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PROBLEMS AND SOLUTIONS

PROBLEMS

04.1.1. A Hausman Test Based on the Difference between Fixed Effects
Two-Stage Least Squares and Error Components
Two-Stage Least Squares

Badi H. Baltagi
Texas A&M University

Consider the following first structural equation of a simultaneous equation
panel data model

Y1 = 218, + Uy,

whereZ; = [Y1, X;] and§; = (y1,81). As in the standard simultaneous equa-
tion literature Y; is the set ofg, right-hand-side endogenous variablasd X,

is the set ok; included exogenous variabldset X = [X;, X,] be the set of all
exogenous variables in the systelnet k,, the number of excluded exogenous
variables from the first equatiaiX,), be larger than or equal @ . The distur-
banceu, follows the one-way error component model

U, = Zwu,l-i- vy,

whereZ,, = (Iy & u1) with Iy being an identity matrix of dimensioN and¢r

a vector of ones of dimension In this caseu’} = (w11, ..., un1) IS @ vector of
random individual effects of dimensidd andv] = (v114,...,¥nT1) IS @ VEctor

of remainder disturbances of dimensibiT. These vectors have zero means
and covariance matrix

2
M (TP-11IN 0
E Ly = .
(Vl)(ﬂl 1) l 0 011211|NT

Baltagi (1981 derives the error component two-stage least sqUEERSLS
estimator of this modelivhich is the random effect®RE) counterpart of a clas-
sical error components panel data regress&imilarly, the fixed effects two-
stage least squaréSE2SLS estimator of this model is the fixed effedtBE)
counterpart of a classical error components panel data regreBaitmEC2SLS
and FE2SLS allow for the endogeneity 4f.
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224 PROBLEMS AND SOLUTIONS

Hausman(1978 suggests comparing the FE and RE estimators in the clas-
sical panel data regressiowith endogenous right-hand-side regressors such
as Y this test can be generalized to tedg: E(u,|Z;) = 0 based ong; =

8], FE2SLS 5], EC2SLS

(@) Show that underHg:E(u;/Z;) = 0, plimg, = 0 and the asymptotic

cov(qy, 51, ecaste) = 0. - A
(b) Conclude that vaf;) = var(éy reasie — var(éy ecesis), Where var denotes
the asymptotic varianceThis is used in computing the Hausman test statistic

given by
m, = §i[var(a,)]*4;.

UnderH,, m, is asymptotically distributed ag?, wherer denotes the dimen-
sion of the slope vector of the time varying variable<Zin This can be easily
implemented using standard software packatiks STATA. The usual Haus-
man test can yield misleading inference in the presencg.of
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04.1.2. Correcting for Heteroskedasticity of Unspecified Form

Tom Wansbeek
University of Groningen, The Netherlands

Consider the basic linear regression model with heteroskedastcity
X/ B+ e,withi=1...,n, whereg is a zero-mean random variable distributed
independently from alk; and allg with i # j. The variance of is 0%, where
all ¢2,i = 1,...,n may be differentThe “true” generalized least squares esti-
mator(GLSE) 3 of 3 is obtained as the ordinary least squares estim{@hBSE)
from the regression of thg /o; on thex; /o;. When as usuaglthe o; are un-
known we might instead be tempted to use the absolute value of the residual
g, = |y; — x/b|, with b the OLSE from the regression of tlyeon thex;, and
obtain a “feasible” GLSEB, say by regressing the, /6, on thex;/4;. Intu-
itively, this is not a sensible approadbut one is hard put to find an argument
in the literature What are thefinite or asymptoti¢ distributional properties of
53?2 (One might conjecture thad is consistent and asymptotically normaéls
there any sense in whigh constitutes an improvement ovie?
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SOLUTIONS

03.1.1. Deriving the Observed Information Matrix in Ordered Probit and
Logit Models Using the Complete-Data Likelihood Function— Solution

S.K. Sapra(the poser of the problem
California State University, Los Angeles

The complete-data log likelihood function is
1 n
InL*(y*|x,8) = constant— 52 (y* = B'%)> (2)
i=1

Define the categorical variables

Z; =1 ify" belongs to thgth category
=0 otherwisei=1,2,...,n,j=12,...,m.

®3)
Therefore the missing information matrix is given by
I = Var(@InL*(y*[x, 8)/9B|Z;)
= Var(;()’i* —(BX))X|Z; = Zij)
= Var<§n: (Ui %)[Z; = Zij)
= 2 Z ij z;[1— ((d’j—l,i - ¢j,i)/(q’j—1,i - (I)j,i))z
Wi djoni — Wi i)/ (P_g — Py )IX X
;1 ;;Zu/(@] 1i J|)2
X [(Pj-1i _d’j,i) —(W_gid—1i —W,idi)
XDy — D1 )X X/ (4)

whereg;_1; = ¢(Wi—1i), Pj_1i = P(W_1), dji = P (W i), Pj_1i = P(W_1),
Wi—1i = aj—1 — [)”Xi, Wi = aj — [)”Xi, andzjm:lzij =1 because

m
Var(u|Z; = z;) = 3 z;Var(u;|a;_; <y < ;)
=1

= _leij [1- ((¢j—1,i - d)j,i)/(cbj—l,i - ‘I’j,i))z
i=
T Wi_gidjri — Wi d)/( P — D], 5)
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where¢ and® are respectivelythe probability density function and cumula-
tive distribution functions of &(0,1) random variable using formulas for vari-

ances of doubly truncated distributiofigladdala 1983 p. 366). Furthermore
the complete-data information matrix is given by

¢ = —E@InL*(y*[x,8)/9BIB") = 2 % X, (6)
i=1

From equationg4) and(6), it follows that the observed information matrix is

Ic_Im

20z /(g — D) (v — ¢5.0)2 — (Wi djvi — Wi i)

i=1

M3

Il
e

i
X (D — Dj_1 )X X, (7)

which is equal to the observed information matrixo?InL/9B08’, obtained
from the observed-data log likelihood function

m

InL(Z|x,B) = 2, 2 zi In[d); — dj_1;]. €)

j=1i=1

Alternatively the observed information matrix may be computed by using the
result that the observed score function is the conditional expectation of the la-
tent score function given the observed variakilesuis, 1982 p. 227):

aInL(Zx,B)/aB = E(@InL*(Z|x,B)/0B|Z)

Z E((M Xi — (B Xi )X )|ZIJ Ij

g i [(Di—vi — &)/ (D — Dj_1 )] )

I
I\Mg

By differentiation of the observed score function in equati@®nwith respect to
B’, we obtain the observed information matrix in equat{@h as the negative
of the hessian of the observed log likelihood function
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03.1.2. Redundancy of Lagged Regressors in a Conditionally
Heteroskedastic Time Series Regressida-Solution

G. Dhaene
Katholieke Universiteit Leuven, Belgium

Letg: = gyt — Bx)X%—;i (i = 0,1,...). For any finite setl of nonnegative
integers let B, be the optimal generalized method of moments estimatg@ of
based on the moment conditions
Eg..=0, i€l
By the results of Breu§ctQian, Schmidt and Wyhowski£1999, the ordinary
least squares estimajgq, is at least as efficient as ay if, and only if for
all i = 1, the conditionEg, ; = 0 is redundant giveeg, ; = 0; i.e,

Di = Q0004 Do, i=1 1)

whereD; = E(dg; 1/0B) andQj = X2, E(g;(0;,1). Lety; = Cov(X, X;—i).
Then fori = 0O,

D = —E(X¢X—i) = —vi,

> Yi
Qo=E X eX & % =E[o+ A% —mw)>)%X_i]= — Qqp, (2)

|=—c0 0

so (1) is seen to holdThe last equality in2) follows by writing

’y.
Xe_i = — X + U,
Yo

with x; andu, independentThat this is possible follows from the bivariate nor-
mality of x,_; andx;.

NOTE

1. An excellent solution has been independently proposed by .tAe&olyey the poser of the
problem
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03.1.2 Redundancy of Lagged Regressors in a Conditionally
Heteroskedastic Time Series Regression— Solution

Marine Carrasco
University of Rochester

A solution to the problem is to calculate the greatest lower bound for the
asymptotic variance of GMM estimators based on moment fundtioyB) =
(Vi — BX)%—i, i = 0,1,2,.... To do sq we apply Hanseii1985. In the sequel
we will denoteh(i ) the moment functionh(i; 8,). Let L2(h) be the linear space
spanned byh(i):i = 0,1,...}; it is made of element& = X2, ; h(i) for any
realq;. Note that{h(i):i = 0,1,...} are martingale difference sequenddsre-
over, they are linearly independent and in that sense are complet#li.

We are looking for the solution of equatidA.8) of Hansen(1985. That is
we are looking for the elemer@ in L?(h) (if it exists) such that

oh
E[ﬁ(i)]=E[h(i)G] foralli=0,1,.... 1)
Or, equivalently we are looking for the constantg solutions of
_E(thti):E|:elXti<2ajetth>:|' (2
j=0

Note that the solution may not exist irf(h), but there is always a solution in
the closure of 2(h). If a solution inL?(h) exists it is unique becausgn(i):i =
0,1,...} is completeLet o; = 0, for j = 1,2,...; equation(2) becomes

—E(X%X—i) = aoE[eXXi ]
= aoEf(w + A(X — m)*) X %]
= ag(w + Ap?)E(X X ;)
+ ag AE(X3X_;)
— g2 AME(X3X_;).
Using the fact thaw, are ii.d. standard normalwe have

E(thxt—i) = E[(Z P 7]t—|>2<2 b nt7i7j>] =0,
j
E(thxt—i) = EH E éng”hs—j +3 kZ (@jzntz—j)(ﬁok”’h—k)
j #
+ GKE I(QDj nt—j)(ﬁokntfk)(ﬁol Utl)}(Z Pj ntij>:|
#|# j

= 32 ¢j3§0j7i +3 kE ¢7j2§0k¢7k7i
i #]

= 3(; ¢j2><% ¢k§0k7i>

= 3E(X?) E(X; X¢—i)-
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Hence Equation(2) becomes
—E(XX—i) = agE(X X)) (@ + Au? + 3AE(X)),
which is satisfied for

1

= - . 3
“o o + Au? + 3AE(xd) 3

Therefore we found a solution t@1), which is Gy = agX; € with ag as in(3).
By Lemma 43 of Hansen(1985, the greatest lower bound is given by

[E(GH] ™ = [adE(xZeD]
Note thatag can be rewritten as

- E(x?
0T TE(x2ed)

Therefore the GMM efficiency bound is

E(x’€e?)
[E(x)]?’

which corresponds to the asymptotic variance of the OLS estimator

We have shown that the OLS estimator is not only as efficient as any GMM
estimator that uses an arbitrary fixed number of instruments fsqQox,_4,...}
but also as efficient as any GMM estimator that uses an infinity of instruments
from {x;, Xi—1,...}.

REFERENCES

HansenL. P. (1985 A method for calculating bounds on the asymptotic covariance matrices of
generalized method of moments estimatdeurnal of Econometric203-238

https://doi.org/10.1017/50266466604201098 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466604201098

