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A drop of active matter
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We study theoretically the hydrodynamics of a fluid drop containing oriented filaments
endowed with active contractile or extensile stresses and placed on a solid surface.
The active stresses alter qualitatively the wetting properties of the drop, leading to
new spreading laws and novel static drop shapes. Candidate systems for testing our
predictions include cytoskeletal extracts with motors and ATP, suspensions of bacteria
or pulsatile cells, or fluids laden with artificial self-propelled colloids.
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1. Introduction and results
1.1. Background

The dynamics of suspensions of self-propelled particles is a subject of enduring
interest in fluid mechanics (Pedley & Kessler 1992; Ramachandran, Kumar &
Pagonabarraga 2006; Cisneros et al. 2007; Mehandia & Nott 2008; Hernandez-
Ortiz, Underhill & Graham 2009; Ishikawa 2009; Lauga & Powers 2009; Koch &
Subramanian 2011). One line of recent progress in this field has come through
the observation that ordered phases of active particles could be viewed as liquid
crystals with a key novel feature: the constituent particles are endowed with self-
generated ‘active stresses’ (Toner, Tu & Ramaswamy 2005; Liverpool & Marchetti
2006; Jülicher et al. 2007; Baskaran & Marchetti 2009; Joanny & Prost 2009; Menon
2010; Ramaswamy 2010). The resulting extension of liquid crystal hydrodynamics to
include self-propelling stresses, initially proposed as a coarse-grained description of
swimmers (Simha & Ramaswamy 2002), also emerged naturally in a theory of the
cytoskeleton as an active gel (Kruse et al. 2004). Within liquid-crystal hydrodynamics
one could imagine a wide variety of orientationally or translationally ordered states,
but most recent work has focused on the case of local uniaxial orientational order.
In such situations it is useful to distinguish active fluids as contractile or extensile,
according to whether the active stress generates flow inward or outward along the
local ordering axis. This classification corresponds to the puller–pusher classification
at the scale of a single swimming particle (see, e.g., Saintillan 2010). However, for
systems such as motor-filament extracts, where a pulling or pushing motif is not
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obvious at the scale of a single particle, the sign of the active stress at a coarse-grained
scale is best established by an independent measurement (Tanaka-Takiguchi et al.
2004). A further distinction is necessary, between polar states which break fore–aft
symmetry along the axis of orientation, and apolar states which are fore–aft symmetric.
Swimmers in a macroscopically coherent flock are in a state of polar order. However,
to leading order in inverse powers of distance from the particle, i.e. to force-dipole
order, the flow field generated by a general swimming particle is the same as that
produced by one that merely stirs its surroundings without propelling itself. The
distinction between ‘movers’ and ‘shakers’ (Hatwalne et al. 2004) lies in their near
field and is thus subdominant in a gradient expansion. When studying rheology (see,
e.g. Hatwalne et al. 2004; Liverpool & Marchetti 2006; Cates et al. 2008; Rafaı̈, Peyla
& Jibuti 2010; Saintillan 2010; Sokolov & Aranson 2010) and large-scale flow, it
is therefore a reasonable starting point to ignore the consequences of polar order in
active fluids. Accordingly our study in this paper is restricted to states with apolar
uniaxial orientational order. The effect of polarity on the instability of active fluids
(Giomi, Marchetti & Liverpool 2008), the consequences of bottom-heaviness and more
generally the interplay of swimming with gravity (Hill & Pedley 2005) all lie outside
the scope of this work.

Instability and self-generated flow are conspicuous features of active fluids. Indeed,
the idea of hydrodynamic instability in living matter, and even the term active stress,
goes back at least to the work of Finlayson & Scriven (1969). Their primary interest,
however, lay in cases in which the stress was built from tensorial combinations of
gradients of local scalars such as concentration and temperature. The present work,
and much recent work on flows in active matter, relies on the ordering of orientational
degrees of freedom to transmit the effects of local activity to large scales. A bulk
sample of active fluid or suspension in a state of uniaxial orientational order is under
macroscopic uniaxial compression or tension, and must therefore buckle along or
transverse to the axis. This is why the non-flowing state of a bulk active fluid, whether
extensile or contractile, is in general unstable (Simha & Ramaswamy 2002; Voituriez,
Joanny & Prost 2005) towards director distortion and flow without the assistance of
externally imposed pressure gradients.

Theoretical studies of active fluids in a thin-film geometry with one or more
free surfaces predict particularly striking effects for a reference state in which the
orientation field lies parallel to the film. Voituriez, Joanny & Prost (2006) consider a
freely suspended apolar film, ignore the displacements of the free surfaces, and predict
the spontaneous generation of topological defect arrays. Sankararaman & Ramaswamy
(2009) consider an active film spread on a solid surface, and show that the coupling
of polar orientational order to the tilt of the free surface of the film leads to growing
and propagating undulations. Both of these studies consider films unbounded in the
lateral plane. Finite drops of suspensions of self-propelled organisms have been studied
in theory and experiment by Bees et al. (2000, 2002), but the key ingredients in
those studies were cell division, the secretion of a wetting agent and concentration
dependence of the viscosity.

In this paper we examine theoretically the effect of self-propelling stresses on the
shape and the spreading behaviour of a finite drop of active fluid on a solid substrate,
under conditions of partial wetting with small equilibrium contact angle, and local
polarization anchored parallel to the surface of the drop. This boundary condition is
in contrast to the perpendicular alignment frequently encountered in the liquid-crystal
literature (see, e.g. Gupta & Abbott 1999; Yamaguchi & Sato 1996; DeGennes & Prost
1993). We consider separately the cases of contractile and extensile active stresses,
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h (x, t) p (x, t)

FIGURE 1. (Colour online available at journals.cambridge.org/flm) A drop characterized by
height and orientation fields h and p, the latter constrained to lie parallel to the bounding
surfaces. For the present apolar case, p and −p are equivalent, so we depict the orientation by
headless arrows. For clarity we have shown the filaments and the orientation field only near
the edge of the drop.

and study two situations: steady standing drops, with vanishing velocity field, and
spreading drops.

1.2. Summary of results
Here are our main results in brief. (i) The shape of the standing drop is determined
primarily by the interplay of active stresses σ0 and surface tension γ , with the liquid-
crystal elasticity of the ordered filaments playing a role near the contact line. The
stationary height profile h(x) as a function of the horizontal coordinate x in 1 + 1
dimensions can be obtained as the Euler–Lagrange equation for position h, as a
function of ‘time’ x, of a particle in an effective potential V(h) = −σ0(h ln h/h0 − h),
where h0 is a reference height. (ii) For a three-dimensional drop, the anchoring
conditions impose the existence of defects in the polarization field. We propose three
possible defect structures; both the final state of spreading and the spreading kinetics
depend on the precise nature of these defects. (iii) Extensile active stresses lead to
flat drops, with thickness varying as γ θ 2/σ0 where θ is the equilibrium contact angle.
(iv) The interplay between active and viscous stresses leads to anomalously rapid
spreading of the drop as a function of time t. In the simple case where the orientation
field has an aster-like defect line at the centre of the drop, the drop retains rotational
symmetry with diameter R ∼ (σ0Ω

2t/µ)1/6 where Ω and µ are its volume and shear
viscosity, respectively. For a 1 + 1-dimensional geometry, we predict a t1/4 growth law.
(v) For a vortex defect, in which the orientation axis points in the azimuthal direction,
spreading is arrested at long enough times, and the final height profile of the drop is a
non-monotone function of radius as shown in (2.17) and figure 5. For contractile active
stresses the drop is fatter than in the absence of activity (figure 4).

2. Detailed theory
We now describe our calculations in more detail. Consider as in figure 1 a drop with

a shape given by its thickness h(r⊥, t) in the vertical (z) direction as a function of
in-plane position r⊥ = (x, y) at time t and containing filaments with orientation field p.
The active character of the fluid endows the drop with an active contribution (Simha &
Ramaswamy 2002; Kruse et al. 2004) to the stress tensor of the medium:

σ a =−σ0pp. (2.1)

Negative and positive values of σ0 correspond to contractile and extensile active
stresses, respectively, and the magnitude of σ0 is proportional to the local number
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density of filaments c, which for simplicity we assume to be constant and uniform,
although interesting physical effects are likely to arise if the dynamics of c is taken
into account. The anchoring condition is such that there is no normal component of
the polarization at any bounding surface with which the suspension is in contact. This
boundary condition is motivated in part by observations (Kemkemer et al. 2000) on
thin films of amoeboid cells, in which the cells lie in the plane of the glass slide
on which they are spread and form nematic liquid-crystalline structures. Although we
use a vectorial orientation field, in this paper we only discuss apolar fluids where p
and −p are equivalent. This arises if the filaments lack a head–tail distinction, or are
ordered with axes parallel on average but without respecting the head–tail polarity. Our
aim is to obtain equations of motion for h and a z-averaged orientation p(r⊥, t), whose
static solutions yield the steady-state shape of the drop and whose dynamic scaling
properties lead to the spreading laws for the drop (Léger & Joanny 1992; DeGennes
1985). Our treatment is along the lines of BenAmar & Cummings (2001), taking into
account, as in Sankararaman & Ramaswamy (2009), the presence of active stresses but
ignoring the effects of polarity and applied to a drop rather than an unbounded film.

We solve for the hydrodynamic velocity field u = (u⊥, uz) inside the drop for a
given thickness profile, and obtain the equations of motion for h from the kinematic
boundary condition (Stone 2005) ḣ = uz − u⊥ · ∇⊥h connecting the thickness h to
the velocity field u evaluated at the free surface. The condition of incompressibility
∇ ·u= 0 turns the height dynamics into a local conservation law

∂th+∇⊥ ·
∫ h

0
u⊥ dz= 0 (2.2)

in the ⊥ plane. For simplicity, we only consider here the case where the equilibrium
contact angle of the drop θ is small. As appropriate for slow, small-scale thin-film
flows we obtain the thickness-averaged horizontal velocity in (2.2) in terms of p, c and
h by solving the steady Stokes equation which, in the lubrication approximation (Stone
2005) uz = 0, |∇⊥u| � |∂zu|, reads

µ∂2
z u⊥ −∇P+∇ · (σ a + σ e)= 0 (2.3)

where µ and P are the viscosity and pressure field of the fluid, σ e is the contribution
to the stress from the nematic elasticity of p (see, e.g., Leslie 1979; Chandrasekhar
1992; DeGennes & Prost 1993) and σ a is the active stress introduced above.

2.1. 1+ 1-dimensional treatment
It is instructive to solve the problem in a simple (1 + 1)-dimensional picture of h as
a function of horizontal position x and time t. We do this first, and later extend our
discussion to determine shape and spreading kinetics in the (2 + 1)-dimensional case.
As illustrated in figure 1, the z dependence of pz is determined by Frank elasticity
(DeGennes & Prost 1993) with boundary conditions pz = 0 at z = 0 and pz = ∂xh� 1
at the free surface z= h, so that (Sankararaman & Ramaswamy 2009)

pz = (z/h)∂xh. (2.4)

The z component of the equation of motion (2.3) reads, ignoring nematic elasticity,
−σ0∂xpz = ∂zP where P is the pressure. Expressing pz in terms of h via (2.4), using the
Laplace pressure boundary condition with surface tension γ , and solving for P we find
(Sankararaman & Ramaswamy 2009)

P= P0 − γ ∂2
x h+ Pa(z) (2.5)
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with Pa(z)=−(σ0/2)(z2−h2)(h′′/h−h′2/h2) where a prime denotes ∂x. In the following,
we ignore this active contribution to the pressure, which within the lubrication
approximation gives only a negligible contribution to the equation of motion below.

The equation of motion is obtained by integration of the x component of (2.3),
using (2.5), the active stress from (2.1) and including in the stress the contribution of
nematic elasticity with the orientation profile (2.4) and a single Frank constant K:

µū⊥ = x̂
h2

3

(
γ ∂3

x h− ∂x
δFel

δh
− σ0

h
∂xh

)
(2.6)

where ū⊥ is the inplane velocity averaged over the thickness of the film and
Fel = (K/2)

∫
dx (∂xh)

2/h is the nematic elastic free energy. Combining (2.6) with
the mass conservation (2.2), one obtains an independent equation for the height field h:

∂th+ 1
3µ
∇ ·

(
γ h3
∇∇2h− h3

∇
δFel

δh
− σ0h2

∇h

)
= 0, (2.7)

where the gradient is taken here in the x direction.
The effects of activity on spreading enter at the same order in gradients as those of

gravity, but with a different dependence on height, essentially because of the existence
of an intrinsic stress scale σ0. Indeed, the contribution of activity to (2.6) defines an
active velocity vact =−Mh∂xPact, with the hydrodynamic mobility Mh = h2/(3η) and an
active disjoining pressure

Pact = σ0 ln h/h0, (2.8)

where h0 is an arbitrary reference height.
The shape of the static drop configuration that results at the end of spreading is

particularly easy to understand in the 1+ 1-dimensional picture. In the static limit (2.6)
integrated once with respect to x yields

γ ∂2
x h− σ0 ln

h

h0
− δFel

δh
= constant= 0 (2.9)

where h0 is the asymptotic maximum height for an infinite drop. The integration
constant on the right-hand side, i.e. the negative of the pressure jump at the top of the
drop, has been taken to be zero, assuming a macroscopic flat drop. For a finite size
drop, this pressure is obtained from the volume conservation constraint. Multiplying by
∂xh and integrating once again with respect to x yields, after some algebra,

1
2

(
K

h
+ γ

)
(∂xh)

2−σ0

(
h ln

h

h0
− h

)
= constant= γ

2
θ 2, (2.10)

where θ is the Young contact angle that the drop would achieve in the absence of
activity. It can be seen as the effective contact angle made by the drop at the solid
surface, for heights approaching the value hK ∼ K/γ below which nematic elasticity
becomes important. Above this height we can neglect K/h, and (2.10) takes the form
of energy conservation for a particle of mass γ , position h(x) as a function of time x,
moving in a potential

V(h)=−σ0

(
h ln

h

h0
− h

)
, (2.11)

which vanishes at 0 and has a maximum at h0. The steep growth of V(h) from
h = 0 implies a very slow progress of the effective particle, which means the height
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changes very slowly with x for h > hK , i.e. a flat free surface. The maximum height
corresponds to the classical turning point for motion in the potential V(h) (see (2.11)),
∂xh= 0 at h= h0. From (2.10) this means

h0 = γ2
θ 2

σ0
. (2.12)

The drop is flat with a thickness h0 over most of its area. At its edge, the thickness
decays over a thickness ` ∼ h0/θ ∼ γ θ/σ0. The condition for the drop to be flat when
it reaches equilibrium is that its final radius R be much larger than the size ` of the
edge. For h→ 0 the shape of the spreading drop is driven by the Frank elasticity of
the polarization in (2.10):

K

2h
(∂xh)

2 ' γ
2
θ 2 (2.13)

so that h ∼ (γ θ 2/4K)x2, growing quadratically from zero near the left edge at which
we have taken x to be at 0, and similarly for the right edge. The resulting height
profile is sketched in figure 3.

The profile calculated and presented in (2.11)–(2.13) and figure 3 is consistent only
if the height of the drop h0 is larger than the thickness hK = K/γ below which
nematic elasticity becomes relevant. This holds true if θ 2 > σ0K/γ 2. If this condition
is not satisfied, the wetting properties of the drop are not dominated by the active
stress but by the nematic elasticity. This regime has been studied both experimentally
and theoretically by Poulard et al. (2006), and we do not consider it any further.
As mentioned in the introduction, a thin film of active fluid becomes unstable via
a Freedericksz-like instability and flows spontaneously (Voituriez et al. 2005) if its
thickness is larger than a critical thickness hc ∼ (K/σ0)

1/2. A non-flowing steady state
of a spread active drop can therefore exist only if its height h0 < hc. To observe the
effects we are discussing we must then have hK < hc, i.e. θ 4 < σ0K/γ 2. Note that this
condition is compatible with the condition that the wetting is dominated by the active
stresses only if σ0K/γ 2� 1. We assume that this condition is satisfied in the following
so that the thin film formed by the active drop does not show any Freedericksz
instability.

For a contractile drop, σ0 < 0, the situation is less illuminating. For h < hK the
height profile is as in the extensile case, namely, quadratic growth of the height,
as the active stress σ0 plays no role and the Frank energy dominates. Thereafter,
we repeat the analysis of motion in the effective potential V(h) (see (2.11)), which
now decreases with an infinite slope at h = 0, passes through a minimum at h0 and
increases thereafter. The height profile is thus higher and fatter than that of a sessile
drop in the absence of activity.

We now consider the spreading kinetics of a 1+ 1-dimensional active drop in its late
stages where its thickness is smaller than the critical thickness hc for the appearance of
spontaneous flow. The equation of motion for a spreading drop is given by (2.7) where
we neglect the nematic elasticity term that only plays a role at very small thicknesses.
This spreading equation can be discussed at the scaling level. Except for the very edge
of the drop, the surface tension term is small compared with the active stress term.
This leads to dh0/dt ∼ −σ0h3

0/R
2 where h0 is the maximum thickness at the centre

of the drop and R its radius. The two-dimensional volume of the drop Ω ∼ h0R is
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(c)

(a) (b)

FIGURE 2. Sketches of the three defect configurations of the nematic director field that we
consider: (a) the aster; (b) the vortex; and (c) the pair of half-defects.

conserved. We therefore obtain the spreading law

R(t)∼
(
σ0Ω

2t

µ

)1/4

. (2.14)

2.2. Three-dimensional treatment: topological defects
We now consider the real three-dimensional geometry and discuss the spreading
kinetics of an active drop. The anchoring conditions that we impose can be satisfied
only if there exist defects in the nematic polarization field (DeGennes & Prost 1993).
We consider three types of defects: an aster-like cylindrical wedge disclination located
at the centre of the drop with polarization pointing radially from the defect line;
a vortex-like wedge disclination located at the centre of the drop with polarization
aligned in concentric circles in the azimuthal direction around the defect line; and
two point-like half-defects located on the substrate on opposite sides of the drop
as shown in figure 2. The first two topologies are simpler because the active drop
remains axially symmetric but it is now well established that aster-like line defects
are unstable and degenerate into two point-like half-defects. If the two defects remain
on the vertical axis, the deformation of the polarization is virtually the same as that
obtained for the original line defect. It is more likely that the two point-like defects
migrate to opposite sides of the drop on the substrate which is our last topology.

For the aster-like line defect (figure 2a), the polarization is mostly radial with a
small component along the z direction. This is very similar to the 1 + 1 geometry
studied above and, if we ignore the core of the defect, the derivation of the equations
for the local thickness of the drop follows exactly the same lines. The final shape
of the drop is a circular pancake with a thickness given by (2.12). The equation
governing the thickness during spreading is still (2.7) and a scaling analysis imposing
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–20 –10 10 20
x

h

2

1

FIGURE 3. Height profile of a spread extensile drop, flat on top with a precursor region of
quadratic variation at the limbs, obtained from a numerical solution of (2.9) for a drop of
finite volume fixed by a pressure of 0.0001 in units of σ0.

–5 5
x

h

2

3

4

1

FIGURE 4. Height profile of a spread contractile drop, higher and with a smaller base than in
the extensile case (figure 3), obtained from a numerical solution of (2.9) with the sign of the
active stress reversed.

a constant volume of the drop Ω ∼ hR2 leads to the spreading law:

R(t)∼
(
σ0Ω

2t

µ

)1/6

. (2.15)

For a vortex-like line-defect (figure 2b), the polarization is always strictly azimuthal.
In polar coordinates (r, θ), it is always along the θ direction and the only non
vanishing component of the active stress is σ θθa =−σ0. The equation of motion in this
case written in polar coordinates is

µū⊥ = h2

3

(
γ∇∇2h+ σ0

r
r̂
)
= 0 (2.16)

where r̂ is the unit vector along r. The active stress appears here as similar to a
centrifugal force with an unusual r dependence ∼1/r instead of ∼r.
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r

h

–10 –5 5 10

0.05

0.10

0.15

FIGURE 5. The final shape, from (2.17), of an active drop in which the director field is in
the vortex configuration, oriented strictly in the azimuthal direction, with a singularity on a
vertical line segment at the centre of the drop.

The final stationary shape of the drop can be calculated explicitly by imposing a
vanishing velocity on (2.16):

h=−σ0R2

4γ
r2 log r/R− σ0

8γ
(R2 − r2)+ θ

2R
(R2 − r2), (2.17)

where R is the radius of the drop. This profile is shown in figure 5. The thickness
has a minimum at the centre of the drop where the polarization gradient is large. It
has a maximum at an intermediate radius r = R exp−(2γ θ/σ0R). There does not seem
to exist any simple scaling regime for the spreading kinetics of the drop in this case
except at early times when the active effects are negligible and the drop spreads as
a simple liquid drop R(t) ∼ t1/10. The study of the spreading kinetics would require a
numerical study of the spreading equations that we postpone for future work.

The third topology with opposite defects on the two sides of the drop, as in
figure 2(c), is more complex since in this case the drop is anisotropic and spreads
preferentially in the direction of the two defects and its radius in this direction Rx

is larger than its radius in the perpendicular direction along the planar substrate
Ry. As above, we suppose here that the polarization field follows adiabatically the
deformation of the drop and reaches rapidly a local equilibrium where the molecular
field conjugate to the polarization vanishes. When the anisotropy Rx/Ry is large, the
polarization can be estimated from nematic elasticity as px ' 1, py ' −xy/R2 and
pz = (z/h)∂xh over most of the volume of the drop. Inserting these results in the
expression of the active stress one derives a dynamic equation equivalent to (2.7).
Estimating the order of magnitude each term in this dynamic equation, we obtain
two scaling relations (dRx/dt)/Rx ∼ (dRy/dt)/Ry ∼ σ0h2/R2. Together with volume
conservation hR2 = constant, these equations do not suffice to obtain a growth law
for the spreading drop as they do not give information on the anisotropy: this would
require the knowledge of the prefactors of the scaling relations. Two possible limiting
cases are (i) finite, bounded anisotropy, where the active drop is characterized by a
single length scale given by (2.15) and (ii) infinite anisotropy, where the drop can be
considered as one-dimensional with a spreading law given by (2.14). Further progress
requires a numerical solution, which we do not attempt here.
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3. Summary and outlook
In closing, we summarize our approach and results, and offer a perspective on future

directions. From the point of view of fluid mechanics, the distinguishing feature of
suspensions of self-driven particles is the permanent uniaxial stress with which each
particle is endowed. Long-range orientational order organizes the individual active
stresses, transmitting their effect to macroscopic scales and leading to consequences
for large-scale fluid flow. The spreading of a liquid drop on a solid surface, driven
by gradients in the disjoining pressure, is a fundamental problem in fluid mechanics.
Active stresses provide a hitherto unexplored contribution to disjoining pressure. In
an active suspension with nematic liquid-crystalline order, the deviatoric active stress
is determined by the local nematic director which, in our treatment, is linked to the
shape of the drop through the requirement that there is no normal component of
the orientation field at any bounding surface with which the suspension is in contact.
Thus at the base of the drop the director is purely horizontal, while variations in
the free-surface height tilt the orientation. The resulting inhomogeneities in the active
stress generate flows that drive the spreading process with novel growth laws and
drop shapes. The closed geometry of a drop constrains the director field, inducing
topological defects. The interplay of spreading and defects has not been studied even
in conventional equilibrium nematics, as far as we know. We have studied 1 + 1-
and 2 + 1-dimensional geometries. In a 1 + 1-dimensional geometry, corresponding to
a distended drop, we are able to predict an anomalously flat final shape and a t1/4

spreading law for extensile active stresses. For a full 2 + 1-dimensional case, scaling
alone offers only partial information for the case where a pair of half-defects are
situated at the ends of the drop. For the case of a single defect line at centre, we find a
t1/6 spreading law for a radial ‘aster’, and arrested spreading with a height profile with
a non-monotone dependence for a vortex configuration, in which the director is strictly
azimuthal. The complete 2+1-dimensional spreading law requires a numerical solution
of the active thin-film equations.

Before we end, let us note some of the simplifying assumptions we have made,
some of which need to be relaxed in a more complete treatment. First is the
approximation of a small contact angle. For our boundary condition, namely, filaments
parallel to the bounding surface with which they are in contact, the effects of activity
on spreading are strongest in the limit of a small contact angle. A contact angle
close to 90◦ would mean that filaments lying along the free surface but close to
the base would push vertically rather than laterally, suppressing the contribution of
active stresses. Elastic anisotropy, which we have ignored, should lead to spiral
defect configurations which should rotate spontaneously (Kruse et al. 2004). If we
take into account the polar nature of the order parameter, even a pure vortex
should rotate, and a macroscopically polar active drop should translate. We have
not examined so far the stability of active drops with respect to azimuthally varying
perturbations. Finally, in vivo realizations of active drops in general have complicating
features that will need to be suppressed experimentally or, eventually, included in a
comprehensive theoretical analysis. For example, cell division will modify spreading
in bacterial suspensions (Bees et al. 2000, 2002). From a long-term perspective,
our work is of relevance to an understanding of the spreading of a single cell.
However, in that setting, treadmilling (Verkhovsky, Svitkina & Borisy 1999), that
is, the polymerization and depolymerization of actin filaments, will play an important
role. Notwithstanding these limitations, we look forward to experimental tests of our
predictions, on microorganism suspensions, extracts or artificial self-propelled systems
(see, e.g. Paxton et al. 2004; Howse et al. 2007; Bartolo & Lauga 2010).
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We close by expressing our pleasure at being able to contribute to a field which Tim
Pedley has defined, led and illuminated.
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