
HEDGING MORTALITY CLAIMS WITH LONGEVITY BONDS∗

BY

FRANCESCA BIAGINI, THORSTEN RHEINLÄNDER AND JAN WIDENMANN

ABSTRACT

We study mean–variance hedging of a pure endowment, a term insurance and
general annuities by trading in a longevity bond with continuous rate payments
proportional to the survival probability. In particular, we discuss the intro-
duction of a gratification annuity as an interesting insurance product for the
life insurance market. The optimal hedging strategies are determined via their
Galtchouk–Kunita–Watanabe decompositions under specific, yet sufficiently
general model assumptions. The results are then further illustrated by assuming
a general affine structure of the mortality intensity process. The optimal hedg-
ing strategies as well as the residual hedging error of a gratification annuity and
a simple life annuity are finally investigated with numerical simulations, which
illustrate the nice features of the gratification annuity for the insurance industry.
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1. INTRODUCTION

A lifemarket for both tradedmortality and longevity securities offers interesting
risk transfer alternatives to more traditional actuarial schemes and has recently
been gainingmore andmore attention, see e.g. Blake et al. [12]. The possibility of
risk mitigation on the one hand, as well as diversification chances on the other,
creates a good potential for a liquid market. Yet, there are also some critical
points of view, see e.g. Norberg [22].

The respective securities typically involve a publicly accessible longevity in-
dex from which the mortality intensities for a wide range of age cohorts can be
read.

In the present paper, we consider two basic life insurance contracts, namely
a pure endowment, i.e. a contract which pays out one unit if the insured
person is alive at a pre-specified maturity, and a term insurance, i.e. a payment
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of one unit in case the insured person dies before the maturity of the contract.
Moreover, we consider general annuities, paying out continuous rates as long as
the insured person is alive. In this context, we specify a new type of (insurance)
contract which we call a gratification annuity. This insurance contract would
pay increasing annuity rates, proportional to the mortality probability of the
insured person’s own age cohort, inferred from the aforementioned longevity
index. Broadly speaking, a policyholder gets gratified for being healthier or for
belonging to a sicker age cohort thanwas originally expected. The concept of the
gratification annuity may also be interesting because it allows for diversifying
unsystematic insurance risk while transferring important parts of the system-
atic insurance risk to the policyholder, see also Norberg [21] and Wadsworth
et al. [26] in this context. Therefore, the authors are convinced that such type
of insurance contracts could be interesting for the life insurance market. More-
over, the description of new insurance products which are related to mortality
risk can be fruitful with regard to the ongoing discussion on the introduction of
government-issued longevity bonds as e.g. in Blake et al. [9].

Faced with the stochastic claims, the issuing institution is interested to hedge
its risk exposure by purchasing a (coupon based) longevity bond on the financial
market. This is an instrument which has continuous rate payments proportional
to the survival probability, again inferable from a longevity index. Such bonds
have recently been discussed and recommended to be introduced to the markets,
see e.g. Blake et al. [9], and have originally been proposed by Blake and Burrows
[10] for hedging purposes. The combined position in one of the claims and the
bond resembles various types of mortality swaps, see Dahl et al. [15] for a re-
lated concept, where the floating leg (realized mortality) is exchanged versus a
fixed leg (related to some mortality projection). For a detailed overview of the
securitization of mortality risk, we refer to Barrieu and Albertini [3], as well as
Blake et al. [11].

In the present paper, we study mean–variance hedging of the respective
claims by trading in the longevity bond. Regarding hedge effectiveness, this
method provides solutions which are optimal by means of expected quadratic
error, see e.g. Schweizer [25]. We study a general setting, where the filtration G,
describing the complete information of an insurance company, is generated by
both the individual life history H of the insured person and a Brownian ref-
erence filtration F, to which the hazard process is adapted to, and provide the
Galtchouk–Kunita–Watanabe (GKW) decompositions of the claims and the
longevity bond, and hence the optimal hedging strategies. The main mathemat-
ical problem within these model specifications is that in general the considered
securities do not amount to so-called simple claims, and it is a priori not clear
how to find martingale representations, instrumental in the design of the GKW
decompositions.

The mean–variance approach (coinciding in our case with local risk min-
imization) has already been applied to the hedging of financial insurance
derivatives in several works such as Barbarin [2], Dahl and Møller [16], Dahl
et al. [15], Møller [19] and Møller [20]. However, there are some fundamental
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differences with respect to our paper that we would like to emphasize. First of
all, we use general techniques in order to determine the GKW decomposition
(the Föllmer–Schweizer decomposition respectively) for a given derivative as we
follow the approach of Bielecki and Rutkowski [6] instead of computing the de-
compositions directly with respect to the underlying fundamental martingales
as in Dahl et al. [15], Dahl and Møller [16], Møller [19] and Møller [20]. More-
over, our method allows to shorten the computations considerably and works in
a general setting without assuming restrictive model assumptions. The results
are also obtained without requiring the independence of the filtrations F and H.

Furthermore, our computations do not require the existence of a mortal-
ity intensity, but hold also under the more general hypothesis that the hazard
process � is continuous and increasing. This is due to the fact that we can
apply Corollaries 5.1.1 and 5.1.3 as well as Proposition 5.1.3 of Bielecki and
Rutkowski [6], since in our setting G = F ∨ H, τ is totally inaccessible and
hypothesis (H) holds (Lemma 6.1.2 of Bielecki and Rutkowski [6]).

Regarding the hedging of life insurance contracts with longevity bonds,
similar results can also be found in Barbarin [1] and Barbarin [2], where the
zero-coupon longevity bond ismodeled in aHeath–Jarrow–Morton framework.
In contrast, we consider coupon paying longevity bonds in an intensity-based
framework. This setting allows for more explicit results which can be investi-
gated with the help of numerical simulations.

Finally, another difference of our paper with respect toDahl andMøller [16],
Dahl et al. [15], Møller [19] and Møller [20] is that we do not restrict ourselves
to the case of a specific affine model for the mortality rate such as the Cox-
Ingersoll-Ross (CIR) model, but we compute the optimal strategy in a general
affine framework for the mortality intensity dynamics.

The optimal hedging strategies are first calculated for a single life status and
then generalized to hedging strategies for a whole portfolio of insured persons
following the work of Biffis and Millossovich [8].

We note that our decompositions could also be derived from the results
in e.g. Barbarin [2] or Blanchet-Scalliet and Jeanblanc [13] for pure endow-
ments, in Barbarin [2] for term insurance and in Barbarin [2] or Biagini and
Cretarola [4] for general annuities. In our setting, however, we work under
specific but still very general model assumptions which allow to compute the
GKW decompositions explicitly. In particular, the setting allows to illustrate
the results for an affine specification for the mortality intensity process. This
assumption is very popular in the literature about modeling mortality intensi-
ties and has been suggested for example in Biffis [7], Biffis and Millossovich
[8], Dahl and Møller [16], Dahl et al. [15] and Schrager [24]. Here, we can
relate the optimal hedging strategies to the solutions of well-known Riccati
ordinary differential equations (ODEs) and analyze the results with numeri-
cal simulations. These simulations are carried out for two specifications of the
mortality intensity, following in the first case an Ornstein–Uhlenbeck process
and in the second case a Feller process. Both processes are considered to be
non-mean-reverting, an assumption suggested by Luciano and Vigna [18] and
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Blake et al. [11]. In this context, we compare the optimal hedging strate-
gies and their residual hedging error for a gratification annuity and a sim-
ple life annuity. The results show that the gratification annuity possesses nice
properties, which could make such a product interesting for the life insurance
market.

The paper is organized as follows. Section 2 establishes the modeling frame-
work which is used for obtaining the optimal hedging strategies for both a single
life status in Section 3.1 and insurance portfolios in Section 3.2. The specifi-
cations to affine models of the stochastic mortality intensity are provided in
Section 4. In Section 5, we show numerical illustrations of the optimal hedg-
ing strategies and their residual hedging errors at time t = 0 for a gratification
annuity and a simple life annuity.

2. PRELIMINARIES

Let (�,F, P) be a probability space and T > 0 some fixed maturity. The time
of decease τ > 0 of a person is modeled as a totally inaccessible random time
with P(τ > t) > 0 for any t ∈ [0,T]. Let Ht = I{τ≤t} be the counting process of
decease and H the filtration generated by H. We suppose that our probability
space also supports the augmented natural filtration F of some Brownian mo-
tionW. LetG = H∨F.We assume the followingmartingale invariance property,
often referred to as hypothesis (H): every F-martingale remains a martingale in
the larger filtration G. In particular,W is a martingale in G, and then by Lévy’s
characterization a Brownian motion. The survival probability process G asso-
ciated with τ is supposed to fulfil

Gt := P (τ > t | Ft) =: e−�t .

The F-adapted process � hence can be interpreted as the stochastic hazard pro-
cess of the random time τ . Because τ is assumed to be totally inaccessible (and
therefore avoids any F-stopping time), the process � is continuous and due to
hypothesis (H) it is also increasing, see e.g. Coculescu et al. [14].

The counting process martingaleMassociated with the one-jump process H
is given as

Mt = Ht −
∫ t

0
(1 − Hu) d�u .

Note that the focus of our study is on mortality and we therefore work for sim-
plicity with a fixed constant short rate r . More generally, one could assume that
the short rate is a stochastic process, independent of the mortality. For an adept
study of this, see Dahl et al. [15].

We assume that an insurance company can sell the following products at
time t = 0:
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• A pure endowment with present value

Cpe = e−rT
I{τ>T} = e−rT(1 − HT).

Here, one unit of cash will be paid to the policyholder, given that the insured
person is still alive at maturity T.

• A term insurance with present value

Cti = e−rτ
I{τ≤T} = e−rτHT,

where one unit is paid at the event of decease, given that this happens before
maturity.

• A general annuity with present value

CY =
∫ T

0
e−ru (1 − Hu)Yu du, (1)

where Y is a positive, bounded, F-adapted stochastic process. Here, the in-
sured person receives general annuity payments as long as he or she is alive
with at a rate given by Y.
In particular, we introduce a new insurance product, which we call gratifica-
tion annuity, where Yt = 1 − Gt, t ∈ [0,T]. As Gt can be inferred from the
longevity indexwhich itself bases on realizedmortality of some representative
group, such an instrument rewards an insured person’s higher longevity (e.g.
due to healthier life style) as was originally expected.
In order to compare this product’s characteristics numerically to an exist-
ing insurance product, we furthermore consider a simple life annuity, where
Yt = 1 for all t ∈ [0,T].

We now assume that it is possible to trade on the financial market in an instru-
ment called a longevity bond which has present value

Bt =
∫ t

0
e−ruGu du.

The payment, generated by this (coupon-based) bond, has also the form of an
annuity where the declining rate is given by the survival probability for the age
cohort of the insured person. It does not depend on his or her individual life
history, in contrast to the payouts of the considered claims. The (discounted)
value process associated with the longevity bond is thus given by the conditional
expectation

Vt = E
[∫ T

0
e−ruGu du

∣∣∣∣ Gt] .
Here we have implicitly assumed that P is some pricing measure, reflecting the
market price of risk. Our goal is now to hedge the risk exposure from having
sold either a pure endowment, a term insurance or a general annuity by trading
dynamically in the longevity bond with value process V.
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Let us first collect some technical notations and assumptions: we assume

e�T ∈ L2(P). (2)

The spaces L2(W), L2(M) consist of all predictable θ , ψ such that

E
[∫ T

0
θ2s ds

]
< ∞, E

[∫ T

0
ψ2
s d�s

]
< ∞.

The space � of admissible strategies consists of all predictable ϑ such that

E
[∫ T

0
ϑ2
s d 〈V〉s

]
< ∞.

If ϑ ∈ �, then
∫ ·
0 ϑs dVs is a square-integrable martingale.

3. DYNAMIC HEDGING WITH LONGEVITY BONDS

3.1. Single life status

We start the analysis of optimal hedging strategies by considering a single life
status. We shall use the mean–variance hedging approach, see Schweizer [25] for
an overview: for a given discounted claim C ∈ L2(P), we want to solve

min
c,ϑ

E

[(
C − c −

∫ T

0
ϑs dVs

)2
]
,

where weminimize over all constants c and ϑ ∈ �. It results that the fair price in
this framework is given by c = E [C], and the optimal hedging strategy ϑ∗ ∈ �
can be found via the GKW decomposition

E [C | Gt] = c +
∫ t

0
ϑ∗
s dVs + V⊥

t , (3)

where V⊥ is a martingale strongly orthogonal to V (i.e. VV⊥ is a local mar-
tingale). It follows by the uniqueness of the GKW decomposition and strong
orthogonality that once we have found a decomposition as in (3) in the sense
that the terms on the right-hand side are local martingales, then they are auto-
matically square-integrable martingales.

The decomposition (3) of the martingales associated with the various claims
can be found by simple algebra once we have established representations of the
martingales E [C | G.] and V in terms of stochastic integrals with respect to the
Brownian motionW and the counting process martingale M.

To establish these representation formulas, we define

Lt = (1 − Ht)e�t
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and note that H0 = 0 and L0 = 1; moreover Lt = 0 for t ≥ τ . By Proposi-
tion 5.1.3, Equation (5.28), of Bielecki and Rutkowski [6], L is the stochastic
exponential of (−M) and satisfies the equation

dLt = −Lt− dMt.

Definition 1. A simple claim is a random variable of the form (1 − HT) Zfor some
integrable FT-measurable random variable Z and T ≥ 0. We define the (Ft)-
martingale U and the predictable process ψ by

Ut := E
[
e−�T Z

∣∣ Ft
] = E

[
e−�T Z

] +
∫ t

0
ψs dWs, (4)

where the second equality follows from the martingale representation theorem with
respect to a Brownian filtration.

For simple claims, a martingale representation can then be found by integration
by parts as in the proof of Proposition 5.2.2 in Bielecki and Rutkowski [6].

Proposition 2. Let X = (1 − HT) Z, T ≥ 0, be a simple claim. Then

E [X | Gt] = E
[
e−�T Z

] +
∫ t

0
ζWs dWs +

∫ t

0+
ζMs dMs

where ζWs = ψs Ls− and ζMs = −Ls−Us.

Obviously, the pure endowment Cpe is a simple claim. However, both term in-
surance as well as general annuities have to be dealt with differently.

A general representation result, see Bielecki and Rutkowski [6] Proposition
5.2.2, can be obtained by approximating GT-measurable random variables in
L2(P) by simple claims and by using that the spaces of stochastic integrals of
admissible integrands in L2(W), or L2(M) respectively, are closed in L2(P). The
result then states that each square-integrable (Gt)-martingale N can be written
as

Nt = N0 +
∫ τ∧t

0
ζWs dWs +

∫ τ∧t

0+
ζMs dMs,

for admissible integrands ζW and ζM. It does not, however, give any information
how to calculate the integrands for claims which are not simple.

Proposition 3. The GKW decomposition for a pure endowment Cpe is

E
[
e−rT (1 − HT)

∣∣ Gt] = cpe +
∫ t

0
αWs dWs +

∫ t

0+
αMs dMs, (5)
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where the predictable integrands αW and αM are given as

αWs = Ls−ψs , (6)

αMs = −Ls−Us .

and cpe = E
[
e−rTe−�T].

Here, ψ corresponds to the integrand in (4) for the choice Z= e−rT.

Proof. Cpe is a simple claim with Z= e−rT. Hence, Proposition 2 yields the
result.

Now we turn our attention to term insurance. For completeness, we provide
its GKW decomposition in our setting. The results could also be derived by
applying some results of Barbarin [2] to our setting.

Let us first observe that by martingale representation, there exists a constant
cti and χ ∈ L2(W) such that

E
[∫ T

0
e−rue−�u d�u

∣∣∣∣ Ft

]
= cti +

∫ t

0
χu dWu . (7)

Proposition 4. The GKW-decomposition for a term insurance Cti is

E
[
e−rτHT

∣∣ Gt] = cti +
∫ t

0
βWs dWs +

∫ t

0+
βMs dMs, (8)

where

βWs = Ls−χs, (9)

βMu = e−r(s∧τ) − Ls−

(
cti +

∫ s

0
χu dWu −

∫ s

0
e−rue−�u d�u

)
.

Proof. We write

E
[
e−rτHT

∣∣ Gt] = HtE
[
e−rτHT

∣∣ Gt] + (1 − Ht) E
[
e−rτHT

∣∣ Gt] (10)

and find the canonical decompositions of the two terms on the right-hand side
into a local martingale and a finite variation part separately.

Since HtHT = Ht, and Hte−rτ is Gt-measurable, we get for the first term by
integration by parts

HtE
[
e−rτHT

∣∣ Gt] = Hte−rτ = Hte−r(t∧τ)

= 0 +
∫ t

0
Hs− de−r(s∧τ) +

∫ t

0
e−r(s∧τ) dHs

= 0 +
∫ t

0
e−r(s∧τ) dMs + X1

t , (11)
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where

X1
t =

∫ t

0
e−r(s∧τ)(1 − Hs)d�s =

∫ t

0
e−rs(1 − Hs)d�s .

Note that we used that Hs = 0 on [0, τ ), and that Hs = Ms + �s∧τ .
For the second term of the right-hand side in (10), we get by Corollary 5.1.3

of Bielecki and Rutkowski [6] that

(1 − Ht) E
[
e−rτHT

∣∣ Gt] = (1 − Ht) E
[∫ T

t
e−rse�t−�s d�s

∣∣∣∣ Ft

]
= LtE

[∫ T

t
e−rse−�s d�s

∣∣∣∣ Ft

]
.

Again by integration by parts as well as the martingale representation (7),

LtE
[∫ T

t
e−rse−�s d�s

∣∣∣∣ Ft

]
= Lt

(
E

[∫ T

0
e−rse−�s d�s

∣∣∣∣ Ft

]
−

∫ t

0
e−rse−�s d�s

)
= cti +

∫ t

0
φs dWs +

∫ t

0+
νs dMs + X2

t , (12)

where

φs = Ls−χs,

νs = −Ls−
(
cti +

∫ s

0
χv dWv −

∫ s

0
e−rve−�v d�v

)
,

and

X2
t = −

∫ t

0
Lse−rse−�s d�s = −X1

t .

The result now follows by combining (11) and (12).

Now we turn to a general annuity. As stated in the Introduction, the follow-
ing decompositions could also be derived by applying results in Barbarin [2] or
Biagini and Cretarola [4] to our setting. Here they are computed explicitly under
our specific model assumptions.
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By martingale representation, for each u ∈ [0,T] there exists a constant cYu
and a predictable process (θYu,s)s∈[0,T] ∈ L2(W), with θYu,s = 0 if s > u, such that

E
[
e−ruYue−�u ∣∣ Ft

] = cYu +
∫ t∧u

0
θYu,s dWs

= cYu +
∫ t

0
θYu,sI[0,u](s) dWs . (13)

We set cY = ∫ T
0 cYu du < ∞. Note that the

∫ ·
0 θ

Y
u,sI[0,u](s) dWs are bounded mar-

tingales, uniformly in u.

Proposition 5. The GKW decomposition of a general annuity CY is

E
[∫ T

0
e−ru (1 − Hu)Yu du

∣∣∣∣ Gt] = cY +
∫ t

0
ρWs dWs +

∫ t

0+
ρMs dMs, (14)

where the predictable integrands are given as

ρWs = Ls−
∫ T

s
θYu,s du, (15)

ρMs = −Ls−
∫ T

s

(
cYu +

∫ s

0
θYu,v dWv

)
du.

Proof. By equation (5.13) of Bielecki and Rutkowski [6], we have for u ∈
(t,T]

E
[
e−ru (1 − Hu)Yu

∣∣ Gt] = (1 − Ht) E
[
e−ruYue�t−�u

∣∣ Ft
]

= LtE
[
e−ruYue−�u ∣∣ Ft

]
.

For u ∈ [0, t] we have

E
[
e−ru (1 − Hu)Yu

∣∣ Gt] = (1 − Hu) E
[
e−ruYu

∣∣ Ft
]

= LuE
[
e−ruYue−�u ∣∣ Ft

]
.

Hence, for every u ∈ [0,T] we have

E
[
e−ru (1 − Hu)Yu

∣∣ Gt] = Lu∧t E
[
e−ruYue−�u ∣∣ Ft

]
= Lut E

[
e−ruYue−�u ∣∣ Ft

]
,

where Lu is the process L stopped at time u ∈ [0,T]. By integration by parts
and (13),

Lut E
[
e−ruYue−�u ∣∣ Ft

] = cYu +
∫ t

0
φu,s dWs +

∫ t

0+
νu,s dMs, (16)
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where

φu,s = Ls− θYu,sI[0,u](s),

νu,s = −Ls−
(
cYu +

∫ s

0
θYu,vI[0,u](v) dWv

)
I[0,u](s).

By Fubini, as well as the Itô isometry,

E
[∫ T

0

∫ T

0
φ2
u,s du ds

]
=

∫ T

0
E

[∫ T

0
φ2
u,s ds

]
du

=
∫ T

0
E

[(∫ T

0
φu,s dWs

)2
]
du

≤ C1T,

where, by Lemma 10 (see the Appendix),

C1 = sup
0≤u≤T

∥∥∥∥∫ T

0
φu,s dWs

∥∥∥∥2

L2

< ∞.

Moreover,

E
[∫ T

0

∫ T

0
ν2u,s du d�s

]
=

∫ T

0
E

[∫ T

0
ν2u,s d�s

]
du

=
∫ T

0
E

[(∫ T

0
νu,s dMs

)2
]
du

≤ C2T,

where, by Lemma 11 (see the Appendix),

C2 = sup
0≤u≤T

∥∥∥∥∫ T

0
νu,s dMs

∥∥∥∥2

L2

< ∞.

Hence, we may apply the stochastic Fubini theorem (see Protter [23], Theorem
IV.65) to get from (16)

E
[∫ T

0
e−ru (1 − Hu)Yu du

∣∣∣∣ Gt] =
∫ T

0
E

[
e−ru (1 − Hu)Yu

∣∣ Gt] du
=

∫ T

0

(
cu +

∫ t

0
φu,s dWs +

∫ t

0+
νu,s dMs

)
du
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= cY+
∫ t

0

∫ T

0
φu,s du dWs+

∫ t

0+

∫ T

0
νu,s du dMs

= cY +
∫ t

0
ρWs dWs +

∫ t

0+
ρMs dMs,

where the predictable integrands ρWand ρM are as desired.

We have already introduced a new type of insurance product, namely a gratifica-
tion annuity, which we think of as an interesting insurance product for the life
insurance market. In order to compare this product with an existing annuity,
we also derive the GKW decomposition of a simple life annuity. The results are
given in the following corollary.

Corollary 6. The GKW decompositions of a gratification annuity

Cga =
∫ T

0
e−ru(1 − Hu)(1 − Gu) du

and a simple life annuity

Cla =
∫ T

0
e−ru(1 − Hu) du

are

E
[∫ T

0
e−ru (1 − Hu) (1 − Gu) du

∣∣∣∣ Gt] = cga +
∫ t

0
γWs dWs +

∫ t

0+
γM
s dMs,

(17)

E
[∫ T

0
e−ru (1 − Hu) du

∣∣∣∣ Gt] = cla +
∫ t

0
δWs dWs +

∫ t

0+
δMs dMs, (18)

where the predictable integrands are given as

γWs = Ls−
∫ T

s
θ gau,s du, (19)

γM
s = −Ls−

∫ T

s

(
cgau +

∫ s

0
θ gau,v dWv

)
du (20)

and

δWs = Ls−
∫ T

s
θ lau,s du, (21)

δMs = −Ls−
∫ T

s

(
clau +

∫ s

0
θ lau,v dWv

)
du (22)
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and the processes θ gau and θ lau as well as the constants cga and cla are given through
the martingale representations (13) for the respective choice of Y.

Proof. The results are straightforward applications of Proposition 5 with
the positive, bounded and F-adapted processes Y with Yt = 1 − Gt and Yt = 1,
t ∈ [0,T], respectively.

Finally, we turn to the longevity bond. By martingale representation, for each
u ∈ [0,T] there exists a constant ku and a predictable process (ξu,s)s∈[0,T], with
ξu,s = 0 for s > u, such that

E
[
e−ruGu

∣∣ Ft
] = E

[
e−rue−�u ∣∣ Ft

] = ku +
∫ u∧t

0
ξu,s dWs

= ku +
∫ t

0
ξu,sI[0,u](s) dWs . (23)

We set c = ∫ T
0 ku du.

Proposition 7. The GKW decomposition of the longevity bond is

Vt = E
[∫ T

0
e−ruGu du

∣∣∣∣ Gt] = c +
∫ t

0
ξs dWs,

where the predictable integrand ξ is given as

ξs =
∫ T

s
ξu,s du. (24)

Proof. The discounted survival probability e−ruGu is bounded and Fu-
measurable for every u ∈ [0,T]. Due to hypothesis (H) we then get

E
[
e−ruGu

∣∣ Gt] = E
[
e−ruGu

∣∣ Ft
] = ku +

∫ u∧t

0
ξu,s dWs

= ku +
∫ t

0
ξu,sI[0,u](s) dWs .

Since G is bounded by one, we have that the
∫ ·
0 ξu,sI[0,u](s) dWs are bounded

martingales, uniformly in u. We can again apply stochastic Fubini to get

E
[∫ T

0
e−ruGu du

∣∣∣∣ Gt] =
∫ T

0
E

[
e−ruGu

∣∣ Gt] du
= c +

∫ t

0
ξs dWs,
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where the predictable integrand ξ is given as

ξs =
∫ T

s
ξu,s du.

This ends the proof.

Summing up, the various discounted claim payoffs allow for a representation

C = cC +
∫ T

0
εC,Ws dWs +

∫ T

0+
εC,Ms dMs,

where the integrands εC,W, εC,M as well as the constant cC are claim-specific
and have been obtained in the foregoing propositions. Moreover, the longevity
bond, which serves as hedging instrument, has representation

Vt = c +
∫ t

0
ξs dWs .

As we have seen, the integrands εC,W, εC,M, ξ can all be computed and therefore
be considered as known quantities. Our goal is now to find the GKW decom-
position

E [C | Gt] = cC +
∫ t

0
ϑ∗,C
u dVu + V⊥

t , (25)

where V⊥ is a square-integrable martingale, strongly orthogonal to V with de-
composition

V⊥
t =

∫ t

0+
εC,Ms dMs .

Here, cC + ∫ t
0 ϑ

∗,C
u dVu can be interpreted as the part of the risk that can be

perfectly replicated by means of our optimal hedging strategy ϑ∗,C, and V⊥
t as

the part of the risk that is totally unhedgeable.
The integrand ϑ∗,C in the GKW decomposition (25) is determined uniquely

by the equation

ϑ∗,Cξ = εC,W. (26)

Here, uniqueness is understood modulo the following equivalence relation: if
ϑ,ψ ∈ �, then

ϑ ∼ ψ if
∫ T

0
(ϑt − ψ)2 d [V]t = 0.

In particular, the predictable process ϑ∗ ∈ � gives the unique mean–variance
hedging strategy of the claim by trading in the underlying longevity bond.
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3.2. Insurance portfolio

For an insurance company, it is important to hedge the risk of a whole insurance
portfolio rather than the risk of a single insurance contract. Following ideas of
Biffis and Millossovich [8], we extend the results of the previous subsection to
hedging strategies for an insurance portfolio.

Let I pe = {x1, . . . , xn}, Iti = {y1, . . . , ym}, IY = {z1, . . . , zk} denote the
set of insured persons having purchased coverage through pure endowment,
term insurance and/or general annuity respectively. For either of those sets we
consider a finite counting measure �pe, �ti , �Y on (I pe,P(I pe)), (Iti ,P(Iti )),
(IY,P(IY)), respectively, allowing the insurance company to weight the risk ex-
posures of the different insured persons to the overall portfolio risks differently.

For every x ∈ I ·, we consider its random time of decease τ x with distribution
driven by the continuous, increasing and F-adapted hazard process (�xt )t∈[0,T]
(see Section 2). We write Hx

t = I{τ x≤t}, Gx
t = P(τ x > t |Ft) = e−�xt as well as

Lxt = (1 − Hx
t )e

�xt and Mx
t = Hx

t − ∫ t
0 (1 − Hx

s )d�
x
s .

Of course, the insurance company is aware of each single life status x ∈ I ·
of its portfolios and we have to expand the filtration setting of our probabil-
ity space. Denoting by Hx the natural filtration, generated by the processes
(Hx

t )t∈[0,T], we assume the insurance company’s complete “portfolio” informa-
tion to be represented by the filtrations G· = F ∨ ∨

x∈I · H
x. In this context, we

extend the martingale invariance property (hypothesis (H)) to the filtrations G·,
i.e. we assume every F-local martingale to be also a G·-local martingale.

By C·,x we denote the single life (discounted) payoffs of pure endowment,
term insurance and general annuity, associated with x ∈ I ·. The weighted, dis-
counted portfolio payoffs CP,pe, CP,ti and CP,Y up to time T are then given
as

CP,pe =
n∑
i=1

Cpe,xi �pe(xi ) =
n∑
i=1

e−rT(1 − Hxi
T ) �

pe(xi ),

CP,ti =
m∑
j=1

Cti,yj �ti (yj ) =
m∑
j=1

e−rτ yj Hyj
T �ti (yj ),

CP,Y =
k∑
l=1

CY,zl �Y(Zl) =
k∑
l=1

∫ T

0
e−ru(1 − Hzl

u )Y
zl
u du �Y(zl).

In order to apply the results of Section 3.1 for a single life status to the weighted,
discounted portfolio payoffs, we assume the following conditional independence
relation.

Assumption 8. Weassume that the family (τ x)x∈I · is conditionally independent
given FT.
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With the presence of the general weighting functions �·, we also have to adopt
additional integrability conditions. For every x ∈ I · we denote byψx, χ x and θ xu
the predictable processes of the respectivemartingale representations (4), (7) and
(13), related to x. Analogously, we write cx,pe, cx,ti , cx,Y, αx,W, αx,M, βx,W, βx,M,
ρx,W and ρx,M for the constants and integrands in the GKW decompositions
(5), (8) and (14), related to x.

Now we are ready to provide the GKW decompositions in analogy to the
previous subsection.

Proposition 9. The GKW decompositions of the weighted, discounted portfolio
payoffs of pure endowments, term insurances or general annuities are given as

E
[
CP,pe

∣∣ G pe
t

] = cP,pe +
∫ t

0
αP,Ws dWs +

n∑
i=1

∫ t

0+
αxi ,Ms �pe(xi ) dMxi

s ,

E
[
CP,ti

∣∣ Gtit ] = cP,ti +
∫ t

0
βP,Ws dWs +

m∑
j=1

∫ t

0+
β
yj ,M
s �ti (yj ) dM

yj
s ,

E
[
CP,Y

∣∣ GYt ] = cP,Y +
∫ t

0
ρP,Ws dWs +

k∑
l=1

∫ t

0+
ρzl ,Ms �Y(zl) dMzl

s ,

where cP,pe = ∑n
i=1 c

xi ,pe, cP,ti = ∑m
j=1 c

yj ,ti , cP,pe = ∑k
l=1 c

zl ,Y and the pre-
dictable integrands αP,W, βP,W and ρP,W are given as

αP,Ws =
n∑
i=1

ψxi
s L

xi
s− �

pe(xi ),

βP,Ws =
m∑
j=1

Lyjs−χ
yj
s �

ti (yj ),

ρP,Ws =
k∑
l=1

Lzls−

∫ T

s
θ zlu,s du �

Y(zl),

respectively.

Proof. We illustrate the proof only for the weighted, discounted portfolio
payoff of pure endowments, as the proofs for term insurances and general an-
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nuities are identical. We have

E
[
CP,pe

∣∣ G pe
t

] = E

[
n∑
i=1

Cxi ,pe �pe(xi )

∣∣∣∣∣ G pe
t

]

=
n∑
i=1

E
[
Cxi ,pe

∣∣ G pe
t

]
�pe(xi )

=
n∑
i=1

E
[
Cxi ,pe

∣∣ Ft ∨ Hxi
t

]
�pe(xi )

=
n∑
i=1

(
cxi +

∫ t

0
αxi ,Ws dWs +

∫ t

0+
αxi ,Ms dMxi

s

)
�pe(xi )

= c4 +
∫ t

0

n∑
i=1

αxi ,Ws �pe(xi ) dWs +
n∑
i=1

∫ t

0+
αxi ,Ms dMxi

s �
pe(xi )

= c4 +
∫ t

0
αP,Ws dWs +

n∑
i=1

∫ t

0+
αxi ,Ms dMxi

s �
pe(xi ), (27)

where (27) follows by Assumption 8. Note that as Mx and W are orthogonal
martingales for all x ∈ I pe, so are

∑n
i=1

∫ t
0+ α

xi ,M
s �pe(xi ) dMxi

s andW.

4. AFFINE MODELS

In this section, we assume the hazard process � to be absolutely continuous
with respect to the Lebesgue measure, i.e. to be of the form �t = ∫ t

0 μs ds. The
stochastic intensity processμ = (μt)t∈[0,T] is assumed to beF-progressivelymea-
surable, non-negative and affine. Moreover, we assume

C := sup
u∈[0,T]

E
[
μ2
u

]
< ∞. (28)

The derivation of the hedging strategies then boils down to solving well-known
Riccati ODEs.

In more detail, let μ follow the dynamics{
dμt = δ(t, μt)dt + σ(t, μt)dWt
μ0 = μ
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for some μ > 0, where the drift function δ as well as the instantaneous variance
function σ 2 is assumed to have affine dependence on μ, i.e.

δ(t, μt) = d0(t)+ d1(t)μt,

σ 2(t, μt) = v0(t)+ v1(t)μt,

with the deterministic functions d0, d1, v0 and v1 being bounded and continuous.
It is then a well-known fact, see Biffis [7], that for u ∈ (t,T] we have

E
[
e− ∫ u

t μs ds
∣∣∣ Ft

]
= eαu(t)+βu(t)μt ,

where the functions αu and βu solve the following ODEs:

{
dβu
dt (t) = 1 − d1(t)βu(t)− 1

2v1(t)β
2
u (t)

βu(u) = 0,{
dαu
dt (t) = −d0(t)βu(t)− 1

2v0(t)β
2
u (t)

αu(u) = 0.
(29)

Similarly, for u ∈ (t,T] we have

E
[
e−2

∫ u
t μs ds

∣∣∣ Ft

]
= eα̃u(t)+β̃u(t)μt ,

where the functions α̃u and β̃u solve the ODEs of the following form:

{
dβ̃u
dt (t) = 2 − d1(t)β̃u(t)− 1

2v1(t)β̃
2
u (t)

β̃u(u) = 0,{
dα̃u
dt (t) = −d0(t)β̃u(t)− 1

2v0(t)β̃
2
u (t)

α̃u(u) = 0.

Finally, for u ∈ (t,T] we have

E
[
e− ∫ u

t μs dsμu

∣∣∣ Ft

]
= eαu(t)+βu(t)μt

(
α̂u(t)+ β̂u(t)μt

)
.
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Here the functions αu , βu are again solutions to (29) and α̂u and β̂u are derived
by differentiating (29) with respect to u and hence solve the following ODEs:

{
dβ̂u
dt (t) = −d1(t)β̂u(t)− v1(t)βu(t)β̂u(t)

β̂u(u) = 1,{
dα̂u
dt (t) = −d0(t)β̂u(t)− v0(t)βu(t)β̂u(t)

α̂u(u) = 0.

Note that the non-negativity of μ and assumption (28) depend
on the model parameters. In particular, they are satisfied for the
Cox–Ingersoll–Ross process. We refer to Duffie et al. [17] for an extensive
study of affine models.

Based on this insight, we get for every u ∈ (t,T]

E
[
e−rue−�u ∣∣ Ft

] = e−rue−�t E
[
e− ∫ u

t μsds
∣∣∣ Ft

]
= e−rue−�t eαu(t)+βu(t)μt

= e−rueαu(0)+βu(0)μ +
∫ t

0
e−rue−�s eαu(s)+βu(s)μsβu(s)σ (s, μs)dWs + X3

t ,

where

X3
t = e−ru

∫ t

0
eαu(s)+βu(s)μs e−�s

(
∂sαu(s)+ μs∂sβu(s)+ βu(s)δ(s, μs)

+ 1
2
β2
s (u)σ

2(s, μs)− μs

)
ds

is of finite variation and has to vanish as the conditional expectation on the
left-hand side is a square-integrable continuous martingale.

For u ∈ [0, t] we note that

E
[
e−rue−�u ∣∣ Ft

] = e−rue−�u = lim
v↗u

E
[
e−rue−�u ∣∣ Fv]

= lim
v↗u

e−ru
(
eαu(0)+βu(0)μ +

∫ v

0
e−�s eαu(s)+βu(s)μsβu(s)σ (s, μs)dWs

)
= e−rueαu(0)+βu(0)μ +

∫ u

0
e−rue−�s eαu(s)+βu(s)μsβu(s)σ (s, μs)dWs,
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where we have used the fact that F-martingales are continuous. This shows that
for arbitrary u ∈ [0,T] we have

E
[
e−rue−�u ∣∣ Ft

]
= e−rueαu(0)+βu(0)μ +

∫ t∧u

0
e−rue−�s eαu(s)+βu(s)μsβu(s)σ (s, μs)dWs

= e−rueαu(0)+βu(0)μ +
∫ t

0
e−rue−�s eαu(s)+βu(s)μsβu(s)σ (s, μs)I[0,u](s)dWs .

From this we can directly infer the processes ψ , θ lau and ξu of the martingale
representations (4) (for the special case Z= e−rT), (13) (for the case of a simple
life annuity with Yt = 1, t ∈ [0,T]) and (23) respectively to be

ψs = e−rTe−�sσ(s, μs)eαT(s)+βT(s)μsβT(s) (30)

and

θ lau,s = ξu,s = e−rue−�sσ(s, μs)eαu(s)+βu(s)μsβu(s)I[0,u](s). (31)

Similarly, we get for u ∈ [0,T]

E
[
e−rue−�uμu

∣∣ Ft
] = e−rueαu(0)+βu(0)μ

(
α̂u(0)+ β̂u(0)μ

)︸ ︷︷ ︸
=:cu

+
∫ t

0
e−rue−�s eαu(s)+βu(s)μsσ(s, μs)

(
β̂u(s)+

(
α̂u(s)+β̂u(s)μs

)
βu(s)

)
I[0,u](s)︸ ︷︷ ︸

=:η(u,s)

dWs .

(32)

Note that for all u ∈ [0,T] and all t ∈ [0,T], we get by (28) that

E
[
E

[
e−rue−�uμu

∣∣ Ft
]2] ≤ E

[
E

[
e−2rue−2�uμ2

u

∣∣ Ft
]]

= E
[
e−2rue−2�uμ2

u

] ≤ E
[
μ2
u

] ≤ C.
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Hence, (
∫ t
0 η(u, s)dWs) is a square-integrable martingale. Moreover, note that

due to the Itô isometry and Fubini’s theorem, we have by (28) that

E
[∫ T

0

∫ T

0
η(u, s)2duds

]
=

∫ T

0
E

[∫ T

0
η(u, s)2ds

]
du

=
∫ T

0
E

[(∫ T

0
η(u, s)dWs

)2
]
du

=
∫ T

0
E

[(
E

[
e−rue−�uμu

∣∣ FT
] − cu

)2]
du

≤
∫ T

0
E

[
μ2
u

]
du

≤ CT < ∞,

since cu ≥ 0 for all u ∈ [0,T].
Hence, we may apply the stochastic Fubini theorem and (32) to obtain

E
[∫ T

0
e−rue−�u d�u

∣∣∣∣ Ft

]
=

∫ T

0
E

[
e−rue−�uμu

∣∣ Ft
]
du

=
∫ T

0
e−ru

{
eαu(0)+βu(0)μ

(
α̂u(0)+ β̂u(0)μ

)
+

∫ t

0
e−�s eαu(s)+βu(s)μsσ(s, μs)

(
β̂u(s)

+ (
α̂u(s)+ β̂u(s)μs

)
βu(s)

)
I[0,u](s)dWs

}
du

=
∫ T

0
e−rueαu(0)+βu(0)μ

(
α̂u(0)+ β̂u(0)μ

)
du

+
∫ t

0

∫ T

s
e−rue−�s eαu(s)+βu(s)μsσ(s, μs)

(
β̂u(s)

+ (
α̂u(s)+ β̂u(s)μs

)
βu(s)

)
du dW s .

From this we can infer the process χ of the martingale representation (7) to
equal

χs = e−�sσ(s, μs)
∫ T

s
e−rueαu(s)+βu(s)μs

(
β̂u(s)+ (

α̂u(s)+ β̂u(s)μs
)
βu(s)

)
du.

(33)
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Finally, we have for u ∈ (t,T]:

E
[
e−ru (1 − Gu) e−�u ∣∣ Ft

]
= e−rue−�t E

[
e− ∫ u

t μvdv
∣∣∣ Ft

]
− e−rue−2�t E

[
e−2

∫ u
t μvdv

∣∣∣ Ft

]
= e−rue−�t eαu(t)+βu(t)μt − e−rue−2�t eα̃u(t)+β̃u(t)μt

= e−ru
(
eαu(0)+βu(0)μ − eα̃u(0)+β̃u(0)μ

)
+

∫ t

0
e−rue−�sσ(s, μs)

(
eαu(s)+βu(s)μsβu(s)−e−�s eα̃u(s)+β̃u(s)μs β̃u(s)

)
dW s+X4

t ,

where

X4
t =

∫ t

0
e−�s eαu(s)+βu(s)μs

(
∂sαu(s)+ μs∂sβu(s)+ βu(s)δ(s, μs)

+ 1
2
β2
s (u)σ

2(s, μs)− μs

)
ds

−
∫ t

0
e−2�s eα̃u(s)+β̃u(s)μs

(
∂s α̃u(s)+ μs∂s β̃u(s)+ β̃u(s)δ(s, μs)

+1
2
β̃2
u (s)σ

2(s, μs)− 2μs

)
ds

is of finite variation and has to vanish.
For u ∈ [0, t] we get by the same limit arguments as above

e−ru (1 − Gu) e−�u = e−ru
(
eαu(0)+βu(0)μ − eα̃u(0)+β̃u(0)μ

)
+

∫ u

0
e−rue−�sσ(s, μs)

(
eαu(s)+βu(s)μsβu(s)− e−�s eα̃u(s)+β̃u(s)μs β̃u(s)

)
dWs .

Hence, we get for arbitrary u ∈ [0,T]:

E
[
e−ru (1 − Gu) e−�u ∣∣ Ft

] = e−ru
(
eαu(0)+βu(0)μ − eα̃u(0)+β̃u(0)μ

)
+

∫ t

0
e−rue−�sσ(s, μs)

(
eαu(s)+βu(s)μsβu(s)− e−�s eα̃u(s)+β̃u(s)μs β̃u(s)

)
I[0,u](s)dWs,
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from which we infer the process θ gau in the martingale representation (13) (for
the special case of a gratification annuity with Yt = 1 − Gt, t ∈ [0,T]) to be

θ gau,s = e−rue−�sσ(s, μs)
(
eαu(s)+βu(s)μsβu(s)− e−�s eα̃u(s)+β̃u(s)μs β̃u(s)

)
I[0,u](s).

(34)

By (30), (31), (33), (34) as well as (6), (9), (19), (21) (24) and (26), we hence
obtain the optimal hedging strategiesϑ∗,pe,ϑ∗,ti ,ϑ∗,ga andϑ∗,la for pure endow-
ment, term insurance, gratification annuity and simple life annuity respectively
as

ϑ∗,pe
s = e−rTLs−eαT(s)+βT(s)μsβT(s)∫ T

s e−rueαu(s)+βu(s)μsβu(s) du
,

ϑ∗,ti
s = Ls−

∫ T
s e−rueαu(s)+βu(s)μs

(
β̂u(s)+ (

α̂u(s)+ β̂u(s)μs
)
βu(s)

)
du∫ T

s e−rueαu(s)+βu(s)μsβu(s) du
,

ϑ∗,ga
s =

Ls−
∫ T
s e−ru

(
eαu(s)+βu(s)μsβu(s)− e−�s eα̃u(s)+β̃u(s)μs β̃u(s)

)
du∫ T

s e−rueαu(s)+βu(s)μsβu(s) du
, (35)

ϑ∗,la
s = Ls− . (36)

5. RISK STUDY

In this section, we perform a risk study for gratification and simple life annu-
ities. Based on numerical simulations, we first compare exemplary paths of the
optimal mean–variance hedging strategies as well as surfaces for their residual
hedging error. Then we compare the systematic risk parts of both annuities. Re-
member that both annuities are general annuities with Yt = 1 − Gt and Yt = 1,
t ∈ [0,T], in (1), respectively.

As in the previous section, we assume the hazard process to be absolutely
continuous with respect to the Lebesgue measure and the implied intensity to
follow an affine process. There exist several works which estimate different types
of affine processes to existing life tables, see e.g. Biffis [7], Dahl and Møller [16]
and Luciano and Vigna [18]. For our risk study, we particularly focus on affine
mortality intensities, following a non-mean-reverting Ornstein–Uhlenbeck pro-
cess and a non-mean-reverting Feller process, respectively. Both processes are
introduced and suggested to be suitable for mortality intensities in Luciano
and Vigna [18]. More explicitly, for the Ornstein–Uhlenbeck process we set
d0 = v1 = 0 and for the Feller process d0 = v0 = 0. In both cases, we find
explicit solutions of the Riccati ODEs, given in the previous section. For the
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non-mean-reverting Ornstein–Uhlenbeck process, we get for t ∈ [0, u]:

βu(t) = 1
d1

(
1 − ed1(u−t)

)
, αu(t) = v0(3 + 2d1(u − t)+ e2d1(u−t) − 4ed1(u−t))

4d31
,

β̃u(t) = 2
d1

(
1 − ed1(u−t)

)
, α̃u(t) = v0(3 + 2d1(u − t)+ e2d1(u−t) − 4ed1(u−t))

d31
,

β̂u(t) = ed1(u−t), α̂u(t) = v0(2ed1(u−t) − e2d1(u−t) − 1)

2d21
.

For the non-mean-reverting Feller process, we get for t ∈ [0, u]:

βu(t) = 2(eγ (u−t) − 1)
(d1 − γ )(eγ (u−t) − 1)− 2γ

, αu(t) = 0,

β̃u(t) = 4(eγ̃ (u−t) − 1)
(d1 − γ̃ )(eγ̃ (u−t) − 1)− 2γ̃

, α̃u(t) = 0,

β̂u(t) = 4γ 2eγ (u−t)(
(γ − d1)(eγ (u−t) − 1)+ 2γ

)2 , α̂u(t) = 0,

where γ =
√
d21 + 2v1 and γ̃ =

√
d21 + 4v1.

Note that with the lack of the mean-reversion property, both processes, in
contrast to their mean-reverting analogs (the Vasicek and the Cox–Ingersoll–
Ross model), are of exponential structure as illustrated in Figure 1. Here and
for the following illustrations, the parameters are taken from Luciano and
Vigna [18]. Note that the non-mean-revertingOrnstein–Uhlenbeck process does
a priori not show the property of non-negativity. Yet, with an appropriate choice
of the model parameters, one can set the probability that the process reaches
negative values very small. In particular, this is true for the parameters found
in Luciano and Vigna [18]. We also respect this issue when we vary some of
the model parameters for the illustrations. This way, we still consider the non-
mean-reverting Ornstein–Uhlenbeck process as suitable for our results, a com-
mon assumption in the literature (see e.g. Schrager [24] or Luciano and Vigna
[18]).

Based on the simulated paths of the mortality intensity and the affine model
parameters, we have numerically generated the optimal mean–variance hedging
strategies according to the formulas (35) and (36) respectively for the Ornstein–
Uhlenbeck and the Feller process. Figures 2 and 3 show exemplary paths of the
strategies for gratification and simple life annuities with maturities T = 5 and
30. Note that the strategies which jump to zero before thematurity show that the
insured person died at that time. Hence, the optimal hedging strategies intrinsi-
cally offer a reasonable property: if the insured dies before maturity, there is no
further necessity to keep a position in the hedging instrument for this contract.

https://doi.org/10.1017/asb.2013.12 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2013.12


HEDGING MORTALITY CLAIMS WITH LONGEVITY BONDS 147

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

μ t

t

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(a)

(b)

μ t

FIGURE 1: Exemplary paths of (a) a non-mean-reverting Ornstein–Uhlenbeck and (b) a non-mean-reverting
Feller process.

A remarkable difference between the gratification annuity and the simple
life annuity is that for both maturities, the insurance company has initially to
go short in the longevity bond in order to hedge the risk exposure of a gratifi-
cation annuity, whereas it has to go long in the longevity bond to hedge the risk
exposure of a simple life annuity. This is due to the fact that every rate payment
of the gratification annuity is inferred from the mortality intensity, too.
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FIGURE 2: Exemplary paths of the optimal hedging strategies for (a) a simple life annuity and (b) a
gratification annuity with maturity T = 5.

More explicitly, we remark that selling an insurance product means to have a
short position in the respective instrument for the insurance company. The rate
payments of a single life annuity only depend on the individual survival process
1 − H whereas the rate payments of a gratification annuity depend on both the
individual survival process 1−H and themortality rate 1−G. The short position
in the life annuity therefore yields high overall rate payments with a high realized
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FIGURE 3: Exemplary paths of the optimal hedging strategies for (a) a simple life annuity and (b) a
gratification annuity with maturity T = 30.

survival of the insured person. That is why the insurance company has to go
long in a longevity bond, as this means to receive higher rate payments with a
higher survival rate in the reference portfolio of the longevity index, which can
be assumed to be a good proxy for the realized survival process of the insured
person. On the contrary, the short position in a gratification annuity means to
suffer from both a lower survival rate of the reference portfolio and a higher
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realized survival of the insured. For a young insured, i.e. at the beginning of
the insurance contract, the suffering from a lower survival rate in the reference
portfolio dominates the suffering from a higher realized survival of the insured
and the insurance company has to go short in a longevity bond in order to cover
these rate payments. Remember that the longevity bond offers rate payments G.
Only for large maturities and when the insured person gets older, the suffering
from her higher realized survival dominates the suffering from lower survival
rates in the reference portfolio and a long position in the longevity bond has to
cover these long-term rate payments.

Another important issue besides the determination of the optimal hedging
strategies is the quantification of the residual hedging error. With the mean–
variance hedging approach, we have found self-financing trading strategies,
which do not perfectly replicate the insurance claimC, but yield a value process
whose final outcome is optimally close toC in the L2-norm. However, this value
process, although optimal, could still be too far away from the claim and the
hedging strategy therefore less reasonable for the insurance company. In order
to measure the residual hedging risk of the optimal strategy ϑ∗,C, we introduce
the (residual) hedging error process RC, given by

RCt = E

[(
C − cC −

∫ T

0
ϑ∗,C
s dVs

)2 ∣∣∣∣ Gt
]
, t ∈ [0,T],

where cC = E [C] is the necessary amount to initiate the hedging scheme.
For our simulations, we only consider RC0 . By using the results of Section 3,

we hence need to simulate

RC0 = E

[(
C − cC −

∫ T

0
ϑ∗,C
s dVs

)2
]

= E

[(∫ T

0
εC,Ms dMs

)2
]

= E
[∫ T

0
(εC,Ms )2d[M]s

]
= E

[∫ T∧τ

0
(εC,Ms )2d�s

]
= E

[∫ T∧τ

0
(εC,Ms )2μsds

]
,

where εC,M denotes the integrand with respect to M in the GKW decomposi-
tions of C.

Figures 4 and 5 show the residual hedging errors R0 for a gratification an-
nuity and a simple life annuity, where the maturity T and the initial mortality
intensity levelμ0 are varying. For both products, the results are again calculated
with a mortality intensity following a non-mean-reverting Ornstein–Uhlenbeck
process or a non-mean-reverting Feller process, respectively.

For both insurance products, the hedging error increases with increasing
maturity, which is not surprising. The remarkable feature, however, is that the
residual hedging error of a gratification annuity is considerably lower than
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FIGURE 4: Residual hedging error R0 for a simple life annuity with mortality intensity, simulated with (a) a
non-mean-reverting Ornstein–Uhlenbeck process and (b) a non-mean-reverting Feller process.

the hedging error of a simple life annuity. The levels of R0 are lower for all
considered combinations of maturity and initial mortality intensity under both
affine specifications of the mortality intensity. This is due to the fact that the
rate payments of the gratification annuity and the longevity bond both depend
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FIGURE 5: Residual hedging error R0 for a gratification annuity with mortality intensity, simulated with (a) a
non-mean-reverting Ornstein–Uhlenbeck process and (b) a non-mean-reverting Feller process.

on the survival rate G, whereas the rate payments of the single life annuity
only depend on the individual survival process 1 − H. Hence, there is a higher
correlation between the rate payments of the gratification annuity and the
longevity bond than between the rate payments of the single life annuity
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and the longevity bond. As parts of the mortality risk are forwarded to the
insured person through the gratification annuity’s rate payments hence yields a
good performance of the gratification annuity’s optimal hedging scheme. On the
contrary, the residual hedging error for existing insurance products like a simple
life annuity suggests to consider their optimal hedging strategy rather carefully,
especially for longer maturities.

Another point of interest in the context of an insurance claim’s risk is the
investigation of its systematic and unsystematic parts, see e.g. Norberg [21]. The
systematic part of an insurance claim’s risk can be understood as the part which
is due to common risk drivers and its consequences for the insurance company
cannot be reduced through diversification. The unsystematic part of an insur-
ance claim’s risk can be understood as the part that is due to the insured person’s
individual characteristics. Its consequences for the insurance company can be
reduced through diversification.

Note that in the setting of the present paper, the GKW decompositions of
the different insurance claims intrinsically cover the separation of systematic
and unsystematic risk: as we have G = F ∨ H and F is generated by W, every
claim C can be represented as

C = cC +
∫ T

0
εC,Ws dWs︸ ︷︷ ︸

systematic risk

+
∫ T

0+
εC,Ms dMs︸ ︷︷ ︸

unsystematic risk

.

As the Brownian motionW is the unique “external” risk driver for all insurance
claims, the stochastic integral with respect toW can be considered as the system-
atic part. The martingales M, however, vary for different insured persons and
the integrals with respect to M can therefore be considered as the unsystematic
part.

As the effects of the unsystematic part diversify through pooling, we now
want to compare the systematic risk of a gratification annuity and a simple life
annuity. In particular, we can measure the systematic risk SR through

SR= E

[(∫ T

0
εC,Ws dWs

)2
]

= E

[∫ T

0

(
εC,Ws

)2
ds

]
.

In our particular affine framework of this section, equations (31) and (34) show
that the systematic risk of the simple life annuity is lower or equal than that of
the gratification annuity, if β̃u(s) ≤ 0, ∀s ∈ [0,T], u ∈ [s,T]. This is particularly
the case for the mortality intensity μ, following an Ornstein–Uhlenbeck or a
Feller process, as well as for most models of practical interest. This is due to the
fact that the gratification annuity is exposed to systematic risk in both directions:
a structural change in the systematic risk drivers affects both, the insurance com-
pany’s pool of policyholders and the age cohort from which the rate payments
are inferred. A structural decrease in the underlying mortality intensity would
e.g. lead to lower claim payments with respect to the insurance portfolio, on the
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one hand, and to higher annuity rates, on the other hand. While a portfolio of
simple life annuities would benefit from a structural decrease in the mortality
intensity, a portfolio of gratification annuities could also suffer from it. Still, the
gratification annuity inherits an advantageous feature from its payout structure:
the most common systematic risk exposures of life insurance companies or pen-
sion funds are due to increasing longevity. Here, a gratification annuity relaxes
the exposure, as increasing longevity leads to lower rates. The results hence show
that the systematic risk of a gratification annuity is higher than that of a simple
life annuity, existing on the markets, because the gratification annuity is exposed
to risk in any direction. Yet, for the most important systematic risk exposure,
increasing longevity, the gratification annuity transfers parts of the systematic
risk to the policyholders. For a more thorough investigation of systematic risk
in an even more general setting, we refer to Biagini and Schreiber [5].

The investigation of the systematic risk is important under the assumption
that no longevity bond is available. With the presence of longevity bonds on
the market, however, we have seen that the complete systematic risk of the
insurance claims can be secured. Here, the remaining risk due to hedging er-
rors is considerably lower for the gratification annuity than for a simple life
annuity.

Besides the nice “marketing” feature that the insured person gets gratified if
he or she is healthier as was originally expected, the gratification annuity there-
fore shows a better risk behavior than other insurance products, already existing
on the lifemarket, given the presence of longevity bonds.Moreover, we have seen
that the insurance company must initially hold a short position in the longevity
bond in order to hedge a gratification annuity. This, however, means lower initial
overall costs to hedge all longevity products of an insurance company.

All these advantageous features can constitute incentives for insur-
ance companies to introduce gratification annuities as a new life insurance
product.
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APPENDIX

INTEGRABILITY CONDITIONS

Lemma 10. We have

sup
0≤u≤T

∥∥∥∥∫ T

0
φu,s dWs

∥∥∥∥
L2
< ∞. (A.1)

Proof. First note that since (1 − Hs−) ≤ 1,

E
[∫ T

0
L2
s−θ

2
u,sI[0,u](s) ds

]
≤ E

[∫ T

0
e2�s θ 2u,sI[0,u](s) ds

]
,

hence by the Itô isometry, (A.1) holds if

E

[(∫ T

0
e�s θu,sI[0,u](s) dWs

)2
]
< ∞. (A.2)

Since by (13) the terms
∫ ·
0 θu,sI[0,u](s) dWs are bounded martingales, uniformly in u, we have

by integration by parts that for each u ∈ [0,T]∣∣∣∣∫ T

0
e�s θu,sI[0,u](s) dWs

∣∣∣∣ =
∣∣∣∣e�T ∫ T

0
θu,sI[0,u](s) dWs −

∫ T

0

∫ s

0
θu,vI[0,u](v) dWv de�s

∣∣∣∣
≤ 2Ce�T ,

where the constant C is independent of u. Therefore, (A.2) follows from assumption (2),
namely that e�T ∈ L2(P).
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Lemma 11. We have

sup
0≤u≤T

∥∥∥∥∫ T

0
νu,s dMs

∥∥∥∥
L2
< ∞. (A.3)

Proof. As

νu,s = −Ls−
(
cu +

∫ s

0
θu,vI[0,u](v) dWv

)
I[0,u](s),

and cu + ∫ ·
0 θu,vI[0,u](v) dWv are bounded martingales, uniformly in u, it follows that the νu,·

are bounded as well by some constant C independent of u. Therefore

E
[∫ T

0
ν2u,s d 〈M〉s

]
≤ C2E [〈M〉T ] ,

and by the Itô isometry and the definition of the angle bracket (i.e. predictable compensator),
(A.3) holds if and only if

E [〈M〉T ] = E [�T∧τ ] ≤ E [�T ] < ∞,

which is implied by (2).
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