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PROBLEMS

04.1.1. A Hausman Test Based on the Difference between Fixed Effects
Two-Stage Least Squares and Error Components

Two-Stage Least Squares

Badi H+ Baltagi
Texas A&M University

Consider the following first structural equation of a simultaneous equation
panel data model:

y1 5 Z1d1 1 u1,

whereZ1 5 @Y1,X1# andd1
' 5 ~g1

' ,b1
' !+ As in the standard simultaneous equa-

tion literature, Y1 is the set ofg1 right-hand-side endogenous variables, andX1

is the set ofk1 included exogenous variables+ Let X 5 @X1,X2# be the set of all
exogenous variables in the system+ Let k2, the number of excluded exogenous
variables from the first equation~X2!, be larger than or equal tog1+ The distur-
banceu1 follows the one-way error component model

u1 5 Zm m1 1 n1,

whereZm 5 ~IN J iT! with IN being an identity matrix of dimensionN andiT

a vector of ones of dimensionT+ In this case, m1
' 5 ~m11, + + + ,mN1! is a vector of

random individual effects of dimensionN andn1
' 5 ~n111, + + + ,nNT1! is a vector

of remainder disturbances of dimensionNT+ These vectors have zero means
and covariance matrix

ESm1

n1
D~m1

' ,n1
' ! 5 Fsm11

2 IN 0

0 sn11

2 INT
G +

Baltagi ~1981! derives the error component two-stage least squares~EC2SLS!
estimator of this model, which is the random effects~RE! counterpart of a clas-
sical error components panel data regression+ Similarly, the fixed effects two-
stage least squares~FE2SLS! estimator of this model is the fixed effects~FE!
counterpart of a classical error components panel data regression+ Both EC2SLS
and FE2SLS allow for the endogeneity ofY1+
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Hausman~1978! suggests comparing the FE and RE estimators in the clas-
sical panel data regression+ With endogenous right-hand-side regressors such
as Y1 this test can be generalized to testH0 :E~u16Z1! 5 0 based on [q1 5
Dd1,FE2SLS2 Zd1,EC2SLS+

~a! Show that underH0 : E~u16Z1! 5 0, plim [q1 5 0 and the asymptotic
cov~ [q1, Zd1,EC2SLS! 5 0+

~b! Conclude that var~ [q1! 5 var~ Dd1,FE2SLS! 2 var~ Zd1,EC2SLS!, where var denotes
the asymptotic variance+ This is used in computing the Hausman test statistic
given by

m1 5 [q1
' @var~ [q1!#21 [q1+

UnderH0, m1 is asymptotically distributed asxr
2, wherer denotes the dimen-

sion of the slope vector of the time varying variables inZ1+ This can be easily
implemented using standard software packages, like STATA+ The usual Haus-
man test can yield misleading inference in the presence ofY1+

REFERENCES

Baltagi, B+H+ ~1981! Simultaneous equations with error components+ Journal of Econometrics17,
189–200+

Hausman, J+ ~1978! Specification tests in econometrics+ Econometrica46, 1251–1271+

04.1.2. Correcting for Heteroskedasticity of Unspecified Form

Tom Wansbeek
University of Groningen, The Netherlands

Consider the basic linear regression model with heteroskedasticity, yi 5
xi
'b 1 ei , with i 5 1, + + + , n, whereei is a zero-mean random variable distributed

independently from allxi and allej with i Þ j+ The variance ofei is si
2, where

all si
2, i 5 1, + + + , n may be different+ The “true” generalized least squares esti-

mator~GLSE! Zb of b is obtained as the ordinary least squares estimator~OLSE!
from the regression of theyi 0si on thexi 0si + When, as usual, the si are un-
known, we might instead be tempted to use the absolute value of the residual
[si [ 6yi 2 xi

'b6, with b the OLSE from the regression of theyi on thexi , and
obtain a “feasible” GLSE Db, say, by regressing theyi 0 [si on thexi 0 [si + Intu-
itively, this is not a sensible approach, but one is hard put to find an argument
in the literature+What are the~finite or asymptotic! distributional properties of
Db? ~One might conjecture thatDb is consistent and asymptotically normal+! Is

there any sense in whichDb constitutes an improvement overb?

224 PROBLEMS AND SOLUTIONS

https://doi.org/10.1017/S0266466604201098 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604201098


SOLUTIONS

03.1.1. Deriving the Observed Information Matrix in Ordered Probit and
Logit Models Using the Complete-Data Likelihood Function—Solution

S+K+ Sapra~the poser of the problem!
California State University, Los Angeles

The complete-data log likelihood function is

ln L*~ y* 6x,b! 5 constant2
1

2(
i51

n

~ yi
*2 b 'xi !

2+ (2)

Define the categorical variables

Zij 5 1 if yi
* belongs to thej th category,

5 0 otherwise, i 5 1,2, + + + , n, j 5 1,2, + + + ,m+ (3)

Therefore, the missing information matrix is given by

Im 5 Var~] ln L*~ y* 6x,b!0]b 6Zij !

5 VarS(
i51

n

~ yi
*2 ~b 'xi !!xi 6Zij 5 zijD

5 VarS(
i51

n

~ui xi !6Zij 5 zijD
5 (

j51

m

(
i51

n

zij @12 ~~fj21, i 2 fj, i !0~Fj21, i 2 Fj, i !!
2

1 ~wj21, i fj21, i 2 wj, i fj, i !0~Fj21, i 2 Fj, i !#xi xi
'

5 (
i51

n

xi xi
'2 (

j51

m

(
i51

n

zij 0~Fj21, i 2 Fj, i !
2

3 @~fj21, i 2 fj, i !
2 2 ~wj21, i fj21, i 2 wj, i fj, i !

3 ~Fj, i 2 Fj21, i !#xi xi
' , (4)

wherefj21, i 5 f~wj21, i !, Fj21, i 5 F~wj21, i !, fj, i 5 f~wj, i !, Fj21, i 5 F~wj21, i !,
wj21, i 5 aj21 2 b 'xi , wj, i 5 aj 2 b 'xi , and(j51

m zij 5 1 because

Var~ui 6Zij 5 zij ! 5 (
j51

m

zij Var~ui 6aj21 , yi
* , aj !

5 (
j51

m

zij @12 ~~fj21, i 2 fj, i !0~Fj21, i 2 Fj, i !!
2

1 ~wj21, i fj21, i 2 wj, i fj, i !0~Fj21, i 2 Fj, i !# , (5)
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wheref andF are, respectively, the probability density function and cumula-
tive distribution functions of aN~0,1! random variable using formulas for vari-
ances of doubly truncated distributions~Maddala, 1983, p+ 366!+ Furthermore,
the complete-data information matrix is given by

Ic 5 2E~]2 ln L*~ y* 6x,b!0]b]b ' ! 5 (
i51

n

xi xi
' + (6)

From equations~4! and~6!, it follows that the observed information matrix is

Io 5 Ic 2 Im

5 (
j51

m

(
i51

n

zij 0~Fj21, i 2 Fj, i !
2 @~fj21, i 2 fj, i !

2 2 ~wj21, i fj21, i 2 wj, i fj, i !

3 ~Fj, i 2 Fj21, i !#xi xi
' , (7)

which is equal to the observed information matrix, 2]2 ln L0]b]b ' , obtained
from the observed-data log likelihood function

ln L~Z6x,b! 5 (
j51

m

(
i51

n

zij ln@Fj, i 2 Fj21, i # + (8)

Alternatively, the observed information matrix may be computed by using the
result that the observed score function is the conditional expectation of the la-
tent score function given the observed variables~Louis, 1982, p+ 227!:

] ln L~Zx,b!0]b 5 E~] ln L*~Z6x,b!0]b 6Z!

5 (
i51

n

E~~ yi
*xi 2 ~b 'xi !xi !6Zij 5 zij !

5 (
j51

m

(
i51

n

zij @~fj21, i 2 fj, i !0~Fj, i 2 Fj21, i !#xi + (9)

By differentiation of the observed score function in equation~9! with respect to
b ' , we obtain the observed information matrix in equation~7! as the negative
of the hessian of the observed log likelihood function+

REFERENCES

Louis, T+A+ ~1982! Finding the observed information matrix when using the EM algorithm+ Jour-
nal of the Royal Statistical Society Series B44, 226–233+

Maddala, G+S+ ~1983! Limited Dependent and Qualitative Variables in Econometrics+ Cambridge
University Press+
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03.1.2. Redundancy of Lagged Regressors in a Conditionally
Heteroskedastic Time Series Regression1—Solution

G+ Dhaene
Katholieke Universiteit Leuven, Belgium

Let gi, t 5 ~ yt 2 bxt !xt2i ~i 5 0,1, + + + !+ For any finite setI of nonnegative
integers, let ZbI be the optimal generalized method of moments estimator ofb
based on the moment conditions

Egi, t 5 0, i [ I+

By the results of Breusch, Qian, Schmidt, and Wyhowski~1999!, the ordinary
least squares estimator, Zb$0%, is at least as efficient as anyZbI if , and only if, for
all i $ 1, the conditionEgi, t 5 0 is redundant givenEg0, t 5 0; i+e+,

Di 5 Vi 0V00
21D0, i $ 1, (1)

whereDi 5 E~]gi, t 0]b! andVij 5 (l52`
` E~gi, t gj, t2l !+ Let gi 5 Cov~xt , xt2i !+

Then, for i $ 0,

Di 5 2E~xt xt2i ! 5 2gi ,

Vi 0 5 E (
l52`

`

et xt2i et2l xt2l 5 E @~v 1 l~xt 2 m!2!xt xt2i # 5
gi

g0

V00, (2)

so ~1! is seen to hold+ The last equality in~2! follows by writing

xt2i 5
gi

g0

xt 1 ut

with xt andut independent+ That this is possible follows from the bivariate nor-
mality of xt2i andxt +

NOTE

1+ An excellent solution has been independently proposed by the S+ Anatolyev, the poser of the
problem+

REFERENCE

Breusch, T+, H+ Qian, P+ Schmidt, & D +Wyhowski~1999! Redundancy of moment conditions+ Jour-
nal of Econometrics91, 89–111+
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03.1.2 Redundancy of Lagged Regressors in a Conditionally
Heteroskedastic Time Series Regression—Solution

Marine Carrasco
University of Rochester

A solution to the problem is to calculate the greatest lower bound for the
asymptotic variance of GMM estimators based on moment functionh~i ;b! 5
~yt 2 bxt !xt2i , i 5 0,1,2, + + + + To do so, we apply Hansen~1985!+ In the sequel,
we will denoteh~i ! the moment functionsh~i ;b0!+ Let L2~h! be the linear space
spanned by$h~i ! : i 5 0,1, + + + %; it is made of elementsG 5 (i50

` ai h~i ! for any
realai + Note that$h~i ! : i 5 0,1, + + + % are martingale difference sequences+ More-
over, they are linearly independent and in that sense are complete inL2~h!+

We are looking for the solution of equation~4+8! of Hansen~1985!+ That is,
we are looking for the elementG in L2~h! ~if it exists! such that

EF ]h

]b
~i !G 5 E @h~i !G# for all i 5 0,1, + + + + (1)

Or, equivalently, we are looking for the constantsaj solutions of

2E~xt xt2i ! 5 EFet xt2iS(
j50

`

aj et xt2jDG+ (2)

Note that the solution may not exist inL2~h!, but there is always a solution in
the closure ofL2~h!+ If a solution inL2~h! exists, it is unique because$h~i ! : i 5
0,1, + + + % is complete+ Let aj 5 0, for j 5 1,2, + + + ; equation~2! becomes

2E~xt xt2i ! 5 a0 E @et
2xt2i xt #

5 a0 E @~v 1 l~xt 2 m!2!xt2i xt #

5 a0~v 1 lm2!E~xt xt2i !

1 a0lE~xt
3xt2i !

2 a02lmE~xt
2xt2i !+

Using the fact thatht are i+i+d+ standard normal, we have

E~xt
2xt2i ! 5 EFS(

l

wl ht2lD2S(
j

wj ht2i2jDG5 0,

E~xt
3xt2i ! 5 EFH(

j

wj
3ht2j

3 1 3 (
kÞj

~wj
2ht2j

2 !~wkht2k!

1 6 (
kÞjÞl

~wj ht2j !~wkht2k!~wl ht2l !JS(
j

wj ht2i2jDG
5 3(

j

wj
3wj2i 1 3 (

kÞj

wj
2wkwk2i

5 3S(
j

wj
2DS(

k

wkwk2iD
5 3E~xt

2!E~xt xt2i !+
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Hence, Equation~2! becomes

2E~xt xt2i ! 5 a0 E~xt xt2i !~v 1 lm2 1 3lE~xt
2!!,

which is satisfied for

a0 5 2
1

v 1 lm2 1 3lE~xt
2!
+ (3)

Therefore, we found a solution to~1!, which is G0 5 a0xt et with a0 as in ~3!+
By Lemma 4+3 of Hansen~1985!, the greatest lower bound is given by

@E~G0
2!#21 5 @a0

2E~xt
2et

2!#21+

Note thata0 can be rewritten as

a0 5 2
E~xt

2!

E~xt
2et

2!
+

Therefore, the GMM efficiency bound is

E~xt
2et

2!

@E~xt
2!# 2 ,

which corresponds to the asymptotic variance of the OLS estimator+
We have shown that the OLS estimator is not only as efficient as any GMM

estimator that uses an arbitrary fixed number of instruments from$xt , xt21, + + + %
but also as efficient as any GMM estimator that uses an infinity of instruments
from $xt , xt21, + + + %+

REFERENCES
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