, the condition P= 0 is satisfied. The Laplace
equation is solved in the cylindrical coordinate system to yield

P=
∞∑

m=1

∞∑
n=1

Amn cos
(

Lmθ

θmax

)
sin
(

kn
z
H

) Iqm

(
kn

r
H

)
+ αmnKqm

(
kn

r
H

)
∂r

(
Iqm

(
kn

r
H

)
+ αmnKqm

(
kn

r
H

))
r=a

 ,
(2.11)
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FIGURE 9. Dimensionless pressure impulse on the inner cylinder, at θ = 0, plotted as a
function of z/H, (a) for several values of b/H and (b) for several values of µ.

where Lm = (m− 1/2)π, kn = (n− 1/2)π and qm = Lm/θmax is the order of the Bessel
functions. Further αmn is chosen such that P= 0 at r= b,

αmn =
−Iqm(knb/H)
Kqm(knb/H)

, (2.12)

and

Amn =
2ρU
θmax

1− cos(knµ)

kn

∫ θmax

−θmax

cos(θ) cos
(

Lmθ

θmax

)
dθ dz. (2.13)

In this case the non-dimensional pressure impulse depends on the maximum impact
angle, θmax, in addition to the parameters already defined for the axisymmetric impact:

P
ρUH

( r
H
, θ,

z
H

)
= f

(
b
H
, µ,

a
b
, θmax

)
. (2.14)

A parameter study was conducted to investigate the effect of the different
parameters. The dependence on the relative length of the impacting wave b/H is
shown in figure 9(a) for θ = 0, µ= 0.5, a/H= 0.1 and θmax=π/4. As b/H increases
up to 0.35, the pressure impulse increases in all heights and then remains unchanged.
This shows an asymptotic behaviour for increasing b/H. The same asymptotic
behaviour was observed by Cooker & Peregrine (1995) for the 2D flat-plate case. We
next investigate the dependence on the height of the impact region, µ, in figure 9(b).
A width of b/H = 0.3 is used and µ, θmax and a/H are identical to the values in
figure 9(a). By the increase of µ, the peak of the pressure impulse moves down as
expected and increases the pressure impulse. The results from this figure are also
consistent with the ones shown in figure 5 of Cooker & Peregrine (1995).

The variation with respect to the relative inner radius a/b is investigated in
figure 10(a) for µ= 0.5, θmax = π/4 and b/H = 0.3. The pressure impulse increases
as a/b increases up to a/b = 0.5. For a/b values larger than 0.67, the pressure
impulse decreases similarly to the case shown for the axisymmetric impact. First, the
area on the cylinder that absorbs incident momentum increases as the radius increases.
Thereby the pressure impulse increases. However, at the same time the volume of
fluid that impacts on the cylinder decreases, so within the interval 0.5 < a/b < 0.7,
a value of a/b occurs for which the distribution possesses a global maximum in
pressure impulse.
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FIGURE 10. Dimensionless pressure impulse on the inner cylinder plotted (a) as a
function of z/H, at θ = 0, for several values of a/b, and (b) as function of θ/θmax, at

z=−0.25 µH, for several values of θmax.

FIGURE 11. Snapshot of the wave impact on the cylinder from CFD model results.

The effect of the width of the fluid domain (in azimuth) is shown in figure 10(b)
for a/b = 0.33, b/H = 0.3 and µ = 0.5. As the width of the domain increases, the
pressure impulse also increases. This increase can be explained by the increase in the
total impacting volume of fluid V= (b2

− a2)θmaxµH as θmax increases. This conclusion
is similar to the increased pressure impulse of the 3D impact of the fluid on the
flat vertical plate of figure 3. The rate of increase of the pressure impulse becomes
gradually smaller as the azimuthal angle limit increases until it reaches a maximum
at θmax =π/2.

3. Validation against computational fluid dynamics results

We now validate the model against a realistic wave impact. The chosen wave is a
phase- and direction-focused wave group for a sea state of Hs= 9.5 m and Tp= 12 s
in 33 m water depth with a cylinder diameter of 7 m. Computational fluid dynamics
(CFD) results at scale 1 : 50 for this impact were presented by Ghadirian, Bredmose
& Dixen (2016). A snapshot of the wave at the time of impact is shown in figure 11.
The impacting water spreads to the sides, upwards and downwards after impacting the
monopile. Here b is chosen as the distance from the cylinder centre to the back of
the wave crest at the still-water level. Further µ is determined from the height of the
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FIGURE 12. Inline force time series from the CFD model. The blue shaded region shows
the effect of slamming.

breaker. Hereby b/H = 0.64, µ= 0.12 and a/b= 0.13, with θmax left as the only free
parameter.

In figure 12 the inline force time series from the CFD model is presented. The
slamming contribution to the force time series is shown by the blue shading and the
time instant of the snapshot of figure 11 is marked by the red star. The area of the
blue region is the same as the integrated pressure impulse on the cylinder wall after
projection to the inline direction.

As a necessary step to isolate the impact force impulse from the contribution
induced by the non-impacting parts of the wave, the pressure on the cylinder from
just before the impact was subtracted from all the time instants in the CFD results.
Then the time integral from the beginning of the impact until the end was calculated.
The resulting pressure impulse is shown in figure 13(a). The largest pressure impulse
is observed below z/H=−0.05 at θ/θmax= 0 and the pressure impulse extends down
to z/H =−0.2. Note that, despite the subtraction of the pressures just before impact,
some of the extended impulse may be caused by the kinematics of the wave itself
and not necessarily the slamming impact. It is observed that the pressure impulse
decreases to around zero at close to θmax, which shows that the chosen azimuthal
limit is sensible.

The result of the pressure impulse model can be seen in figure 13(b). The value
of θmax was chosen such that the impact force impulse of the CFD model was equal
to the wall-integrated pressure impulse in the inline direction. This led to θmax =π/4
with only 3 % overprediction of the impulsive force by the model. A general good
consistency between the model and CFD pressure impulse distribution and magnitude
is observed. The pressure impulse is localized in the upper layer in both the CFD and
model results, which is linked to the small breaker height ratio.

The model result is based on a fit of θmax to match the force impulse. However,
since the force impulse is not generally available from the incident wave parameters,
the dependence of the total impulsive force on θmax is shown in figure 14. The total
impulsive force increases as the azimuthal angle limit increases up until π/2 where it
reaches its maximum. The variation of the pressure impulse relative to θmax is robust
and homogeneous. Hence, calibration based on this parameter is possible for similar
cases. The total force impulse of the model can be compared to the existing impact
models of Goda et al. (1966) and Wienke & Oumeraci (2005). The force impulse
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FIGURE 13. Pressure impulse contour plot from impact of a wave on a cylinder from
(a) CFD model and (b) suggested pressure impulse model.
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FIGURE 14. Total impulsive force as a function of θmax. The star marker shows the value
of force impulse for θmax =π/4, which was used for validation against CFD.

calculated based on these models has approximately 190 % and 100 % overprediction
respectively. The overprediction may be caused by the predicted maximum force
magnitude as well as the time span, which has been validated to a lesser extent in
previous studies.

4. Summary and future work

Pressure impulse models for a 3D box, axisymmetric impact on a vertical circular
cylinder and 3D wave impact on a vertical circular cylinder have been derived. The
3D model is formulated in a simplified wedge-shaped geometry and depends on
the normalized crest length, impact zone height, inner radius and maximum impact
angle. It is intended for calculation of slamming loads as an extension to standard
force models such as Morison (1953) and Rainey (1989, 1995, 2007). The parameter
space was investigated and linked to the behaviour within the simpler models. We
found that the pressure impulse increases with crest length up until an asymptotic
limit, which appears to be effective for realistic wave impacts. The impact zone
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height governs the vertical extent of the pressure impulse distribution. The pressure
impulse was further found to increase with increasing inner radius, a, up to a certain
limit due to the increased cylinder wall area. However, after this limit the pressure
impulse was found to decrease due to the diminishing incident momentum as the
volume of the slamming water becomes smaller. The only parameter that cannot
be directly determined from the incident wave geometry is the maximum impact
angle θmax. In validation against a numerical wave impact, a value of θmax =π/4 was
chosen through matching of the numerical force impulse. This led to an encouraging
agreement between the results of the two methods. For the same wave parameters,
the force impulse was overpredicted by 190 % and 100 % by two established force
models. This underlines the model’s potential for further validation and application in
structural load and response calculations. The model shows robust and physics-inspired
variations with respect to simple input parameters. Further work is thus to validate
the model against more CFD results of impact events and experimental data. Ideally,
repeated experiments of extreme waves with a structure, measuring the inline force,
and without the structure, measuring the wave celerity, µ and H are needed for such
cases. Thereby more insight into the appropriate value of θmax can be gained and the
probability distribution of test results relative to the model’s impulse prediction can
be quantified.
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