
The Aeronautical Journal (2022), 126, pp. 932–951
doi:10.1017/aer.2021.112

REGULAR PAPER

Autonomous and cooperative control of UAV cluster with
multi-agent reinforcement learning
D. Xu1 and G. Chen2

1State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049,
China and 2Shaanxi Province Key Laboratory for Service Environment and Control of Advanced Aircraft, Xi’an Jiaotong
University, Xi’an, 710049, China
E-mail: aachengang@xjtu.edu.cn

Received: 3 June 2021; Revised: 3 September 2021; Accepted: 9 November 2021

Keywords: Cluster; Artificial intelligence; Autonomous learning; Cooperative control; Reinforcement learning; Improved
multi-agent deep deterministic policy gradient

Abstract
In this paper, we expolore Multi-Agent Reinforcement Learning (MARL) methods for unmanned aerial vehicle
(UAV) cluster. Considering that the current UAV cluster is still in the program control stage, the fully autonomous
and intelligent cooperative combat has not been realised. In order to realise the autonomous planning of the UAV
cluster according to the changing environment and cooperate with each other to complete the combat goal, we pro-
pose a new MARL framework. It adopts the policy of centralised training with decentralised execution, and uses
Actor-Critic network to select the execution action and then to make the corresponding evaluation. The new algo-
rithm makes three key improvements on the basis of Multi-Agent Deep Deterministic Policy Gradient (MADDPG)
algorithm. The first is to improve learning framework; it makes the calculated Q value more accurate. The second is
to add collision avoidance setting, which can increase the operational safety factor. And the third is to adjust reward
mechanism; it can effectively improve the cluster’s cooperative ability. Then the improved MADDPG algorithm is
tested by performing two conventional combat missions. The simulation results show that the learning efficiency is
obviously improved, and the operational safety factor is further increased compared with the previous algorithm.

Nomenclature
a actions selected according to the policy at current state s
r reward
s current observation states
s’ next states after actions
Q(s, a) Q-value function: Critic for select action a at state s
R(s, a) reward function: reward for choosing action a at state s
P(s’|s,a) probability function: tendency to select action a at state s to get s’
J objective function
L loss function
N minibatch size
π reinforcement learning policy
θ policy parameters
θμ Actor function distribution parameters
θQ Critic function distribution parameters
μ Actor function distribution
Q Critic function distribution
γ reward decay coefficient
α learning rate

C© The Author(s), 2022. Published by Cambridge University Press on behalf of Royal Aeronautical Society.

https://doi.org/10.1017/aer.2021.112 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.112
https://orcid.org/0000-0002-1525-1369
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/aer.2021.112&domain=pdf
https://doi.org/10.1017/aer.2021.112

The Aeronautical Journal 933

τ target update factor
Nt random process noise

1.0 Introduction
In the United States, Russia and other western developed countries, the use of unmanned aerial vehicles
(UAVs) in the battlefield for reconnaissance, interference and strike missions has become the norm. In
recent years, with the continuous development of artificial intelligence technology, the combat mode
of UAV has gradually developed from ‘single combat’ to ‘cluster intelligence’, and has become a key
research topic in the military field of various countries [1–5].

UAV cluster combat generally refers to the simultaneous deployment of hundreds of small, fast and
high-performance UAVs in the battlefield airspace. UAVs build bionic formations by simulating the
clustering behaviour of swarms, schools of fish and ant colonies, carry out interactive communication
through various channels, such as combat data link system, tactical radio system and communication
relay network, and finally realise operational coordination based on cloud computing, big data and
artificial intelligence and other advanced technologies. UAV cluster can carry out strategic deterrence,
campaign confrontation and tactical operations in military operations and make the capability of a single
UAV be expanded and the overall combat effectiveness of the multi-UAV system can be improved [6–8].
With the continuous integration and development of unmanned systems and intelligent technologies, the
actual combat degree of UAV cluster warfare is constantly improving, and it is gradually stepping into
the battlefield and opening the curtain of intelligent warfare. In 2015, the US Naval Research Office
announced the LOCUST program. Next, DARPA issued the Gremlins program. Unmanned aerial vehi-
cles (UAVs) with electronic payloads and collaboration capabilities are launched outside the defensive
area for offshore reconnaissance and electronic attacks. In 2017, the US Perdix micro-UAV high-speed
launch demonstration project made a new breakthrough. The successful launch of 103 micro-UAVs from
three F/A-18F fighters at Mach 0.6 demonstrated advanced group behaviour and mutual coordination
ability. Following, China has again set a world record for swarm flights of fixed-wing UAVs. One hun-
dred nineteen fixed-wing drones successfully demonstrated the actions such as dense catapult take-off,
aerial assembly, multi-target grouping, formation and encirclement. But these research achievements
just stay at the cluster operation concept demonstration stage and fail to realise the autonomous decision
and intelligent control. Considering that the future battlefield will have higher and higher requirements
for real-time and intelligence, it is very important to truly realise autonomous and intelligent cooperative
operation of UAV cluster by studying the application of intelligent control algorithm in different cluster
combat tasks, for seizing the initiative of future air combat [9–17].

UAV cluster as a Multi-Agent System (MAS) [18–21], the environment model and dynamic model
are both complex. Each agent in the cluster needs to consider the influence from the actions of other
agents, and the dynamics of the environment when learning behaviour strategies. However, traditional
Reinforcement Learning (RL) [22–30] algorithms are mainly for a single agent, so they are not applicable
for cluster control. For Deep Q-Network (DQN) [26,31] algorithm based on Q-learning [32,33], a single
agent in MAS will be affected by the state of other agents, resulting in different state transitions and
making the method of experience replay no longer applicable. For Policy Gradient (PG) [29,34] method,
the continuous changes in the environment and the increase in the number of agents will lead the learning
variance to increase further. Therefore, we propose to use Multi-Agent Reinforcement Learning (MARL)
[35–39] algorithm to realise the cooperative control of UAV cluster.

The research on the intelligent collaborative control of UAV cluster is mainly to construct efficient
learning framework and rigorous reward mechanism. Considering the instability of the environment in
MAS and the interaction among agents, and refering to the Lowe’s research [40], we made some key
improvements on the basis of the weaknesses of the original Multi-Agent Deep Deterministic Policy
Gradient (MADDPG) algorithm. The improved new learning framework and more strict reward mech-
anism both make the algorithm be able to obtain more accurate evaluation values, making the learned

https://doi.org/10.1017/aer.2021.112 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.112

934 Xu and Chen

behaviour strategy more optimised. Successfully realise the autonomous cooperative control of UAV
cluster.

The paper is organised as follows. Section 2 introduces the background and development of the
Reinforcement Learning algorithms. Section 3 explains in detail the improved MADDPG algorithm
and the reasons for improvement. Section 4 shows the experimental setup of two conventional combat
missions for UAV cluster. Section 5 shows the simulation results of the improved MADDPG algorithm
on two conventional combat missions, and the comparison with the MADDPG before improved. The
conclusions and future work are presented in Section 6.

2.0 Background
RL is an online learning technique that is different from supervised and unsupervised learning meth-
ods. It regards learning as a process of attempt and evaluation. First, the reinforcement learning system
perceives the state of the environment and then takes a certain action and act on the environment. After
the environment accepts the action, the environment state changes and gives a reinforcement signal
(reward or punishment) at the same time as the feedback to the reinforcement learning system. The
reinforcement learning system selects the next action based on the reinforcement signal and current
state of the environment. The principle of the selection is to increase the probability of being rewarded.
The selected action not only affects the state of the environment at the next moment, but also the final
reinforcement value. The agent in reinforcement learning system can continuously accumulate expe-
rience just by many times’ attempts, and finally get the best behaviour strategy [5,26–30]. Traditional
RL algorithms are mainly for the single agent system (SAS), so later we also call them Single-Agent
Reinforcement Learning (SARL) algorithm. Traditional RL algorithms can be divided into value-based
reinforcement learning, the reinforcement learning based on policy gradients and Actor-Critic network.

As the most basic value-based reinforcement learning algorithm, Q-Learning algorithm [31,33] is
used to guide the agent’s actions by calculating the Q-value of each state and action pair and storing it
in Q-table. But this algorithm is only applicable to the environment where the state space and the action
space are both small and discrete. In actual control model, state space and action space are large. If the
Q-table is used to record the state and action pair of each computation, the table will be very large. It
will cost much time when inquiring about the maximum Q-value. In order to solve the problem that the
state and action space in real control model are too large to lookup in Q-table, it is proposed to use Deep
Neural Network (DNN) to predict the Q-value and learn the optimal strategy. The reason is that DNN has
a good effect on the extraction of complex features. Therefore, Deep Q-Network (DQN) [26] combining
deep neural network and Q-Learning algorithm was proposed. It is a model-free deep reinforcement
learning algorithm and has three key technical improvements: The first one is to approximate the value
function using deep convolutional neural network; the second one is using the target network to update
the target Q-value to ensure parameter convergence; and the third one is to use an experience replay
buffer to store the labeled data samples, which can break the correlation of random sampling in neural
network and improve the update efficiency. Although the DQN algorithm has been able to solve the
problem of high-dimensional state or action space, this value-based reinforcement learning algorithm is
only applicable to discrete space. It has insufficient processing capacity for high-dimensional continuous
space and cannot solve the problem of random strategy. Therefore, the reinforcement learning algorithm
based on policy gradient was proposed as another kind of RL algorithm.

Policy Gradient (PG) [29] algorithm omits the intermediate steps and directly selects actions based on
the current state. It can enhance and weaken the possibility of choosing actions by computing reward,
so there is no need to compute Q-values. For good behaviours, it will increase the probability being
selected next time, and for the bad ones, the probability being selected next time will be weakened.
After the random strategy is obtained through PG learning, the optimal strategy probability distribution
needs to be sampled at each step of the behaviour selection to obtain the specific value of the action.
The action space is usually high-dimensional, so there is no doubt that frequent sampling is a waste

https://doi.org/10.1017/aer.2021.112 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.112

The Aeronautical Journal 935

of computing power. Besides, the strategy usually converges to a local optimal rather than a global
optimal. For the action space, it may be continuous values or very high-dimensional discrete values, so
that the spatial dimension of the action is extremely large. If we use a stochastic strategy, we need to
study the probabilities of all possible actions, and the number of samples required is very large. So the
deterministic strategy is came up with to simplify the problem. It makes the determined value of the
action at each step can be obtained directly by calculating the selected action. It is Deterministic Policy
Gradient (DPG) [30] algorithm.

Combining the value-based reinforcement learning method and the reinforcement learning method
based on policy gradient, a new algorithm called Actor-Critic (AC) [41–44] network is generated. It can
not only select the appropriate action in the continuous action space, but also evaluate the selected action
by calculating the reward. For AC algorithm, the model involves two neural networks: Actor network and
Critic network. Actor network has the same function with PG algorithm, which is responsible for gen-
erating actions and interacting with the environment. It selects the appropriate actions in the continuous
action space with policy functions and round update, so the learning efficiency is relatively slow. Critic
network apply a value-based algorithm to achieve single-step update, such as Q-Learning. The value
function in algorithm is responsible for evaluating the selected actions and directing the next actions.
Each time a parameters update is performed in a continuous space, and there is a correlation between
the parameters before and after updating. That is to say, the training data of the model is no longer an
independent and identical distribution, which leads the neural network to take a one-sided view of the
problem.

In order to solve the above problems, an improved reinforcement learning algorithm called Deep
Deterministic Policy Gradient (DDPG) [45–48] was proposed. It not only draws on the key technologies
of the experience replay mechanism and target network from DQN, but also solves the problem of
difficult convergence. DDPG adopts Convolutional Neural Network (CNN) as the simulation of policy
function μ and Qμ. The paramater μ comes from the policy network and Qμ is the parameter of Q
network. The roles of these two networks are similar to Actor and Critic networks, respectively. We
update Q-value by minimising the loss function:

L= 1

N

∑
i

[
ri + γ Q′(si+1, μ

′(si+1|θμ′)|θQ′)−Q(si, ai|θQ)
]2 (1)

And use the sampled gradient to update the policy:

∇θμμ|si ≈
1

N

∑
i

∇aQ(s, a|θQ)|s=si ,a=μ(si)∇θμμ(s|θμ)|si (2)

The target networks adopted in DDPG are updated by θQ′ ← τθQ + (1− τ)θQ′ and θμ′ ← τθμ + (1−
τ)θμ′ . One advantage of DDPG algorithm is that it can use only low-dimensional observations to learn
competitive policies. And another advantage is that it can do off-policy exploration. For continuous
action space, DDPG algorithm converges faster than DQN algorithm.

In recent years, with the introduction of the concept of cluster, the emphasis of reinforcement learning
has gradually shifted to MARL. MARL means that multiple agents in cluster interact with the envi-
ronment through ‘trial and error’, and each agent has an impact on the environment. The agents in
cluster have complex relationships, and their interests may be aligned, not entirely aligned, or com-
pletely opposite. And the cluster can be cooperative, competitive, or both. In MAS, each agent needs to
learn its own optimal strategy to maximise its utility. The environment of SAS is stable, but in MAS,
each agent constantly learns and improves its strategy by interacting with the environment and calcu-
lating the reward value. Therefore, from the perspective of each agent, the environment is complex and
dynamically unstable, which no longer meets the convergence conditions of traditional reinforcement
learning algorithms. It is precisely because of the instability of MAS environment that the behaviour
strategies of each agent will not be completely consistent. In MAS, the behaviour of any agent will
affect the system environment and the behaviour choices of other agents. When one agent’s strategy

https://doi.org/10.1017/aer.2021.112 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.112

936 Xu and Chen

changes, other agent’s optimal strategy may also change, which will affect the convergence of the algo-
rithm and make the design of the reward function more complicated. For DQN algorithm, the agent’s
own state transfer will be different under the influence of other agents’ states, resulting in the expe-
rience replay method is no longer applicable. For PG algorithm, the constant change of environment
and the increase of agent number will lead to the further increase of learning variance. At the same
time, the dimensions of the connected actions combined by the current actions of each agent will also
increase exponentially with the increase of the number of agents. As a result, strategy learning becomes
complex and time consuming. Comprehensively considering the above difficulties, after getting famil-
iar with the SARL algorithm, especially the implementation principle of DDPG algorithm, Multi-Agent
Deep Deterministic Policy Gradient (MADDPG) algorithm [40] is proposed. It is a MARL algorithm
combining AC network and DQN algorithm, and has the following three characteristics: (1) The opti-
mal strategy obtained after learning can output the optimal actions using only local information; (2) No
need to obtain the dynamic model of the environment in advance; (3) Not only suitable for cooperative
environment, but also suitable for competitive environment.

3.0 Methods
Although he MADDPG algorithm adopted in Ref. [40] has been able to solve the problem of collab-
oration among multiple agents, there are still serious problems such as low learning efficiency, long
time consuming and many internal collisions when testing in the simulation scene set in Section 4 of
this paper. Therefore, we made key improvements to the learning network framework and the setting of
reward function on the original algorithm in view of these deficiencies, and demonstrated the superiority
of the improved algorithm through simulation comparison.

Improved MADDPG algorithm is similar to the original MADDPG algorithm in principle. It’s
essentially an Actor-Critic network, but makes a series of improvements to the Actor-Critic algorithm.
These improvements makes a new algorithm more suitable for complex multi-agent scenarios. First, the
improved MADDPG algorithm adopts the strategy of centralised training with decentralised execution.
During training, the Critic network and Actor network are trained using centralised learning. Actor net-
work selects an action to execute according to the current state. The Q-value of the current state-action
pair is calculated by the Critic network and fed back to the Actor network. Critic network trains based
on the estimated Q-value and the actual Q-value, and Actor network updates its strategy based on the
feedback. In the test phase, you only need the Actor network to make actions and no longer need the
feedback from the Critic network. Therefore, during training, we can add some additional information
to the Critic network to get a more accurate Q-value, such as the states and actions of other agents. That
is the meaning of concentrated training. Agent evaluates the current action not only according to its own
situation, but also the information of other agents. The decentralised execution means that after each
agent is fully trained, the agent can quickly complete the selection of the optimal action only according
to its own state and no longer needs the states and actions of other agents. It can greatly reduce the
amount of data required for calculation. Second, the improved MADDPG algorithm also adjusts the
observation data recorded in the experience replay buffer. We change the state and action of a single
agent to the joint state and action of all agents. And we also use the strategy set effect optimisation
method to make each agent learn their own different strategies, and finally use the overall effect of all
strategies to determine the optimal strategy. The main purpose of this improvement is to improve the
stability and robustness of MADDPG algorithm. Actually, the improved MADDPG algorithm is essen-
tially also a DPG algorithm. For each agent, a Critic network requiring global information and an Actor
network needing local information can be obtianed through training, and each agent has its own reward
function. So, the new improved MADDPG algorithm can be used not only for cooperative tasks but also
for adversarial tasks, and the action space can also be continuous.

The structure of the improved MADDPG algorithm mainly includes Q network and P network, as
shown in Fig. 1, and these two networks are trained at the same time. The function of Q network is

https://doi.org/10.1017/aer.2021.112 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.112

The Aeronautical Journal 937

Figure 1. MADDPG algorithm structure. (a) Q network, and (b) P network.

Figure 2. Improved P network framework.

consistent with the function of DQN algorithm. The difference is that the input data is expanded to
the states and actions of all agents in the MAS environment. Therefore, it can be considered that Q
network is the overall evaluation of cluster behaviour. However, P network is to conduct behaviour
selection and optimisation learning for a single agent in the cluster. The first half of P network computes
a probability distribution of all possible actions for the agent’s current state, which is equivalent to
Actor network. The latter part works like a Critic network. Since the change of the behaviour of a single
agent in the cluster will lead to the instability of the whole system, the states and actions of other agents
must be taken into account when evaluating the behaviour of this agent. The final training results are the
output of the optimal actions. For the improved algorithm, the innovation of the network structure is that
the structure of P network is different from that of traditional Actor-Critic network. It treats the Actor
network and Critic network as a whole for training and determines the optimal action by maximising
the Q-value.

The specific structure of the improved P network is shown in Fig. 2. By comprehensively considering
the state variables and action variables of all agents, the calculated Q-value is more accurate and the
behaviour selection is more optimised.

https://doi.org/10.1017/aer.2021.112 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.112

938 Xu and Chen

The specific steps of the improved MADDPG algorithm can refer to the followings:

Improved MADDPG algorithm for N agents
for episode= 1: M
(a) Initialise a random process N for action exploration
(b) Receive initial observation state s
(c) for t= 1: T

i. For each agent i, select action ai =μθi (oi)+Nt according to the current policy and exploration
noise

ii. Execute actions a= (a1, · · · , aN) and observe reward r and observe new state s′

iii. Store transition (s, a, r, s′) in R
iv. s← s′

v. for agent i=1:N
(a) Sample a random minibatch of S transitions

(
sj, aj, rj, s′j

)
from R

(b) Set yj = ri
j + γ Qi

μ′(s′j, a′1, · · · , a′
N
)|a′

k
=μ′k(oj

k)

(c) Update Critic by minimising the loss:
L(θi)= 1

S

∑
j

(
yj −Qi

μ(sj, aj
1
, · · · , aj

N)
)2

(d) Update the Actor policy using the sampled gradient:
∇θi J ≈ 1

S

∑
j

∇θiμi(o
j
i)∇ai Q

μ

i (sj, aj
1
, · · · , ai, · · · , aj

N)|ai=μi(o
j
i)

end for
vi. Update the target network parrmeters for each agent i:

θi
′ ← τθi + (1− τ)θi

′

end for

4.0 Mission Scenarios
The improved MADDPG algorithm is used to construct a multi-agent reinforcement learning model
for two conventional combat missions: navigation and location regional reconnaissance and round-up
confrontation. After the task instruction is determined, the cluster can use the corresponding reinforce-
ment learning model to learn autonomously and complete the selection of the optimal strategy, so as
to achieve multiple UAVs’ task distribution and formation cooperative control, and finally complete the
target task quickly and efficiently.

4.1 Regional reconnaissance
Regional reconnaissance can be divided into two parts: The first part is to complete location determi-
nation, and the second is to navigate to the corresponding coordinate points. Location determination
requires the UAV cluster to independently complete the location distribution according to the number of
cluster and the area to be detected. At the same time, it requires to ensure that the cluster can cover the
largest area without missing any information. According to the detection perspective of each UAV, the
reinforcement learning algorithm is used to perform autonomous calculations to achieve cluster alloca-
tion and formation control [49,50]. Because UAVs with the same detection angle have different detection
areas at different heights, the higher the height, the larger the area, the more information, but the details
are not clear enough. In order to ensure the full coverage of the area when the number of clusters is deter-
mined, the algorithm should be able to quickly calculate according to the area to be investigated, and
independently complete the optimal allocation of each UAV in the cluster. The detailed implementation
method can refer to the Refs [51] and [52]. The second part is to make the UAV cluster to formulate
optimal navigation schemes based on recent principles by observing the relative position of each UAV.

https://doi.org/10.1017/aer.2021.112 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.112

The Aeronautical Journal 939

UAV 1

UAV 2
UAV 3

landmark 1

landmark 2

landmark 3

Figure 3. Cooperative navigation.

The goal is to make the corresponding UAVs be able to reach the designated location as soon as possible
without internal collisions. The specific implementation plan can refer to Fig. 3.

In this paper, we mainly study how the UAVs in cluster can complete mission assignment and reach
the corresponding positions through cooperative communication without internal collisions. We call it
cooperative navigation in later study.

In the environment of cooperative navigation, N UAVs must cooperate through physical actions to
reach a set of N landmarks. Each UAV makes the task arrangement by observing the relative positions
of other UAVs and all the landmarks and considering all UAVs’ distances from arbitrary landmarks. In
other words, the UAV cluster has to cover all of the landmarks using the least time. Further, these UAVs
will be penalised when colliding with each other. The goal of cooperative navigation is to enable the
cluster to assign targets autonomously and enable UAVs to reach the corresponding location as quickly
as possible without colliding with each other.

4.2 Round-up confrontation
When carrying out tracking, encircling, and enemy-to-self confrontation, we must first complete the
assignment of mulitple targets. That is assigning different targets to the corresponding UAVs to simulta-
neously complete multiple targets’ tracking and striking. Typically, it is the least expensive arrangement
to allocate three UAVs round up a target. The specific scheme design can refer to Fig. 4. It shows
the combat plan that multiple UAVs cooperate to round up and attact one target. And the attaction
mode adopts the suicidal destruction combat mode. It means that arranging any one UAV to hit the
target. It requires that several UAVs with the same combat target and combat mission can communi-
cate with each other and cooperate to complete the target mission while avoiding internal collisions.
This is a problem of cooperative control in the MAS, so we plan to use MARL algorithms to complete
the autonomous perception and learning of multiple agents in order to obtain the optimal cooperation
strategy.

In the environment of round-up confrontation, N slower cooperative UAVs must chase a faster target
UAV around a randomly generated environment with L large obstacles impeding the way. One UAV
chooses actions by observing the relative positions and velocities of the other UAVs, and the positions
of the obstacles. Each time any one UAV in the cluster collides with the target UAV, the cluster will be
rewarded while the target UAV is penalised. If there is one collision in cluster, the cluster will receive
one punishment. The more collisions, the more punishments. In addition, when the cluster don’t capture
the target, the reward function of cluster is related to the relative distance between the target UAV and
each UAV in cluster. The reward value will decrease as the distance from the target increases. To the
contrary, the target’s reward will increase with the distance increasing.

https://doi.org/10.1017/aer.2021.112 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.112

940 Xu and Chen

UAV 1

UAV 2
UAV 3

Target UAV

UAV 1

UAV 2
UAV 3

L1

L2

obstacles

Figure 4. Cooperative round-up confrontation.

5.0 Simulation Results
5.1 Simulation tests on cooperative navigation
We compiled the environmental document of cooperative navigation mission and constructed the learn-
ing framework of the improved MADDPG algorithm. In the environmental document, we assigned three
UAVs to reach three designated locations in the shortest possible time and made sure these UAVs didn’t
collide with each other. When we set up the algorithm network, we designed Q network and P network
separately. Wherein, the structure of Q network and P network are similar to the structure of Actor-
Critic network. It uses a fully connected neural network with two hidden layers, shown in Fig. 2. The
number of nodes of each layer is 128. In both hidden layers, the activation functions are rectified lin-
ear units (Relu) functions. In order to make the choice of action more optimised and the evaluation of
action more accurate, the tangent hyperbolic (tanh) function is applied in the output layer of the Actor
network, and the action variables output by the Actor network are introduced in the input layer of the
Critic network. These changes are the improvements for the original algorithm, which can increase the
learning efficiency and optimise the learned policy.

Besides, we also improved the reward mechanisms because policy learning is based on reward values.
The states available to the algorithm are the current position of each agent and the location of each land-
mark. To compile simply, we test the improved MADDPG algorithm in two-dimensional environment,
and make the agents do uniform motion. We initialise the initial coordinate position of each agent and
the specified target positions, respectively, making coordinates x and y to be any value in the range of−1
to 1, respectively. The reward value for each agent is initialised to 0 before the iteration training begins.
During training, the UAVs in the cluster select actions randomly and compute the rewards according
to the reward mechanisms, then evaluate the current actions to optimise the action selection. After sev-
eral iterations, the optimal policy can be obtained. At this point, UAV cluster can autonomously select
actions according to the optimal policy to carry out the cooperative navigation task as soon as possible.

The reward function of each UAV is calculated with its actual position and the designated locations.
Because the UAV cluster is fully cooperative relationship in cooperative navigation mission, we must
consider the whole cluster when calculating the reward value. That is to consider all the distances from
each UAV to each landmark. Since the algorithm must first ensure that each landmark must have one
UAV to reach, we hope that the UAVs can complete collaborative allocation and adjust the scheme at
any time as the situation changes, so that the nearest UAV to the landmark to cover. Therefore, when the
reward function is set, the reward value should increase as the relative distance between the UAV and
the landmark decreases. To achieve collaborative allocation and avoid multiple UAVs covering the same
landmark, we need to add collision avoidance settings. When two UAVs have the same distance from
the same landmark and are both closest, they can coordinate one of them to the second nearest landmark
according to the principle of avoiding collision, eventually realising the full coverage of all landmarks.
Since it is a problem of full cooperation, we need to calculate the total reward value of the whole cluster

https://doi.org/10.1017/aer.2021.112 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.112

The Aeronautical Journal 941

Figure 5. The total reward per episode for the cluster.

under the current actions and learn the policy accordingly. For one agent (the agent in the text is UAV),
we calculate the distances of all landmarks to it and take the minimum distance to compute the reward. In
order to occupy the designated locations, the agent’s reward has a negative correlation with the minimum
distance. The shorter the distance, the closer to the landmark, the larger the reward. Considering the size
of agents and landmarks, we think the agent occupys the landmark when the distance is less than the sum
of their radii (the sum is 0.1). As a reward, we make the reward value add 10. So the reward function of
each agent is made as the following equation.

reward=
{

reward− 0.1×min (dists), if min (dists) ≥ 0.1
reward+10 , else

(3)

dists= ∣∣sagent − slandmarki

∣∣
i=1,··· ,n (4)

Wherein, sagent refers to the position of an agent waiting to be calculated the reward, and slandmark is the
position of any one designated locations. In order to avoid internal collision in the process and multiple
agents covering the same landmark, we make the following settings. If one agent collides with another
one, the agent should be punished, and the reward should be subtracted 10 for one collision. The total
reward value per episode of the cluster are shown in Fig. 5.

In Fig. 5, the total reward generally increases with episodes. During the first 10,000 episodes, it is a
tentative learning phase, the cluster is exploring the rules through trial and error. At the same time, we
also add disturbances to increase the uncertainty of the environment. So the reward value is decreasing
fast. But in the next episodes, the reward continues to increase rapidly. It indicates that the cluster learns
and trains through the improved MADDPG algorithm and the learning efficiency is high. According to
the reward mechanism we set, if the UAV cluster could cover all landmarks, the reward value should be
close to 30. From Fig. 5, it’s clear that the total reward value of cluster can reach 30 near to 60,000
episodes, which indicates that the three UAVs can cover three different landmarks without internal
collisions.

To better observe the simulation results, we output a frame of image every 30,000 time steps to dis-
play the training process in an animated manner. Figure 6 shows the training results under two scenarios
chosen from 60,000 scenarios. Figure 6(a) is the common case where the assigned landmarks are dis-
persed. In this case, the cooperative navigation mission is completed when the UAV cluster can cover or
approach all the designated landmarks separately. Figure 6(b) shows a special case where two designated
landmarks are very close. Under this circumstance, the policy learned through the improved MADDPG

https://doi.org/10.1017/aer.2021.112 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.112

942 Xu and Chen

Figure 6. The training process for cooperative navigation. (a) The common scenario where the assigned
landmarks are dispersed, and (b) the special scenario where two designated landmarks are very close.

algorithm will automatically arrange a nearest UAV to cover the two landmarks at the same time. It can
avoid damage caused by collision between UAVs.

5.2 Simulation tests on round-up confrontation
In the environmental document of round-up confrontation, we depart the agents into good agents and
adversary agents, and command adversaries to chase and attack good agents. The states available to the
improved MADDPG algorithm are the number of agents, including good agents and adversaries, and
the current position of each agent. If there are obstacles, the states available still include the number of
obstacles and their locations. In order to compile simply, we test the improved MADDPG algorithm in
two-dimensional environment and set three adversaries to round up and attack one good agent while
avoiding two obstacles; the velocity of all agents are uniform. We first initialise the x and y coordinates
of all agents both to the range (−1, 1), the locations (x and y coordinates) of designated obstacles to the
same range (−1, 1) and the initial reward values to 0. Then we select actions randomly for adversaries and
good agent separately, and compute their reward values according to corresponding reward functions.
Finally we learn the optimal policy autonomously on the base of cumulative reward. The goal is to
choose actions according to the optimal policy to make UAV cluster be able to round up and attack the
free moving target.

For the good agent, the goal is to escape the adversaries’ pursuit. So the reward has a positive corre-
lation with the distances between the good agent and all the adversaries. The longer the distances, the
larger the reward. The reward function for good agents is shown in Equation (5).

reward= reward+ 0.1×
√(

sagent − sadversaryi

)2 ∣∣
i=1,··· ,n (5)

Wherein, sagent refers to the position of a good agent waiting to be calculated the reward, and sadversary is
the position of any one adversary. When the good agent collides with any one adversary, the reward of
good agent should be subtracted 10 as one punishment. While, for adversaries, the reward has a negative

https://doi.org/10.1017/aer.2021.112 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.112

The Aeronautical Journal 943

correlation with the distance from the good agent. The shorter the distance, the larger the reward. The
reward function for adversaries is shown in Equation (6).

reward= reward− 0.1×
√(

sagent − sgood_agenti

)2 ∣∣
i=1,··· ,n (6)

Wherein, sagent refers to the position of an adversary waiting for calculating the reward, and sgood_agent is
the position of any one good agent. Because a good roundup requires the cooperation of three UAVs to
approach the target from all directions, we need to calculate the reward value of each UAV separately
and hope that each UAV is constantly approaching the target. When an UAV collides with the target, the
reward value of this UAV should be added 10 as a reward. In order to avoid internal collisions among
the cluster, the reward value will be subtracted 10 as a punishment when this UAV collides with another
one. The simulation results are shown in Fig. 7.

In Fig. 7, the rewards of three adversaries are on the rising trend. Although the reward values of No.
1 adversary and No. 3 adversary fall after 50,000 episodes, the No. 2 adversary keeps rising. While the
reward value of good agent continues to decrease before 50,000 episodes and has dropped below 0 after
5,000 episodes. Considering that the number of good agent is only one, there won’t be punishments
for internal collisions. According to the reward function of the good agent, we can conclude that the
reward of good agent always increases except when it collides with the adversaries. Therefore, the good
agent can be chased and attacked by the adversaries after 5,000 episodes, and the adversaries can keep
closer and closer distances when rounding up the good agent. The reward value of good agent has
dropped below −10 after about 35,000 episodes and drops faster than before, which shows that the
adversaries after training can effectively prevent the good agent from escaping and the success rate of
roundup and confrontation is also increasing. Reference to the reward function of adversaries, we know
that the reward always decreases except when the adversary collides with the good agent. Beacuse the
good agent can be attacked by the adversaries after 5,000 episodes, the maximum reward of adversaries
should be greater than 0. Based on this, Fig. 7(a) shows that there is a collision in adversaries. In order
to compare the reward function curves of adversaries and good agent more clearly, we put them in the
same picture, shown in Fig. 7(c). The later the training, the greater the difference between the reward
values of adversaries and good agent, the better the cluster policy of adversaries.

In our research, we found that the learning efficiency of MARL algorithm will be different when
the reward function changes. From the training results in Fig. 7, we can see that the reward values of
adversaries is generally small, which means that there are internal collisions. So we made some changes
in the reward function setting of adversaries. We modify Equation (6) and get the new equation.

reward= reward+1.0/

√(
sagent − sgood_agenti

)2 ∣∣
i=1,··· ,n (7)

The reward value is increased, and the shorter the distance, the greater the amount of increase. In order
to avoid the problem that the reward value will increase sharply even be infinite, we set the calculation
conditions for Equation (8). When there is a collision between this adversary and the good agent, the
reward value is directly added 10 as a reward. That is, when the distance is small enough, the equation
no longer applies. The results are shown in Fig. 8.

Referring to the reward function set for good agent, we know that the reward of good agent should be
bigger than 0 if it escaped the attack of these adversaries. In Fig. 8(b), the rewards of good agent remain
below 0, so the good agent must be attacked by adversaries. If the reward of good agent is less than−10,
it means the good agent is attacked twice or more. In Fig. 8(a), the reward values of all adversaries can
reach above 20 when there is one collision (before 13,000 episodes). For adversaries, the bonus value for
each collision is increased by 10. Therefore, the extra values are calculated by Equation (5). When two or
more collisions occur (after 13,000 episodes), the reward value stay above 30. The more collisions, the
higher the reward value. From this analysis, even if the adversaries can’t catch up with the good agent,
it can maintain a close distance to achieve the combat mission for tracking and rounding. When there
is one internal collision, the reward value of these two adversaries will be reduced by 10 as a penalty.
Since the reward for good agent stays below −20 after 13,000 episodes, that means it has suffered at

https://doi.org/10.1017/aer.2021.112 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.112

944 Xu and Chen

Figure 7. The accumulative reward per episode. (a) The reward curves for three cooperative adver-
saries, (b) the reward curve for good agent, and (c) the reward curve for good agent versus adversaries.

https://doi.org/10.1017/aer.2021.112 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.112

The Aeronautical Journal 945

Figure 8. The accumulative reward per episode. (a) The reward curves for three cooperative adver-
saries, (b) the reward curve for good agent, and (c) the reward curve for good agent versus adversaries.

https://doi.org/10.1017/aer.2021.112 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.112

946 Xu and Chen

Figure 9. The training process for round-up and confrontation with improved MADDPG algorithm.
(a) Randomly generated scenario 1, and (b) scenario 2.

least three collision attacks. At this point, the reward value of each adversary is usually greater than 40,
which means that collisions within the cluster are mostly avoided. Therefore, we can conclude that the
adversaries can learn the optimal policy by the improved reward mechanisms, and realise the roundup
and confrontation mission without internal collisions.

The training process is presented in animated manner as follows. Two scenarios are randomly selected
from 60,000 different scenarios, and one frame is output every 20,000 time steps, shown in Fig. 9(a)
and (b). It can be seen that three adversaries can quickly catch up with the randomly moving agent from
their original positions without internal collisions and successfully achieve the confrontation task.

5.3 Simulation comparison for MADDPG vs improved MADDPG
In order to prove that the improved MADDPG algorithm in this paper is superior to the MADDPG
algorithm in Ref. [40], we carried out simulation tests with two algorithms respectively in the same
application scenario.

When building the learning framework, the original MADDPG algorithm adopts MLP model. It is a
fully connected three-layer neural network structure. In order to compare the advantages and disadvan-
tages of learning framework fairly, the nodes number in hidden layers and activation functions of neural
network are chosen the same. When calculating the Q-value, the original algorithm only considers the
current state and environmental observation variables of all agents, while the improved algorithm adds
the action variables of all agents. Therefore, the evaluation of the action will be more accurate and the
learned strategy is significantly improved.

When setting the reward function, both algorithms are calculated based on the relative distance
between the UAVs and the target. In original MADDPG algorithm, the cluster is considered as a whole,
and a global reward function is set. But from the results of the simulation tests, this idea has a big flaw.
There is no guarantee that the reward of each UAV in the cluster is increasing. This is reflected in actual
flights, where there is no guarantee that every drone is trying to get close to the target. Besides, internal
collision avoidance settings are also inadequate. In view of these shortcomings, we improve the reward
function. On the one hand, the reward function is set for each agent in the cluster according to its rela-
tive distance from the target, which can ensure the strategy optimisation of the individual agent. From
a global perspective, the reward of all agents is added up to control the overall strategy optimisation of

https://doi.org/10.1017/aer.2021.112 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.112

The Aeronautical Journal 947

Figure 10. Simulation comparison of reward curve for MADDPG algorithm with improved MADDPG
algorithm. (a) The reward curves of three cooperative adversaries trained by MADDPG algorithm,
(b) the reward curves of three cooperative adversaries trained by improved MADDPG algorithm, (c) the
reward curve of good agent trained by MADDPG algorithm, (d) the reward curve of good agent trained
by improved MADDPG algorithm, (e) the reward curve for good agent versus adversaries trained by
MADDPG algorithm, and (f) the reward curve for good agent versus adversaries trained by improved
MADDPG algorithm.

the cluster. On the other hand, an additional collision penalty is added to the reward function of each
agent. It is clear from the results that the number of internal collisions has been greatly reduced. So the
optimal strategy learned by the improved MADDPG algorithm is obviously better than that obtained
by the original algorithm. Under the same round-up confrontation task, the training results of the two
algorithms are shown in Fig. 10.

As can be seen from the above results, the reward values of adversaries calculated with original
MADDPG are obviously less than the values got with improved MADDPG. The difference between the
reward value of good agent and adversaries is also significantly reduced. Through analysis, the reason

https://doi.org/10.1017/aer.2021.112 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.112

948 Xu and Chen

Figure 11. Comparison of collision number with different algorithms. (a) The collision number
occurred trained with MADDPG algorithm, and (b) the collision number occurred trained with improved
MADDPG algorithm.

leading to above results should be that more damage collisions occurred. Therefore, we compare the
number of collisions with the two algorithms.

As can be seen from Fig. 11, the number of collisions trained with the new algorithm reduces
more than double. This indicates that both obstacle avoidance and internal collision avoidance are con-
trolled, which greatly improves the security of cluster collaboration. All of the above comparisions can
demonstrate that the improved MADDPG algorithm has obvious advantages.

In order to compare with the improved MADDPG algorithm more clearly, we also present the training
process in animation form and intercepte the training process in several scenarios as illustration. From
Fig. 12(a), (b) and (c), we can see that the cluster trained by the original MADDPG algorithm does not
have a good global concept. The distant UAV is often ignored, which is likely to result in a decline in
mission completion rate. In addition, the completion of obstacle avoidance and collision avoidance is
not good. The situations similar to Fig. 12(b), (c) and (d) often occur during training. This will also
cause significant losses.

6.0 Conclusions and Future Work
This paper proposed a new improved Multi-Agent Reinforcement Learning algorithm, which mainly
improved the learning framework and reward mechanism based on the principle of MADDPG algo-
rithm. The action variables are introduced into Q network and P network, and used for calculation of Q
value together with the state variables. The structure of Q network and P network in the new framework
are no longer the same. The number of network nodes can be adjusted according to the training results.
In addition, the reward mechanism is also improved. The obstacle avoidance settings are added to effec-
tively improve the survival rate of UAV cluster. At the same time, the control of each UAV in the cluster
is added, which greatly improves the ability of cooperative combat. Integrating the above improvements,
the improved MADDPG algorithm is able to calculate Q values more precisely, which can also benefit
the learning of optimal policy. In order to verify the feasibility of the improved MADDPG algorithm, we
constantly adjust through a large number of simulation tests, and finally achieved good training results.

One disadvantage of the algorithm is that its real-time performance can not meet the actual combat
requirements. And with the increase of the number of clusters, the amount of computing informa-
tion increases exponentially, which makes the real-time performance of the calculation worse. We
preliminarily assume that Deep Learning and Reinforcement Learning can be combined to solve the
real-time problem. Through a large number of simulation experiments to accumulate data, and intro-
duce deep learning module to learn these prior knowledge. Then use reinforcement learning to conduct
online decision-making training, which is helpful to improve their independent decision-making ability.

https://doi.org/10.1017/aer.2021.112 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.112

The Aeronautical Journal 949

Figure 12. The training process for round-up and confrontation with the original MADDPG algorithm.
(a) and (b) are two randomly generated scenarios, in which one agent is lost, which fails to better reflect
the collaborative characteristics of the cluster. (c) and (d) are two randomly generated scenarios, in
which the agents frequently collides with obstacles, so the operation safety cannot be well guaranteed.

Another weakness is that the algorithm can only apply to the problem of a fixed number of agents. In
actual combat, it is very likely that the loss of the UAVs in the cluster will always occur, so the devel-
opment of a variable number of agents algorithm will be the next problem to be solved. We leave these
two problems to future work.

Acknowledgement. This work was partially supported by the National Natural Science Foundation of China (Nos. 11872293,
11672225), and the Program of Introducing Talents and Innovation of Disciplines (No. B18040).

Supplementary material
To view supplementary material for this article, please visit https://doi.org/10.1017/aer.2021.112

https://doi.org/10.1017/aer.2021.112 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.112
https://doi.org/10.1017/aer.2021.112

950 Xu and Chen

References
[1] Xing, D.J., Zhen, Z.Y. and Gong, H.J. Offense-defense confrontation decision making for dynamic UAV

swarm versus UAV swarm, Proc. Inst. Mech. Eng. G J. Aerosp. Eng., 2019, 233, (15), pp 5689–5702.
https://doi.org/10.1177/0954410019853982

[2] Zhang, J. and Xing, J.H. Cooperative task assignment of multi-UAV system, Chin. J. Aeronaut., 2020.
https://doi.org/10.1016/j.cja.2020.02.009

[3] Wang, C., Wu, L.Z., Yan, C., et al. Coactive design of explainable agent-based task planning and deep reinforcement learning
for human-UAVs teamwork, Chin. J. Aeronaut., 2020. https://doi.org/10.1016/j.cja.2020.05.001

[4] Imanberdiyev, N., Fu, C., Kayacan, E., et al. Autonomous navigation of UAV by using real-time model-based rein-
forcement learning, 14th International Conference on Control, Automation, Robotics and Vision (ICARCV 2016).
https://doi.org/10.1109/ICARCV.2016.7838739

[5] Wu, Y.H., Yu, Z.C., Li, C.Y., et al. Reinforcement learning in dual-arm trajectory planning for a free-floating space robot,
Aerosp. Sci. Technol., 2020, 98. https://doi.org/10.1016/j.ast.2019.105657

[6] Dong, Y.Q., Ai, J.L. and Liu, J.Q. Guidance and control for own aircraft in the autonomous air combat: A his-
torical review and future prospects, Proc. Inst. Mech. Eng. G J. Aerosp. Eng., 2019, 233, (16), pp 5943–5991.
https://doi.org/10.1177/0954410019889447

[7] Sun, Z., Chao, T., Wang, S., et al. Ascent trajectory tracking method using time-varying quadratic adaptive dynamic program-
ming, Proc. Inst. Mech. Eng. G J. Aerosp. Eng., 2018, 233, (11), pp 4154–4165. https://doi.org/10.1177/0954410018817613

[8] Xu, G.T., Long, T., Wang, Z., et al. Target-bundled genetic algorithm for multi-unmanned aerial vehicle cooperative task
assignment considering precedence constraints, Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 2019, 234, (3), pp 760–773.
https://doi.org/10.1177/0954410019883106

[9] Zhao, E.J., Chao, T., Wang, S.Y., et al. Multiple flight vehicles cooperative guidance law based on extended state
observer and finite time consensus theory, Proc. Inst. Mech. Eng. G J. Aerosp. Eng., 2016, 232, (2), pp 270–279.
https://doi.org/10.1177/0954410016683734

[10] Lowe, R., Wu, Y., Tamar, A., et al. Multi-agent Actor-Critic for mixed cooperative-competitive environments.
arXiv:1706.02275v3, 2018.

[11] Liu, Y.X., Liu, H., Tian, Y.L., et al. Reinforcement learning based two-level control framework of UAV swarm
for cooperative persistent surveillance in an unknown urban area, Aerosp. Sci. Technol., 2020, 98, p 105671.
https://doi.org/10.1016/j.ast.2019.105671

[12] Zhen, Z.Y., Xing, D.J. and Gao, C. Cooperative search-attack mission planning for multi-UAV based on intelligent self-
organized algorithm, Aerosp. Sci. Technol., 2018, 76, pp 402–411. https://doi.org/10.1016/j.ast.2018.01.035

[13] Yao, P., Wang, H.L. and Su, Z.K. Cooperative path planning with applications to target tracking and obstacle avoidance for
multi-UAVs, Aerosp. Sci. Technol., 2016, 54, pp 10–22. https://doi.org/10.1016/j.ast.2016.04.002

[14] Wang, C., Li, J., Jing, N., et al. A distributed cooperative dynamic task planning algorithm for multiple satellites based on
multi-agent hybrid learning, Chin. J. Aeronaut. 2011, 24, (4), pp 493–505. https://doi.org/10.1016/S1000-9361(11)60057-5

[15] Sun, G.B., Zhou, R., Xu, K., et al. Cooperative formation control of multiple aerial vehicles based on guidance route in a
complex task environment, Chin. J. Aeronaut. 2020, 33, (2), pp 701–720. https://doi.org/10.1016/j.cja.2019.08.009

[16] Fu, X.W., Pan, J., Wang, H.X., et al. A formation maintenance and reconstruction method of UAV swarm based on distributed
control, Aerosp. Sci. Technol., 2020, 104, p. 105981. https://doi.org/10.1016/j.ast.2020.105981

[17] Fu, X.W., Pan, J., Wang, H.X., et al. A formation maintenance and reconstruction method of UAV swarm based
on distributed control with obstacle avoidance, Australian and New Zealand Control Conference (ANZCC), 2019.
https://doi.org/10.1109/ANZCC47194.2019.8945601

[18] La, H.M., Nguyen, T., Le, T.D., et al. Formation control and obstacle avoidance of multiple rectangular
agents with limited communication ranges, IEEE Trans. Control Network Syst., 2017, 4, (4), pp 680–691.
https://doi.org/10.1109/TCNS.2016.2542978

[19] La, H.M. and Sheng, W. Dynamic target tracking and observing in a mobile sensor network, Robot. Autonom. Syst., 2012,
60, (7), pp 996–1009. https://doi.org/10.1016/j.robot.2012.03.006

[20] Degas, A., Rantrua, A., Kaddoum, E., et al. Dynamic collision avoidance using local cooperative airplanes decisions, CEAS
Aeronaut. J., 2020, 11, pp 309–320. https://doi.org/10.1007/s13272-019-00400-6

[21] Busoniu, L., Babuska, R. and Schutter, B.D. Multi-agent reinforcement learning: An overview, Srinivasan, D., & Jain, L.C.
(eds). Innovations in Multi-Agent Systems and Applications – 1, vol. 310. Studies in Computational Intelligence, Springer,
Berlin, Heidelberg, 2010, pp 183–221. https://doi.org/10.1007/978-3-642-14435-6_7

[22] Musavi, N., Onural, D., Gunes, K., et al. Unmanned aircraft systems airspace integration: a game theoretical framework for
concept evaluations, J. Guid. Control Dyn. 2017, 40, (1), pp 96–109. https://doi.org/10.2514/1.G000426

[23] Petar, K., Sylvain, C. and Darwin, C. Reinforcement learning in robotics: applications and real-world challenges, Robotics,
2013, 2, (3), pp 122–148. https://doi.org/10.3390/robotics2030122

[24] Das-Stuart, A., Howell, K.C., and Folta, D. Rapid trajectory design in complex environments enabled by reinforcement learn-
ing and graph search strategies, Acta Astronaut., 2019, 171, pp 172–195. https://doi.org/10.1016/j.actaastro.2019.04.037

[25] Jiang, J.X., Zeng, X.Y., Guzzetti, D., et al. Path planning for asteroid hopping rovers with pre-trained deep reinforcement
learning architectures, Acta Astronaut., 2020, 171, pp 265–279. https://doi.org/10.1016/j.actaastro.2020.03.007

[26] Mnih, V., Kavukcuoglu, K., Silver, D., et al. Human-level control through deep reinforcement learning, Nature, 518, 2015,
pp 529–533. https://doi.org/10.1038/nature14236.

[27] Wang, Z.Y., Freitas, N.D. and Lanctot, M. Dueling network architectures for deep reinforcement learning, Proceedings of
the International Conference on Machine Learning, New York, USA, April 2016: 1995-2003. arXiv: 1511.06581v3.

https://doi.org/10.1017/aer.2021.112 Published online by Cambridge University Press

https://doi.org/10.1177/0954410019853982
https://doi.org/10.1016/j.cja.2020.02.009
https://doi.org/10.1016/j.cja.2020.05.001
https://doi.org/10.1109/ICARCV.2016.7838739
https://doi.org/10.1016/j.ast.2019.105657
https://doi.org/10.1177/0954410019889447
https://doi.org/10.1177/0954410018817613
https://doi.org/10.1177/0954410019883106
https://doi.org/10.1177/0954410016683734
https://doi.org/10.1016/j.ast.2019.105671
https://doi.org/10.1016/j.ast.2018.01.035
https://doi.org/10.1016/j.ast.2016.04.002
https://doi.org/10.1016/S1000-9361(11)60057-5
https://doi.org/10.1016/j.cja.2019.08.009
https://doi.org/10.1016/j.ast.2020.105981
https://doi.org/10.1109/ANZCC47194.2019.8945601
https://doi.org/10.1109/TCNS.2016.2542978
https://doi.org/https://doi.org/10.1016/j.robot.2012.03.006
https://doi.org/10.1007/s13272-019-00400-6
https://doi.org/10.1007/978-3-642-14435-6_7
https://doi.org/10.2514/1.G000426
https://doi.org/10.3390/robotics2030122
https://doi.org/10.1016/j.actaastro.2019.04.037
https://doi.org/10.1016/j.actaastro.2020.03.007
https://doi.org/10.1038/nature14236
https://doi.org/10.1017/aer.2021.112

The Aeronautical Journal 951

[28] Hausknecht, M. and Stone, P. Deep recurrent q-learning for partially observable MDPs, Association for the Advancement
of Artificial Intelligence (AAAI 2015), 2017. arXiv: 1507.06527v4.

[29] Yang, X.X. and Wei, P. UAV navigation in high dynamic environments: A deep reinforcement learning approach, Chin. J.
Aeronaut. 2020. https://doi.org/10.1016/j.cja.2020.05.011

[30] Silver, D., Lever, G., Heess, N., et al. Deterministic policy gradient algorithms, Proceedings of the International Conference
on Machine Learning, vol. 32, 2014, pp 387–395.

[31] Duryea, E., Ganger, M. and Hu, W. Exploring deep reinforcement learning with multi q-learning, Intell. Cont. Automat.,
2016, 7, (4) pp 129–144. https://doi.org/10.4236/ica.2016.74012

[32] Littman, M.L. Markov games as a framework for multi-agent reinforcement learning, Proceedings of the 11th International
Conference on Machine Learning (ICML 1994), Rutgers University, New Brunswick, NJ, July 1994, pp 157–163.
https://doi.org/10.1016/B978-1-55860-335-6.50027-1

[33] Gong, L.G., Wang, Q., Hu, C.H., et al. Switching control of morphing aircraft based on Q-learning, Chin. J. Aeronaut.,
2020, 33, (2), pp 672–687. https://doi.org/10.1016/j.cja.2019.10.005

[34] Peters, J. and Schaal, S. Policy gradient methods for robotics, International Conference on Intelligent Robots and Systems,
2007. https://doi.org/10.1109/IROS.2006.282564

[35] Babuska, R., Busoniu, L., and Schutter, B.D. Reinforcement learning for multi-agent systems, Proceedings of the11th
International Conference on Emerging Technologies and Factory Automation (ETFA 2006), IEEE, Prague, Czech Republic,
2006. http://www.dcsc.tudelft.nl

[36] Nguyen, T.T., Nguyen, N.D., and Nahavandi, S. Deep reinforcement learning for multi-agent systems: A review of challenges,
solutions and applications, 2019. arXiv: 1812.11794v2.

[37] Li, C.G., Wang, M. and Yuan, Q.N. A mulit-agent reinforcement learning using actor-critic methods, Proceedings of the 7th
International Conference on Machine Learning and Cybernetics 2008. https://doi.org/10.1109/ICMLC.2008.4620528

[38] Gupta, J.K., Egorov, M. and Kochenderfer, M. Cooperative multi-agent control using deep reinforcement learn-
ing. In Sukthankar, G. and Rodriguez-Aguilar, J. (eds.) International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2017), Lecture Notes in Computer Science, 106(42), Springer, Cham, 2017, pp 66–83.
https://doi.org/10.1007/978-3-319-71682-4_5

[39] Guo, H.L. and Meng, Y. Distributed reinforcement learning for coordinate multi-robot foraging, J. Intell. Robot Syst., 2010,
60, pp 531–551. https://doi.org/10.1007/s10846-010-9429-4

[40] Lowe, R., Wu, Y., Tamar, A., et al. Multi-agent actor-critic for mixed cooperative-competitive environments, Proceedings
of the Neural Information Processing Systems (NIPS 2017). arXiv:1706.02275v3.

[41] Lillicrap, T.P., Hunt, J.J., Pritzel, A., et al. Continuous control with deep reinforcement learning, International Conference
on Learning Representations, 2015, pp 1–14. https://doi.org/10.1016/S1098-3015(10)67722-4

[42] Nagabandi, A., Kahn, G., Fearing, R.S., et al. Neural network dynamics for model-based deep reinforcement learning with
model-free fine-tuning, 2017. arXiv: 1708.02596v2.

[43] Yang, Z., Merrick, K., Abbass, H., et al. Multi-task deep reinforcement learning for continuous action con-
trol, Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017, pp 3301–3307.
https://doi.org/10.24963/ijcai.2017/461

[44] Baker, B., Gupta, O., Naik, N., et al. Designing neural network architectures using reinforcement learning, International
Conference on Learning Representations, 2017. arXiv: 1611.02167v2

[45] Liu, Q.H., Liu, X.F. and Cai, G.P. Control with distributed deep reinforcement learning: Learn a better policy, 2018. arXiv:
1811.10264v2.

[46] Goecks, V.G., Leal, P.B., White, T., et al. Control of morphing wing shapes with deep reinforcement learning, 2018 AIAA
Information Systems-AIAA Infotech @ Aerospace, Kissimmee, Florida, January 2018. https://doi.org/10.2514/6.2018-2139

[47] Wen, N., Liu, Z.H., Zhu, L.P., et al. Deep reinforcement learning and its application on autonomous shape optimization for
morphing aircrafts, J. Astronaut., 2017, 38, pp 1153–1159. https://doi.org/10.3873/j.issn.1000-1328.2017.11.003

[48] Xu, D., Hui, Z., Liu, Y.Q., et al. Morphing control of a new bionic morphing UAV with deep reinforcement learning, Aerosp.
Sci. Technol., 2019, 92, pp 232–243. https://doi.org/10.1016/j.ast.2019.05.058

[49] La, H.M. Multi-robot swarm for cooperative scalar field mapping, Handbook of Research on Design, Control, and Modeling
of Swarm Robotics, 2015. https://doi.org/10.4018/978-1-4666-9572-6.ch014

[50] La, H.M., Sheng, W. and Chen, J. Cooperative and active sensing in mobile sensor networks for scalar field mapping, IEEE
Trans. Syst. Man Cybern. Syst., 2015, 45(1), pp 1–12. https://doi.org/10.1109/TSMC.2014.2318282

[51] Adepegba, A.A., Miah, S. and Spinello, D. Multi-agent area coverage control using reinforcement learning,
Proceedings of the 29th International Florida Artificial Intelligence Research Society Conference, 2016, pp 368–373.
http://dx.doi.org/10.20381/ruor-5715

[52] Pham, H.X., La, H.M., Feil-Seifer, D., et al. Cooperative and distributed reinforcement learning of drones for field coverage,
2018. arXiv: 1803.07250v1.

Cite this article: Xu D. and Chen G. (2022). Autonomous and cooperative control of UAV cluster with multi-agent reinforcement
learning. The Aeronautical Journal, 126, 932–951. https://doi.org/10.1017/aer.2021.112

https://doi.org/10.1017/aer.2021.112 Published online by Cambridge University Press

https://doi.org/10.1016/j.cja.2020.05.011
https://doi.org/10.4236/ica.2016.74012
https://doi.org/10.1016/B978-1-55860-335-6.50027-1
https://doi.org/10.1016/j.cja.2019.10.005
https://doi.org/10.1109/IROS.2006.282564
http://www.dcsc.tudelft.nl
https://doi.org/10.1109/ICMLC.2008.4620528
https://doi.org/10.1007/978-3-319-71682-4_5
https://doi.org/10.1007/s10846-010-9429-4
https://doi.org/10.1016/S1098-3015(10)67722-4
https://doi.org/10.24963/ijcai.2017/461
https://doi.org/10.2514/6.2018-2139
https://doi.org/10.3873/j.issn.1000-1328.2017.11.003
https://doi.org/10.1016/j.ast.2019.05.058
https://doi.org/10.4018/978-1-4666-9572-6.ch014
https://doi.org/10.1109/TSMC.2014.2318282
https://doi.org/http://dx.doi.org/10.20381/ruor-5715
https://doi.org/10.1017/aer.2021.112
https://doi.org/10.1017/aer.2021.112

	Introduction
	Background
	Methods
	Mission Scenarios
	Regional reconnaissance
	Round-up confrontation

	Simulation Results
	Simulation tests on cooperative navigation
	Simulation tests on round-up confrontation
	Simulation comparison for MADDPG vs improved MADDPG

	Conclusions and Future Work
	Supplementary material

