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Extension of the Prandtl–Batchelor theorem
to three-dimensional flows slowly varying
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According to the Prandtl–Batchelor theorem for a steady two-dimensional flow with
closed streamlines in the inviscid limit the vorticity becomes constant in the region
of closed streamlines. This is not true for three-dimensional flows. However, if the
variation of the flow field along one direction is slow then it is possible to expand
the solution in terms of a small parameter characterizing the rate of variation of the
flow field in that direction. Then in the leading-order approximation the projections
of the streamlines onto planes perpendicular to that direction can be closed. Under
these circumstances the extension of the Prandtl–Batchelor theorem is obtained. The
resulting equations turned out to be a three-dimensional analogue of the equations
of the quasi-cylindrical approximation.

1. Introduction
It is well known that two-dimensional Euler equations reduce (by introducing the

streamfunction ψ) to the Poisson equation with the vorticity depending only on ψ

as the source term. When solving Euler equations in a domain containing regions
of closed streamlines, the solution possesses a degree of non-uniqueness. This non-
uniqueness is due to the fact that the boundary conditions imposed at infinity do
not determine the vorticity on the streamlines that do not originate at infinity, as
it is the case in the region of closed streamlines. However, if viscous effects are
considered, this problem is overcome. Prandtl (1905) noticed and Batchelor (1956)
proved that as viscosity tends to zero, the vorticity tends to a constant value in regions
of closed streamlines. Batchelor (1956) also extended this analysis to axisymmetric
flows, and established the value of the constant vorticity for the case of a boundary
with circular geometry. The well-known Prandtl–Batchelor theorem relies on the flow
having closed streamlines, a requirement that a general recirculating three-dimensional
flow at large Reynolds number does not necessarily possess. Hence extending the
Prandtl–Batchelor theory to the three-dimensional case is difficult. Only when certain
symmetries are imposed may the closed streamline theory still be applicable. For
example, by assuming that the velocity field is independent of the axial direction
z and imposing a constant axial pressure gradient, Blennerhassett (1979) obtained
an integral condition that the axial velocity satisfies. Grimshaw (1968) considered a
three-dimensional flow with nested closed stream surfaces and derived an integral
condition for the vorticity under such assumption.
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Childress, Landman & Strauss (1989), extended the Prandtl–Batchelor results to
flows with helical symmetry, recovering as a particular case Blennerhassett’s results.
More recently Mezic (2002) extended the Prandtl–Batchelor theory to steady three-
dimensional flows in a bounded domain in the case when the streamlines do not
cross the boundary domain. By time averaging the Navier–Stokes equations along the
path of a material particle he obtained two conditions that the velocity and vorticity
vector satisfy. These conditions reduce to those of the Prandtl–Batchelor theorem
when assuming closed paths.

Concerning two-dimensional flows, the Prandtl–Batchelor theory was extended to
compressible flows by Neiland (1970) and Neiland & Sychev (1970), to temperature
field by Chernyshenko (1983a), to spatially periodic flows by Chernyshenko (1983b)
and to stratified flows by Kamachi, Saitou & Honji (1985). The work of Buldakov,
Chernyshenko & Ruban (2000) on flows with suction should especially be mentioned
here as it considered a case of non-closed streamlines. This work used asymptotic
techniques and expanded the velocity field in terms of a small parameter so that the
leading-term flow pattern contained closed streamlines. Choosing these trajectories as
the integration contour made it possible to calculate the vorticity distribution.

The purpose of this paper is to extend the Prandtl–Batchelor theory to three-
dimensional flows slowly varying in one direction. This case possesses a degree of
non-uniqueness in exactly the same way as the two-dimensional Euler equations do in
regions with closed streamlines. Thus the extension of the Prandtl–Batchelor theorem
provides extra information in order to reduce the degree of uncertainty in the velocity
distribution. While taking into account three-dimensionality in a conveniently compact
way, this extension turned out to be an analogue of the quasi-cylindrical equations
used for describing behaviour of streamwise vortices, rotating jets, vortex-breakdown
phenomenon and some other problems. Hence, the equations obtained below might
be used for studying similar phenomena in non-axisymmetric cases, like, for example,
a streamwise vortex in the vicinity of a wall, as well as for problems involving flows
in which slow variation in one direction is due to the geometry of the boundary.

2. Problem formulation
While the theorem we are going to derive is general, for the sake of clarity we

will derive it in the context of the following boundary-value problem. Consider
the steady incompressible Navier–Stokes equations in Cartesian coordinates (xyz)
under the transformation z̃ = εz for the velocity u = (u, v, w) = u(x, y, z̃) and pressure
p = p(x, y, z̃):

u
∂u

∂x
+ v

∂u

∂y
+ εw

∂u

∂z̃
+

∂p

∂x
=

1

Re

(
∂2u

∂x2
+

∂2u

∂y2
+ ε2 ∂2u

∂z̃2

)
,

u
∂v

∂x
+ v

∂v

∂y
+ εw

∂v

∂z̃
+

∂p

∂y
=

1

Re

(
∂2v

∂x2
+

∂2v

∂y2
+ ε2 ∂2v

∂z̃2

)
,

u
∂w

∂x
+ v

∂w

∂y
+ εw

∂w

∂z̃
+ ε

∂p

∂z̃
=

1

Re

(
∂2w

∂x2
+

∂2w

∂y2
+ ε2 ∂2w

∂z̃2

)
,

∂u

∂x
+

∂v

∂y
+ ε

∂w

∂z̃
= 0, u|σ = uw(x, y, z̃),

∫
Smax

w dS = q,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.1)

where u, v, w are the Cartesian velocity components, Re is the Reynolds number,
q is the flow rate and σ is the flow domain boundary defined by f (x, y, εz) = 0.

System (2.1) is made dimensionless by scaling all variables with the characteristic
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q

zuwall

f (x, y, εz) = 0

Figure 1. Flow domain f (x, y, εz) = 0.

values for the transverse flow, so that the defined Reynolds number depends on the
characteristic transverse velocity and on the characteristic transverse length that is
the characteristic scales for the motion in the plane z̃ =constant. We assume that the
boundary continues infinitely in the z direction, and that the domain has a cross-
section Smax that is closed in planes z̃ = constant and varying with z̃ (see figure 1).
The boundary is implied to be impermeable, but a non-zero (in general) tangential
velocity uw is imposed on it. The problem is to derive the closed set of governing
equations and boundary conditions for the flow in the limit Re → ∞, ε → 0, assuming
that in this limit the in-plane (plane perpendicular to z-axis) components of the flow
velocity form only one nested set of closed contours which are the projections of the
limiting streamlines onto that plane.

This problem is non-trivial for the following reason. As Re → ∞ and ε → 0 with z̃

fixed equations (2.1) tend to the two-dimensional Euler equations with three velocity
components, which can be reduced to

∇2
(2)ψ + Ω(ψ, z̃) = 0, H ′

ψ + Ω − WW ′
ψ = 0,

ψ = ψw(z̃) on f (x, y, z̃) = 0,

∫
Smax

W dS = q,

⎫⎬⎭ (2.2)

where ω = ∂v/∂x − ∂u/∂y is the vorticity, Ω(ψ, z̃) ≡ lim
ε→0,Re→∞ ω, W (ψ, z̃) ≡

lim
ε→0,Re→∞ w and H ≡ u · u/2 + p are the limiting values of the axial vorticity, axial

velocity and Bernoulli function respectively, while ψ(x, y, z̃) is the streamfunction
defined by u = ∂ψ/∂y and v = −∂ψ/∂x. Appropriate boundary conditions are also
included. Observe the notation ∇(2) = (∂/∂x, ∂/∂y, 0) whereas the prime and subscript
ψ denotes differentiation with respect to the streamfunction at constant z̃. Clearly, the
solution of (2.2) (which represents a three-dimensional inviscid flow slowly varying
in the z direction) is not unique, since W and Ω are arbitrary functions of ψ for
each z̃ = constant. Since we assume that the contours ψ = constant, z̃ = constant are
closed, Ω(ψ, z̃) and W (ψ, z̃) cannot be found from boundary conditions. Therefore
the problem is to find extra conditions for W and Ω that remain valid in the limit,
hence obtaining extra information that determins the velocity field of the Euler flow
in each plane z̃ = constant.

3. Solution by the Prandtl–Batchelor method
3.1. Derivation of extra conditions for W and Ω

In general, the extra conditions required here can be obtained as solvability conditions
for higher-order terms of the expansion of the solution. While we checked that this
approach would give the same result, its rigorous presentation would be very involved,
since, due to the formation of a boundary layer near the domain boundary, the higher-
order term in question is the third term of the expansion. Instead, we will follow the
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y

x

ψ(x, y, z~ = constant) = ξ

ψ(x, y, z~) = ξ
A(ξ, z~)

z~

Figure 2. Surface generated by the streamfunction ψ and the cross-section area A.

idea of Batchelor, and derive an integral condition (that is a condition on an integral
of the solution) that the solution satisfies at arbitrary Re and ε and that remains
non-trivial in the limit.

Introducing vorticity ω = (ζ, χ, ω) and denoting εRe = k one obtains from (2.1) the
equations for axial components of velocity and vorticity which can be written in a
conservative form as

∇(2) · u(2) + ε
∂w

∂z̃
= 0, (3.1)

∇(2) ·
(

u(2)ω − ω(2)w − ε

k
∇(2)ω

)
− ε3

k

∂2ω

∂z̃2
= 0, (3.2)

∇(2) ·
(
wu(2) − ε

k
∇(2)w

)
+ ε

∂w2

∂z̃
= −ε

∂p

∂z̃
+

ε3

k

∂2w

∂z̃2
. (3.3)

Here, a subscript (2) denotes a projection on the plane z̃ = constant, so that
X (2) = (X1, X2, 0). We will now assume that Re → ∞ and ε → 0 in such a way
that k = constant. In this case viscous effects and three-dimensional effects turn out
to be of the same order, thus resulting in the most general (distinguished) limit. The
form of the above equations suggests the use of Green’s theorem. For any vector F(2)

it states that∫
S

∇(2) · F(2) dS =
∫

C
F(2) · n̂ ds, where C is an oriented closed contour with external

normal n̂, S is the region enclosed by C, and s is the arclength. Consider a closed
contour C located in the plane z̃ = constant. Applying Green’s theorem to (3.2) and
(3.3) and dividing by ε we obtain the integral conditions:∫

C

(
u(2)ω − ω(2)w

ε
− 1

k
∇(2)ω

)
· n̂ ds = O(ε2), (3.4)∫

C

(
wu(2)

ε
− 1

k
∇(2)w

)
· n̂ ds = −

∫
S

∂

∂z̃

(
p + w2

)
dS + O(ε2). (3.5)

We now choose the contour C to coincide with an (assumed closed) streamline of
the in-plane part of the leading-order term of the solution. This streamline lies in the
surface ψ(x, y, z̃) = ξ, ξ = constant, and encloses region S in the plane z̃ = constant,
the area of which will be denoted A (see figure 2). As discussed in § 2, as ε → 0 the
axial vorticity and velocity tend to Ω = Ω(ψ, z̃) and W = W (ψ, z̃). Hence, from (3.4)
it follows that

lim
ε→0

∫
C

u(2)ω

ε
· n̂ ds = Ω lim

ε→0

(
1

ε

∫
C

u(2) · n̂ ds

)
= −Ω

∫
S

∂W

∂z̃
dS, (3.6)
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ψ(x, y, z~) = ξ

h dS

ds

ψ(x, y, z~ + �z~) = ξ

Figure 3. Superposition of the contours ψ(x, y, z̃ + 
z̃) = ξ and ψ(x, y, z̃) = ξ separated by
the perpendicular distance h.

where we factored Ω from the integral since it is constant along the contour of
integration and used continuity equation in the form

∫
C

u(2) · n̂ ds = −ε
∫

S
∂w/∂z̃ dS.

Similarly,

lim
ε→0

∫
C

ω(2)w

ε
· n̂ ds = W lim

ε→0

(
1

ε

∫
C

ω(2) · n̂ ds

)
= −W

∫
S

∂Ω

∂z̃
dS, (3.7)

where the solenoidal property of the vorticity was used in the form∫
C

ω(2) · n̂ ds = −ε
∫

S
∂ω/∂z̃ dS. Finally,

lim
ε→0

∫
C

∇(2)ω · n̂ ds =

∫
C

∇(2)Ω · n̂ ds = Ω ′
ξ

∫
C

∇(2)ψ · n̂ ds = −Ω ′
ξΓ, (3.8)

where the relation ∇(2)Ω = Ω ′
ψ∇(2)ψ , the fact that Ω ′

ψ can be factored out of the

integral, and the definition of circulation Γ = −
∫

C
∇(2)ψ · n̂ ds were employed. Note

that Ω ′
ψ represents the partial derivative of Ω(ψ, z̃) with respect to ψ at constant z̃,

whereas Ω ′
ξ denotes the corresponding derivative evaluated at ψ = ξ. Results similar

to (3.6) and (3.8) can also be obtained for (3.5). Thus by using formulas (3.6)–(3.8)
and similar results for (3.5) one may conclude that as ε → 0, k = constant equations
(3.4) and (3.5) tend to

−Ω

∫
S

∂W

∂z̃
dS + W

∫
S

∂Ω

∂z̃
dS +

1

k
Ω ′

ξΓ = 0, (3.9)

W

∫
S

∂W

∂z̃
dS − 1

k
W ′

ξΓ =

∫
S

∂p

∂z̃
dS +

∫
S

∂W 2

∂z̃
dS (3.10)

with Γ =
∫

S
Ω dS. Relationships (3.9) and (3.10) are the extra conditions which W

and Ω should satisfy. Note that for a purely two-dimensional flow (3.9) reduces to
the well-known Prandtl–Batchelor theorem stating that Ω ′

ξ =0.

3.2. Introduction of the Bernoulli function H

It is convenient to introduce the Bernoulli function H into (3.10) in order to reduce
the number of dependent variables. Consider the infinitesimal surface element dS =
h(s) ds (figure 3), where s is the arclength and h(s) is the contour displacement from
ψ = ξ to ψ = ξ +
ξ , h ≈ 
ξ/(∂ψ/∂n) where ∇(2)ψ · n̂ ≡ ∂ψ/∂n. Then, substituting the
Bernoulli function H = u2/2 + p + W 2/2, u = |u(2)| into (3.10) and differentiating the
resulting equation with respect to ξ one obtains

W ′
ξ

∫
S

∂W

∂z̃
dS =

∫
C

∂H

∂z̃

ds

∂ψ/∂n
±

∫
C

∂u

∂z̃
ds +

1

k

[
W ′

ξΓ
]′
ξ
,
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where signs ± correspond to counterclockwise and clockwise rotation of the flow,
respectively. Applying Stokes theorem to ±

∫
C
(∂u/∂z̃) ds, the latter equation can be

rewritten as

W
′

ξ

∫
S

∂W

∂z̃
dS −

∫
S

∂Ω

∂z̃
dS =

∫
C

∂H

∂z̃

ds

∂ψ/∂n
+

1

k

[
W ′

ξΓ
]′
ξ
. (3.11)

3.3. Some useful relations involving the cross-section area A

In § 3, A was defined as the area of the cross-section that is enclosed by the contour
ψ = ξ, z̃ = constant, i.e. A(ξ, z̃) =

∫
S(ξ,̃z)

dS. Using this function, let us calculate the

partial derivative of A with respect to ξ at constant z̃. From the definition of derivative,
A′

ξ = lim
ξ→0(1/
ξ )
∫

S(ξ+
ξ,̃z)−S(ξ,̃z)
dS. In order to find this limit we substitute the

infinitesimal surface element as dS = h(s) ds, h= 
ξ/(∂ψ/∂n) and take the limit. This
reduces the area integral to the integral over a curve:

A′
ξ =

∫
C

ds

∂ψ/∂n
. (3.12)

It is also useful to calculate the derivative of A with respect to z̃ at constant ξ ,
namely A′

z̃ = lim
z̃→0(1/
z̃)
∫

S(ξ,̃z+
z̃)−S(ξ,̃z)
dS. Figure 3 shows the superimposed areas

A(ξ, z̃+
z̃) and A(ξ, z̃) enclosed by the contours ψ(x, y, z̃+
z̃) = ξ and ψ(x, y, z̃) = ξ ,
respectively. Using Taylor series ψ(x, y, z̃ + 
z̃) = ξ may be approximately replaced
by ψ(x, y, z̃) + 
z̃∂ψ/∂z̃ = ξ . Finally, considering that the surface element between
these two contours is dS = h(s) ds, and noticing that h(s) from the inner contour to
the outer contour is given by h = −(
z̃∂ψ/∂z̃)/(∂ψ/∂n), we obtain after taking the
limit

A′
z̃ = −

∫
C

∂ψ/∂z̃

∂ψ/∂n
ds. (3.13)

3.4. Local conditions

The extra conditions (3.9) and (3.11) obtained so far are non-local in ξ in the sense
that they contain surface integrals of the type

∫
S
∂φ(ψ, z̃)/∂z̃ dS. With the aim of

making them local, we introduce two new quantities:

U (ξ, z̃) = −
∫

S

∂W

∂z̃
dS, G(ξ, z̃) = −

∫
S

∂Ω

∂z̃
dS. (3.14)

Differentiating these relations with respect to ξ while keeping z̃ constant and taking
into account that ∂φ(ψ, z̃)/∂z̃|x,y = φ

′
ψ∂ψ/∂z̃ + φ′

z̃, reduces (3.14) to

U ′
ξ = W

′

ξA
′
z̃ − W ′

z̃A
′
ξ , G′

ξ = Ω
′

ξA
′
z̃ − Ω ′

z̃A
′
ξ . (3.15)

Once U and G have been introduced, (3.9) and (3.11) read

ΩU − WG = − (1/k) Ω ′
ξΓ, (3.16)

−W
′

ξU + G = −H
′

ξA
′
z̃ + H ′

z̃A
′
ξ + (1/k)

[
W ′

ξΓ
]′
ξ
. (3.17)

Observe that (3.17) reduces to Blennerhasset’s result when the Bernoulli function H

is linearly dependent on the axial z̃ direction (Blennerhassett 1979). Finally, if we
apply the change of variables (ξ, z̃) → (A, z̃) to (3.15)–(3.17), these equations become,
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respectively,

U ′
A + W ′

z̃
= 0, G′

A + Ω ′
z̃
= 0, (3.18)

ΩU − WG = − (1/k) Ω ′
AA′

ξΓ, (3.19)

−W ′
AU + G/A′

ξ − H ′
z̃
= (1/k)

[
W ′

AA′
ξΓ

]′
A

. (3.20)

It is possible to formulate certain boundary conditions for some of the dependent
variables in order to simplify (3.18)–(3.20). Functions U (A, z̃) and G(A, z̃) may be
interpreted as fluxes through the closed contour C: ψ = ξ, z̃ =constant. Consequently
for a null contour or null area A, these fluxes must be zero: U (0, z̃) = G(0, z̃) = 0.
The same argument applies to Γ, which depends on the contour of integration.
Hence, from Γ (0, z̃) = 0 it follows that Γ (0, z̃)′

z̃ = 0. From the definition of Γ, it
follows that Γ ′

A − Ω = 0. This equation combined with G′
A + Ω ′

z̃
= 0 may be rewritten

as G =φ(z̃) − Γ ′
z̃ from which we obtain that φ (̃z) = 0 in order to satisfy the regular

boundary conditions. With this result, G can be related to Γ as G = −Γ ′
z̃ . Substituting

the latter result into (3.19)–(3.20) and considering (2.2), a closed system for the
dependent variables W, U, Γ ,H and Λ in the coordinates (A,̃z) and the streamfunction
ψ may be formulated as

U ′
A + W ′

z̃ = 0, (3.21)

H̃ ′
A − (Γ/AΛ) Γ ′

A = 0, (3.22)

UΓ ′
A + WΓ ′

z̃ = (AΛ/k) Γ ′′
AA, (3.23)

UW ′
A + WW ′

z̃ = −H̃ ′
z̃ + (Γ/AΛ) Γ ′

z̃ + (1/k)
(
AΛW ′

A

)′
A

, (3.24)

∇2
(2)ψ(x, y, z̃) = −Γ ′

A, (3.25)

Λ = − (Γ/A)

∮
ψ=ξ

(∂ψ/∂n)−1 ds, (3.26)

A(ξ, z̃) =

∫
ψ(x,y,̃z)<ξ

dx dy, (3.27)

where H̃ = H − W 2/2. System (3.21)–(3.27) is the main result of the present study.

3.5. Discussion

In the axisymmetric case, that is when the contours ψ = constant are concentric circles
r = constant, (3.26) and (3.27) reduces to Λ = 4π, A= πr2 and (3.21)–(3.24) reduces
to the well-known quasi-cylindrical approximation equations (Revuelta, Sanchez &
Linan 2004). In the general case, (3.21)–(3.24) is coupled to the rest of the system
only via Λ(A, z̃). As it can easily be seen, the deviation of Λ from 4π is quadratic
in the magnitude of the deviation of the shape of the contours ψ = constant from
circles, provided that the shape deviation is sufficiently smooth. Hence, in many cases
this coupling can be expected to be weak. Accordingly, one can expect a parabolic
behaviour of the solutions of (3.21)–(3.24) similar to the behaviour of the quasi-
cylindrical approximation equations. This also suggests that (3.21)–(3.24) requires
regularity conditions U = Γ = 0, ∂W/∂A< ∞ at A= 0, initial conditions of the form
W = f (A), Γ = g(A) at some z̃ = z̃0, and boundary conditions for U, Γ, and W at
the boundary A= Amax (z̃) of the flow domain.

On the other hand, with Γ given as a function of A, (3.25) is a Poisson equation
with a nonlinear source term, and, hence, with a Dirichlet boundary condition ψ =
constant at the outermost closed contour it can be expected to be well posed. Hence,
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with these boundary conditions the whole system (3.21)–(3.27) is a well-posed problem.
Note, however, that we assume W > 0 everywhere. If this is not true, one can expect
singularities, as it is usual for equations of boundary-layer type.

The system obtained above differs from the original Prandtl–Batchelor system
because in our case in the bulk of the flow the three-dimensional effects are of
the same order of magnitude as the viscous effects determining the distribution
of vorticity. In the vicinity of the outermost closed contour one should expect
an appearance of a boundary layer, in which the viscous effects are much more
pronounced. As a result (easily verifiable by a standard boundary-layer change of
variables) the boundary-layer equations turn out to be two-dimensional. Hence, many
well-known results about such layers apply Batchelor (1956), Squire (1956) and Wood
(1957) (see also Bunyakin, Chernyshenko & Stepanov 1988 for the latest results and
further references). In general, the requirement of the existence of the solution in
the boundary layer surrounding the closed contour region provides the necessary
boundary conditions for Γ and W. We will demostrate this by deriving the boundary
condition for W at A= Amax in the particular case that will also be a part of the
illustrative example considered further, and because it appears that this particular
case, however trivial it is, was not considered before.

Consider a cylindrical pipe of non-circular cross-section. Let the pipe walls move
along the axial direction z̃ with a constant velocity ww = 1. Let also a transversal
velocity of the same order be imposed on the walls so that the present theory should
apply. In the boundary layer near the wall we introduce at z̃ = constant the arclength
along the wall and the normal distance to the wall multiplied by

√
Re as curvilinear

coordinates s and η, respectively. After the usual substitutions and taking the limit
we arrive at the boundary-layer equation

us∂w∗/∂s + uη∂w∗/∂η = ∂2w∗/∂η2, (3.28)

where us is the velocity component along s, uη is the
√

Re times velocity component
along η, and w∗ is the z̃ velocity component in the boundary-layer region. The
boundary conditions are w∗(s, 0, z̃) = 1 at the wall, periodicity in s, and matching
w∗ → W (Amax , z̃) as η → ∞. Multiplying (3.28) by w∗ − 1 and integrating over the
entire domain using continuity and the boundary, periodicity and matching conditions
and Green’s theorem gives

∫ ∞

0

∮ (
∂(w∗ − 1)

∂η

)2

ds dη = 0. (3.29)

Hence, w∗ = 1 everywhere in the boundary layer, and such a solution can satisfy the
matching condition only if W (Amax , z̃) = 1. This is the boundary condition for W in
(3.21)–(3.27) for the special case considered.

Let now the pipe cross-section be given by x2/a2 + y2/b2 = 1, and the boundary
condition on the transversal component of velocity is such that it is satisfied by the
velocity distribution with the streamfunction ψ0 = −Ω0(x

2/a2+y2/b2−1)/(2/a2+2/b2).
This streamfunction corresponds to a constant vorticity Ω0, and, together with W = 1
and Γ0 =Ω0A gives an exact solution to (3.21)–(3.27). This solution is independent
of z̃ and satisfies, of course, the Prandtl–Batchelor theorem. Let us now perturb
this solution in the inlet plane z̃ = 0, that is, prescribe there inlet conditions of the
form W (A, 0) = 1+ δf (A, 0), Γ (A, 0) = Ω0A+ δg(A, 0), where δ 
 1. We will seek the
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solution for the perturbations as functions of A and z̃:

U = δU1(A, z̃) + . . . , Γ = Γ0 + δΓ1(A, z̃) + . . . , W = 1 + δW1(A, z̃) + . . . ,

H̃ = H̃0 + δH̃1(A, z̃) + . . . , Λ = Λ0 + δΛ1(A, z̃) + . . . ,

ψ = ψ0(x, y) + δψ1(x, y, z̃) + . . . .

Substituting these expansions into (3.21)–(3.24), collecting terms of order δ and
assuming additionally that Ω0 
 1, one obtains the following linear system

(U1)
′
A + (W1)

′
z̃ = 0,

(
H̃1

)′
A

= 0, (Γ1)
′
z̃ = (Λ0/k)A(Γ1)

′′
AA,

(W1)
′
z̃ = −

(
H̃1

)′
z̃
+ (Λ0/k)

[
A(W1)

′
A

]′
A
,

}
(3.30)

Its solution should satisfy the inlet conditions W1 = f (A, 0), Γ1 = g(A, 0) at z̃ = 0,

the regularity conditions W1 = Γ1 = 0, ∂W1/∂A< ∞ at A= 0, and the boundary
conditions U1 = Γ1 =W1 = 0 at the wall A= Amax . The boundary condition for Γ1

follows directly from the results of Wood (1957). Note that the functions f (A, z̃)
and g(A, z̃) are implied to satisfy f (Amax , 0) = g(Amax , 0) = 0 in order to avoid the
appearance of additional distinguished limits. In the simple case considered the
equations for the functions of A became decoupled from the Poisson equation, from
which the solution inherits only the value of Λ0 = 2(1/a2 + 1/b2)πab. Moreover, the
equation for Γ1 is decoupled from the rest of the system. This allows to express the
solution as a sum of Bessel functions, in particular,

Γ1 =

∞∑
n=1

C1n

√
AJ1

(
2
√

kσn/Λ0

√
A

)
exp(−σnz̃), σn = Λ0µ

2
n/4kAmax ,

W1 =

∞∑
n=1

C2n

[
J0

(
2
√

kτn/Λ0

√
A

)
− J0

(
2
√

kτn/Λ0

√
Amax

)]
exp(−τnz̃),

where µn denotes the eigenvalue found from J1 (µn) = 0, C1n and C2n are constants
obtained from the initial conditions and τn are the eigenvalues that satisfy∫ Amax

0

[
J0

(
2
√

kτn/Λ0

√
A

)
− J0

(
2
√

kτn/Λ0

√
Amax

)]
dA = 0.

Eigenvalues µn and τn do not coincide, that is in this case the Γ1 decay rate differs
from the decay rate of U1 and W1. This is the result of our additional simplifying
assumption Ω0 
 1.

It is informative to compare this solution with the axisymmetric case a = b governed
by a quasi-cylindrical approximation equation. The only difference in (3.30) will be in
the value of Λ0, which in turn leads to a difference in the decay rates. One can see that
as the transversal motion makes the vorticty constant along the non-circular closed
contours, the rate of the diffusion of vorticity and axial velocity across closed contour
changes. This is the main of the new physical mechanisms described by the theory
developed in the present study. In the general case this process is further complicated
by the coupling of this effect with the shape of the closed contours ψ = constant,
governed by the Poisson equation, but this effect might be expected to be more of
quantitative than qualitative nature, at least in flows not deviating too far from the
axisymmentric case. It is also complicated by the coupling between Γ and U and W,

but this coupling also takes place in the quasi-cylindrical approximation.
In the case of a pipe of constant cross-section the parameter k is artificial, as there

is actually no scale for the variation of the solution along z̃ except the scale dictated
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by the viscosity. This would be different if the cross-section would vary along z̃. Then,
the case of large k would correspond to three-dimensional effects dominating over
viscosity, and the evolution of the flow parameters along z̃ would be governed purely
by inviscid dynamics. The case of small k corresponds to the viscosity dominating
over the three-dimensionality, and the Prandtl–Batchelor theorem would be recovered.

It remains to notice that the way Λ enters (3.21)–(3.24) makes it somewhat similar to
how a variable viscosity would enter the equations of quasi-cylindrical approximation.

4. Conclusions
The system of equations obtained in this work is an extension of the well-known

Prandtl–Batchelor theorem to the case when the flow parameters vary in one direction
at a rate inverserly proportional to the crossflow Reynolds number. This system is
similar to the well-known system of equations of a quasi-cylindrical approximation
coupled with a Poisson equation for a streamfunction. The coupling occurs via the
vorticity (or circulation), governed by the part of the system similar to the equations
of quasi-cylindrical approximation and entering the Poisson equation as a source
term, and via another function, determined from the solution of the Poisson equation
and entering the part of the system similar to the equations of quasi-cylindrical
approximation in a way somewhat similar to varying viscosity.

The similarity between the obtained system and the equations of quasi-cylindrical
approximation establishes a connection between two seemingly unrelated phenomena.

Finally, from the viewpoint of methodology the present work is a new confirmation
of the effectiveness of Batchelor’s approach to elimination of uncertainty in the main
term of an asymptotic expansion in cases similar to the Prandtl–Batchelor theorem.

The first author acknowledges the financial support from CONACYT and Imperial
College London, and is very grateful to Tomasa Aguilar-Sanchez.
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