Laryngology & Otology

cambridge.org/jlo

Review Article

Dr K Lau takes responsibility for the integrity of the content of the paper

Cite this article: Lau K, Dimitriadis PA, Mitchell C, Martyn-St-James M, Hind D, Ray J. Agerelated hearing loss and mild cognitive impairment: a meta-analysis and systematic review of population-based studies. *J Laryngol Otol* 2022;**136**:103–118. https://doi.org/10.1017/ S0022215121004114

Accepted: 18 January 2021 First published online: 13 December 2021

Key words:

Hearing Loss; Mild Cognitive Impairment; Dementia; Presbycusis

Author for correspondence:

Dr Kimberley Lau, Department of Otolaryngology, Sheffield Teaching Hospitals, Glossop Rd, Broomhall, Sheffield S10 2JF, UK E-mail: kimberleylau@doctors.org.uk

© The Author(s), 2021. Published by Cambridge University Press on behalf of J.L.O. (1984) LIMITED

Age-related hearing loss and mild cognitive impairment: a meta-analysis and systematic review of population-based studies

K Lau¹, P A Dimitriadis¹, C Mitchell², M Martyn-St-James³, D Hind⁴ and J Ray¹

¹Department of Otolaryngology, Sheffield Teaching Hospitals, Sheffield, ²Academic Unit of Primary Medical Care, Northern General Hospital, Sheffield, ³Health Economics and Decisions Science and ⁴Clinical Trials Research Unit, School of Health and Related Research, University of Sheffield, UK

Abstract

Background. The aim of this study was to identify any relationship between hearing loss and mild cognitive impairment.

Method. This was a systematic review and meta-analysis of randomised controlled trials conducted using Medline and the Cochrane Library up to 24 June 2020. Prospective, cohort and cross-sectional, and observational studies that reported on the relationship between mild cognitive impairment and hearing loss were included.

Results. A total of 34 studies reporting data on 48 017 participants were included. Twentythree studies observed a significant association between hearing loss and mild cognitive impairment. The pooled risk ratio across all studies of prevalence of mild cognitive impairment in people with hearing loss was 1.44 (random-effects; 95 per cent CI = 1.27–1.64; *p* < 0.00001; $I^2 = 0$ per cent). Significantly more people with mild cognitive impairment had peripheral hearing loss compared with those without (risk ratio, 1.40 random-effects; 95 per cent CI = 1.10–1.77; *p* = 0.005; $I^2 = 0$ per cent). When the incidence was studied, significantly more people with peripheral hearing loss had mild cognitive impairment compared with those without (risk ratio = 2.06 random-effects; 95 per cent CI = 1.35–3.15; *p* = 0.0008; $I^2 = 97$ per cent); however; a high level of statistical heterogeneity was evident.

Conclusion. Most of the studies included in this systematic review observed a significant association between hearing loss and mild cognitive impairment.

Introduction

Age-related hearing loss is a decrease in hearing ability that happens with age and is a common sensory abnormality of the elderly. According to the World Health Organisation, 466 million adults globally live with disabling hearing loss, including nearly one in three people aged over 65 years.¹ Hearing impairment not only affects interpersonal communication but also health, independence, wellbeing, quality of life and daily function and can lead to social isolation, depression and early mortality.^{2–5} In recent years, there has been a growing speculation about the association between cognitive decline and age-related hearing loss.⁶ Uhlmann *et al.* (1989) were amongst the first to find that hearing loss was a strong, independent risk factor for cognitive decline.⁷ However, other studies have contested this association.^{8,9}

A recent commission document by the *Lancet* postulated that hearing loss in mid- and later life is associated with increased risk of dementia.¹⁰ Dementia is the loss of cognitive functioning and behavioural abilities to such an extent that it interferes with a person's daily life and activities. The aim of the present study was to identify any relationship between hearing loss and a prodromal state of dementia or mild cognitive impairment. Establishing such an association would strengthen the case for a relationship between hearing impairment and dementia and focus intervention development to an earlier stage. Mild cognitive impairment is an intermediate state between normal cognitive functioning and development of dementia.^{11,12} Individuals with mild cognitive impairment in cognitive function with otherwise normal function in the performance of activities of daily living.¹³ They are at a significantly elevated risk of developing dementia during their lifetime, which is estimated to be around 80 per cent.¹⁴

Hearing impairment can be either peripheral or central.³ The peripheral hearing system consists of the peripheral components of hearing (including the cochlea), whereas the central hearing system encompasses the central auditory pathways and influences the way incoming auditory stimuli are perceived and understood (central auditory processing). The key symptom of central hearing loss is an inability of the individual to understand speech in a noisy environment,¹⁵ particularly if peripheral hearing (the ability to hear in quiet) remains relatively normal. In the present review article, we include studies that have assessed the link between both types of hearing loss with early dementia.

Parameter	Inclusion criteria	Exclusion criteria
Population	Cohort studies: adults with early dementia who were cognitively intact at baseline and were followed up for any period of time. Hearing and cognition assessment were available at baseline and end-point. Cross-sectional studies: adults who had hearing loss or mild cognitive impairment at the point of assessment	Paediatric populations and participants with a diagnosis of established dementia (instead of early dementia or mild cognitive impairment)
Outcomes	The proportion of patients with the condition (peripheral or central hearing loss, cognitive impairment) in the case group compared with the control group	None
Study Design	Prospective cohort, case-control and cross-sectional. Full-text was available. Published in English language	Book chapters, reviews, editorials and commentaries. Interventional studies

Table 1. Inclusion and exclusion criteria for the population of interest, outcomes and study design

Table 2. Articles excluded at full-text

Reason for exclusion	Studies excluded
Outcomes were reported for patients with both visual and hearing impairments (could not distinguish results from patients with just hearing impairment)	Davidson and Guthrie, 2019, ³⁸ Maharani <i>et al</i> ., 2018 ³⁹
Absence of control group	Ray et al., 2018, ³⁶ Murphy et al., 2018, ³⁷ Villeneuve et al., 2017, ¹⁸ Wong et al., 2014, ²² Daggett et al., 2014, ³³ Pronk et al., 2013, ²⁴ Gurina et al., 2011, ²⁷ Srinivasan et al., 2010, ²⁸ Munshi et al., 2006, ²⁹ Riello et al., 2004, ³⁰ Allen et al., 2003, ³¹ Uhlmann et al., 1986 ³²
Relevant outcomes on cognition or hearing not available	Yu <i>et al.</i> , 2017, ³⁵ Schnitker <i>et al.</i> , 2016, ¹⁹ Moradi <i>et al.</i> , 2014, ²³ Lin and Albert, 2014, ⁶ No authors listed, 2013, ²⁵ Helvik <i>et al.</i> , 2012 ²⁶
No report on association between mild cognitive hearing impairment and hearing loss	Dotchin <i>et al.</i> , 2015 ²¹
Article replaced by Fischer <i>et al.</i> ⁴⁷ (2016) that reported outcomes of interest on the same population, after communication with senior author	Schubert <i>et al.</i> , 2017 ²⁰

Materials and methods

The systematic review was undertaken in accordance with the general principles recommended in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses.¹⁶ A systematic computer-based literature search was performed on the biomedical bibliographical databases Medline and Cochrane library. The search was done on the 24 June 2020 and run from database inception. A copy of the search strategy is presented in Appendix 1. The protocol for this systematic review has been deposited in the Prospero international prospective register of systematic reviews (identification number: CRD42017076183) and can be accessed at https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=76183.

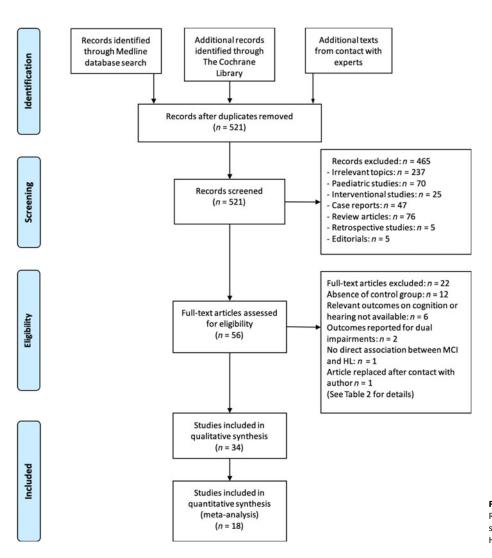
The inclusion and exclusion criteria for the population of interest, outcomes and study design are presented in Table 1.

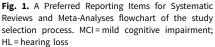
Data analysis

Three authors (KL, PAD and CM) independently selected studies, extracted data and assessed the quality of included studies. Data were extracted from each study and included information on the article identification, year of publication, population (continent), matching for covariates between groups, evaluation period (for longitudinal studies), number of patients per group, hearing and cognition assessment methods, number of male patients, and mean age of patients. Where data were missing, the corresponding authors of the articles were approached by email.

The quality assessment of the cohort studies included in the meta-analysis was done using the Newcastle–Ottawa Scale.¹⁷

Statistical analyses


The meta-analysis was undertaken using Cochrane RevMan review software (The Nordic Cochrane Centre, The Cochrane Collaboration, 2014, Copenhagen, version 5.3). Outcomes reported as dichotomous were estimated as risk ratios with associated 95 per cent confidence interval (CI). Where studies did not report participant numbers but gave an effect size with 95 per cent CI, these were pooled in RevMan using the generic inverse variance method. Random-effects models were applied. Effect estimates (estimated in RevMan as *Z*-scores) were considered significant at p < 0.05. Statistical heterogeneity was assessed using the I-squared statistic. Where data were not suitable for pooling in a meta-analysis, a narrative synthesis using tables and text was reported.


Results

The electronic searches identified 521 unique citations. One additional citation was provided by a clinical expert. Of these, 465 were excluded based on their title and abstract. Of 56 citations obtained as full-text, 22 were excluded.^{18–39} Details of the studies excluded at full-text are presented in Table 2.

Thirty-four studies, reporting on 48 017 participants, fulfilled the inclusion criteria and were included in the systematic review. Eighteen of these studies were eligible for and were included in the meta-analysis. A Preferred Reporting Items for Systematic Reviews and Meta-Analyses flowchart of the study selection process is shown in Figure 1. The characteristics of the included studies are shown in Table 3.

These studies were published between 1986 and 2019 and conducted in America, Asia, Australia, Africa and Europe. Ten of the studies were cohort, $^{40-49}$ 23 were cross-sectional, $^{7,50-71}$ and 1 study was both a cross-sectional and cohort study. ⁷² Recruited participant numbers ranged from 20⁷⁰ to 13 731. ⁴⁶ The results of the quality assessment are presented in Table 4. All of the cohort studies scored more than six stars (out of a total of nine stars).

Hearing assessment

Most of the studies used pure tone audiometry as the main auditory assessment method, and this measures hearing sensitivity. Self-reported or assessor-reported hearing loss was used by 10 studies,^{41–44,46,48,51,64,71,72} and in 1 paper the assessment method was not reported.⁵⁰ Some studies used central auditory function tests, such as dichotic digits test, speech audiometry, synthetic sentence identification with ipsilateral competing message and so on.^{7,49,56,59,61–63,65,68,70} The definition of hearing loss from the World Health Organization⁷³ was used by most studies, but the frequencies tested ranged from: 500 to 4000 Hz,^{45,47,54,55,57,60,66} 1000 to 4000 Hz,⁶⁷ 250 to 2000 Hz⁵⁸ and 500 to 3000 Hz.⁷ One study used the hearing threshold at 4 kHz only to separate the different groups of hearing loss.⁶⁸

Cognitive assessment

The cognitive assessment tool that was used by most researchers was the Mini Mental State

Examination^{7,40,42,46,47,49,50,53,54,58,59,60,62,64,66,71,72} or its modified version, the Modified Mini Mental State tool.45,48,70 A score below 24 on the Mini Mental State Examination⁷⁴ was considered abnormal by most studies.^{7,40,46,47,53,58,66} The cutoff score was 27 in two studies.^{71,72} In another study, Mini Mental State examination score thresholds were adjusted for education level.⁵⁰ Other cognitive assessment tests used included the Montreal Cognitive Assessment, 53,56 Cognitive Drug Research Computerised Assessment System,⁵⁵ verbal fluency,^{42,55,57,64} National Adult Reading Test,⁵⁵ Delayed Word Recall Test,⁵⁷ Digit Symbol Substitution Test,⁵⁷ Wechsler Adult Intelligence Test,⁵⁸ Clinical Dementia Rating Scale,^{44,59,72} Frontal Assessment Battery,⁵⁹ Free and Cued Selective Reminding Test,⁶⁰ Trail Making Test (parts A and B),^{40,42,60,63,64} Rey-Osterrieth Complex Figure Recall Test,⁴² Stroop Letter and Category Fluency,^{60,63} the American version of the Nelson Adult Reading Test,⁶⁰ Abbreviated Memory Inventory for the Chinese,⁴¹ Cambridge Cognitive Examination,⁶¹ Clock Drawing Test,^{42,63} Cognitive Abilities Screening Instrument ^{63,65} Letter-Digit Symbol Test,⁶⁷ Auditory Verbal Learning Test,⁶⁷ Clinical Dementia Rating Scale⁶⁹ and Storandt Battery.⁷

Results of quantitative analysis

Prevalence of mild cognitive impairment

Across four cross-sectional studies comparing mild cognitive impairment between people with peripheral hearing loss (n = 1292) and without peripheral hearing loss (n = 1041), the risk ratio was 1.39 (random-effects, 95 per cent CI = 1.18

Table 3. Characteristics of included studies

Reference	Design	Matching*	Population	Cognition assessment	Auditory assessment	Patients (n)	Control (<i>n</i>)	Follow up (years)
Schubert et al., 2019 ⁴⁰	Cohort	1, 2, visual impairment	America	Mini Mental State Examination, Trail Making Tests A & B	Pure tone audiometry	331	2126	10
Yu and Woo, 2019 ⁴¹	Cohort	1, 2, 3, 4, marital status, diabetes, baseline cognitive status	Asia	Abbreviated Memory Inventory for the Chinese	Self-reported	858	1089	1
Vaccaro <i>et al.</i> , 2019 ⁴²	Cohort	1	Europe	Mini Mental State Examination, Semantic Verbal Fluency Test, Rey– Osterrieth Complex Figure Recall Test, Clock Drawing Test, Trail Making Test part A	Self-reported, Whispered Voice Test	159	1012	5
Curhan <i>et al</i> ., 2019 ⁴³	Cohort	1, 4, race, occupation, body mass index, smoking, cholesterol, diabetes	America	Subjective Cognitive Decline	Self-reported	1181	1208	8
Han <i>et al.</i> , 2019 ⁵⁰	Cross-sectional	None	Asia	Mini Mental State Examination	Not reported	274	1743	NA
Gallagher et <i>al</i> ., 2018 ⁴⁴	Cohort	None	America	Clinical Dementia Rating Scale	Observed by assessor	505	2150	3.5
Heward <i>et al.</i> , 2018 ⁵¹	Cross-sectional	3	Africa	Intervention for Dementia in Elderly Africans cognitive screen	Self-reported	50	255	NA
MacDonald Set al., 2018 ⁵²	Cross-sectional	1	America	Word recall task, Letter Series Test, Wechsler Adult Intelligence Scale-Revised Digit Symbol Substitution Task, Controlled Associations Test, Recognition Vocabulary Test	Pure tone audiometry	211	197	NA
liadou <i>et al.</i> , 2017 ⁵³	Cross-sectional	1, 2, pure tone thresholds	Europe	Mini Mental State Examination, Montreal Cognitive Assessment, Clinical Dementia Rating Scale, Geriatric Depression Scale	Pure tone audiometry, speech in quiet, central auditory processing test (Random Gap Detection Test, speech in bubble, gaps-in-noise)	18	11	NA
Heywood et al., 2017 ⁷²	Cross-sectional; cohort	1, 2, 3, 4, ethnicity, central obesity, diabetes, dyslipidaemia, smoking, alcohol, leisure time activity, cardiac diseases, depressive symptoms	Asia	Mini Mental State Examination, Clinical Dementia Rating Scale	Whispered Voice Test	Cross-sectional: 507; cohort: 144	Cross-sectional: 2052; cohort: 1360	Cross-sectional: NA; cohort: 3.8
Deal <i>et al.</i> , 2017 ⁴⁵	Cohort	1, 2, 3	America	Modified Mini Mental State	Pure tone audiometry	1103	786	9

Bruckmann and Pinheiro, 2016 ⁵⁴	Cross-sectional	3	America	Mini Mental State Examination	Pure tone audiometry	17	13	NA
Yang and Gu, 2016 ⁴⁶	Cohort	1, 2, 3, occupation, wealth	Asia	Mini Mental State Examination	Self-reported	4820	8911	3
Fischer <i>et al.</i> , 2016 ⁴⁷	Cohort	1, 2, 3, 4, smoking, exercise, alcohol consumption, hypertension, diabetes, non-high-density lipoprotein cholesterol, frailty score, intima media thickness	America	Mini Mental State Examination	Pure tone audiometry	1209	1209	17
Bucks <i>et al.</i> , 2016 ⁵⁵	Cross-sectional	1, 2, 3, depression, cognitive reserve (premorbid intelligence quotient)	Australia	Cognitive Drug Research System, verbal fluency, National Adult Reading Test	Pure tone audiometry	112	1857	NA
Lister <i>et al.,</i> 2016 ⁵⁶	Cross-sectional	1, 3, race, pure tone audiometry	America	Montreal Cognitive Assessment	Cortical auditory evoked potential, pure tone audiometry, tympanometry, Speech Reception Threshold, speech in noise	13	17	NA
Deal <i>et al.</i> , 2015 ⁵⁷	Cross-sectional	1, 2, 3, 4	America	Delayed Word Recall Test, word fluency test, Digit Symbol Substitution Test	Pure tone audiometry	180	73	23
Zhang <i>et al.</i> , 2015 ⁵⁸	Cross-sectional	1, 3	Asia	Mini Mental State Examination, Wechsler Adult Intelligence Test	Pure tone audiometry	21	11	NA
Gurgel <i>et al.</i> , 2014 ⁴⁸	Cohort	1, 2, 3, 4, apolipoprotein E-∈4 allele, diabetes, smoking, high cholesterol	America	Modified Mini Mental State-Revised, interview, neuropsychological testing	Observed by assessor, self-reported	836	3627	Mean follow-up: 4.32 (hearing loss group), 6.08 (control group)
Quaranta et al., 2014 ⁵⁹	Cross-sectional	1, 2, 3	Europe	Mini Mental State Examination, Clinical Dementia Rating Scale, Frontal Assessment Battery	Pure tone audiometry, speech audiometry, synthetic sentence identification with ipsilateral competing message, Hearing Handicap Inventory for the Elderly Screening version questionnaire	207	245	NA
Lin <i>et al.</i> , 2011 ⁶⁰	Cross-sectional	1, 2, 3, 5, race, depression, smoking	America	Mini Mental State Examination, Free and Cued Selective Reminding Test, Trail Making A & B, Stroop, Letter & Category Fluency, American version of the Nelson Adult Reading Test	Pure tone audiometry	142	205	NA

https://doi.org/10.1017/S0022215121004114 Published online by Cambridge University Press

Table 3. (Continued.)

Reference	Design	Matching*	Population	Cognition assessment	Auditory assessment	Patients (n)	Control (n)	Follow up (years)
Rahman et al., 2011 ⁶¹	Cross-sectional	1, 2, 3, 5, pure tone audiometry	Africa	Cambridge Cognitive Examination	Speech audiometry, CAP, pure tone audiometry, tympanometry	150	150	NA
Idrizbegovic <i>et al.</i> , 2011 ⁶²	Cross-sectional	1	Europe	Mini Mental State Examination	Pure tone audiometry, speech audiometry, Dichotic Digits Test	59	34	NA
Gates <i>et al.</i> , 2010 ⁶³	Cross-sectional	1, 3, pure tone audiometry	America	Trail Making Test; Clock Drawing, Stroop Color and Word and subtests from the Cognitive Abilities Screening Instrument	Pure tone audiometry, distortion product otoacoustic emissions, synthetic sentence identification with ipsilateral competing message, Dichotic Sentence Identification, Dichotic Digits Test	60	232	NA
Benito-León <i>et al.</i> , 2010 ⁶⁴	Cross-sectional	1, 2, 3, premorbid intelligence, cognition altering medications, depression	Europe	Expanded version of Mini Mental State Examination, Trail Making Test A, verbal fluency, memory, premorbid intelligence	Self-reported	1073	1073	NA
Gates <i>et al.</i> , 2008 ⁶⁵	Cross-sectional	1, 2, hearing threshold, word recognitions score, frequency of exercise, depressive symptoms	America	Cognitive Ability Screening Instrument	Identification Test, Dichotic Digits Test, Pitch Pattern Sequence	64	232	NA
Tay <i>et al.</i> , 2006 ⁶⁶	Cross-sectional	1, 2 cerebrovascular disease	Australia	Mini Mental State Examination	Pure tone audiometry	89	75	NA
Van Boxtel <i>et al.</i> , 2000 ⁶⁷	Cross-sectional	1, 2, 3, information processing speed	Europe	Letter-Digit Symbol Test, Auditory Verbal Learning Test	Pure tone audiometry	56	397	NA
Frisina and Frisina, 1997 ⁶⁸	Cross-sectional	5, cardiovascular disorders	America	Extent of benefit gained from supportive context during speech audiometry	Pure tone audiometry, speech audiometry	30	20	NA
Gates <i>et al.</i> , 1996 ⁴⁹	Cohort	Stroke	America	Mini Mental State Examination	Pure tone audiometry, speech audiometry, synthetic sentence identification with ipsilateral competing message, staggered spondaic word, Performance Intensity function of Phonetically Balanced Words	452	364	6
Gates <i>et al.</i> , 1995 ⁶⁹	Cross-sectional	1, 2, 3	America	Clinical Dementia Rating Scale	Pure tone audiometry, speech audiometry, synthetic sentence identification with	40	42	NA

K Lau, P A Dimitriadis, C Mitchell et al.

	NA	NA	NA
	10	45	100
	10	5	100
ipsilateral competing message, distortion product otoacoustic emissions, auditory brainstem response	Pure tone audiometry, speech and immittance audiometry, synthetic sentence identification with ipsilateral competing message, otoacoustic emissions, dichotic digits, dichotic sentence identification, pitch and duration patterns	Self-reported	Pure tone audiometry, speech audiometry
	Modified Mini Mental State, Storandt Battery	Mini Mental State Examination	Mini Mental State Examination
	America	America	America
	1, 2, hearing loss	None	1, 2, 3
	Cross-sectional	Cross-sectional	Cross-sectional
	Strouse <i>et al.</i> , 1995 ⁷⁰	DeVore, 1992 ⁷¹	Uhlmann <i>et al.</i> , 1989 ⁷

to 1.64; p = 0.0001; $I^2 = 0$ per cent); significantly more people with peripheral hearing loss had mild cognitive impairment compared with those without peripheral hearing loss.

The risk ratio for one study comparing mild cognitive impairment between people with central hearing loss (n =113) and without central hearing loss (n = 86) was 1.54 (random-effects, 95 per cent CI = 1.24 to 1.90; p < 0.0001; I² not applicable); significantly more people with central hearing loss had mild cognitive impairment compared with those without central hearing loss.

The pooled risk ratio across all studies was 1.44 (random-effects, 95 per cent CI = 1.27 to 1.64; p < 0.00001; $I^2 = 0$ per cent) (Figure 2).

Prevalence of hearing impairment

Across three cross-sectional studies comparing peripheral hearing loss between people with mild cognitive impairment (n = 82) and without mild cognitive impairment (n = 108), the risk ratio (risk ratio) was 1.40 (random-effects, 95 per cent CI = 1.10 to 1.77; p = 0.005; $I^2 = 0$ per cent); significantly more people with mild cognitive impairment had peripheral hearing loss compared with those without (Figure 3).

Across two cross-sectional studies reporting the between-group difference as an odds ratio (i.e., no raw data were available) comparing peripheral hearing loss between people with mild cognitive impairment and without mild cognitive impairment, the odds ratio was 1.41 (random-effects, 95 per cent CI = 1.02 to 1.96; p = 0.04; $I^2 = 59$ per cent); statistical heterogeneity was evident and the between-group difference was not statistically significant (Figure 4).

Hearing loss in people with mild cognitive impairment

Peripheral hearing loss

Across six cohort studies comparing mild cognitive impairment between people with peripheral hearing loss (n = 8235) and without peripheral hearing loss (n = 17 891), the risk ratio was 2.06 (random-effects, 95 per cent CI = 1.35 to 3.15; p = 0.0008; I² = 97 per cent); significantly more people with peripheral hearing loss had mild cognitive impairment compared with those without, although a high level of statistical heterogeneity was evident (Figure 5).

Across two cohort studies reporting the between-group difference as a hazard ratio (i.e. no raw data were available) comparing mild cognitive impairment between people with and without peripheral hearing loss, the hazard ratio was 1.40 (random-effects, 95 per cent CI = 1.64 to 1.95; p < 0.00001; $I^2 = 0$ per cent); significantly more people with peripheral hearing loss had mild cognitive impairment compared with those without peripheral hearing loss (Figure 6).

The between-group difference for one cohort study reporting the outcome as an odds ratio (i.e. no raw data were available) comparing mild cognitive impairment between people with and without peripheral hearing loss was 1.70 (randomeffects, 95 per cent CI = 1.30 to 2.22; p = 0.0001); significantly more people with peripheral hearing loss had mild cognitive impairment compared with those without peripheral hearing loss (Figure 7).

The between-group differences for one cohort study reporting the outcome as risk ratio (i.e. no raw data were available) comparing mild cognitive impairment between people with and without mild, moderate or severe peripheral hearing loss were: mild 1.26 (random-effects, 95 per cent CI = 1.15 to 1.38; *p* < 0.0001), moderate 1.29 (random-effects, 95 per cent

	Selection				Comparability	Outcome		
Reference	Representativeness of the exposed cohort	Selection of the non-exposed cohort	Ascertainment of exposure	Demonstration that outcome of interest was not present at start of study	Of cohorts on the basis of the design or analysis	Assessment	Follow up long enough	Adequacy of follow up of cohorts
Schubert <i>et al</i> ., 2019 ⁴⁰	*	*	*	*	**	*	*	*
Yu and Woo, 2019 ⁴¹	*	*	*	*	**	*		*
Vaccaro <i>et al.</i> , 2019 ⁴²	*	*	*	*	**	*	*	*
Curhan <i>et al.</i> , 2019 ⁴³		*	*	*	**	*	*	*
Gallagher <i>et al</i> ., 2018 ⁴⁴	*	*	*	*	**	*		*
Heywood <i>et al.</i> , 2017 ⁷²	*	*	*	*	**	*	*	*
Deal <i>et al.</i> , 2017 ⁴⁵	*	*	*	*	**	*	*	*
Yang and Gu, 2016 ⁴⁶	*	*	*	*	**		*	
Fischer <i>et al</i> ., 2016 ⁴⁷	*	*	*	*	**	*	*	*
Gurgel <i>et al.</i> , 2014 ⁴⁸	*	*	*	*	**		*	*
Gates <i>et al.</i> , 1996 ⁴⁹	*	*	*	*		*	*	*

One star is attributed per item if achieved, except for 'comparability' which can achieve up to two stars. All of the cohort studies scored more than six stars (out of a maximum of nine).

	Hearing	loss	No hearing	g loss		Risk ratio	Risk ratio
Study or subgroup	Events	Total	Events	Total	Weight	M-H, random, 95% CI	M-H, random, 95% Cl
1.1.1 Peripheral hearing	ng loss						
Bruckmann and Pinheiro, 201654	7	17	5	13	2.1%	1.07 (0.44, 2.61)	
Deal et al., 201557	149	1103	80	786	25.8%	1.33 (1.03, 1.71)	1
Quaranta et al., 201459	89	172	86	242	34.0%	1.46 (1.17, 1.82)	
Subtotal (95% CI)		1292		1041	61.9%	1.39 (1.18, 1.64)	▼
Total events	245		171				
Heterogeneity: tau ² = 0	0.00; chi ²	= 0.63	, df = 2 (p =	0.73); I	$^{2} = 0\%$		
Test for overall effect;	Z = 3.88	(<i>p</i> = 0.	0001)				
1.1.2 Central hearing l	oss						
Quaranta 2014	113	207	86	242	38.1%	1.54 (1.24, 1.90)	
Subtotal (95% CI)		207		242	38.1%	1.54 (1.24, 1.90)	◆
Total events	113		86				
Heterogeneity: Not app	olicable						
Test for overall effect;	Z = 4.00	(<i>p</i> = 0.	0001)				
Total (95% CI)		1499		1283	100.0%	1.44 (1.27, 1.64)	•
Total events	358		257				
Heterogeneity: tau ² = 0	0.00; chi ²	= 1.22	, df = 3 (p =	0.75); 1	$^{2} = 0\%$		
Test for overall effect;	Z = 5.52	(p = 0.	00001)				0.01 0.1 1 10 100 No hearing loss Hearing loss
Test for subgroup diffe	erences:	$chi^2 = 0$.57. df = 1 (p = 0.45	5). $I^2 = 0\%$	6	No hearing loss Hearing loss

Fig. 2. Prevalence of mild cognitive impairment amongst hearing impaired patients. M-H = Mantel-Haenszel; CI = confidence interval

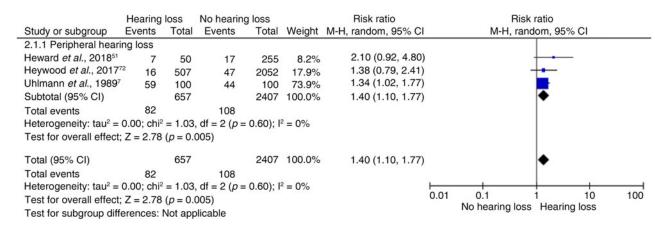


Fig. 3. Prevalence of hearing impairment amongst patients with mild cognitive impairment (risk ratio). M-H = Mantel-Haenszel; CI = confidence interval

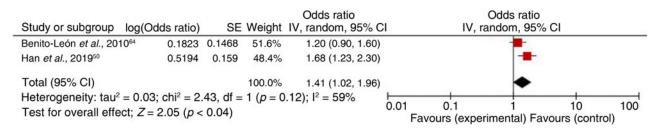


Fig. 4. Prevalence of hearing impairment amongst patients with mild cognitive impairment (odds ratio). SE = standard error; IV = Instrumental variable; CI = confidence interval

CI = 1.13 to 1.47; p = 0.0002) and severe 1.37 (random-effects, 95 per cent CI = 1.06 to 1.7; p = 0.02); significantly more people with peripheral hearing loss had mild cognitive impairment compared with those without peripheral hearing loss in all categories (Figure 8).

Results of narrative synthesis

Prevalence of early dementia

The outcomes from the studies on early dementia amongst hearing impaired patients are presented in Table 5. Out of nine studies included in this category, four^{54,55,58,66} did not identify a significant association between hearing loss and

early dementia. The demographic data of the participants (age, gender, race, comorbidities) and the outcome measures used differed between the studies, and a direct comparison of the results was not possible. The number of participants ranged from 21⁵⁸ to 1969.⁵⁵ Bucks *et al.* (2016) assessed the participants' premorbid intelligence quotient using the National Adult Reading Test as an index of cognitive reserve.⁵⁵ They concluded that hearing loss is not an important factor of contemporaneous attention, memory or executive function in middle-aged adults once several covariates, including cognitive reserve, education, age, sex and depression are accounted for.

During the 23-year follow up and after adjusting for demographic data and disease covariates, Deal *et al.* (2015) found

	Hearing	loss	No hearin	g loss		Risk ratio	Risk ratio
Study or subgroup	Events	Total	Events	Total	Weight	M-H, random, 95% CI	M-H, random, 95% CI
3.1.3 Peripheral hearing	ng loss						
Deal et al., 201745	149	1103	80	786	17.5%	1.33 (1.03,1.71)) –
Fischer et al., 201647	143	827	50	1057	17.0%	3.66 (2.68, 4.98))
Gallagher et al., 20184	4 158	505	402	2150	18.3%	1.67 (1.43, 1.96)) –
Gurgel et al., 201448	136	836	439	3627	18.1%	1.34 (1.13,1.60)	•
Heywood et al., 201772	² 6	144	24	1360	10.4%	2.36 (0.98,5.68))
Yang and Gu, 201646	3889	4820	2269	8911	18.7%	3.17 (3.05,3.29))
Subtotal (95% CI)		8235		17891	100.0%	2.06 (1.35,3.15)) 🔶
Total events	4481		3264				
Heterogeneity: tau ² = 0).25; chi ²	$^{2} = 181.$	19, df = 5 (p = 0.00	001); l ² =	97%	
Test for overall effect;	Z = 3.34	(p = 0.	0008)				
Total (95% CI)		8235		17891	100.0%	2.06 (1.35,3.15)) 🔸
Total events	4481		3264				
Heterogeneity: tau ² = 0	0.25; chi ²	$^{2} = 181.$	19, df = 5 (p = 0.00	001); l ² =	97%	
Test for overall effect;	Z = 3.34	(p = 0.	(8000		0.01 0.1 1 10 100 No hearing loss Hearing loss		
Test for subgroup diffe	aroncos.	Not and	licable				No hearing loss Hearing loss

Test for subgroup differences: Not applicable

Fig. 5. Incidence of mild cognitive impairment with and without peripheral hearing loss (risk ratio). M-H = Mantel-Haenszel; CI = confidence interval

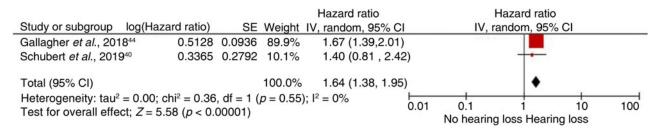


Fig. 6. Incidence of mild cognitive impairment with and without peripheral hearing loss (hazard ratio). SE = standard error; IV = Instrumental variable; CI = confidence interval

				Odds ratio			Odds ratio		
Study or subgroup	log(Odds ratio)	SE	Weight	IV, random, 95% Cl		IV, ra	andom, 95%	6 CI	
Yu and Woo, 201941	0.5306	0.1369	100.0%	1.70 (1.30,2.22)				100 C	
Total (95% CI)			100.0%	1.70 (1.30,2.22)			•		
Heterogeneity: Not a Test for overall effec		0.0001)			0.01	0.1 No hearing	1 g loss Hearin	10 ng loss	100

Fig. 7. Odds ratio outcomes in between-group difference (with and without peripheral hearing loss). SE = standard error; IV = Instrumental variable; CI = confidence interval

that patients with moderate or severe hearing loss had a 0.29 standard deviation (SD; 95 per cent CI = 0.05 to 0.54) decline for the global composite score (sum of the three neuropsychological tests administered: Word Fluency Test, Delayed Word Recall Test and Digit Symbol Substitution Test).⁵⁷ A hearing assessment was completed at baseline only. There was no strong association observed on the global composite score between patients with mild hearing loss and those with normal hearing at baseline (p = 0.570). Interestingly, it was observed that hearing aid users had a slower rate of cognitive decline compared with non-users. Lin et al. (2011) commented 'the magnitude of the reduction in cognitive performance associated with hearing loss is clinically significant with the reduction associated with a 25 dB hearing loss being equivalent to an age difference of 6.8 years on tests of executive function'.60

Hearing impairment and early dementia

The outcomes of the studies on hearing impairment and mild cognitive impairment are presented in Table 6.

Similar to the studies described above, the results in this category vary considerably. Four studies out of 15 failed to find any strong association between mild cognitive impairment and hearing loss.^{51,52,64,72} Some studies found a strong association between mild cognitive impairment and central hearing loss.^{50,56,61-63,65,69,70}

Peripheral hearing loss was found to be significantly associated with mild cognitive impairment in two studies,^{32,71} but no such association was observed in two other studies.^{62,69} There was considerable variance in the number of recruited participants per study from 20⁷⁰ to 2146.⁶⁴ There was no consistency in the outcome measures used (e.g. in DeVore's study (1992), the participants did not undergo any formal audiometry⁷¹ whereas in the study by Gates *et al.* (1995) they underwent several tests including pure tone audiometry, speech audiometry, synthetic sentence identification with ipsilateral competing message, distortion product otoacoustic emissions, and auditory brainstem response.⁶⁹ Lister *et al.* (2016) sought to identify an association between cortical auditory evoked potentials and mild cognitive impairment by means of changes to the P1-N1-P2 complex.⁵⁶ Their findings might be

Study or subgroup	log(Risk ratio)	SE	Weight	Risk ratio IV, random, 95% CI	Risk ratio IV, random, 95% CI
3.4.1 Mild Curhan <i>et al.</i> , 201943 Subtotal (95% CI) Heterogeneity: Not a		0.0466	100.0% 100.0%		•
Test for overall effec		0.00001)			
3.4.2 Moderate Curhan <i>et al.</i> , 2019 ⁴³ Subtotal (95% CI) Heterogeneity: Not a Test for overall effec	pplicable		100.0% 100.0%		•
3.4.2 Severe Curhan <i>et al.</i> , 2019 ⁴³ Subtotal (95% CI) Heterogeneity: Not a Test for overall effec	pplicable		100.0% 100.0%	· · /	•
				0.0 ⁻	1 0.1 1 10 100 No hearing loss Hearing loss

Fig. 8. Risk ratio outcomes in between-group difference (with and without peripheral hearing loss). SE = standard error; IV = Instrumental variable; CI = confidence interval

Study	Participants (n (mean age; years)	Outcomes from cognitive assessment
Bruckmann and Pinheiro, 2016 ⁵⁴	30 (68.5)	No difference in Mini Mental State Examination scores ($p = 0.880$)
Bucks <i>et al.</i> , 2016 ⁵⁵	1969 (56.2)	No difference in contemporaneous attention, memory or executive function
Zhang <i>et al.</i> , 2015 ⁵⁸	21 (51.7)	No difference in the neuropsychological tests between a group of patients with unilateral hearing loss and normal hearing
Deal <i>et al.</i> , 2015 ⁵⁷	253 (76.9)	Participants with mild hearing loss showed poorer concurrent memory domain performance (-0.35 standard deviation; 95% confidence interval, -0.62 to -0.07 ; $p = 0.01$)
Quaranta <i>et al.</i> , 2014 ⁵⁹	488 (72.8)	Strong association between mild cognitive impairment and hearing loss (odds ratio, 1.6; $p = 0.05$)
Lin <i>et al.</i> , 2011 ⁶⁰	347 (71)	Significant deterioration on scores of Mini Mental State Examination ($p < 0.05$), Cued Selective Reminding Free recall ($p < 0.01$) and Stroop Mixed ($p < 0.05$) was observed with greater hearing loss. There was some association between hearing loss and Trail Making Test part A & B ($p < 0.10$), but no association between Stroop colours and words or verbal function and language tests
Tay <i>et al</i> ., 2006 ⁶⁶	164 (not reported)	No significant differences in the cognitive function between people with none-to-mild and moderate-to-severe hearing loss ($p = 0.571$)
Van Boxtel <i>et al.</i> , 2000 ⁶⁷	453 (not reported)	The predictive value of a 10 dB loss in hearing acuity was comparable in size to that of being up to 7.1 years cognitively older
Frisina and Frisina, 1997 ⁶⁸	50 (43.2)	Patients with hearing loss took significantly better advantage of supportive context during speech audiometry than patients without hearing loss ($p < 0.05$)

consistent with further changes of inhibition, in the presence of mild cognitive impairment, with fewer overall resources being available to devote to the task. The cognitively normal older adults had significantly larger P2 amplitudes than those with probable mild cognitive impairment (3.7 (SD, 1.9) vs 1.8 (SD, 1.0)), but P1-N1-P2 latencies were similar in both groups. Gates *et al.* (2010) recruited 313 patients from the longitudinal Adult Changes in Thought study and grouped them according to their cognitive function as normal (n =232), memory-impaired (n = 60) or demented (n = 21).⁶³ One SD poorer executive function was associated with a -9.2 per cent point difference in synthetic sentence identification with ipsilateral competing message, -15 per cent point difference in Dichotic Sentence Identification Test and -8.4per cent point difference in Dichotic Digits Test. Finally, Uhlmann *et al.* (1989) postulated that the risk of dementia was increased for mild and moderate hearing loss and reached statistical significance for hearing loss of more than 40 dB (p < 0.05).⁷

Early dementia or cognitive decline and hearing impairment

The outcomes of studies of early dementia or cognitive decline amongst patients with hearing impairment are presented in Table 7. A significant correlation between hearing loss and incidence of early dementia or cognitive decline was reported in 7 out of 11 studies included in this category.^{41–47} The number of recruited participants ranged from 1662⁴⁹ to 13 731.⁴⁶ The means of assessing hearing varied between the studies

Table 6. Outcomes fron	n the studies of	prevalence of	hearing l	oss amongst	patients	with mild	cognitive	impairment
------------------------	------------------	---------------	-----------	-------------	----------	-----------	-----------	------------

Study	Participants (<i>n</i> (mean age; years)	Outcomes from hearing assessment			
Han <i>et al</i> ., 2019 ⁵⁰	2017 (73.2)	Significant association between hearing loss and mild cognitive impairment ($p = 0.001$)			
Heward <i>et al.</i> , 2018 ⁵¹	305 (77.6)	No strong association between the two groups ($p = 0.109$)			
MacDonald <i>et al</i> ., 2018 ⁵²	408 (74.2)	No significant association between hearing loss and cognitive impairment ($p > 0.05$)			
lliadou <i>et al.</i> , 2017 ⁵³	29 (66.1)	The mild cognitive impairment group had significantly poorer scores for speech in bubble and temporal resolution abilities of mild cognitive impairments versus normal controls for both ears			
Heywood <i>et al.</i> , 2017 ⁷²	2559 (not reported)	There was no significant association of hearing loss with prevalent mild cognitive impairment at baseline			
Lister <i>et al</i> ., 2016 ⁵⁶	30 (74.5)	Comparable P1 and N1 amplitudes of cortical auditory evoked potentials between the two groups, but significantly lower P2 amplitudes for patients with mild cognitive impairment (p < 0.05). The P1-N1-P2 latencies were similar in both groups			
Rahman <i>et al.</i> , 2011 ⁶¹	300 (66.5)	The mild cognitive impairment group scored significantly lower than the control group in Selective Auditory Attention Test, Dichotic Digit Test left ear, pitch pattern sequence test, recognition memory, auditory memory for content and auditory memory for sequence. There were no significant differences between the two groups in the Dichotic Digits Test right ear and auditory fusion tests			
Idrizbegovic <i>et al.</i> , 2011 ⁶²	136 (64.3)	No significant differences in pure tone audiometry, speech in quiet or speech in noise. Mild cognitive impairment group performed worse at the Dichotic Digits Test			
Gates <i>et al.</i> , 2010 ⁶³	313 (not reported)	Strong association between executive function score and central auditory processing disorder, as measured by synthetic sentence identification with ipsilateral competing message			
Benito-León <i>et al</i> ., 2010 ⁶⁴	2146 (75.7)	No strong association between the two groups ($p = 0.114$)			
Gates <i>et al.</i> , 2008 ⁶⁵	313 (80)	Strong negative association between mild memory impairment and central auditory processing disorders			
Gates <i>et al.</i> , 1995 ⁶⁹	82 (not reported)	No significant difference in pure tone audiometry. However, a significant association was observed between central auditory dysfunction and mild cognitive impairment (synthetic sentence identification with ipsilateral competing message; $p < 0.001$)			
Strouse <i>et al.</i> , 1995 ⁷⁰	20 (71.2)	Significant association between central auditory dysfunction and cognitive impairment ($p < 0.05$)			
DeVore, 1992 ⁷¹	50 (75.9)	Mild cognitive impairment present in 60% of those with hearing loss but only 24.4% of those with normal hearing			
Uhlmann <i>et al.</i> , 1989 ⁷	200 (77)	Significant association between hearing loss and mild cognitive impairment ($p = 0.03$)			

(pure tone audiometry^{40,45} versus self-reported.^{41-44,46} The majority of studies used the Mini Mental State Examination or Modified Mini Mental State to assess cognition, but in a few studies the Clinical Dementia Rating Scale,⁴⁴ abbreviated Memory Inventory for the Chinese⁴¹ and subjective cognitive decline tests⁴³ were used.

In a study by Gurgel *et al.* (2014), all-cause dementia was observed in 16.3 per cent of patients with hearing loss (at baseline) but only in 12.1 per cent of those without hearing loss (p < 0.001).⁴⁸ Following multivariate analysis, hearing loss was found to be an independent factor for dementia. When evaluating the subgroup of patients who were cognitively intact at baseline and taking into account all covariates, hearing loss was not found to be a strong independent risk factor for developing dementia (p = 0.09). Gates *et al.* (1996) postulated that central hearing dysfunction precedes the emergence of cognitive decline and dementia and recommended that both peripheral and central hearing tests be obtained as part of the general health evaluation of the elderly.⁴⁹

Discussion

We present a quantitative and qualitative analysis of crosssectional and longitudinal, observational studies looking at the relationship between hearing impairment and mild cognitive impairment. Most of the included studies, except 11 studies^{40,46,51,52,54,55,58,64,66,71,72}, observed a significant association between hearing loss and early dementia or cognitive decline.

The pooled risk ratio across all studies of prevalence of mild cognitive impairment in people with hearing loss^{54,57,59} was 1.44 (random-effects, 95 per cent CI = 1.27 to 1.64; p < 0.00001; I² = 0 per cent). When analysed separately, significantly more people with either peripheral or central hearing loss had mild cognitive impairment compared with those without. When analysing the prevalence of hearing loss amongst patients with mild cognitive impairment, the risk ratio was 1.40 (random-effects, 95 per cent CI = 1.10 to 1.77; p = 0.005; I² = 0 per cent), showing significantly more people with mild cognitive impairment had peripheral hearing loss compared with those without. However, on analysis of the papers that presented their data as an odds ratio, statistical heterogeneity was evident, and the between-group difference was not statistically significant.

The meta-analysis of incidence of hearing loss in patients with mild cognitive impairment showed that there was a correlation between hearing loss and incidence of early dementia or cognitive decline. Across 6 cohort studies where data was provided, the risk ratio was 2.06 (random-effects, 95 per cent Table 7. Studies of incidence of early dementia or cognitive decline amongst patients with hearing impairment

Study	Participants (n)	Outcomes from cognitive assessment
Schubert <i>et al.</i> , 2019 ⁴⁰	2457	There was no association between hearing loss and cognition when visual impairment was included in the model
Yu and Woo, 2019 ⁴¹	2258	Poor hearing is significantly associated with an increased risk of subjective memory complaints. Odds ratio = 1.7 (95% CI = $1.3-2.1$)
Curhan <i>et al</i> ., 2019 ⁴³	2389	There is significant association with hearing loss and risk of cognitive impairment with risk ($p < 0.001$)
Vaccaro <i>et al.</i> , 2019 ⁴²	1171	Significant relationship between hearing loss and cognitive impairment ($p = 0.001$)
Gallagher <i>et al</i> ., 2018 ⁴⁴	2655	Hearing loss associated with increased risk of mild cognitive impairment ($p < 0.001$)
Heywood <i>et al.</i> , 2017 ⁷²	1504	Hearing loss is not associated with an increase of mild cognitive impairment (HR = 1.85; 95% CI = 0.78–4.40; $p = 0.161$)
Deal <i>et al.</i> , 2017 ⁴⁵	1889	Strong association between hearing loss and increased risk of developing dementia. Moderate or severe hearing loss to normal hearing: HR = 1.64 (95% CI = 1.16–2.30). Mild hearing loss to normal hearing: HR = 1.03 (95% CI = 0.75–1.42)
Yang and Gu, 2016 ⁴⁶	13 731	Abnormal cognition was found in 96.7% of those with hearing loss but only in 36.8% of those with normal hearing
Fischer <i>et al.</i> , 2016 ⁴⁷	1884	Significant relationship between hearing loss and cognitive impairment (HR = 2.09; 95% CI = 1.29–3.39)
Gurgel <i>et al.</i> , 2014 ⁴⁸	4463	No significant association between hearing loss and risk for developing dementia ($p = 0.09$)
Gates <i>et al.</i> , 1996 ⁴⁹	1662	No significant association between pure tone audiometry and cognitive decline. Significant association between central auditory disorder and incident dementia ($p < 0.05$)

CI = confidence interval; HR = hazard ratio

CI = 1.35 to 3.15; p = 0.0008; I² = 97 per cent); across 2 cohort studies, the hazard ratio was 1.40 (random-effects, 95 per cent CI = 1.64 to 1.95; p < 0.00001; I² = 0 per cent). Even in two separate cohort studies where the raw data was not available, the report outcomes that were reported as odds ratio and risk ratio did show that significantly more people with peripheral hearing loss had mild cognitive impairment compared with those without.

The included studies varied significantly in terms of the outcome measures used, the number of participants, the length of follow up and the use of covariates when analysing their results. Therefore, a direct comparison of the studies was not always possible. Most studies present cross-sectional data rather than data on longitudinal trajectories of cognitive function and hearing loss over time. Therefore, our estimates of the expected change in cognitive scores associated with hearing loss and age may be subject to bias by cohort effects or obscured by inter-individual heterogeneity in participant characteristics.

- This study looks at all cross-sectional and cohort studies evaluating the relationship between age-related hearing loss and mild cognitive impairment
- Most studies included in this review observed a significant association between hearing loss and incident mild cognitive impairment
- Further well-designed, large scale, prospective studies are needed to verify this association

Most studies included homogeneous populations (e.g. white people, well-educated, heath-aware⁶⁰). Therefore, we should be cautious when generalising the outcomes of these studies. One key limitation across multiple studies is the variability in how hearing loss was measured and how audiometric data were analysed (e.g. choice of pure tone thresholds used to define

hearing loss). The effect of biased or imprecise assessments of hearing thresholds would likely decrease sensitivity to detect associations because of increased variance. Some studies relied on subjective reporting of hearing loss.^{41–43,46,48,51,64} This represents a crude method for identifying hard of hearing individuals, but studies have shown that subjective hearing assessments have been valid and reliable when compared against standard audiometry.^{75,76} Similarly, the cognitive assessment tools used varied between the studies; therefore, making a direct comparison of the outcomes difficult. Finally, the use of covariates during regression analysis varied between the studies included in this meta-analysis, from none⁷¹ to many.⁶⁴ Using the Newcastle–Ottawa Scale, all of the cohort studies scored seven or more stars out of nine, indicating generally good quality of the individual studies.

Strengths and limitations

This study was undertaken according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses; two electronic sources were searched and there was contact with experts. Study selection and data extraction were undertaken independently, and a quality assessment was undertaken and data were pooled in a meta-analysis. The limitations were that grey literature and conference abstracts were not searched. We also acknowledge the limitations of pooling data from observational studies in a meta-analysis and the potential for spurious results. Finally, a formal assessment of publication bias was not undertaken.

A recent commissioning document postulated that hearing loss is an independent risk factor for developing dementia.¹⁰ This is consistent with our findings that there might be a link between hearing loss and mild cognitive impairment, a prodromal stage of dementia. Finally, hearing loss may be causally related to mild cognitive impairment and dementia, possibly through exhaustion of cognitive reserve, social isolation, environmental deafferentation or a combination of these pathways.⁶⁰ Studies have shown that in cases where auditory perception is difficult (i.e. hearing loss), greater cognitive resources are dedicated to auditory processing mechanisms rather than other cognitive processes, such as memory.^{77,78} In a continually increasing aging population, this has obvious implications for health policy and social care services, aiming towards prevention, early diagnosis and treatment.

Brief cognitive assessments (such as Montreal Cognitive Assessment and Mini Mental State Examination) can successfully detect mild cognitive impairment in primary care, although their sensitivity is not as high as for established dementia.⁷⁹ There might be a role for routine cognitive assessment for people who present with hearing loss in an audiology clinic. Similarly, a referral for hearing assessment might be in the patient's best interest when they are diagnosed with mild cognitive impairment in primary care. Early intervention to address both issues might prove crucial in improving quality of life and reducing morbidity associated with hearing loss and dementia. Prospective cohort studies need to investigate whether early diagnosis of cognitive impairment improves important patient or caregiver outcomes.⁷⁹ Moreover, it is not yet known whether prompt hearing rehabilitation prevents cognitive decline. Future research should focus on identifying the underlying mechanisms linking hearing loss with dementia and developing rehabilitation strategies to delay or prevent its occurrence.

Conclusion

Most of the studies included in this systematic review observed a significant association between hearing loss and incident mild cognitive impairment. It is important for clinicians to be aware of this association and allow for early detection and intervention to try and delay onset of dementia. Further research investigating the mechanisms of this observed association and whether prompt hearing rehabilitation alters the natural course of this relationship should be the focus of future research.

Competing interests. None declared

References

- WHO. Millions of people in the world have hearing loss that can be treated or prevented. 2013. In: http://www.who.int/pbd/deafness/news/ Millionslivewithhearingloss.pdf [18 August 2020]
- 2 Davis A, McMahon CM, Pichora-Fuller KM, Russ S, Lin F, Olusanya BO et al. Aging and hearing health: the life-course approach. *Gerontologist* 2016;**56**:S256–67
- 3 Gates GA, Mills JH. Presbycusis. Lancet 2005;366:1111-20
- 4 Heine C, Browning CJ. Communication and psychosocial consequences of sensory loss in older adults: overview and rehabilitation directions. *Disabil Rehabil* 2002;24:763–73
- 5 Dimitriadis PA, Vlastarakos PV, Nikolopoulos TP. Treatment of Sensorineural Hearing Loss: Contemporary Rehabilitation and Future Prospects. New York: Nova Biomed Books, 2011;101–37
- 6 Lin FR, Albert M. Hearing loss and dementia who is listening? Aging Ment Health 2014;18:671–3
- 7 Uhlmann RF, Larson EB, Rees TS, Koepsell TD, Duckert LG. Relationship of hearing impairment to dementia and cognitive dysfunction in older adults. *JAMA J Am Med Assoc* 1989;**261**:1916–9

- 8 Hong T, Mitchell P, Burlutsky G, Liew G, Wang JJ. Visual impairment, hearing loss and cognitive function in an older population: longitudinal findings from the Blue Mountains Eye Study. *PLoS One* 2016;**11**:e0147646
- 9 Gennis V, Garry PJ, Haaland KY, Yeo RA, Goodwin JS. Hearing and cognition in the elderly: new findings and a review of the literature. Arch Intern Med 1991;151:2259-64
- 10 Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D et al. The Lancet international commission on dementia prevention and care. Lancet 2017;390:2673–734
- 11 DeCarli C. Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment. *Lancet Neurol* 2003;2:15-21
- 12 Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999;56:303–8
- 13 Levey A, Lah J, Goldstein F, Steenland K, Bliwise D. Mild cognitive impairment: an opportunity to identify patients at high risk for progression to Alzheimer's disease. *Clin Ther* 2006;28:991–1001
- 14 Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings JL, DeKosky ST. Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. *Neurology* 2001;56:1133–42
- 15 Gates GA. Central presbycusis: an emerging view. Otolaryngol Neck Surg 2012;147:1–2
- 16 PRISMA. Transparent Reporting of Systematic Reviews and Meta-analysis. 2015. In: http://www.prisma-statement.org/Extensions/Protocols [18 August 2021]
- 17 Wells G, Shea B, O'Connell D, Peterson J, Welsch V, Losos M et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses. In: http://www.ohri.ca/programs/ clinical_epidemiology/oxford.asp [18 August 2020]
- 18 Villeneuve A, Hommet C, Aussedat C, Lescanne E, Reffet K, Bakhos D. Audiometric evaluation in patients with Alzheimer's disease. Eur Arch Otorhinolaryngol 2017;274:151–7
- 19 Schnitker LM, Beattie ERA, Martin-Khan M, Burkett E, Gray LC. Characteristics of older people with cognitive impairment attending emergency departments: a descriptive study. *Australas Emerg Nurs J* 2016;19:118–26
- 20 Schubert CR, Fischer ME, Pinto AA, Klein BEK, Klein R, Tweed TS et al. Sensory impairments and risk of mortality in older adults. *Journals Gerontol A Biol Sci Med Sci* 2017;72:710–5
- 21 Dotchin CL, Paddick SM, Gray WK, Kisoli A, Orega G, Longdon AR *et al.* The association between disability and cognitive impairment in an elderly Tanzanian population. *J Epidemiol Glob Health* 2015;5:57–64
- 22 Wong LLN, Yu JKY, Chan SS, Tong MCF. Screening of cognitive function and hearing impairment in older adults: a preliminary study. *Biomed Res Int* 2014:867852
- 23 Moradi S, Lidestam B, Hällgren M, Rönnberg J. Gated auditory speech perception in elderly hearing aid users and elderly normal-hearing individuals: effects of hearing impairment and cognitive capacity. *Trends Hear* 2014;18:2331216514545406
- 24 Pronk M, Deeg DJH, Festen JM, Twisk JW, Smits C, Comijs HC *et al.* Decline in older persons' ability to recognize speech in noise: the influence of demographic, health-related, environmental, and cognitive factors. *Ear Hear* 2013;**34**:722–32
- 25 Clipboard. Hearing loss accelerates brain function decline in older adults. Home Heal Nurse 2013;31:240
- 26 Helvik AS, Selbæk G, Engedal K. Cognitive decline one year after hospitalization in older adults without dementia. *Dement Geriatr Cogn Disord* 2012;34:198–205
- 27 Gurina NA, Frolova EV, Degryse JM. A roadmap of aging in Russia: the prevalence of frailty in community-dwelling older adults in the St. Petersburg District-The "crystal" study. *J Am Geriatr Soc* 2011;**59**:980–8
- 28 Srinivasan K, Vaz M, Thomas T. Prevalence of health related disability among community dwelling urban elderly from middle socioeconomic strata in Bangaluru, India. *Indian J Med Res* 2010;131:515–21
- 29 Munshi M, Grande L, Hayes M, Ayres D, Suhl E, Capelson R et al. Cognitive dysfunction is associated with poor diabetes control in older adults. *Diabetes Care* 2006;29:1794–9
- 30 Riello R, Geroldi C, Zanetti O, Vergani C, Frisoni GB. Differential associations of Head and Body Symptoms with depression and physical comorbidity in patients with cognitive impairment. *Int J Geriatr Psychiatry* 2004;**19**:209–15
- 31 Allen NH, Burns A, Newton V, Hickson F, Ramsden R, Rogers J et al. The effects of improving hearing in dementia. Age Ageing 2003;32:189–93

- 32 Uhlmann RF, Larson EB, Koepsell TD. Hearing impairment and cognitive decline in senile dementia of the Alzheimer's type. J Am Geriatr Soc 1986;34:207–10
- 33 Daggett V, Bakas T, Murray L, Woodward-Hagg H, Williams JG, Maddox K et al. Feasibility and satisfaction with the VETeranS Compensate, Adapt, REintegrate (VETS-CARE) intervention. Brain Injury 2014;28:554–5
- 34 Lin FR, Albert MS, Alonso A, Bangdiwala S, Chisolm T, Coker L et al. Results from the ACHIEVE-P study: a pilot study for a randomized controlled trial to determine if hearing loss treatment can reduce the risk of cognitive decline in older adults. Alzheimer's Dement 2016;7:829–30
- 35 Yu WC, Chou MY, Peng LN, Lin Y Te, Liang CK, Chen LK. Synergistic effects of cognitive impairment on physical disability in all-cause mortality among men aged 80 years and over: Results from longitudinal older veterans study. *PLoS One* 2017;**12**:1–13
- 36 Ray J, Popli G, Fell G. Association of cognition and age-related hearing impairment in the English Longitudinal Study of Ageing. JAMA Otolaryngol Head Neck Surg 2018;144:876–82
- 37 Murphy CFB, Rabelo CM, Silagi ML, Mansur LL, Bamiou DE, Schochat E. Auditory processing performance of the middle-aged and elderly: auditory or cognitive decline? J Am Acad Audiol 2018;29:5–14
- 38 Davidson JGS, Guthrie DM. Older adults with a combination of vision and hearing impairment experience higher rates of cognitive impairment, functional dependence, and worse outcomes across a set of quality indicators. *J Aging Health* 2019;**31**:85–108
- 39 Maharani A, Dawes P, Nazroo J, Tampubolon G, Pendleton N. Visual and hearing impairments are associated with cognitive decline in older people. *Age Ageing* 2018;47:575–81
- 40 Schubert CR, Cruickshanks KJ, Fischer ME, Pinto AA, Chen Y, Huang GH et al. Sensorineural impairments, cardiovascular risk factors, and 10-year incidence of cognitive impairment and decline in midlife: The Beaver Dam Offspring Study. J Gerontol A Biol Sci Med Sci 2019;74:1786–92
- 41 Yu R, Woo J. Cognitive assessment of older people: do sensory function and frailty matter? Int J Environ Res Public Health 2019;16:662
- 42 Vaccaro R, Zaccaria D, Colombo M, Abbondanza S, Guaita A. Adverse effect of self-reported hearing disability in elderly Italians: results from the InveCe.Ab study. *Maturitas* 2019;**121**:35–40
- 43 Curhan SG, Willett WC, Grodstein F, Curhan GC. Longitudinal study of hearing loss and subjective cognitive function decline in men. *Alzheimer's Dement* 2019;15:525–33
- 44 Gallagher D, Kiss A, Lanctot KL, Herrmann N. Toward prevention of mild cognitive impairment in older adults with depression: an observational study of potentially modifiable risk factors. J Clin Psychiatry 2018;80:1–14
- 45 Deal JA, Betz J, Yaffe K, Harris T, Purchase-Helzner E, Satterfield S et al. Hearing impairment and incident dementia and cognitive decline in older adults: the health ABC study. J Gerontol A Biol Sci Med Sci 2017;72:703–9
- 46 Yang F, Gu D. Predictability of frailty index and its components on mortality in older adults in China. *BMC Geriatr* 2016;**16**:1–9
- 47 Fischer ME, Cruickshanks KJ, Schubert CR, Pinto AA, Carlsson CM, Klein BEK et al. Age-related sensory impairments and risk of cognitive impairment. J Am Geriatr Soc 2016;64:1981–7
- 48 Gurgel RK, Ward PD, Schwartz S, Norton MC, Foster NL, Tschanz JT. Relationship of hearing loss and dementia: a prospective, population-based study. Otol Neurotol 2014;35:775–81
- 49 Gates GA, Cobb JL, Linn RT, Rees T, Wolf PA, D'Agostino RB. Central auditory dysfunction, cognitive dysfunction, and dementia in older people. *Arch Otolaryngol Head Neck Surg* 1996;122:161–7
- 50 Han R, Tang Z, Ma L. Related factors of cognitive impairment in community-dwelling older adults in Beijing Longitudinal Study of Aging. *Aging Clin Exp Res* 2019;**31**:95–100
- 51 Heward J, Stone L, Paddick SM, Mkenda S, Gray WK, Dotchin CL et al. A longitudinal study of cognitive decline in rural Tanzania: rates and potentially modifiable risk factors. Int Psychogeriatrics 2018;30:1333–43
- 52 MacDonald SWS, Keller CJC, Brewster PWH, Dixon RA. Contrasting olfaction, vision, and audition as predictors of cognitive change and impairment in non-demented older adults. *Neuropsychology* 2018;32:450–60
- 53 Iliadou V, Bamiou DE, Sidiras C, Moschopoulos NP, Tsolaki M, Nimatoudis I et al. The use of the gaps-in-noise test as an index of the enhanced left temporal cortical thinning associated with the transition between mild cognitive impairment and Alzheimer's disease. J Am Acad Audiol 2017;28:463–71
- 54 Bruckmann M, Pinheiro MMC. Effects of hearing and cognitive impairment in sentence recognition. *Codas* 2016;**28**:338–44

- 55 Bucks RS, Dunlop PD, Taljaard DS, Brennan-Jones CG, Hunter M, Wesnes K et al. Hearing loss and cognition in the Busselton Baby Boomer cohort: an epidemiological study. *Laryngoscope* 2016;**126**:2367–75
- 56 Lister JJ, Harrison Bush AL, Andel R, Matthews C, Morgan D, Edwards JD. Cortical auditory evoked responses of older adults with and without probable mild cognitive impairment. *Clin Neurophysiol* 2016;**127**:1279–87
- 57 Deal JA, Sharrett AR, Albert MS, Coresh J, Mosley TH, Knopman D *et al.* Hearing impairment and cognitive decline: a pilot study conducted within the atherosclerosis risk in communities neurocognitive study. *Am J Epidemiol* 2015;**181**:680–90
- 58 Zhang G-Y, Yang M, Liu B, Huang Z-C, Chen H, Zhang P-P et al. Changes in the default mode networks of individuals with long-term unilateral sensorineural hearing loss. Neuroscience 2015;285:333–42
- 59 Quaranta N, Coppola F, Casulli M, Barulli O, Lanza F, Tortelli R et al. The prevalence of peripheral and central hearing impairment and its relation to cognition in older adults. Audiol Neurotol 2014;19:10–4
- 60 Lin FR, Ferrucci L, Metter EJ, An Y, Zonderman AB, Resnick SM. Hearing loss and cognition in the Baltimore Longitudinal Study of Aging. *Neuropsychology* 2011;25:763
- 61 Rahman TTA, Mohamed ST, Albanouby MH, Bekhet HF. Central auditory processing in elderly with mild cognitive impairment. *Geriatr Gerontol Int* 2011;11:304–8
- 62 Idrizbegovic E, Hederstierna C, Dahlquist M, Kämpfe Nordström C, Jelic V, Rosenhall U. Central auditory function in early Alzheimer's disease and in mild cognitive impairment. *Age Ageing* 2011;**40**:249–54
- 63 Gates GA, Gibbons LE, McCurry SM, Crane PK, Feeney MP, Larson EB. Executive dysfunction and presbycusis in older persons with and without memory loss and dementia. *Cogn Behav Neurol* 2010;23:218–23
- 64 Benito-León J, Mitchell AJ, Vega S, Bermejo-Pareja F. A population-based study of cognitive function in older people with subjective memory complaints. J Alzheimer's Dis 2010;22:159–70
- 65 Gates GA, Anderson ML, Feeney MP, McCurry SM, Larson EB. Central auditory dysfunction in older persons with memory impairment or Alzheimer dementia. Arch Otolaryngol Head Neck Surg 2008;134:771–7
- 66 Tay T, Kifley A, Lindley R, Landau P, Ingham N, Mitchell P et al. Are sensory and cognitive declines associated in older persons seeking aged care services? Findings from a pilot study. Ann Med Singapore 2006;35:254
- 67 Van Boxtel MPJ, Beijsterveldt van CEM, Houx PJ, Anteunis LJ, Metsemakers JF, Jolles J. Mild hearing impairment can reduce verbal memory performance in a healthy adult population. J Clin Exp Neuropsychol 2000;22:147–54
- 68 Frisina DR, Frisina RD. Speech recognition in noise and presbycusis: relations to possible neural mechanisms. *Hear Res* 1997;106:95–104
- 69 Gates GA, Karzon RK, Garcia P, Peterein J, Storandt M, Morris JC *et al.* Auditory dysfunction in aging and senile dementia of the Alzheimer's type. *Arch Neurol* 1995;**52**:626–34
- 70 Strouse AL, Hall JW, Burger MC. Central auditory processing in alzheimer's disease. Ear Hear 1995;16:230–8
- 71 DeVore PA. Prevalence of olfactory dysfunction, hearing deficit, and cognitive dysfunction among elderly patients in a suburban family practice. *South Med J* 1992;85:894–6
- 72 Heywood R, Gao Q, Nyunt MSZ, Feng L, Chong MS, Lim WS et al. Hearing loss and risk of mild cognitive impairment and dementia: findings from the Singapore Longitudinal Ageing Study. *Dement Geriatr Cogn Disord* 2017;43:259–68
- 73 WHO. Prevention of Blindness and Deafness: Grades of Hearing Impairment. In: http://www.who.int/pbd/deafness/hearing_impairment_ grades/en/ [18 August 2020]
- 74 Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. *J Psychiatr Res* 1975;**12**:189–98
- 75 Nondahl DM, Cruickshanks KJ, Wiley TL, Tweed TS, Klein R, Klein BEK. Accuracy of self-reported hearing loss. *Audiology* 1998;**37**:295–301
- 76 Sindhusake D, Mitchell P, Smith W, Golding M, Newall P, Hartley D et al. Validation of self-reported hearing loss. The Blue Mountains hearing study. Int J Epidemiol 2001;30:1371–8
- 77 Tun PA, McCoy S, Wingfield A. Aging, hearing acuity, and the attentional costs of effortful listening. *Psychol Aging* 2009;24:761
- 78 Pichora-Fuller MK, Schneider BA, Daneman M. How young and old adults listen to and remember speech in noise. J Acoust Soc Am 1995;97:593–608
- 79 Langa KM, Levine DA. The diagnosis and management of mild cognitive impairment: a clinical review. JAMA 2014;312:2551-61

Appendix 1. Search Strategy, performed on 24 June 2020

Search Terms: (Deafness OR Hearing Or Presbycusis) AND (Mild Cognitive Impairment OR MCI) Filters: Text Availability: Full Text Species: Humans Languages: English