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Abstract. Let f : M→ R be a Morse–Bott function on a compact smooth finite-
dimensional manifold M . The polynomial Morse inequalities and an explicit perturbation
of f defined using Morse functions f j on the critical submanifolds C j of f show
immediately that M Bt ( f )= Pt (M)+ (1+ t)R(t), where M Bt ( f ) is the Morse–Bott
polynomial of f and Pt (M) is the Poincaré polynomial of M . We prove that R(t) is a
polynomial with non-negative integer coefficients by showing that the number of gradient
flow lines of the perturbation of f between two critical points p, q ∈ C j of relative index
one coincides with the number of gradient flow lines between p and q of the Morse
function f j . This leads to a relationship between the kernels of the Morse–Smale–
Witten boundary operators associated to the Morse functions f j and the perturbation of
f . This method works when M and all the critical submanifolds are oriented or when Z2

coefficients are used.

1. Introduction
Let h : M→ R be a Morse function on a compact smooth manifold of dimension m. The
Morse inequalities say that

νn − νn−1 + · · · + (−1)nν0 ≥ bn − bn−1 + · · · + (−1)nb0

for all n ∈ {0, . . . , m} (with equality holding when n = m) where, for each k, νk is the
number of critical points of h of index k and bk is the kth Betti number of M . These
inequalities follow from the fact that the Morse function h determines a CW-complex X
whose cellular homology is isomorphic to the singular homology of M (the k-cells of X
are in bijective correspondence with the critical points of index k).
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In [14], Witten introduced the idea that the Morse inequalities can be studied by
deforming the de Rham differential on differential forms by the differential of the Morse
function. This led him to consider a chain complex whose chains are generated by the
critical points of the Morse function and whose differential is defined by counting the
gradient flow lines between critical points of relative index one (the so-called Morse–
Smale–Witten chain complex); see also [9]. The homology of this complex is called the
‘Morse homology’, and the Morse homology theorem asserts that the Morse homology is
isomorphic to the singular homology (see [3] and [13]). For an excellent exposition of
Witten’s ideas, see [11].

Bismut [6] and Helffer and Sjöstrand [10] have given rigorous mathematical derivations
of Witten’s analytical ideas. In this way, they were able to prove the Morse inequalities and
the Morse–Bott inequalities, which relate the Betti numbers of M and the Betti numbers
of the critical submanifolds of a Morse–Bott function on M , without using the Morse
homology theorem.

In this paper, we present a proof of the Morse–Bott inequalities that uses ideas from
dynamical systems. The proof makes use of the Morse inequalities, the Morse homology
theorem, and an explicit perturbation technique that produces a Morse–Smale function h
which is arbitrarily close to a given Morse–Bott function f [1, 2]. In outline, the
perturbation h of f is constructed as follows. We first fix a Riemannian metric on M
and apply the Kupka–Smale theorem to choose Morse–Smale functions f j on the critical
submanifolds C j for j = 1, . . . , l. Next, we extend the Morse–Smale functions f j to
tubular neighborhoods T j of the critical submanifolds and define

h = f + ε

( l∑
j=1

ρ j f j

)
,

where ρ j is a bump function on T j and ε > 0. We then apply a well-known folk theorem
(whose proof can be found in [1, §2.12]) which says that we can perturb the Riemannian
metric on M outside of the union of the tubular neighborhoods T j , j = 1, . . . , l, so that h
satisfies the Morse–Smale transversality condition with respect to the perturbed metric.

Once we know that h and f j ( j = 1, . . . , l) satisfy the Morse–Smale transversality
condition, we can compare the Morse–Smale–Witten chain complex of h to the Morse–
Smale–Witten chain complexes of f j , for j = 1, . . . , l. This allows us to show that the
coefficients of the polynomial R(t) in Theorem 8 are non-negative. The proof works when
the manifold M and all the critical submanifolds are oriented or when Z2 coefficients
are used.

2. The Morse–Smale–Witten chain complex
In this section we briefly recall the construction of the Morse–Smale–Witten chain complex
and the Morse homology theorem. For more details, see [3].

Let Cr( f )= {p ∈ M | d f p = 0} denote the set of critical points of a smooth function
f : M→ R on a smooth m-dimensional manifold M . A critical point p ∈ Cr( f ) is said to
be non-degenerate if and only if the Hessian Hp( f ) is non-degenerate. The index λp of
a non-degenerate critical point p is the dimension of the subspace of Tp M where Hp( f )
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is negative definite. If all the critical points of f are non-degenerate, then f is called a
Morse function.

If f : M→ R is a Morse function on a finite-dimensional compact smooth Riemannian
manifold (M, g), then the stable manifold W s(p) and the unstable manifold W u(p) of a
critical point p ∈ Cr( f ) are defined by

W s(p)=

{
x ∈ M

∣∣∣∣ lim
t→∞

ϕt (x)= p

}
,

W u(p)=

{
x ∈ M

∣∣∣∣ lim
t→−∞

ϕt (x)= p

}
,

where ϕt is the one-parameter group of diffeomorphisms generated by minus the gradient
vector field, i.e. −∇ f . The index of p coincides with the dimension of W u(p). The
stable/unstable manifold theorem for a Morse function says that the tangent space at p
splits as

Tp M = T s
p M ⊕ T u

p M,

where the Hessian is positive definite on T s
p M

def
= TpW s(p) and negative definite on

T u
p M

def
= TpW u(p); moreover, the stable and unstable manifolds of p are surjective images

of smooth embeddings

E s
: T s

p M→W s(p)⊆ M,

Eu
: T u

p M→W u(p)⊆ M.

Hence, W s(p) is a smoothly embedded open disk of dimension m − λp, and W u(p) is a
smoothly embedded open disk of dimension λp.

If the stable and unstable manifolds of a Morse function f : M→ R all intersect
transversally, then the function f is said to be Morse–Smale. Note that for a given Morse
function f : M→ R, one can choose a Riemannian metric on M so that f is Morse–Smale
with respect to the chosen metric (see [1, Theorem 2.20]). Moreover, if f is Morse–
Smale, then W (q, p)=W u(q) ∩W s(p) is an embedded submanifold of M of dimension
λq − λp, and when λq = λp + 1, one can use Palis’s λ-lemma to prove that the number of
gradient flow lines from q to p is finite.

If we assume that M is oriented and choose an orientation for each of the unstable
manifolds of f , then there is an induced orientation on the stable manifolds. Thus, we can
define an integer n(q, p) associated to any two critical points p and q of relative index one
by counting the number of gradient flow lines from q to p with signs determined by the
orientations. If M is not orientable, then we can still define n(q, p) ∈ Z2 by counting the
number of gradient flow lines from q to p mod 2.

The Morse–Smale–Witten chain complex is defined to be the chain complex
(C∗( f ), ∂∗), where Ck( f ) is the free abelian group generated by the critical points q of
index k (tensored with Z2 when n(q, p) is defined as an element of Z2) and the boundary
operator ∂k : Ck( f )→ Ck−1( f ) is given by

∂k(q)=
∑

p∈Crk−1( f )

n(q, p)p.
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THEOREM 1. (Morse homology theorem) The pair (C∗( f ), ∂∗) is a chain complex. If M
is orientable and the boundary operator is defined with n(q, p) ∈ Z, then the homology of
(C∗( f ), ∂∗) is isomorphic to the singular homology H∗(M; Z). If the boundary operator is
defined with n(q, p) ∈ Z2, then the homology of (C∗( f ), ∂∗) is isomorphic to the singular
homology H∗(M; Z2).

Note that the Morse homology theorem implies that the homology of (C∗( f ), ∂∗)
is independent of the Morse–Smale function f : M→ R, the Riemannian metric, and
the orientations.

3. The Morse inequalities
Let M be a compact smooth manifold of dimension m. When M is orientable, we define
the kth Betti number of M , denoted by bk , to be the rank of the kth homology group
Hk(M; Z) modulo its torsion subgroup. When M is not orientable, we define bk to be
dim Hk(M; Z2). Let f : M→ R be a Morse function on M and, for each k = 0, . . . , m,
let νk be the number of critical points of f of index k. As a consequence of the Morse
homology theorem, we have

νk ≥ bk

for k = 0, . . . , m, since νk = rank Ck( f ) and Hk(M; Z) (or Hk(M; Z2)) is a quotient of
Ck( f ). These inequalities are known as the weak Morse inequalities.

Definition 2. The Poincaré polynomial of M is defined to be

Pt (M)=
m∑

k=0

bk tk,

and the Morse polynomial of f is defined to be

Mt ( f )=
m∑

k=0

νk tk .

The Morse inequalities stated in the introduction are known as the strong Morse
inequalities. The strong Morse inequalities are equivalent to the following polynomial
Morse inequalities (for a proof, see [3, Lemma 3.43]). It is this version of the Morse
inequalities that we shall generalize to Morse–Bott functions.

THEOREM 3. (Polynomial Morse inequalities) For any Morse function f : M→ R on a
smooth manifold M, we have

Mt ( f )= Pt (M)+ (1+ t)R(t),

where R(t) is a polynomial with non-negative integer coefficients, that is, R(t)
=
∑m−1

k=0 rk tk with rk ∈ Z satisfying rk ≥ 0 for all k ∈ {0, . . . , m − 1}.

Although Theorem 3 is a standard fact, here we give a detailed proof using the
Morse–Smale–Witten chain complex, because this proof provides an explicit formula
rk = νk+1 − zk+1 for the coefficients of the polynomial R(t) which will be useful in
proving Theorem 8.
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Proof of Theorem 3. Let f : M→ R be a Morse function on a finite-dimensional compact
smooth manifold M , and choose a Riemannian metric on M for which f is a Morse–Smale
function. Let Ck( f ) denote the kth chain group in the Morse–Smale–Witten chain complex
of f (with coefficients in either Z or Z2), and let ∂k : Ck( f )→ Ck−1( f ) denote the kth
Morse–Smale–Witten boundary operator. The rank of Ck( f ) is equal to the number νk of
critical points of f of index k and, by the Morse homology theorem (Theorem 1), the rank
of Hk(C∗( f ), ∂∗) is equal to bk , the kth Betti number of M , for all k ∈ {0, . . . , m}.

Let zk = rank ker ∂k for k = 0, . . . , m. The exact sequence

0→ ker ∂k→ Ck( f )
∂k
→ im ∂k→ 0

implies that νk = zk + rank im ∂k for all k ∈ {0, . . . , m}, and

0→ im ∂k+1→ ker ∂k→ Hk(C∗( f ), ∂∗)→ 0

implies that bk = zk − rank im ∂k+1 for all k ∈ {0, . . . , m}. Hence,

Mt ( f )− Pt (M) =
m∑

k=0

νk tk
−

m∑
k=0

bk tk

=

m∑
k=0

(zk + rank im ∂k)t
k
−

m∑
k=0

(zk − rank im ∂k+1)t
k

=

m∑
k=0

(rank im ∂k + rank im ∂k+1)t
k

=

m∑
k=0

(νk − zk + νk+1 − zk+1)t
k

=

m∑
k=0

(νk − zk)t
k
+

m−1∑
k=0

(νk+1 − zk+1)t
k

= t
m∑

k=1

(νk − zk)t
k−1
+

m∑
k=1

(νk − zk)t
k−1 (since ν0 = z0)

= (t + 1)
m∑

k=1

(νk − zk)t
k−1.

Therefore, Mt ( f )= Pt (M)+ (1+ t)R(t), where R(t)=
∑m−1

k=0 (νk+1 − zk+1)tk . Note
that νk+1 − zk+1 ≥ 0 for k = 0, . . . , m − 1 because zk+1 is the rank of a subgroup of
Ck+1( f ) and νk+1 = rank Ck+1( f ). 2

4. The Morse–Bott inequalities
Let f : M→ R be a smooth function whose critical set Cr( f ) contains a submanifold C
of positive dimension. Pick a Riemannian metric on M and use it to split T∗M |C as

T∗M |C = T∗C ⊕ ν∗C,

where T∗C is the tangent space of C and ν∗C is the normal bundle of C . Let p ∈ C ,
V ∈ TpC and W ∈ Tp M , and let Hp( f ) denote the Hessian of f at p. We have

Hp( f )(V, W )= Vp · (W̃ · f )= 0,
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since Vp ∈ TpC and any extension of W to a vector field W̃ satisfies d f (W̃ )|C = 0.
Therefore, the Hessian Hp( f ) induces a symmetric bilinear form H ν

p ( f ) on νpC .

Definition 4. A smooth function f : M→ R on a smooth manifold M is called a Morse–
Bott function if and only if the set of critical points Cr( f ) is a disjoint union of connected
submanifolds and, for each connected submanifold C ⊆ Cr( f ), the bilinear form H ν

p ( f ) is
non-degenerate for all p ∈ C .

Often, one says that the Hessian of a Morse–Bott function f is non-degenerate in the
direction normal to the critical submanifolds.

For a proof of the following lemma, see [3, §3.5] or [4].

LEMMA 5. (Morse–Bott Lemma) Let f : M→ R be a Morse–Bott function and let C
⊆ Cr( f ) be a connected component. For any p ∈ C, there exist a local chart of M
around p and a local splitting ν∗C = ν−∗ C ⊕ ν+∗ C which identifies a point x ∈ M in its
domain with (u, v, w), where u ∈ C, v ∈ ν−∗ C and w ∈ ν+∗ C, such that within this chart f
assumes the form

f (x)= f (u, v, w)= f (C)− |v|2 + |w|2.

Definition 6. Let f : M→ R be a Morse–Bott function on a finite-dimensional smooth
manifold M , and let C be a critical submanifold of f . For any p ∈ C , let λp denote
the index of H ν

p ( f ). This integer is the dimension of ν−p C and is locally constant by the
preceding lemma. If C is connected, then λp is constant throughout C and we call λp = λC

the Morse–Bott index of the connected critical submanifold C .

Let f : M→ R be a Morse–Bott function on a finite-dimensional compact smooth
manifold, and assume that

Cr( f )=
l∐

j=1

C j ,

where C1, . . . , Cl are disjoint connected critical submanifolds.

Definition 7. The Morse–Bott polynomial of f is defined to be

M Bt ( f )=
l∑

j=1

Pt (C j )t
λ j ,

where λ j is the Morse–Bott index of the critical submanifold C j and Pt (C j ) is the Poincaré
polynomial of C j .

Note. Clearly, M Bt ( f ) reduces to Mt ( f ) when f is a Morse function. Also, if M or any
of the critical submanifolds are not orientable, then Z2 coefficients are used to compute all
the Betti numbers.

The following result is due to Bott. In fact, Bott proved a more general version of
this result (without the assumption that the critical submanifolds are orientable) by using
homology with local coefficients in an orientation bundle [7, 8].

THEOREM 8. (Morse–Bott inequalities) Let f : M→ R be a Morse–Bott function on a
finite-dimensional oriented compact smooth manifold, and assume that all the critical
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submanifolds of f are orientable. Then there exists a polynomial R(t) with non-negative
integer coefficients such that

M Bt ( f )= Pt (M)+ (1+ t)R(t).

If either M or some of the critical submanifolds are not orientable, then this equation holds
when Z2 coefficients are used to define the Betti numbers.

5. A perturbation technique and the proof of the main theorem
To prove Theorem 8, we will use the following perturbation technique based on [2], the
Morse–Bott lemma and a folk theorem proved in [1]. This construction produces an
explicit Morse–Smale function h : M→ R which is arbitrarily close to a given Morse–Bott
function f : M→ R such that h = f outside of a neighborhood of the critical set Cr( f ).

For j = 1, . . . , l, let T j be a small tubular neighborhood around each connected
component C j ⊆ Cr( f ), having local coordinates (u, v, w) consistent with those from the
Morse–Bott lemma (Lemma 5). By ‘small’ we mean that each T j is contained in the
union of the domains of the charts from the Morse–Bott lemma; for i 6= j , Ti ∩ T j = ∅

and f decreases by at least three times max{var( f, T j ) | j = 1, . . . , l} along any gradient
flow line from Ti to T j , where var( f, T j )= sup{ f (x) | x ∈ T j } − inf{ f (x) | x ∈ T j }; and,
if f (Ci ) 6= f (C j ), then

var( f, Ti )+ var( f, T j ) <
1
3 | f (Ci )− f (C j )|.

Pick a Riemannian metric on M such that the charts from the Morse–Bott lemma are
isometries with respect to the standard Euclidean metric on Rm , and then pick positive
Morse functions f j : C j → R that are Morse–Smale with respect to the restriction of the
Riemannian metric to C j , for j = 1, . . . , l. The Morse–Smale functions f j : C j → R
exist by the Kupka–Smale theorem (see, for instance, [3, Theorem 6.6.]).

For every j = 1, . . . , l, extend f j to a function on T j by making f j constant in the
direction normal to C j , i.e. by letting f j be constant in the v and w coordinates coming
from the Morse–Bott lemma. Let T̃ j ⊂ T j be a smaller tubular neighborhood of C j with
the same coordinates as T j , and let ρ j be a smooth non-increasing bump function which is
constant in the u coordinates, equal to 1 on T̃ j , and equal to 0 outside of T j . Choose ε > 0
small enough so that

sup
T j−T̃ j

ε‖∇ρ j f j‖< inf
T j−T̃ j

‖∇ f ‖

for all j ∈ {1, . . . , l}, and define

h = f + ε

( l∑
j=1

ρ j f j

)
.

The function h : M→ R is a Morse function close to f , and the critical points of h are
exactly the critical points of the f j , for j = 1, . . . , l. Moreover, if p ∈ C j is a critical

point of f j : C j → R of index λ j
p, then p is a critical point of h of index λh

p = λ j + λ
j
p.

We now apply a well-known folk theorem (whose proof can be found in [1, §2.12])
which says that we can perturb the Riemannian metric on M outside of the union of the
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tubular neighborhoods T j , j = 1, . . . , l, so that h satisfies the Morse–Smale transversality
condition with respect to the perturbed metric. In summary, we have achieved the
following conditions.
(1) The gradient ∇ f is equal to ∇h outside of the union of the tubular neighborhoods

T j , j = 1, . . . , l. Moreover, the tubular neighborhoods T j are chosen small enough
so that if f (Ci )≤ f (C j ) for some i 6= j , then there are no gradient flow lines of h
from Ci to C j .

(2) The charts from the Morse–Bott lemma are isometries with respect to the metric on
M and the standard Euclidean metric on Rm .

(3) In the local coordinates (u, v, w) of a tubular neighborhood T j , f = f (C)− |v|2

+ |w|2, ρ j depends only on the v and w coordinates, and f j depends only on the u
coordinates. In particular, ∇ f ⊥∇ f j on T j by the previous condition.

(4) The function h satisfies h = f + ε f j on the tubular neighborhood T̃ j .
(5) The gradient ∇ f dominates ε∇ρ j f j on T j − T̃ j .
(6) The functions h : M→ R and f j : C j → R satisfy the Morse–Smale transversality

condition for all j ∈ {1, . . . , l}.
(7) For every n = 0, . . . , m, we have the following description of the nth Morse–Smale–

Witten chain group of h in terms of the Morse–Smale–Witten chain groups of the f j ,
j = 1, . . . , l:

Cn(h)=
⊕

λ j+k=n

Ck( f j ).

Now, let ∂h
∗ denote the Morse–Smale–Witten boundary operator of h, and let ∂

f j
∗ denote

the Morse–Smale–Witten boundary operator of f j , for j = 1, . . . , l.

LEMMA 9. If p, q ∈ C j are critical points of f j : C j → R of relative index one, then the
coefficients n(q, p) used to define the Morse–Smale–Witten boundary operator are the

same for ∂h
∗ and ∂

f j
∗ (assuming, in the case where C j is orientable, that the appropriate

orientation of C j has been chosen).

Proof. We have h = f + ε f j on T̃ j by condition (4) above. This implies that ∇h
=∇ f + ε∇ f j on T̃ j , and that ∇h = ε∇ f j on the critical submanifold C j . Moreover, by
conditions (3) and (5), a gradient flow line of h cannot begin and end in C j unless the entire
flow line is contained in C j . Thus, if p and q are both in C j , the flows connecting them
along the gradient flow lines of h and of f j are the same, and the numbers n(q, p) in the
complex of h and of f j are the same as long as the orientations are chosen appropriately. 2

We now order the connected critical submanifolds C1, . . . , Cl by height, i.e. in such
a way that f (Ci )≤ f (C j ) whenever i ≤ j . For α ∈ Cn(h) and C j a connected critical
submanifold, we denote by α j the chain obtained from α by retaining only those critical
points belonging to C j . By condition (7), any α 6= 0 can be written uniquely as

α = α j1 + · · · + α jr ,

where j1 < · · ·< jr and α ji ∈ Cki ( f ji )− {0} with λ ji + ki = n. We will refer to α jr as the
‘top part’ of the chain α.
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COROLLARY 10. If α is a non-zero element in ker ∂h
∗ , then the top part of α is a non-zero

element in the kernel of ∂
f j
∗ for some j; that is, using the above notation for α ∈ ker ∂h

n ,

we have α jr ∈ ker ∂
f jr

kr
where λ jr + kr = n.

Proof. Let α =
∑

i ni qi ∈ ker ∂h
n , that is,

0= ∂h
n (α)=

∑
i

ni∂
h
n (qi )=

∑
i

ni

∑
p∈Crn−1(h)

n(qi , p)p =
∑

p∈Crn−1(h)

(∑
i

ni n(qi , p)

)
p.

Then
∑

i ni n(qi , p)= 0 for all p ∈ Crn−1(h) and, in particular, for p ∈ Crn−1(h) ∩ C jr .
For any p ∈ Crn−1(h) ∩ C jr , we have f (qi )≤ f (p) for all qi in the sum of α such that
qi 6∈ C jr ; thus there are no gradient flow lines of h from qi to p, by condition (1). Therefore,
n(qi , p)= 0 if p ∈ Crn−1(h) ∩ C jr and qi 6∈ C jr , i.e.

0=
∑

i

ni n(qi , p)=
∑

qi∈C jr

ni n(qi , p)

when p ∈ Crn−1(h) ∩ C jr . Lemma 9 then implies that

∂
f jr

kr
(α jr )=

∑
qi∈C jr

ni∂
f jr

kr
(qi ) =

∑
qi∈C jr

ni

∑
p∈Crkr−1( f jr )

n(qi , p)p

=

∑
p∈Crkr−1( f jr )

( ∑
qi∈C jr

ni n(qi , p)

)
p = 0,

where λ jr + kr = n and Crkr−1( f jr )= Crn−1(h) ∩ C jr . 2

Proof of Theorem 8. Let f , h, f j ( j = 1, . . . , l) and the Riemannian metric on M be as
above. Let Mt ( f j ) denote the Morse polynomial of f j : C j → R, and write c j = dim C j

for j = 1, . . . , l. Note that the relation λh
p = λ j + λ

j
p implies that

Mt (h)=
l∑

j=1

Mt ( f j )t
λ j .

The polynomial Morse inequalities (Theorem 3) say that

Mt (h)= Pt (M)+ (1+ t)Rh(t)

and

Mt ( f j )= Pt (C j )+ (1+ t)R j (t),
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where Rh(t) and R j (t), j = 1, . . . , l, are polynomials with non-negative integer
coefficients. Now,

M Bt ( f ) =
l∑

j=1

Pt (C j )t
λ j

=

l∑
j=1

(
Mt ( f j )− (1+ t)R j (t)

)
tλ j

=

l∑
j=1

Mt ( f j )t
λ j − (1+ t)

l∑
j=1

R j (t)t
λ j

= Mt (h)− (1+ t)
l∑

j=1

R j (t)t
λ j

= Pt (M)+ (1+ t)Rh(t)− (1+ t)
l∑

j=1

R j (t)t
λ j .

In the proof of the polynomial Morse inequalities we saw that

R j (t)=
c j∑

k=1

(ν
j
k − z j

k )t
k−1,

where ν
j
k is the rank of the group Ck( f j ) and z j

k is the rank of the kernel of the

boundary operator ∂
f j

k : Ck( f j )→ Ck−1( f j ) in the Morse–Smale–Witten chain complex
of f j : C j → R. Hence,

M Bt ( f )= Pt (M)+ (1+ t)
m∑

n=1

(νh
n − zh

n)t
n−1
− (1+ t)

l∑
j=1

c j∑
k=1

(ν
j
k − z j

k )t
λ j+k−1,

where νh
n denotes the rank of the chain group Cn(h) and zh

n denotes the rank of the kernel
of the Morse–Smale–Witten boundary operator ∂h

n : Cn(h)→ Cn−1(h). Since the critical
points of h coincide with the critical points of the functions f j ( j = 1, . . . , l) and a

critical point p ∈ C j of f j of index λ j
p is a critical point of h of index λ j + λ

j
p, we have

m∑
n=1

(νh
n − zh

n)t
n−1
−

l∑
j=1

c j∑
k=1

(ν
j
k − z j

k )t
λ j+k−1

=

l∑
j=1

c j∑
k=1

z j
k tλ j+k−1

−

m∑
n=1

zh
n tn−1.

Therefore
M B f (t)= Pt (M)+ (1+ t)R(t),

where

R(t)=
l∑

j=1

c j∑
k=1

z j
k tλ j+k−1

−

m∑
n=1

zh
n tn−1

=

m∑
n=1

( ∑
λ j+k=n

z j
k − zh

n

)
tn−1.

To see that
∑
λ j+k=n z j

k ≥ zh
n for all n = 1, . . . , m, we apply Corollary 10 as follows.

If zh
n > 0, then we can choose a non-zero element β1 ∈ ker ∂h

n . By Corollary 10, the ‘top
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part’ of β1 is a non-zero element in ker ∂
f j

k for some k and j such that λ j + k = n. If
zh

n = 1, then we are done. If zh
n > 1, then we can find an element β2 ∈ ker ∂h

n that is not
in the group generated by β1 and, by adding a multiple of β1 to β2 if necessary, we can
choose β2 such that the top part of β2 is a non-zero element that is not in the subgroup
generated by the top part of β1. Continuing in this fashion, we can find generators for
ker ∂h

n whose top parts are independent elements in⊕
λ j+k=n

ker ∂
f j

k ,

that is, ∑
λ j+k=n

(rank ker ∂
f j

k )≥ rank ker ∂h
n . 2

Acknowledgement. We would like to thank William Minicozzi for several insightful
conversations concerning Riemannian metrics and gradient flows.

REFERENCES

[1] A. Abbondandolo and P. Majer. Lectures on the Morse complex for infinite-dimensional manifolds.
Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology (NATO Science Series II:
Mathematics, Physics and Chemistry, 217). Springer, Dordrecht, 2006, pp. 1–74.

[2] D. M. Austin and P. J. Braam. Morse–Bott theory and equivariant cohomology. The Floer Memorial
Volume (Progress in Mathematics, 133). Birkhäuser, Basel, 1995, pp. 123–183.

[3] A. Banyaga and D. Hurtubise. Lectures on Morse Homology (Kluwer Texts in the Mathematical Sciences,
29). Kluwer Academic Publishers Group, Dordrecht, 2004.

[4] A. Banyaga and D. E. Hurtubise. A proof of the Morse–Bott lemma. Expo. Math. 22 (2004), 365–373.
[5] A. Banyaga and D. E. Hurtubise. Morse–Bott homology, Preprint, arXiv:math.AT/0612316, 2006.
[6] J.-M. Bismut. The Witten complex and the degenerate Morse inequalities. J. Differential Geom. 23 (1986),

207–240.
[7] R. Bott. Nondegenerate critical manifolds. Ann. of Math. (2) 60 (1954), 248–261.
[8] R. Bott. Lectures on Morse theory, old and new. Bull. Amer. Math. Soc. (N.S.) 7 (1982), 331–358.
[9] R. Bott. Morse theory indomitable. Publ. Math. Inst. Hautes Études Sci. 68 (1988), 99–114.
[10] B. Helffer and J. Sjöstrand. A proof of the Bott inequalities. Algebraic Analysis, Vol. I . Academic Press,

Boston, 1988, pp. 171–183.
[11] G. Henniart. Les inégalités de Morse (d’après E. Witten). Astérisque (1985), 43–61, Séminaire Bourbaki,
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