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Abstract. This paper is devoted to the theory of surface waves propagating across
axis of symmetry in non-uniform cylindrical metal waveguides with plasma filling.
The presented results are devoted to: first, studying an influence of plasma density
non-uniformity on the features of these waves; second, studying an influence of
an external magnetic fields’ non-uniformity on their dispersion properties; third,
studying possibility to sustain gas discharge by propagation of these waves under
different operating regimes. The problems have been solved both analytically and
numerically. Plasma particles are described in the framework of hydrodynamics;
fields of the studied waves are determined by a set of Maxwell equations. Analytical
research of the obtained equations is carried out by the method of successive
approximation; adequacy of such approach is proved here as well. Numerical
evaluations of the possibilities to observe experimentally the phenomena, which
accompany propagation of these waves, are carried out.

1. Introduction
Excitation of bounded plasma systems can be executed in the most effective manner
nearby their eigen frequencies [1]. Here, we present the results of theoretical studying
properties of electromagnetic waves, which propagate along plasma surface with
finite value of its curvature (across the axis of symmetry, along azimuthal direction).
That is why, these waves have been entitled as azimuthal surface waves (ASWs) [2].
ASW belong to assemblage of non-symmetrical electromagnetic perturbations, which
features are interesting from practical point of view. When conducting experimental
investigation into properties of bounded plasma, one deals frequently with non-
uniform profiles of plasma density and of utilized external magnetic field. That is
why, research into properties of ASW in non-uniform waveguides can be considered
as an actual task of plasmas’ electrodynamics.

Experimental studying of non-uniform plasma waveguides is important for solving
different radio-physical problems. For instance, plasma produced during high fre-
quency (HF) gas discharge affects efficiency of radiation of both the dipole antennae
and spheroidal antennae; anisotropy of magnetoactive plasma, which coats slot
antennae, strongly affects the spatial distribution of emissions’ field of non-symmetric
azimuthal waves and enhances their radiation. Results of a broad theoretical and
experimental investigation into excitation of quasi-electrostatic and helicon waves
by ring vibrator immersed into magnetoactive plasma are represented in [3]. It is
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found out there that power of their radiation depends on plasma density profile by
resonant manner. Thus studying the ASW features in non-uniform waveguides is
important for the development of new type of powerful antennae.

Dispersion properties of surface waves (SWs) are under consideration for a long
time. Thus linear theory of the SW propagating in simple waveguide structures
(i.e. uniform non-magnetized plasma waveguides) is developed good enough (see,
for instance, review [4]). Related materials, which are devoted to the linear theory
of plasma SW, are presented in [5]. It is shown there that frequency spectrum
of electrostatic waves in a cold non-magnetized plasma is discrete and values of
the eigen frequencies strongly depend on plasma density gradient. The paper [6]
is devoted to studying the properties of solitary SW on a magnetoactive plasma
cylinder. Propagation of electrostatic SW in cold non-magnetized plasma restricted
by non-uniform dielectric is studied in [7]. There dispersion equation in a simple
form is derived, and theory of solitary SW developed previously is generalized.
Research into SW properties is underway at the present time. It would be useful to
indicate, for instance, that spectrum of electromagnetic waves in a magnetoactive
gaseous plasma layer is studied in detail in the paper [8]. Dispersion relation for
electromagnetic SW in a magnetoactive annular plasma column located in a coaxial
metal waveguide is under consideration in [9]. Taking into account the great interest
in studying the dusty plasmas’ properties, we would like to mention that propagation
of SW on vacuum boundary with cold magnetoactive plasma containing the mobile
dust grains is studied in [10]. It is found out there that two surface type modes can
exist in the frequency range below ion-cyclotron one in such waveguide structure.
Investigation of modulational instabilities of SWs, which propagate along the metal
interface with the plasma containing the nanoparticles, is carried out in [11].

The SW properties are intensively studied as well with the purpose to sustain
gas discharges. Microwave gas discharges sustained by SW have broad practical
applications in different plasma technologies [12, 13]. Parameters of microwave
gas discharges depend on different characteristics, such as geometry of discharge
chamber, type of operating gas and its pressure, value of external magnetic field,
type of operating electromagnetic mode, and so on. It is found that utilization
of external magnetic field and non-symmetrical SW with azimuthal wave number
m � 1 allows increasing the volume of the produced plasma and makes gas discharge
longer [14–17]. Plasma producer based on utilization of transverse waves excited by
slot antennae [16] seems to be an effective device because operating modes, which
propagate along azimuthal direction, do not lose their energy from the discharge
chamber. Application of SW has some advantages as compared with the case of
bulk waves’ application: - it allows one to obtain plasma with more uniform density
profile because ionization of operating gas due to the SW propagation happens
mostly at plasma periphery region where amplitude of SW is of maximum value; - it
provides more effective transfer of electromagnetic power from external source into
plasma because SW are slow modes as compared with bulk modes, then interaction
of SW with plasma is more intensive, etc. That is why, studying the properties
of SWs (including ASWs), which propagate in non-uniform plasma, is a typical
problem of plasma electronics and plasma technologies.

The objective of this paper is to summarize the results of a long-term re-
search into the properties of ASWs, which propagate in different waveguide struc-
tures filled by plasma with non-uniform density profile immersed into an external
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non-uniform magnetic field. The paper is arranged as follows: Sec. 2 is devoted to
considering the properties of ASW in non-uniform waveguides; application of ASW
for sustaining gas discharges is studied in Sec. 3; results obtained are summarized in
Sec. 4.

2. Azimuthal surface waves in non-uniform plasma waveguides
The model of plasma with uniform density describes in good enough manner only in
the case of solid-state plasma [1]. Non-uniformity of its density affects the frequencies
of both bulk and SWs. Often, laboratory plasma is immersed in the spatially non-
uniform magnetic field, and this circumstance also affects the frequency spectrum of
eigen modes. In this section, the results of research into influences both of plasma
density and of external magnetic field non-uniformity on dispersion properties of
ASW are represented.

2.1. Influence of non-uniform radial profile of plasma density on the ASW frequency
spectrum

Let us consider a three-component waveguide structure, which is consisted of
cylindrical metal waveguide of radius R2 that has dielectric coating in the region
R2 > r > R1 with dielectric permeability εd and coaxial plasma cylinder of radius
R1. Plasma density is supposed to be large so that inequality Ω2

e �ω2
e is valid,

where Ωe and ωe are Langmuir and electron cyclotron frequencies, correspondingly.
External magnetic field is directed along the axial direction �B0 ‖�z . Starting from
the Maxwell set of equations, one can derive the following equation for the axial
magnetic component of the ASW field in the region of non-uniform plasma:

1

r

d

dr

r

k2
⊥

dHz

dr
−

[
1 +

m2

k2
⊥r

2
− m

r

d

dr

(
µ

k2
⊥

)]
Hz = 0, (1)

where µ = ε2/ε1, k
2
⊥ = k2(µ2 − 1)ε1, k = ω/c, εj are components of dielectric

permeability tensor for magnetoactive plasma in hydrodynamic approximation
[1], m is azimuthal wave number. Applying the method of etalon equations [18]
for solving (1) in the plasma region, r < R1, one can derive: Hz = A(r)Im(z),

where z′ = k⊥

√
1 − (m/r)d(µ/k2

⊥)/dr, Im(z) is modified Bessel function [19], A =

const
√
zk2

⊥
/
(rz′). Validity of such solution responds to the inequality:

1 �

∣∣∣∣mr d

dr

(
µ

k2
⊥

)∣∣∣∣ (2)

which describes the case of weak non-uniformity of the plasma density.
Dispersion equation for ASW can be derived by the aid of the following boundary

conditions:

- waves’ fields can be of finite values on the axis of plasma cylinder;

- tangential components of the waves’ field can be continued on the plasma–
dielectric interface;

- waves’ tangential electric field is equal to zero on the metal wall of the
waveguide.

https://doi.org/10.1017/S0022377810000644 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377810000644


496 V. O. Girka et al.

In this case, dispersion equation can be obtained as follows [18]:

m

R1
µ+

1

Hz

dHz

dR1
=
k2

⊥
k

J ′
m (kR1)N

′
m (kR2) − J ′

m (kR2)N
′
m (kR1)

J ′
m (kR2)Nm (kR1) − Jm (kR1)N ′

m (kR2)
, (3)

where Jm(z) and J ′
n(z) are Bessel function and its derivative over the argument,

correspondingly, Nm(z) and N ′
n(z) are Neumann functions, correspondingly. Analysis

of (3) allows one to determine the frequency ranges, where ASW can propagate.
There are two possible ranges, which can be referred here as the low frequency (LF)
range:

ωLH < ω < |ωe|, |ωe| < ω < ω1, (4)

and as the HF range, correspondingly:

ωUH < ω < ω2. (5)

Applying asymptotes of Bessel functions in the limiting case |m| � 1 [19], one can
obtain analytical expressions for the ASW frequency at the HF and LF ranges,
correspondingly:

ω ≈ ω1

[
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2R2
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, (6)
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, (7)

where ω1,2 = ∓0.5|ωe| +
√
Ω2
e + 4−1ω2

e are cutoff frequencies, ωLH ta ωUH are low-
hybrid and upper-hybrid frequencies, correspondingly, k0 = mδR−1

1 , ξ = (R1δ
−1)(dδ/

dR1) is parameter of plasma density’s non-uniformity, and ∆ = R2R
−1
1 − 1 is

dimensionless thickness of the dielectric layer. Using solutions (6) and (7), it is
possible to obtain approximate expressions for the ASW frequency ω in other
limiting cases, namely, z(R1) � 1 and z(R1) � |m|. Results of numerical analysis of (3)
at ∆ = 0, 3 are represented in [18]. There, it was found that condition of weak non-
uniformity of plasma density weakly changes ASW frequency as compared with the
case of uniform plasma. As these extraordinary polarized modes are non-reciprocal,
then increasing dΩ2

e /dR1 affects the ASW frequency in the cases of positive and
negative meanings of azimuthal m wave numbers differently, for instance, frequency
of LF ASW with m < 0 diminishes weakly as compared with the case m > 0.

It can be pointed out that dispersion equation (3) describes two more waveguide
structures, namely, the waveguide, which is partially filled by a cold non-magnetized
plasma (B0 = 0), and the waveguide, which is completely (∆ = 0) filled by a cold
magnetoactive plasma [2]. In the first case, one can obtain the ASW frequency
expression within accuracy up to the summands of ∆2 � 1 order of smallness:

ω2 ≈ ∆(1 − ∆/2)m2Ω2
e√

m2 + R2
1/δ

2 + ∆(1 − ∆/2)R2
1/δ

2 − ξ
. (8)

In the second case, it is possible to derive the ASW frequencies just from
expressions (6) and (7) putting there ∆ = 0. But it can be noticed that if ∆ = 0,
then ASW become unidirectional modes (i.e. they can propagate only along one
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direction); thus only ASW with m > 0 can propagate at the LF range ω < ω1 and
only meaning m < 0 can be realized for ASW at the HF range ω > ω1. Therefore,
analyzing expressions (7) and (8), one can make the conclusion: if plasma density
increases in the direction toward the plasmas’ border then the ASW frequency value
diminishes as compared with the case of uniform plasma density profile.

In the case of arbitrary type of the plasma density profile, there is unique method
to determine the ASW spectrum; it is numerical analysis. But there is special limiting
case, if ASWs propagate in a wide plasma cylinder (it means that the plasma radius
is considerably larger than the ASWs’ penetration depth into the plasma), then their
property can be studied analytically. It is proved in the paper that if nearby the
plasma border its density is characterized by linear profile, then dispersion equation
(3) can be solved analytically.

Let us restrict our consideration by the case of LF ASW, because at the HF range
their phase speed can be large enough so their application in radio engineering
is abridged. It is assumed that plasma, which is located in the region r � R1, is
characterized by the following density profile [20]:

n(r) = n(R1) + (r − R1)dn/dr|r=R1
, (9)

where collisions between the plasma particles happen rarely, so that collisional
frequency of electrons ν �ω. In the case of large plasma cylinder (R1 � |m|δ1,
where δ1 = cΩ−1

e (R1)), the inequality |m2k−2
⊥ − (m/r)d(qk−2

⊥ )/dr| � 1 is valid. Then
applying representation of the ASW field as a series: Hz = H (0)

z + H (1)
z + . . .,

where |H (n+1
z | � |H (n)

z |, one can solve (1) by the aid of the method of successive
approximations. Let us write down here the expressions for the zeroth and the first
approximations accordingly:

H (0)
z = C1U

′(a) + C2V
′(a), (10)

H (1)
z = U ′(a)

∫ a
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V ′(a)gda− V ′(a)

∫ a
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0
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1 +
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z
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]
, | g

H
(0)
z

| � 1,

a(r) = (δ1k0)
−2 + k0(R1 − r), k3

0 = −dδ−2
0 /dr|R1

,

U ′(a) and V ′(a) are derivative of Airy functions over their arguments [19]. Applying
asymptotes of Airy function of large arguments and choosing the solution of (1)
in the form of SW, one can find that C1 = 0, a1 = a(0), and a2 = a(R1) if value
of plasma density increases with going from the plasma border toward waveguides’
wall (it means that k0 > 0). In opposite case, if k0 < 0 then C2 = 0, a1 = a(R1), and
a2 = a(0). To represent solution of (1) in the form of expressions (10) and (11), it
is not enough to satisfy inequalities R1 � |m|δ and Ω2

e �ω2
e , it is also necessary to

provide smooth changing of the plasma density so that the following inequality can
be realized:

|δ0d ln[n(r)]/dr||r=R1
� 1. (12)
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The condition (12) is satisfied if the inequality k3
0 � (R1δ

2
1)

−1 is valid. In this case,
dispersion equation for the ASW looks like in the previous case [see (3)]. Let us
substitute solutions of Maxwell equations in the forms (10) and (11) to (3) and apply
asymptotes of Airy functions of large argument (a� 1) [19], then one can derive
the following expression for the LF ASW in approximation of narrow vacuum layer
k(R2 − R1) � 1:

ω ≈ 0.5m|ωe|
R1/δ2 + ∆R2

1/δ
2
2

+

√
0.25m2ω2

e(
R1/δ + ∆R2

1/δ
2
)2

+
∆m2Ω2

e (R1)

R1/δ + ∆R2
1/δ

2
, (13)

where δ2 = δ1(1 + k3
0δ

3
1/4).

If δ = δ1, then the formula (13) coincides with the corresponding expression,
which was obtained for the case of uniform plasma [21]. Analyzing (13) one can see
that if density of plasma diminishes with going from the plasma border toward the
waveguides’ wall, then effective δ penetration depth of the ASW into the plasma (the
same conclusion is valid for their frequency as well) is less than the corresponding
value in the case of the uniform plasma. It can be underlined that the type of
plasma density profile can be nonlinear in the plasma depth, for example, it can
pass from linear form nearby the plasma periphery into the parabolic form in the
plasma depth, but such behavior of the plasma density will not affect the obtained
solution.

Studying tasks on propagation of electromagnetic waves in thermonuclear devices
filled by gaseous plasma, the following form of radial dependence for the plasma
density nearby the plasmas’ border is often applied:

n(r) =

{
(r − R1)dn/dr|r=R1

, r � R1,

0, R1 < r < R2.
(14)

Let us assume that plasma density gradients’ value is as follows: |dn/dr||r=R1
∼

n(0)R−1
1 , and that density becomes uniform nearby the axis of the plasma column,

where |ε1(0)| � 1. Then, for the plasma region R1 − r� k2k−3
0 , it is possible to apply

the solution of (1) in the form of (10) and (11) using the following replacement
a → k0(R1 − r), if the following inequalities: k2

0 � k2, k0R1 � |mωe|/ω, R1 � k−1
0

are satisfied. After that in the peripheral plasma region (nearby its border 0 �
R1 − r� k−1

0 ), solution of (1) can be found out by the aid of the method of narrow
layer [20]:

Hz = Hz(R1) +Hz(R1)

∫ r

R1

dr′k2
⊥

[
Ad +

∫ r′

R1

dr
Hz(r)

Hz (R1)
(1 + q(r))

]
. (15)

The constant of integration Ad can be determined from the application of the
above mentioned boundary conditions on the plasma–vacuum border:

Ad =
1

k

N ′
m (kR1) J

′
m (kR2) −N ′

m (kR2) J
′
m (kR1)

N ′
m (kR2) Jm (kR1) −Nm (kR1) J ′

m (kR2)
. (16)

Expressions for the ASW field obtained in the form of (10) and (11) in the region
R1−r� k2k−3

0 and that obtained in the form of (15) in the region k2k−3
0 � R1−r� k−1

0

can be joined. It allows one to derive dispersion equation, which solution in the
considered case (plasma density profile is linear nearby the plasma border) has the
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following form:

ω ≈

√
9k4

0∆m
2c2

(
∆R2

1 + V1R1k
−1
0

)
+ V 2

1m
2ω2

e

3k2
0

(
∆R2

1 + V1R1k
−1
0

) +
V1m |ωe|

3k2
0

(
∆R2

1 +
V1R1

k0

)−1

, (17)

where V1 = −V (0)/V ′(0) ≈ 1.37. From comparison of the expressions (13) and
(17), one can make the conclusion that in the case of linear type of the density
profile the obtained expression for the ASW frequency as the function of the plasma
parameters is similar to that one, which was obtained in the case of uniform plasma
[21] when doing replacement of the ASW penetration depth δ1 by the parameter
k−1

0 .
In this section, the frequency ν of collisions between plasma particles has

not been taken into account so far, but under the experimental conditions, its
value cannot be so small frequently. Let us take it into consideration, then
account of the ν in expressions for components of dielectric permeability of
the plasma leads to appearance of the ASW damping. Damping rate of the
ASW determined by plasma particles collisions can be calculated from dispersion
equation (3) making replacement ω → ω− iγc, then the following expression can be
obtained:

γc ≈ ν

3

[
1 +

2m|ωe|
3R1k0ω

] [
2m|ωe|
3R1k0ω

+
2k0m

2∆

V1k2R1

]−1

. (18)

Expression (18) in the limiting case R1 → ∞ turns to γc ≈ ν/3 that is typical for
planar plasma–vacuum border [1]. Collisional damping rate of the ASW propagating
along plasma–metal boundary is larger than that one is calculated in the case of
plasma–dielectric boundary. It is possible to explain such behavior of the ASW by
the circumstance that in the first case the ASW energy propagates only in the plasma
region, while in the second case, it propagates as well in the region of dielectric
coating of the waveguides’ wall.

If the ASW frequency exceeds electron cyclotron frequency, then the resonance
point Re(ε1) = 0 can be located nearby the plasma border. It leads to a substantial
increasing of the ASW damping. In this case, ASW damping rate is consisted of two
summands, namely, collisional and resonant damping rates γc + γr . To determine
resonant damping rate γr , whose appearance is connected with the presence of the
resonance point, one can take into account the imaginary part of ε1 in the parameter
k2

⊥, which enters into the first element of (1). It will allow one to calculate the value
of the resonant damping rate in the following form:

γr ≈ πωm2k0

ς k2R2
1

(
1 − m |ωe|

3R1ω k0

)[
v1 +

∆k0

k2R1

(
k2R2

1 + m2 − 2m3 |ωe|
3R1ω k0

)]−1

, (19)

where ς = (dε1/dr)|r=R1
> 0. Expression (19) is also valid for the case of non-

magnetized plasma. Its analysis confirms that resonant damping of the ASW
becomes larger with removing the resonant point from the plasma border to-
ward its depth and with removing plasma surface toward the metal wall of the
waveguide. It corresponds to the results, which were obtained for other types of SW
[1].

Thus, if plasma density is characterized by a linear profile nearby the plasma
periphery, then dispersion properties of the ASW are similar to that one determined
in the case of uniform plasma. Influence of the plasma non-uniformity can be taken
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into account by the aid of replacement of the ASW penetration depth into the
plasma by another definite parameter. Expressions for the ASW damping rates
correspond to the results obtained for the other SW; their values increase with
increasing the value of ratio |m|R−1

1 .

2.2. Influence of an external magnetic field radial non-uniformity on the ASW
frequency spectrum

Plasma confinement in various magnetic traps is performed by the aid of an external
magnetic field �B0(r) with non-uniform radial profile. As a rule, this non-uniformity
is relatively weak. That is why, in this subsection, just the case of a weak radial non-
uniformity of the magnetic field and its influence on the ASW frequency spectrum
are considered. As the influence of the plasma density non-uniformity on the ASW
properties has been examined in the previous subsection, then let us assume here the
case of uniform plasma density profile. It is interesting that in this case, magnetic
component of the extraordinary polarized ASW field is also described by (1). And
because of that it can be solved by the method of etalon equations [18], applying it
one can find out that in the plasma region, the ASW magnetic field is described by
the following expression:

Hz = A(r)Im(b). (20)

This solution is valid if condition (2) is satisfied. Substituting the expression (20)
into (1), one can calculate correction ω1 to the ASW frequency, which is connected
with non-uniformity of external constant magnetic field �B0 in the case of the wide
plasma waveguide R1 � |m|δ1 and large azimuthal wave number |m| � 1:

ω1 ≈ −mξω2

2
√
m2 + R2

1

/
δ2

1

[
mω + 2∆

m2Ω2
e

|ωe(R1)|

]−1

. (21)

Here, the parameter of external magnetic field non-uniformity ξ is determined
by the expression ξ = R1d lnB0/dR1, which is calculated in the point of r = R1.
Under the considered conditions, the following inequality for this parameter is valid
ξ�R2

1ω/|mωe(R1)δ
2
1 |. Expression (21) can be applied to obtain frequency corrections

ω1 in other limiting cases, namely, narrow plasma waveguide k⊥R1 � 1 and small
azimuthal wave number |m| � k⊥R1.

If the thickness of dielectric layer is small enough that the inequality ∆ < |ωe(R1)|
ω/|mΩ2

e | is valid, then the ASW become unidirectional waves (in this case, azimuthal
wave number can be only positive m > 0) and in the external magnetic field,
whose value diminishes with going from plasma boundary, their frequency is less
than it was in the case of uniform magnetic field. This conclusion coincides with
results of the paper [18] that concern dependence of the ASW frequency upon
value. If the thickness of dielectric layer is so large that the following inequality
∆ > |ωe(R1)|ω/|mΩ2

e | is valid, then the influence of external magnetic field is more
pronounced for the ASW with m < 0, as compared with the case of opposite
meaning of the azimuthal wave number. It can be explained as demonstration of
the phenomenon of non-reciprocity for ASW with opposite meanings of azimuthal
wave numbers.

Summarizing the above mentioned, one can conclude that radial non-uniformity
of an external magnetic field affects much stronger on these ASWs, which propagate
along the direction of electrons’ rotation in the magnetic field B0 nearby the plasma
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surface. For the fixed value of parameter of external magnetic field non-uniformity
ξ, correction of the ASW frequency diminishes with increasing of the dielectric layer
thickness, absolute value of azimuthal wave number, radius of plasma, density of
plasma, and value of the utilized magnetic field B0(R1).

2.3. Influence of toroidal magnetic field non-uniformity on the ASW frequency
spectrum, which propagate in metal waveguides completely filled by plasma

In gaseous plasma, which is confined in toroidal experimental devices, influence
of toroidicity of the utilized magnetic field on the eigen transverse electromagnetic
waves [22] reveals at first, via spatial non-uniformity of an external constant toroidal
magnetic field; at second, via toroidal shift of magnetic surfaces [23]; and at third,
via distinguishing the forms of poloidal cross sections of magnetic surfaces from
the circular cross section. Influence of the second and third factors on the eigen
electromagnetic waves’ dispersion properties, which propagate across an uniform
axial magnetic field along a small azimuthal angle is particularly examined in [24].
This subsection is devoted to the study of the first factor’s influence. By doing that,
the theory of ASW propagating in the uniform magnetic field is applied as the
zeroth approximation.

In the case of absence of the dielectric layer which separates plasma from a metal
wall of the utilized chamber, an external uniform magnetic field affects on the ASW
dispersion properties by the strongest manner [2]. That is why, let us examine just
the case of toroidal metal waveguide of circular cross section with radius a that
is completely filled by plasma. In the right quasi-toroidal coordinates’ system, the
chamber is assumed to be symmetric along the circular axis, so ∂/∂ζ = 0. Poloidal
angle ϑ is counted off along direction on the center of symmetry of the torus. It is
assumed as well that the plasma filling is uniform, and utilized external constant
toroidal magnetic field is described by the following expression:

B0ζ = B0/[1 − (r/R) cos ϑ], (22)

where R is large radius of the torus. Let us study the propagation of extraordinary
polarized modes with the components of electromagnetic field Er , Eϑ, Hζ . In the
physics of semiconductors, such SW is entitled as magnetoplasma polaritons and
the noted orientation of an external magnetic field related to plasma–metal surface
is entitled as Voight geometry [25].

In the framework of magnetic hydrodynamics, vectors of the electric induction
and strength of the electric field are connected with each other by the tensor εij
of the dielectric permeability of cold magnetoactive plasma without taking into
account the collisions between plasma particles. Under the case of small toroidicity
(parameter εt = a/R� 1), one can represent expressions for the components of the
tensor εij as a series over the small parameter of toroidicity:

ε1,2 = ε
(0)
1,2 + ε

(1)
1,2 cos ϑ+ ε

(2)
1,2. (23)

The main summands in the series (23) do not depend on the coordinates ε(0)
1,2 =

ε1,2(B0ζ = B0). The summands of the first order of smallness over small radius of
the torus r are as follows:

ε
(1)
1 = −2

r

R

∑
α

Ω2
αω

(0)2
α(

ω2 − ω
(0)2
α

)2
, ε

(1)
2 = − r

R

∑
α

ω(0)
α Ω

2
α

(
ω2 + ω(0)2

α

)
ω

(
ω2 − ω

(0)2
α

)2
. (24)
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The corrections of the second order of smallness are quadratic with respect to the
radius r. In the series (23), summands of the second order of smallness, which are
proportional to exp(2iϑ) are not taken into account because they make contribution
into the correction of the ASW frequency, which is larger than the second order of
smallness. Cyclotron frequency in expression (24) is determined by the strength of
toroidal magnetic field (22) in the zeroth approximation: ω(0)

α = ωα(εt = 0).
Toroidal component of the ASW magnetic field can be calculated from the

following equation, in which one can derive from Maxwell set of equations:

1

r

∂

∂r

(
rε1

ε⊥

∂Hζ

∂r

)
+
i

r

∂

∂ϑ

(
ε2

ε⊥

)
∂Hζ

∂r
+
ω2

c2
Hζ +

1

r2
∂

∂ϑ

(
ε1

ε2

∂Hζ

∂ϑ

)

− i

r

∂

∂r

(
ε2

ε⊥

)
∂Hζ

∂ϑ
= 0, (25)

where ε⊥ = ε21 − ε22. In the zeroth approximation (25) describes independent
propagation of the ASW with different values of azimuthal wave numbers. But
in the case of toroidal non-uniformity of an external magnetic field, one can take
into consideration the satellite harmonics of the ASW field. Taking into account the
symmetry of the problem [see (23), (24)], solution of (25) can be represented in the
following wave packet form:

Hζ =
[
H

(0)
ζ (r) +H

(2)
ζ (r) +H

(+1)
ζ (r) eiϑ +H

(−1)
ζ (r) e−iϑ] exp(imϑ− iωt). (26)

Components of the ASW electric fields can be represented in the form that is
similar to expression (26) form, where the next (with respect to the main harmonic
∝ exp(imϑ)) two satellite harmonics ∝ exp[i(m ± 1)ϑ] are taken into account. The
fields’ correction H

(2)
ζ , which is determined by the waveguides’ toroidicity, appears

as summand of the second-order smallness. To derive dispersion equation of the
ASW propagating in toroidal chamber, which is completely filled by magnetoactive
plasma, one can find connection of the poloidal component of the ASW electric field
Eϑ with Hζ . Then they can satisfy the standard boundary conditions (see Sec. 2.1).

For the zeroth approximation, one can apply theory of ASW propagating along
azimuth in metal cylindrical waveguide with radius a, which is completely filled
by uniform plasma [2]. Amplitudes of the satellite harmonics can be found out as
solutions of the considered task in the first approximation (H (±1)

ζ (r) are assumed to
be the parameters of the first order of smallness). They can be substituted into (25),
taking into account expression (23), and summands of the first-order smallness will
appear there with the factor ∝ exp[i(m±1)ϑ]. That is why, the account of summands
of the first order of smallness does not change amplitudes of the main harmonic, and
consequently the solution of the considered problem in the first approximation does
not determine the ASW frequency correction. These summands form non-uniform
Bessel equation for satellite harmonics H (±j)

ζ (r) with the known right part. Constants
of integration for this equation can be determined by the application of the above
mentioned boundary conditions.

Correction of the ASW frequency connected with toroidicity of the utilized
constant magnetic field can be calculated in the second approaching of the considered
task. Summands of the second order of smallness in (26) are proportional to the
summands of the following phases multipliers: either exp(imϑ) or exp[i(m ± 2)ϑ].
Summands, which have factor exp[i(m±2)ϑ], make up the equation for amplitudes of
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the second satellite harmonics. Thus these summands in series (26) can be neglected
because their contribution to the frequency corrections of the transversal SW appears
to be the values of such order of smallness, which is higher than the second. The
summands of the second order of smallness, which are proportional to the factor
exp(imϑ), make up the non-uniform differential Bessel equation for the correction
H

(2)
ζ (r) to the amplitude of the basic harmonic. Solution of this equation that satisfies

condition on finite value of the wave field on the circular axis of the torus can be
found out by the method of constant variation. It can be written down as the sum
of partial solution of the non-uniform differential equation and common solution of
the corresponding uniform differential equation. In the obtained expression for the
axial component of the waves’ magnetic field, the common solution C2Im(k⊥r) of
the studied uniform equation and amplitude H (0)

ζ (r) appear to be similar elements.
Therefore, constant of integration C2 plays role of correction to the normalized
multiplier, which in the zeroth approach was equated to unit. That is why, constant
C2 can be found not from the above mentioned boundary conditions, but by the
aid of the following condition, which is similar to the condition of normalizing the
wavefunction in quantum mechanics [26]:∫ a

0

[
2H (2)

ζ Im(k⊥r) +
(
H

(+1)
ζ

)2
+

(
H

(−1)
ζ

)2]
rdr = 0. (27)

Equation (27) expresses by itself the following physical condition: energy of the
magnetic field of the wave, which is calculated by taking into account the summands
of the second order of smallness, can coincide with the value, which is calculated in
the zeroth approximation. At the same time, we can underline that type of dispersion
equation, which is derived by taking into account the summands of the second order
of smallness, does not depend on the value of the integration constant C2 .

Application of the boundary condition on the metal wall of the considered toroidal
waveguide for the basic harmonic of the poloidal component of the waves’ electric
field with taking into account the summands of the second order of smallness
leads to obtaining dispersion equation in the form D(0) + D(2) = 0, where D(0)

describes ASW in the case of uniform constant magnetic field [2] and the second
term describes correction D(2) ∝ E

(2)
ϑ (a), which is determined by toroidicity of the

considered magnetic field �B0ζ . That is why, correction to the eigen frequency ω(0)
m of

the studied transversal SW appears to be the values of the second order of smallness:
ω(2)
m ∝ ε2t . The condition of applicability of the applied method of determination

of the transversal SW dispersion properties, which propagate in toroidal metal
waveguides, consists in the validity of the inequality |ω(2)

m | �ω(0)
m .

Therefore, the basic mathematical achievement of this result can be formulated
in the following way: the task about two-dimensional non-uniformity of an external
constant magnetic field in the waveguides’ poloidal cross section has been reduced
to one-dimensional non-uniformity (it means that finally we have only radial
distribution of the considered external magnetic field). But of course, the obtained
solutions are of cumbersome form.

In the limiting case of a wide waveguides R� a� |m|k−1
⊥ , eigen frequency of the

considered transversal SW can be represented at the LF range by the following
asymptotic expressions:

ω(0)
m = mδ|ωe|a−1. (28)
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ω(2)
m = −0, 25ε2t ω

(0)
m . (29)

At the HF range, their eigen frequency can be written with the same accuracy by
the following way:

ω(0)
m =

√
ω2

UH + m2c2a−2. (30)

ω(2)
m =

ε2t
4

c2m2

ω2a2

(
1 +

3|ωe|k⊥a

ω|m|

)
ω(0)
m . (31)

For the transversal SWs, which propagate in a narrow |m| � ak⊥ toroidal wave-
guides at the LF range, one can derive the following asymptotic expressions:

ω(0)
m = |ωe|

[
1 − 1

2m(m+ 1)

(a
δ

)2
]
, (32)

ω(2) =
2m2 − m+ 1

4m2(m+ 1)
ε2t ω

(0)
m . (33)

At the HF range, expression of the transverse SW eigen frequency in the zeroth
approximations described by formula (30), and frequency correction to it is equal to
approximately:

ω(2) =
2m2 + m+ 1

2m2
ε2t

(
mδ

a

)4
Ωe

|ωe|
ω(0)
m . (34)

It should be mentioned that spatial distributions of the satellite harmonics in
these two limiting cases are substantially different, namely, in the limiting case of
narrow waveguide H (±1)

ζ (r) ∝ rm±1, but their values are approximately equal to each
other on a metal wall of the considered waveguide.

To carry on comparative analysis of the obtained results, let us write down
here asymptotical expressions for correction ω

(2)
el to the eigen frequency of the

transversal SW that is determined by elliptisity of transverse cross section of the
metal waveguide, which is completely filled by plasma. For transversal SWs, which
propagate in a wide waveguides at the LF range, the frequency correction ω(2)

el is as
follows:

ω
(2)
el = −0.25ε2el(4 − m2 + 2aδ−1)ω(0)

m . (35)

In this case, the form of the cross section of chamber is determined by parameter
of ellipticity εel by the following way: r(ϑ) = a(1 + εel cos(2ϑ − π)). In the limiting
case of a narrow waveguides:

ω
(2)
el = − ε2el

2m

2 − 4m2 − 4m2

2 − 4m2

a2

δ2
ω(0)
m . (36)

Thus after comparing expressions (33) and (34) with expressions (35) and (36), one
can make the following conclusions: first, influence of toroidal non-uniformity of
the external magnetic field on the spectrums of transversal SW is stronger than the
influence of ellipticity of the waveguide cross section in the case of rarefied plasma
density; second, comparison of the obtained results with influence of toroidal change
of magnetic surfaces is redundant, because in experimental practice this change is
too small nearby the surface of the metal chamber, where the considered waves are
localized.
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Consequently, the account of toroidal non-uniformity of the external magnetic field
leads to the fact that transversal SWs propagate in toroidal waveguides in the form
of wave packet. Amplitudes Am+N of satellite harmonics in such packets are small
enough as compared with amplitude of basic harmonic Am so that Am+N ∼ εNt Am.
Influence of the toroidal non-uniformity of the external magnetic field on amplitude
of basic harmonic becomes apparent in the second order of smallness over the
parameter of toroidicity εt. Represented results can be useful for practical application
in the branch of plasma electronics, and also for interpretation of experimental results
concerned studying phenomena in peripheral plasma [27] confined by magnetic field
in fusion devices.

2.4. Propagation of azimuthal surface waves around a metal ring in a non-uniform
toroidal magnetic field

In this subsection, within the framework of the method of successive approximation,
extraordinarily polarized electromagnetic SW with components Er , Eϑ, Hζ propagat-
ing across the constant toroidal magnetic field around a metal ring is studied. Small
radius of metal ring with ideally conductivity is assumed to be small as compared
with the large radius of the ring, so that inequality εt = a/R� 1 is valid. The

constant toroidal magnetic field �B0 = B0ζ�eζ is created by a conductor with a direct
current, which is located along the direct axis of the ring, perpendicularly to the
plane of symmetry of the ring, and is expressed by formula (22). Plasma, which is
surrounded by the metal ring, is assumed to be cold and uniform [28], and all other
suppositions, which have been done in Sec. 2.3, are valid in this subsection as well.

Components of dielectric permeability tensor εik can be written in the form of
series over small parameter of toroidicity εt like expression (23). In the present case,
toroidal Hξ(r) component of the waves’ magnetic field can be derived from (25) in
the form like expression (26). Solution of (25) can satisfy to the boundary conditions,
which are particularly discussed in the previous subsections. Amplitude H (0)

ξ (r) of
basic harmonic of the considered transverse SW in the zeroth approximation in
this case can be expressed by the aid of the MacDonald function [19] Km(k⊥r).
Determination of amplitudes H

(±j)
ζ (r) of satellite harmonics is executed by the

method, which is similar to the one that is applied in the previous subsection,
because of the similarity of these tasks. Thus solving of the present task in the
first approximation does not make contribution into correction to the ASW eigen
frequency. Expressions for the fields of satellite harmonics are obtained in [28]; they
are very cumbersome so we do not represent them here.

Corrections of the transversal SW eigen frequencies in this case can be found
out by the same method, as it was done in Sec. 2.3. Non-uniform differential Bessel
equation for the second-order correction H (2)

ζ (r) to amplitude of the basic harmonic
of the ASW, and its solution is similar to the corresponding correction, which has
been obtained in the previous subsection. That is why, one can apply the method of
constant variation once again for the present task.

In the limiting case of the thick ring R� a� |m|/k⊥, eigen frequency of transversal
SW coincides with expression (29) within accuracy of a sign. At the HF range, the
wave frequency correction becomes negative, but it coincides with (32) over its
absolute value. Studied transversal SW can exist in the HF range if the following
inequality is valid for the considered plasma parameters (δm/a)2 < |ωe|Ω−1

e .
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For the eigen frequencies of the considered transversal SWs, which propagate
around the thin a� |m|k−1

⊥ �R metal ring at the LF range, it is possible to derive
the following asymptotic expression for the frequency correction:

ω(2) = −ε2t (2m2 + m+ 3)ω(0)
m /8m

2. (37)

In this case, the ASW frequency ω(0)
m is determined by a formula (32). At the HF

range, value of the ASW eigen frequency in the zeroth approximation ω(0)
m is de-

termined by formula (30), and the frequency correction in this case is approximately
equal to:

ω(2) = −ε2t (2m2 − m+ 2)
(
δk−1

⊥ a2
)2
m(m− 1)ω(0)

m . (38)

Radial dependences of satellite harmonics for these transversal SW in this limiting
case (thin metal ring) are substantially differ from each other: H (±1)

ζ (r) ∝ r−|m±1|,
but these amplitudes appear to be of the same order of smallness on the surface of
the metal ring.

Consequently, the account of toroidal non-uniformity of the external magnetic
field results in the fact that transversal SWs propagate in the form of wave packet.
Amplitudes of satellite harmonics in such packets are of small values as compared
with the amplitude of the basic harmonic: Am+N ∼ εNt Am. Influence of toroidal
non-uniformity of the external magnetic field on the amplitude of basic harmonic
appears to be of the second order of smallness over the parameter εt of toroidicity.
The eigen frequency corrections for these transversal SWs, which are determined
by toroidal non-uniformity of the external magnetic field, appear to be values of
the second order of smallness. They are of the same order of smallness as it was
found out for the frequency corrections in the previous subsection, but they have
the opposite sign as compared with the results obtained in the previous subsection.
Concerning practical application of the results presented in this subsection, one can
see that such type of metal ring can be an aerial, which it is intended for excitation
of the transversal SWs with the purpose to sustain a gas discharge.

2.5. Azimuthal surface waves in a weakly corrugated magnetic field

An external magnetic field that confines plasma in laboratory devices is often of
a corrugated type. For instance, adiabatic traps have a corrugated magnetic field
[29], corrugated confining magnetic field in tokamaks is connected with discreteness
of the coils of toroidal magnetic field, corrugated magnetic field is typical for such
toroidal systems as ELMO BUMPY TORUS [30, 31]. It is planned [32] that the so-
called ‘mirror’ non-uniformity will be predominant in the confining magnetic field of
modular stellarator Helias. If in the expression of the confining magnetic field derived
for the Helias reactor, which is offered in [32], anybody replaces flow coordinates
by cylindrical coordinates, then this expression will coincide with expression of the
corrugated magnetic field applied in this subsection. In [33], the eigen disturbances
of thermonuclear plasma of modular stellarator Helias are foreseen theoretically.
Theory of propagation, conversion, and absorption of magnetohydrodynamic waves
in a plasma column, which is located in a weakly corrugated magnetic field, has
been developed in [34–37]. The waves in a corrugated magnetic field propagate in
the form of wave packets, which in addition to a basic harmonic contain infinite
quantity of satellite spatial harmonics.
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Let us consider propagation of transversal electromagnetic waves nearby the
border of the plasma column separated by a vacuum layer from circular metal
chamber cylinder with ideal conductivity (geometry of the system is particularly
described in Sec. 2.3) [38, 39]. An external confining magnetic field �B0 = B0z�ez+B0r�er
is assumed to be weakly corrugated:

B0r = B00ε
′
mk

−1
m sin(kmz), B0z = B00[1 + εm(r) cos(kmz)], (39)

where ε′
m ≡ dεm/dr, km = 2π/L, in which L is the period of corrugation. The

parameter of corrugation εm is usually (in all modern fusion reactors) small. For
example, it is ∼ 0.05 nearby the border of plasma in tokamak ASDEX-U, Germany
[38]. In the Helias configuration [33], ‘mirror’ non-uniformity is planned to be
εm ∼ 0.13.

One can see that expression (39) does not automatically provide implementation
of the fundamental equation div�B0 = 0. Therefore, one can substitute expressions
(39) to this fundamental equation and then obtain equation like the modified Bessel
equation, which determines dependence εm on the radial coordinate. Its solution is
proportional to the modified Bessel function of the zero order. Consequently, if the
period of corrugation is larger as compared with the small radius of chamber of the
fusion device, then εm can be considered as a practically constant value. In opposite
case, if the period of corrugating is small, the εm value diminishes approximately
according to exponential law with going away from the plasma interface to the
plasma center. Thus non-uniformity of the confining magnetic field is substantial
only in a narrow layer within k−1

m thickness nearby the metal wall of the chamber.
As it is known, the magnetic field fluxes are parallel to the vector of the confining

magnetic field induction in every point of the coordinate space. The vector form of
this condition allows one to derive the next equation for the flux lines in cylinder
coordinates:

dr

B0r
=

dz

B0z
. (40)

Integrating (40) after the substitution explicit expressions (39) for confining
magnetic field components into it, one can obtain equation for magnetic surface
taking into account that properties of corrugation parameter εm(r) are described by
the modified Bessel functions:

r0 ≈ r +
cos (kmz)

r

∫ r

0

rεmdr = r − cos(kmz)
(
1 − εm

2
cos(kmz)

)
ε′
mk

−2
m + o

(
ε3m

)
. (41)

Equilibrium plasma density here is the function of the magnetic surface: n(z, r) =
n(r0).

Let us apply the system of coordinates �e1,�e2,�e3 that is related to the flux lines
of the magnetic field induction �B0, namely, the first vector is perpendicular to the
magnetic surface in every point of the coordinate space �e1 = ∇r0/|∇r0 |, the second
vector coincides with azimuthal basic vector in cylinder coordinates, the third vector
is parallel to magnetic field flux lines�e3 = �B0/|�B0|. In this system of coordinates, the

components of the waves’ electric field induction �D and electric field strength �E are
coupled by the tensor of permeability of a cold plasma without the collisions in the
simplest way:

�D = ε1 (E1�e1 + E2�e2) + ε3E3�e3 − iε2�e3 × �E. (42)
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In approximation of small value of collisional frequency, the components of the
cold plasma permeability tensor applied in (42) have the following forms:

ε1 = 1 −
∑
i

Ω2
i (r0)

/(
ω2 − ω2

i

)
, ε2 = −

∑
i

Ω2
i (r0)ω/

((
ω2 − ω2

i

)
ωi

)
,

ε3 = 1 − Ω2
i (r0)ω

−2. (43)

Value of cyclotron frequency in (43) is determined by the complete magnetic field
B0(r, z).

Applying symmetry of the task, the components of the plasma permeability tensor
can be written as series over the small parameter εm. Let us write down those of
them, which describe the extraordinary modes taking into account the summands
of the second order of smallness over the parameter of corrugation:

ε1,2 = ε
(0)
1,2(r) + ε

(1)
1,2 cos(kmr) + ε

(2)
1,2(r) + O(ε3m), (44)

where ε(0)
1,2(r) are the basic terms, ε(1)

1,2 cos(kmr) are the corrections of the first order

of smallness |ε(1)
1,2| ∼ |εmε(0)

1,2|. In the second approximation over the small parameter
of the task, one can take into account the only corrections to the basic summands
|ε(2)

1,2| ∼ |ε2mε
(0)
1,2|, because they make contribution into the dispersion equation [39] of

these waves.
Applying symmetry of the task, one can search into the solution of Maxwell set of

equations for the ASW field as a wave packet, which contains two nearest satellite
harmonics in addition to the basic harmonic. Radial dependence of amplitudes of
the basic harmonic (in the case of large period of corrugation, when the inequality
kmc < ω is valid; let us indicate that it is concerned the satellite harmonics as
well) of the wave in a vacuum region is expressed through the Bessel functions
of the first type and the Neumann functions [19]. As it is known from [40], the
ordinary modes’ properties do not depend on the utilized constant magnetic field
[see expression for component of the permeability tensor ε3 in (43)]. That is why, we
shall consider influence of corrugation of the confining magnetic field on properties
of the surface X-modes in a plasma cylinder with a non-uniform radial profile of
the plasma density. Let us assume that only the mth harmonic of the field H (0)

z (r)
differs in the zeroth approximation from zero, thus for the following component of
the ASW field, one can write down: E(0)

z (r) = H (0)
r (r) = 0, H (0)

ϑ (r) = 0.
In the zeroth approximation, dispersion equation for the transversal surface X-

modes can be derived by the aid of application of the above mentioned boundary
conditions. By doing that, we consider that eigen frequency value is known in the
zeroth approximation. The account of summands of the first order of smallness at
the solution of Maxwell equations in the plasma region does not change amplitudes
of the basic harmonics of the X-mode field components, but it results in the
appearance of the satellite harmonics, which are proportional to exp[i(mϑ±kmz−ωt)].
Weak corrugation of the external confining magnetic field is the reason of the
coupling between amplitudes of E(±)

z satellite harmonics of the axial electric field
and amplitudes of the basic harmonic of radial electric E(0)

r and axial magnetic
H (0)
z fields of the surface X-modes. Differential equation, which links these fields’

components of the X-modes, has the form of non-uniform Bessel equation. That
is why, it is convenient to search into its solution by the method of constant
variation. Appearance of the axial electric field of the X-modes, which is not equal
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to zero, is connected also with its weak coupling with the radial electric field because
of the application of the boundary condition for tangential electric field on the
metal wall of the fusion chamber. Amplitudes of the satellite harmonics of axial
magnetic and also radial and poloidal electric fields of the surface X-modes are
symmetrical: E(+)

r = E(−)
r , E(+)

ϑ = E
(−)
ϑ , H (+)

z = H (−)
z , and amplitudes of axial electric

and also radial and poloidal magnetic fields are antisymmetrical: H (+)
r = −H (−)

r ,

H
(+)
ϑ = −H (−)

ϑ , E(+)
z = E(−)

z .

The account of summands of the second order of smallness enables one to
determine values of the corrections of the second order of smallness to the amplitude
of basic harmonic of axial magnetic field and also radial and poloidal electric fields
of the wave. Thus the spatial distribution of the X-modes fields can be determined
by the aid of the theory of successive approximations from the spatial distribution
of the axial magnetic field of the waves that is known in the zeroth approximation
within accuracy up to summands of the second order of smallness inclusively.
Applying the above mentioned boundary conditions, one can derive dispersion
equation for the surface X-modes as it has been done in the previous subsections.
It can be analytically examined only in some limiting cases. For example, in the
case of uniform dense plasma (Ω2

e �ω2
e ) with a large radius (a� |m|δ), which is

separated from a metal wall of the fusion chamber by a narrow vacuum layer
(R2R

−1
1 −1 � 1) that is immersed into the constant magnetic field with a large period

of corrugation (kmR1 � 1), the surface X-modes frequency can be determined by this
method: ω = ω(0) + ∆ω, where ω(0) is value of the ASW frequency in the zeroth
approximation:

ω(0) ≈ (1 − ∆)δ2m |ωe| +
√

(1 − 2∆)δ4m2ω2
e − (2a2∆− a2δ2 + 2aδ)m2c2∆(3∆− 2)

2a2∆− a2δ2 + 2aδ
(45)

and ∆ω is correction to its value, which is connected with the weak corrugation of
the confining magnetic field of the fusion device:

∆ω

ω(0)
≈ − (ε′

m)2

4k4
m

[
k2δ

a

(
1 − mδ |ωe|

aω(0)

)(
m2

a2k2
− 1

)
+
∆

δ2
− ∆m2δ−2

a2k2
− 3m2

k2a4
+
δ + a

a2δ

−m |ωe|
a2ω(0)

] [
(1 − ∆)

mδ2 |ωe|
a2ω(0)

+ (2 − 3∆)
∆m2

k2a2

]−1

. (46)

Summarizing materials represented here, we can indicate that similar mathem-
atical approach has been applied at researching beam–plasma instabilities, which
happen in waveguides with a periodic dielectric inserts and/or in waveguides with
the corrugated walls [41]. In these cases, dispersion equations contain the small
correcting summands, which are proportional to the square of the corrugation
depth of corrugating of devices’ environment. The similar structure is realized for
the dispersion equation that describes the radiation of the free electron lasers as
well. Experimental study of the processes of modes conversion in a waveguide with
corrugated walls proves that for practical aims it is enough to apply the analytical
calculations, which have been done within the framework of the theory of successive
approximations [41]. Consequently, such conclusions can be considered as another
independent confirmation of correctness of the results represented in this section.
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3. Gases discharges sustained by ASW propagation
The results of theoretical investigation of plasma sources, which operate due to
propagation of ASW, are presented in this section. Construction of such type plasma
sources can be designed either as a cylinder metal waveguide with a plasma filling or
cylinder metal antenna that is immersed into plasma. It is suggested that ASW can be
utilized for sustaining microwave gas discharges in such devices, gas discharges will
be created due to the processes of volume ionization, which happen due to collisions
between plasmas’ electrons and neutral particles of the operating gas. Microwave
gases discharges, which are sustained by the SWs, are of great interest for successful
development of plasma technologies because of their advantages as compared with
the case of bulk waves’ utilization [12, 13, 42]. In this section, we consider both cases
of a magnetoactive plasma production and of a non-magnetized plasma production.
Two different types of plasma sources’ are examined here, namely, first, plasma
maintains close contact with dielectric, which separates plasma from metal wall of
the discharge device and second, plasma maintains complete contact with metal
boundary of the discharge device. The ASW powers’ transfer into the sustained
plasma can be realized due to the collisional and resonant mechanisms, both of
them are studied here.

3.1. Electrodynamical model of gas discharges sustained by ASWs, which propagate
along a plasma–metal boundary

Analyzing dispersion properties of ASW, which are studied in [2], it is possible to
conclude that the plasma sources utilized propagation of ASW as operating mode
will be characterized by such advantages. First, ASW energy practically cannot
be lost out of discharge chamber. Second, plasma density, which can be produced
during such gas discharges, will be homogeneous along azimuthal direction due to
the spatial distribution of the ASW field. Carried out theoretical study testifies high
efficiency of the ASW utilization, possibility to obtain plasma with large enough
density and with high level of its uniformity.

Let us consider discharge chamber modeled by a cylinder metal waveguide of
radius Rc that is completely filled by magnetoactive gaseous plasma. Metal walls
of the chamber are assumed to be characterized by an ideal electric conductivity,
external constant magnetic field �B0 is directed along the axis of waveguide parallel to
�z, and discharge is uniform along the�z axis. As plasmas’ temperature in technological
gas discharges is low enough, then let us apply hydrodynamic approach to describe
waves’ processes in the produced plasma. Using the Fourier method, one can solve
set of Maxwell equations, which describe ASW fields. By doing that, dependence of
ASW fields on azimuthal angle ϕ and time t is assumed to be as follows:

A (r, ϕ, t) = A0 (r, ϕ) exp (imϕ− iωt) . (47)

It is supposed that the A0 value satisfies the following inequality: 1
A0

∂A0

∂ϕ
� |m|,

which means that assumption on weak changing of the gas parameters along the
azimuthal direction is valid. It is supposed also that the process of ionization in the
sustained plasma volume takes place due to collisions between electrons and neutral
gas particles filled the chamber. These collisions can be described by an effective
frequency ν of transmission of impulse, whose value is assumed much less than the
ASW eigen frequency value.
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Electrodynamical properties of such model during stationary stage of gas discharge
are described by dispersion equation for ASW, power balance equation, and
correlation between energy that is absorbed along an azimuth angle of the discharge
chamber and local density of the sustained plasma [43]. The mentioned correlation
characterizes the considered type of gas discharge and is determined by the
conditions of the carried out experiment, namely, by geometry of the discharge
chamber, by pressure and type of operating gas, and so on. Applying results of the
papers [44, 45], the power balance equation for the modes, which propagate in a
discharge can be written in the following form:

dSϕ

rdϕ
= −Q, (48)

where Sϕ is density of the ASW energy flow along an azimuthal angle, Q is the
ASW energy, which is absorbed at unit of the discharge length along an azimuthal
angle. It is known that correlation between plasma density that is obtained in the
discharge and the SW energy that is absorbed at unit of the discharge length is
different for each other discharge. In [45], it was obtained within the framework of
phenomenological approach, so let us write down here the expression as:

Q = G(β)N1+β, (49)

where N = Ω2
e

/
ω2 is the normalized plasma density, G(β) is the constant for each

discharge, it does not depend on a coordinate ϕ and it can be obtained from
equations on density of electrons and temperature in a gas discharge [45, 46].
Equation (49) is valid just for the stationary stage of gas discharge, when SW energy
transforms into energy of thermal motion of plasma electrons then in its turn it
spends for excitation, ionization, heating of neutral gas, and on other elementary
processes. Scopes of (49) validity for magnetoactive plasma was determined in [47].
Value of the parameter β is determined by conditions of experiment. For example,
the value β = 0 relates the diffuse regime of the discharge, during this regime
diffusion of the charged particles is the main mechanism of electrons’ losses from
a discharge volume. It can be realized for the discharge models where plasma is
produced mainly due to one-step ionization. In this case, the quantity of SW energy
that is absorbed in discharge is directly proportional to the value of the produced
plasma density. If discharge is carried out under the regime of two-step ionization,
removal of the excitation state for plasma particles and/or volume recombination,
then β value satisfies the inequality 0 < β � 2, and this regime of the discharge is
entitled by regime of the volume recombination.

To calculate the ASW power flow Sϕ and the ASW energy Q, which is absorbed
by plasma at the unit of length along direction of ASW propagation, one can find
out spatial distribution of the ASW field (it has been done in the previous section).
Then the obtained expressions for Sϕ and Q can be averaged over the discharge
chamber radius. Since one can obtain the following analytical expressions [43]:

Sϕ =
c

4πψ0
C2

1

∫ a

0

{
ε2

ε1
Im (ξ) I ′

m (ξ) +
m

ξ
I2
m (ξ)

}
dr, (50)

Q =
ω

4πε1
Im (ε1)C

2
1

∫ a

0

{(
I ′
m (ξ)

)2 − m2

ξ2
I2
m (ξ)

}
rdr, (51)
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where Im(ε1) = νΩ2
e (ω

2 + ω2
e )

/
ω(ω2 − ω2

e )
2, ξ = kψ0r, ψ =

√
ε22 − ε21

/
ε1, ξc = kψRc,

C1 is the constant that determines ASW fields’ amplitude on the inner metal wall of
the discharge chamber.

Let us consider the case of gas discharge sustained by ASW propagating in HF
range (5). Then, in the limiting case of plasma chamber modeled by a narrow
(ξc � 1), plasma cylinder expressions for the ASW power flow and the ASW energy,
which is absorbed at unit length of the discharge due to Ohmic damping of the
waves, can be written in the following forms [43]:

Sϕ = − ωa2 (ε2 + ε1)

8πε122|m|(|m|!)2C
2
1ξ

2|m|−2
0 (52)

Q =
νω2

(
ω2 + ω2

e

)
a2

4π
(
ω2 − ω2

e

)2
· (ε1 + ε2)

2

ε212
2|m| |m|!(|m| − 1)!

C2
1ξ

2|m|−2
0 . (53)

For the practical purposes just the case of gas discharge, which produces plasma
with high density, is the most interesting one [12, 13, 42, 44, 47]. That is why, further
research is devoted to the case of a dense plasma production. In this case, one
can obtain the following expression for the produced plasma density as function of
azimuthal angle by the aid of power balance equation (48):

N ≈ N0(1 − ϕ/ϕ0), (54)

where N0 = N(ϕ = 0), ϕ0 is effective angular length of the discharge. In the limiting
case of narrow discharge chamber ξc � 1, the approximate expression of ϕ0 is as
follows:

ϕ0 ≈ (|m| − 1)(Ω2 − 1)2

2|m|Y (Ω2 + 1)(Ω − 1)
, (55)

where Y = ν/|ωe|, Ω = ω/|ωe|.
Analysis of the ASW dispersion equation proves that their frequency slowly

depends on the effective wavenumber kef = mc/aωe at the HF range (5). It means
that changing of the discharge chamber radius is not effective manner to control the
gas discharge parameters in this frequency range. For the LF ASW, formulae (52) –
(55) are entirely suitable for the application. But, in this case, the ASW frequency
substantially increases with increasing of kef ; that is why, there are good possibilities
for controlling the gas discharge parameters by changing radius of the discharge
chamber. From analysis of expression (55), one can see that ϕ0 value grows with
increasing the applied constant magnetic field and the ASW frequency at the LF
range (4).

Similarity of spatial distributions of the ASW fields propagating in both metal
cylinder, which is completely filled by magnetoactive plasma, and around cylinder
metal antenna of radius Ra, which is immersed into non-bounded magneto-active
plasma, is shown in [2]. Distinguishing feature of the case of ASW propagating
around cylindrical metal antenna is the application of MacDonald functions [19]
with argument ξa = kψRa for description of their fields instead modified Bessel
functions, which have been applied in the case of utilization a cylindrical discharge
chamber. Thus the signs of azimuthal wave-number m in both the frequency ranges
(4) and (5) can be changed for the opposite ones in the case of ASW propagation
along the cylindrical metal antenna as compared with the previous case. Therefore,
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one can find simple analytical expressions for the ASW power flow and their energy
absorbed via the channel of Ohmic dissipation using approaching of cylindrical
metal antenna with small (ξa � 1) radius. Averaged values of Sϕ and Q for aerial in
the limiting case ξa � 1 can be represented in the following forms, correspondingly:

Sϕ = −ωR2
a2

2|m|−3

4πε1
C2

2ξ
−2|m|−2
a (ε1 − ε2)(|m| − 1)!2, (56)

Qoh =
νω2

(
ω2 + ω2

e

)
R2
a

4π
(
ω2 − ω2

e

)2
· C2

2

(
ε2

ε1

)2

4|m|−1|m|!(|m| − 1)!ξ−2|m|−2
a . (57)

To determine angular length ϕ0 of the discharge in this limiting case, one can
put these expressions into the power balance equation (48) and obtain the following
expressions for ϕ0:

ϕ0 ≈ (|m| + 1)(Ω2 − 1)2

2 |m|Y (Ω2 + 1)(Ω + 1)
. (58)

Comparison of expressions (55) and (58) obtained for the cases of cylinder metal
discharge chamber and cylinder metal antenna immersed into discharge plasma
testifies that they are alike. Moreover, difference between formulas obtained for the
limiting cases ξa � 1 and ξc � 1 is unimportant. That is why, it is possible to make
general conclusion that sustained plasma is uniform enough along an azimuth angle
for both the discharge structures.

As it was proved analytically in [2] and by numerical method in [43], the tangential
component of the ASW electric field is very small as compared with the ASW radial
electric field (at the HF range their ratio: Er/Eϕ ∼ 100 and at LF range Er/Eϕ ∼ 10).
That is why, in the expressions for the amount of ASW energy absorbed by discharge
plasma due to the collisional mechanism of the waves damping, it is possible to
ignore the summand, which is proportional to the value Eϕ. Exactly, because of
this circumstance angular component of the ASW energy flow prevails substantially
upon the radial component of the flow.

Degree of radial uniformity of the plasma, which is sustained in the considered
discharge, depends on the penetration λ⊥ depth of the ASW field into the plasma.
In the considered case, λ⊥ is practically determined by value of parameter ξa,c. The
results of numerical calculations of the λ⊥ value prove that for the ASW in HF
and LF ranges, there is a wide range of plasma parameters, where one can use an
approach of radially uniform plasma.

Determination of optimum value of plasma density is an important problem
for any gas discharge, because its understanding allows one to conduct plasma
production under the regime of eigen modes excitation. These results have been
obtained for discharges sustained by ASW numerically method in [48]. It is found
out that optimum value of plasma density nopt depends on the produced plasma
parameters in opposite manner for ASW at the HF and LF ranges. Value of nopt

increases with �B0 and azimuth numberm, but diminishes with increasing Rc at the
LF range. This dependence of the nopt on the mentioned parameters is opposite at
the HF range (5). In the limiting case of relatively narrow metal discharge chambers
(its radius Rc < 8 cm) for the typical values of the produced plasma parameters,
the optimum value of the plasma density is larger for the LF ASW. Moreover,
for the produced plasma density and an external magnetic field values, which are
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typical for the modern technological processes [13], ξ0 changes inside of the limits:
ξ0 = 10−4 ÷ 10−2. It means that, for the theoretical calculations of gas discharge
sustained by ASW in the most cases, it is possible to apply approach of narrow
cylinder, for which angular length of the discharge is much larger than 2π. As
energy of the ASW does not flow out from the volume of the produced plasma, then
considered discharge can be characterized by high efficiency of the power transfer
and by angular uniformity of the sustained plasma.

3.2. Peculiarity of the ASW power transfer into magnetoactive plasma under the
condition of operating gas low pressure

Parameters of microwave gas discharges depend on many factors, such as geometry
of a discharge chamber, kind and pressure of the operating gas, value of the utilized
external magnetic field, type of operating electromagnetic waves, and so on [12,
13]. Gas discharges in cylinder metal chambers sustained by electromagnetic waves,
which propagate along the cylinders’ axis, were experimentally examined in the cases
both magnetoactive plasma and non-magnetized plasma. These experiments show
us that volumes of plasma produced during gas discharge in the presence of an
external magnetic field become larger [12, 13, 42].

To develop modern plasma technologies, the special attention is paid to mag-
netoactive gas discharges, which operate under the condition of low pressure of
the utilized working gas. In this case, Ohmic channel of the SW energy transfer
into plasma becomes non-effective one because together with decreasing value of
the working gas pressure just frequency of collisions between plasma particles
falls substantially. That is why under these conditions, one can search for other
mechanisms of SW energy transfer into discharges’ plasma. Influence of resonant
absorption of the different SW on the sustained gas discharges, and parameters of
the produced plasma was studied in [48, 49]. It is proved there that, for the SW,
whose frequency ω satisfies resonant condition ε1(r0, ω) = 0, one can expect for
sufficient enhancing of quantity of the absorbed SW energy.

Let us consider the case of metal discharge chamber with a radius Rc + ad,
which inner surface has thin dielectric coating and its thickness satisfies inequality
ad �Rc, coefficient of dielectric permeability of this coating is εd. In this case of
ASW belonged to the LF range, they can satisfy indicated resonant condition. That
is why, conversion of the ASW into upper-hybrid bulk mode can be realized under
the condition: ω =

√
ω2
e + Ω2

e (r0), where radial coordinate r0 belongs to the region
of transitional plasma layer. We would like to mention as well that application of a
dielectric coating allows one to increase operating life of the experimental discharge
chamber, to shield produced plasma from penetration of mixtures (nanoparticles
and ions of the metal, which the wall of the discharge chamber is made from). In this
case, small part of the ASW energy flows in the region of dielectric coating, where
the ASW fields are described by the Bessel functions of the first kind and Neumann
functions [19]. In the dielectric region, the ASW magnetic field component Hd

z can
be determined by solution of (1) as well, but one can change: µ → 0, k2

⊥ → −k2εd
and electric field components are calculated by the aid of the following equations
using the known expression for Hd

z field:

Edϕ =
−i

κd
√
εd

dHd
z

dr
, Edr =

i

rκd
√
εd

dHd
z

dϕ
, (59)
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where κd = k
√
εd. In the approach of thin dielectric coating, it is possible to find out

expressions for radial components of the ASW field in the region of non-uniform
plasma:

Eplr (r < Rc) ≈ C1/ε1(r), (60)

where C1 is constant of integration. Then for calculation of amount of the ASW
power Qres, which is absorbed at unit of the discharge length due to resonant
damping of the ASW (due to conversion ASW into bulk mode at upper-hybrid
resonance), it is suitable to apply integral representation of Dirac delta function
[19]. It will allow one to derive such expression for the Qres:

Qres =
r0ω

2
eC

2
1k

2

4ωψ2

dr

dε1

[
I ′
m(kψr0) +

mε1Im(kψr0)

kψr0ε2

]
. (61)

Comparison of the ASW energy that is absorbed due to the Ohmic heating and
that one, which is lost by the ASW through resonant conversion into the bulk mode,
makes it possible to find out the following relation [48]:

Qres

Qoh
≈ 2πω(ω2 − ω2

e )
2

νRcΩ2
e (ω

2 + ω2
e )

dr

dε1(Rc)
. (62)

Let us estimate the value of this ratio for the typical parameters of modern
microwave discharges: working gas is Ar, its pressure is near 10 mTorr, working
frequency of generator is 2.45 GHz, temperature of electrons 1 eV, density of the
produced plasma in central uniform region is npl = 1011 cm−3, B0 = 300G, Rc = 6 cm,
ν = 107 s−1. Under these conditions: Qres/Qoh ≈ 21 � 1.

Estimations of the parameter kψRc value confirm that approaching of narrow
metal cylinder can be frequently realized for cylindrical discharge chamber in the
modern experiments. In this approach, one can derive the expression for angular
discharge length ϕres

0 , which is realized under the condition of resonant mode
transmission of the ASW energy into the produced plasma. For this purpose, one
can substitute the obtained expression for Qres (61) into the power balance equation
(48). Then its solution will allow one to obtain the following formula:

ϕres
0 ≈ Ω4

e (ϕ0 = 0)r0
ω3(ω + |ωe|)∆r

, (63)

where ∆r is the thickness of transitional region of non-uniform plasma, its value
according to the data of the paper [49] is about five Debye lengths.

Analyzing the obtained expressions (63), it is possible to make the conclusion that
role of resonant mechanism of the ASW power loses throughout their conversion
into the upper hybrid modes grows with increasing the ASW frequency, thickness of
transitional region of non-uniform plasma and also with diminishing of the working
gas pressure (it results in diminishing of the collisional frequency) and radius of
the produced plasma column. Angular discharge length (63) grows with increasing
of plasma particles concentration and radius of metal chamber that is used in the
discharge.

3.3. Electrodynamic model of gas discharge sustained by ASW without application of
an external magnetic field

At utilization plasma technologies, one can estimate cost of the produced plasma.
One of the frequently applied methods to make cheaper plasma production is to
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refuse utilization of an external magnetic field. That is why, to carry out complex
analysis of the possibility to apply ASW for plasma production, let us consider model
of gas discharge sustained by ASW without application of an external magnetic field
absence [50]. As it was indicated above in the case of high pressure of working gas
just Ohmic dissipation is the main mechanism of the SW power transfer into plasma
produced during gas discharges [13, 44, 50].

Let us consider discharge chamber with geometry, which is assumed to be the
same as in the previous subsection. Ignoring radial non-uniformity of the produced
plasma in the case of non-magnetized plasma, for the ASW fields, one can derive
the following expressions from the set of Maxwell equations:

Hz = A2Im (k⊥r) , Er = −NϑA2Im (k⊥r)

εp
, Eϑ =

iωA2I
′
m(k⊥r)

ck⊥
, (64)

where A2 is integration constant, k⊥ = k
√

|εp|, εp is dielectric permeability of a cold
non-magnetized plasma [40]. Then for the values of the ASW power flow Sϕ and
quantity of their energy Qoh that is absorbed by plasma at unit of the discharge
length, one can find out the following expressions in the limiting case of narrow
waveguide Rc �mδ:

Sϕ ∼=
A2

2ωδ
2

8π (m!)2 4m

(
Rc

δ

)2m

, Qoh
∼=

νΩ2
emA

2
2δ

2

4πω2 (m!)2 4m

(
Rc

δ

)2m

. (65)

At reduction of the working gas pressure, value of collisional frequency ν

diminishes and together with that efficiency of Ohmic channel of SW energy
dissipation decreases. That is why, one can take into account other channel of
the ASW power transfer and existence of real radial non-uniformity of plasma in a
discharge chamber. Under these conditions, the resonant damping of ASW becomes
the main mechanism of energy transfer in a periphery region of non-uniform plasma,
where εp(r0) = 0. Then in such transitional layer, the radial electric field becomes
the main component of the ASW field:

E(res)
r =

NϑIm
(
Rcδ

−1
)

|εp(r)|
A2. (66)

Quantity of the ASW energy that can be resonantly absorbed nearby the resonant
point is determined by the following formula:

Qres
∼=
c2m2I2

m

(
Rcδ

−1
)
A2

2

8ωRc

∣∣∣∣dr0dεp
∣∣∣∣ . (67)

Let us execute the following numerical estimations of the ASW power that can
be absorbed due to collisional and resonant damping. To do that, one can choose
the following values of the discharge parameters: density of plasma npl = 1011 cm−3,
frequency of generator 2.45 GHz, temperature of electrons 1eV, ν = 108 s−1, which
are typical of modern [13] discharges sustained by SW of different types. After that
one can obtain the following ratio between quantities of the ASW powers absorbed
throughout these two different mechanisms:

Qoh

Qres
≈ 0.078Rcm

−1 (68)
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where one has to apply value radius Rc in centimeters. Analyzing ratio (68), one can
see that for the discharge chamber with radius Rc = 10 cm, application of ASW with
m = 2 will be already accompanied by resonant damping as the main mechanism
of the energy transfer into the produced non-magnetized plasma. It is important to
also underline that angular discharge length ϕ0, which can be calculated from power
balance equation, appears to be enough large ϕ0 ∼ 10Rc m

−2. That is why, one
can consider that plasma produced at the discharge sustained by ASW is uniform
enough along azimuth direction.

In the first approximation, one can apply the represented results for theory
of discharge sustained by long-wave azimuthally asymmetric SW. It can be done
because of presence in dispersion of these waves just such ranges of axial wave
numbers kz , where axial group velocity of these SW is approximately equal to
zero. Thus, in this case, transfer of SW energy in axial direction is practically
absent [50].

Consequently, possibility to apply ASW propagation under the condition of
absence of an external magnetic field in cylindrical discharge chamber for sustaining
gas discharge is proven. As it is indicated in [50], diminishing of the SW frequency
appears to be suitable for the purpose of sustaining gas discharges. It is explained
by possibility of slow waves to interact with the plasma particles produced at the
discharge by more effective manner. Under the regime of low gas pressure, the main
channel of the ASW power transfer into the produced plasma is their conversion
into the plasma bulk mode. Thus such discharge will be characterized by sufficient
uniform density profile along an azimuth angle that is very important for the
practical use of such discharges in modern plasma technologies.

4. Conclusions
The results of research into the ASW properties under the conditions of their
propagation in the plasma filled cylindrical non-uniform waveguides of different
construction are presented here. Real experimental conditions, namely, spatial non-
uniformity of the confined plasma density and of the utilized external magnetic field,
are taken into account. Possible practical applications of these theoretical results are
indicated here as well.

The executed research allows one to determine frequencies of the electromagnetic
azimuthal waves and spatial distribution of their field, calculate their damping rates,
which are connected both with collisions between the plasma particles and resonant
conversion of these modes into the bulk modes. It is found out that non-uniformity
of an external axial magnetic field draws the influence, which is similar (from
mathematical point of view) to the case of influence of plasma density non-uniformity
on these modes’ frequency. The account of small toroidicity of an external magnetic
field (parameter εt � 1) results in that azimuthal waves propagate as wave packets.
Corrections to the waves’ field of their basic harmonic and eigen frequency, which
determined by this non-uniformity of the utilized magnetic field, are proportional
to ε2t . Corrugation of a confining magnetic field in modern thermonuclear reactors
is characterized by small parameter εm � 1, but it can influence on conversion and
absorption of the eigen waves. In this case, azimuthal perturbations propagate as
well as wave packets, in which all six fields’ components are present. Nevertheless,
this task can be solved by the aid of the successive approximation theory, and it
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shows us even to be analogous (from mathematical point of view) to the cases
of beam instabilities in plasma, which is confined in waveguides with a periodic
dielectric inserts or with the corrugated walls and even to the case of the theory
of free electron laser. The dispersion equations obtained for the ASW in this case
contain small summands, which are proportional to ε2m, and they can be adequately
solved by the methods of theory of successive approximations.

As the samples of possible practical applications of the ASW propagation, simple
electrodynamical models of gas discharges sustained by ASW are presented as well.
Importance of gas discharges for modern plasma technologies is great, they are
applied for treatment of solids surfaces, for creation of an active mediums for
gaseous lasers, for formation of carbon nanostructures, and so on. Consequently,
choosing a working surface mode for sustaining gas discharge, one can take into
consideration the possibility to apply these azimuthal modes as well.
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