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The statistical properties are presented for the direct numerical simulation of a
self-similar adverse pressure gradient (APG) turbulent boundary layer (TBL) at
the verge of separation. The APG TBL has a momentum thickness-based Reynolds
number range from Reδ2 = 570 to 13 800, with a self-similar region from Reδ2 = 10 000
to 12 300. Within this domain the average non-dimensional pressure gradient parameter
β = 39, where for a unit density β = δ1P′e/τw, with δ1 the displacement thickness, τw
the mean shear stress at the wall and P′e the far-field pressure gradient. This flow is
compared with previous zero pressure gradient and mild APG TBL (β = 1) results of
similar Reynolds number. All flows are generated via the direct numerical simulation
of a TBL on a flat surface with far-field boundary conditions tailored to apply the
desired pressure gradient. The conditions for self-similarity, and the appropriate length
and velocity scales, are derived. The mean and Reynolds stress profiles are shown
to collapse when non-dimensionalised on the basis of these length and velocity
scales. As the pressure gradient increases, the extent of the wake region in the mean
streamwise velocity profiles increases, whilst the extent of the log-layer and viscous
sublayer decreases. The Reynolds stress, production and dissipation profiles of the
APG TBL cases exhibit a second outer peak, which becomes more pronounced and
more spatially localised with increasing pressure gradient. This outer peak is located
at the point of inflection of the mean velocity profiles, and is suggestive of the
presence of a shear flow instability. The maximum streamwise velocity variance is
located at a wall normal position of δ1 of spanwise wavelength of 2δ1. In summary
as the pressure gradient increases the flow has properties less like a zero pressure
gradient TBL and more akin to a free shear layer.
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1. Introduction

The efficiency of many engineering systems is dependent upon turbulent boundary
layers (TBLs) remaining attached to convex curved surfaces, and as such operate
in regions of adverse pressure gradient (APG). APGs are observed in both internal
duct flows (Mathis et al. 2008), and on external flows such as those over aircraft
wings or wind turbine blades (Kitsios et al. 2011). Separation of the TBL in these
applications can result in suboptimal performance, and in some cases may result
in catastrophic consequences. The above mentioned flow configurations are difficult
to study systematically, since the pressure gradients are continually changing in the
direction of the flow. There has been much theoretical, experimental and numerical
research into TBL, the vast majority of which has been focused on the zero pressure
gradient (ZPG) case. Concerning the APG TBL, however, many aspects of the
scaling, structure and stability remain unresolved. The study of canonical APG TBL
is, therefore, of utmost importance.

The self-similar APG TBL is arguably the most appropriate canonical form
to study. A TBL (or region thereof) is deemed self-similar if the terms in the
governing equations of motion have the same proportionality with streamwise position
(Townsend 1956; Mellor & Gibson 1966; George & Castillo 1993). Mellor & Gibson
(1966) developed this idea to determine that in a self-similar TBL the non-dimensional
pressure gradient, β= δ1P′e/τw, must be independent of the streamwise position, where
δ1 is the displacement thickness, τw is the mean shear stress at the wall, P′e is the
far-field pressure gradient, and we have prescribed a unit density. This condition
for self-similarity, however, will be broadened in § 4. The non-dimensional pressure
gradient parameter can be used to classify the various types of TBL into: a ZPG
TBL of β = 0; favourable pressure gradient (FPG) of β < 0; APG of β > 0; and an
APG TBL immediately prior to separation where β→∞. Herein lies the importance
of the self-similar canonical TBL. Imagine two TBLS: a FPG decelerating to ZPG;
and an APG accelerated to ZPG. The flow structure, statistics, stability properties
and scaling at the position of ZPG in these flows are different from each other, and
also different from the canonical ZPG flow (Perry, Marusic & Jones 2002). The
dynamical properties are dependent upon the specific streamwise distribution of the
pressure gradient (also referred to as historical effects). This illustrates the difficulties
in studying APG TBL. The value of considering the self-similar case in particular is
that it minimises (if not removes) the impact of such historical effects.

Theoretical studies of the APG TBL have largely concentrated on the self-similar
canonical form. For a given pressure gradient, theoretical work has focused on
deriving the conditions for self-similarity, including the appropriate length and velocity
scales necessary to collapse statistical profiles at various streamwise positions onto a
single set of profiles (Townsend 1956; Mellor 1966; Mellor & Gibson 1966; Durbin
& Belcher 1992; George & Castillo 1993; Marusic & Perry 1995; Perry & Marusic
1995; Castillo & Wang 2004). Additional studies have concentrated specifically on
the limiting zero mean wall shear stress (β → ∞) self-similar APG TBL, which
is the scenario immediately prior to the point of mean separation (Townsend 1960;
Chawla & Tennekes 1973). Skote & Henningson (2002) propose an alternate viscous
velocity scale, based on the pressure gradient, that is finite and non-zero when β→∞
for the incipiently separated APG TBL. Zagarola & Smits (1998), Nickels (2004),
Maciel, Rossignol & Lemay (2006) also attempted to collapse the statistical profiles
of non-self-similar APG TBL using various definitions of the pertinent velocity and
length scales.
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Several experimental campaigns have been undertaken to study the effect of
pressure gradients in non-self-similar APG TBLs. The early studies focused on
one-point statistics (Simpson, Strickland & Barr 1977; Cutler & Johnston 1989;
Elsberry et al. 2000; Aubertine & Eaton 2005; Monty, Harun & Marusic 2011),
with more recent measurements elucidating the streamwise structure of such flows
(Rahgozar & Maciel 2011). A smaller number of self-similar TBL experiments have
been undertaken, in which the statistical profiles at various streamwise positions
collapse under the appropriate scaling (Stratford 1959; Skåre & Krogstad 1994;
Atkinson et al. 2015). The limiting separation case was studied in Skåre & Krogstad
(1994), of maximum β = 21.4, with a momentum thickness-based Reynolds number
Reδ2 = 5.4 × 104. Across all of the experimental studies, a second outer peak is
observed in the variance of the velocity fluctuations, located further away from the
wall than the inner peak of the ZPG TBL. This outer peak also becomes more
prominent with increasing pressure gradient.

Direct numerical simulations (DNSs) have also been undertaken of both self-similar
and non-self-similar APG TBLs. The following DNS are all performed in rectangular
domains, with the APG applied via a prescribed far-field boundary condition
(BC). Spalart & Watmuff (1993) produced the first APG TBL DNS, producing a
non-self-similar attached TBL of maximum Reδ2 = 1600 and β = 2. DNS of separated
APG flows include the studies of Chong et al. (1998), Na & Moin (1998), Skote
& Henningson (2002) and Gungor, Simens & Jiménez (2012), Gungor et al. (2016),
with the latter study having the largest Reynolds number of Reδ2 = 2175. There have
also been various DNS of self-similar APG TBL attempted (Skote, Henningson &
Henkes 1998; Lee & Sung 2008; Kitsios et al. 2016). Two DNS were presented in
Skote et al. (1998): the first with Reynolds number range Reδ2 = 390 to 620 and
β = 0.24; and the second of range Reδ2 = 430 to 690 with β = 0.65. In the study of
Lee & Sung (2008) the APG TBL DNS has a Reynolds number range of Reδ2 = 1200
to 1400, and β = 1.68. In the most recent simulation of Kitsios et al. (2016) an APG
TBL DNS was undertaken with a Reynolds number range of Reδ2 = 300 to 6000.
They demonstrated self-similarity of the TBL from Reδ2 = 3500 to 4800, within which
β = 1.

The present study will add to the current body of APG TBL DNS databases, in
particular addressing the need for high Reynolds number high pressure gradient self-
similar flows. We present a DNS of an APG TBL with a momentum thickness-based
Reynolds number range from Reδ2 = 570 to 13 800 (of equivalent displacement
thickness-based Reynolds number range from Reδ1 = 1110 to 31 500), with a
self-similar region spanning a Reynolds numbers Reδ2 = 10 000 to 12 300 (or
Reδ1 = 22 200 to 28 800). This is larger in both Reynolds number range and magnitude
than the aforementioned APG TBL DNS studies. Within the self-similar region the
average pressure gradient parameter β = 39. The analysis to follow focuses on
properties that describe and explain the physics principally in the outer part of the
flow.

The manuscript is organised as follows. Firstly in § 2, an overview of the TBL DNS
code is presented along with the far-field BC required to generate the self-similar
APG TBL. The APG TBL is next characterised in § 3 and compared to the reference
ZPG TBL (β = 0) and mild APG TBL (β = 1) of Kitsios et al. (2016), on the basis
of typical boundary layer properties. In § 4, the conditions for self-similarity (and
associated scaling) are derived from the boundary layer equations and evaluated for
each of the TBL. In § 5 the degree of self-similarity of the strong APG TBL is
assessed by comparing mean streamwise velocity profiles across various streamwise
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stations. The impact of increasing pressure gradient on the wake, log-layer, viscous
sublayer, and inflection points are also presented. In § 6 self-similarity is again
assessed by comparing profiles of Reynolds stress at various locations. The influence
of the pressure gradient on the existence, location and magnitude of the inner and
outer Reynolds stresses peaks is also discussed. A physical model is proposed that
explains how the generation of the turbulent fluctuations changes with pressure
gradient. In § 7 wall normal profiles of the boundary layer momentum terms quantify
how the relative magnitude of each of these terms change with increasing pressure
gradient, and identify the direction of momentum transfer between the mean and
fluctuating fields. The turbulent kinetic energy budgets illustrate the sources, sinks
and transfers of these turbulent fluctuations in § 8. The wall normal location and
spanwise scale that contribute the most to the total fluctuations in the outer region
are determined from the streamwise velocity spectra in § 9. At this wall normal
location, two-point correlations in § 10 indicate how the structures become more
compact as the pressure gradient increases. Concluding remarks are made in § 11.

2. Direct numerical simulation
In the following sections we present: the algorithmic details of the DNS; BCs

necessary to implement the strong APG TBL; definitions of appropriate velocity and
integral length scales; and numerical details of the simulations.

2.1. Algorithmic details
The code adopted within solves the Navier–Stokes equations in a three-dimensional
rectangular volume, with constant density (here set to one) and kinematic viscosity
(ν). The three flow directions are the streamwise (x), wall normal (y) and spanwise
(z), with instantaneous velocity components in these directions denoted by U, V
and W, respectively. Notation used for the derivative operators in these directions
are ∂x ≡ ∂/∂x, ∂y ≡ ∂/∂y, and ∂z ≡ ∂/∂z. Throughout the paper the mean velocity
components are represented by (〈U〉, 〈V〉, 〈W〉), with the averaging undertaken both in
time and along the spanwise direction. The associated fluctuating velocity components
are (u, v,w).

Details of the algorithmic approach to solve the equations of motion are as follows.
A fractional-step method is used to solve the governing equations for the velocity and
pressure (P) fields (Harlow & Welch 1965; Perot 1993). The grid is staggered in the
streamwise and wall normal directions but not in the spanwise. Fourier decomposition
is used in the periodic spanwise direction, with compact finite difference in the
aperiodic wall normal and streamwise directions (Lele 1992). The equations are
stepped forward in time using a modified three substep Runge–Kutta scheme (Simens
et al. 2009). The code utilises MPI (Message Passing Interface) and openMP (Open
Multi-Processing) parallelisation to decompose the domain. For further details on
the code and parallelisation, the interested reader should refer to Borrell, Sillero &
Jiménez (2013) and Sillero (2014).

2.2. Boundary conditions
In all TBL the bottom surface is a flat plate with a no-slip (zero velocity) BC, and
the spanwise boundaries are periodic. The following BCs pertain to the strong APG
TBL DNS. Refer to Kitsios et al. (2016) for details of the BCs applied in the mild
APG and ZPG TBL DNS.
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FIGURE 1. (Colour online) Far-field wall normal velocity BC of the strong APG TBL
DNS, with xI the location of the inlet plane, xR the location of the recycling plane, and
xB the position at which blowing into the computational domain is initiated.

Due to the TBL growing in height as it develops in the streamwise direction, at a
downstream recycling position a spanwise/wall normal plane is copied and mapped to
the inlet BC. We use a modified version of the recycling method presented in Sillero,
Jiménez & Moser (2013), which scales and regrids the instantaneous velocity profiles
at the recycling plane to ensure that its reference velocity and length scales match
those prescribed at the inlet. As illustrated in figure 1, the recycling plane is located
at xR= 307δ1(xI), where δ1(xI) is the displacement thickness at the inlet of streamwise
position xI . For the purposes of this BC, the reference velocity scale at the recycling
plane located at xR is denoted by UR, and defined as the maximum mean streamwise
velocity in the wall normal direction of position y = δ(xR). The associated reference
length scale

LR =

∫ δ(xR)

0

(
1−
〈U〉(xR, y)

UR

)
〈U〉(xR, y)

UR
dy, (2.1)

is defined in a manner analogous to the classical momentum thickness. Throughout
the paper, δ, denotes the point of maximum streamwise velocity along the profile.
The spanwise homogeneous Fourier mode of the initial inlet profiles are rescaled and
interpolated from the time averaged profiles of a previous preliminary simulation.
These time averaged profiles, were selected at the streamwise position of the
preliminary simulation with a shape factor of H = 2.35, which is the empirical
value for an incipient APG TBL from the study of Mellor & Gibson (1966).

At the far-field boundary a zero spanwise vorticity condition is applied, and the
wall normal velocity specified. It is important that the wall normal velocity be
prescribed, as opposed to the streamwise velocity, so as not to over constrain the
system (Rheinboldt 1956). The wall normal velocity at the far-field boundary is
based on the potential flow solution in an expanding duct, corrected for the growth
of the boundary layer. The general potential flow solution is first derived, followed
by the necessary modifications to account for the boundary layer growth. According
to Mellor & Gibson (1966) for the case of incipient separation, the outer reference
velocity must be proportional to (x − x0)

m, where x0 is the virtual origin of the
boundary layer, and the exponent m=−0.23. The general potential flow solution of
an expanding duct that produces this functional form along the centreline of the duct
is given by the stream function
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ψPF(x̂, ŷ)= Arm+1 cos(γ ), where (2.2)
r2
= x̂2
+ ŷ2, (2.3)

γ = (m+ 1) arctan(ŷ/x̂), (2.4)

and the constant A is a scaling parameter, with x̂ and ŷ the streamwise and wall
normal coordinates, respectively. The general potential flow streamwise and wall
normal velocity components can be calculated from the stream function, by

UPF(x̂, ŷ)= ∂yψPF = A(m+ 1)[x̂rm−1 cos(γ )+ ŷrm−1 sin(γ )], and (2.5)

VPF(x̂, ŷ)=−∂xψPF = A(m+ 1)[ŷrm−1 cos(γ )− x̂rm−1 sin(γ )]. (2.6)

Note at the centreline of the expanding duct ŷ = 0, which means r = x̂ and γ = 0.
When substituted into (2.5), UPF(x̂, 0) = A(m + 1)x̂m, which has the proportionality
with streamwise position as specified in Mellor & Gibson (1966). As previously
intimated, this potential flow solution does not account for boundary layer growth.
The displacement thickness of the self-similar TBL at the verge of separation grows
linearly, with the functional form δ1(x) = K(x − x0), where K = 0.041 (Mellor &
Gibson 1966). To ensure the correct streamwise velocity decay along the displacement
thickness height, the relationship between the general potential flow coordinates (x̂,
ŷ) and the coordinates of the DNS (x, y) is required to be

x̂= x− x0, and (2.7)
ŷ= y−K(x− x0). (2.8)

By substituting the above relationships into (2.5), it can be shown that UPF(x −
x0, y − K(x − x0)) now has the correct decay of the streamwise velocity along the
displacement thickness height.

To finalise this far-field suction BC two parameters must be determined: the scale
factor A; and the virtual origin of the boundary layer x0. The parameter A is calculated
such that the modified potential flow solution UPF(x − x0, y − K(x − x0)) from (2.5),
matches the prescribed inlet streamwise velocity profile at the boundary layer edge.
The virtual origin of the boundary layer (x0) is calculated by extending back the
streamline from the boundary layer edge of the inlet profile, of position (x, y) =
(xI, δ(xI)), to give x0 = xI − δ(xI)×U(xI, δ(xI))/V(xI, δ(xI)). Finally, the far-field wall
normal BC is given by

V∞(x)= VPF(x− x0, yBC −K(x− x0)), (2.9)

along the length of the domain, where yBC is the wall normal position of the top
boundary. This far-field BC is transitioned from suction (V∞(x) > 0, fluid leaving
the computational domain) at xB = 1790δ1(xI) to blowing (V∞(x) < 0, fluid entering
the computational domain) at the outflow. This reduces the number of instantaneous
reversed flow events at the downstream outflow boundary, and helps to ensure
numerical stability. The far-field BC, V∞(x)/Ue(xI), is illustrated in figure 1, where
Ue(xI) is the reference streamwise velocity at the inlet defined in (2.10) of the
following section. Note the outer portion of the inlet profile for y> δ(xI) is defined
by the same potential flow solution, specifically UPF(xI − x0, y − K(xI − x0)), which
ensures consistency with the application of V∞(x).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

54
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.549


398 V. Kitsios and others

2.3. Definition of velocity and integral length scales
At the far-field wall normal boundary of a strong APG TBL, ∂V∞/∂x is significant
and negative. This means that for the far field to have zero spanwise vorticity,
∂〈U〉/∂y at the boundary must also be less than zero. The 〈U〉 profile, therefore,
has a maximum in y. In this case, the classical definitions of δ1 and δ2, are not
appropriate since the velocity profiles do not approach a constant value. Due to
these properties, for the presentation of the results within, we adopt the definitions
of reference velocity (Ue), displacement thickness (δ1), and momentum thickness
(δ2) akin to that of Spalart & Watmuff (1993). This reference velocity scale, as first
proposed in Lighthill (1963), is given by

Ue(x)=UΩ(x, yΩ), where (2.10)

UΩ(x, y)=−
∫ y

0
〈Ωz〉(x, ỹ) dỹ, (2.11)

with 〈Ωz〉 the mean spanwise vorticity, and yΩ is the wall normal position at which
〈Ωz〉 is 0.2 % of the mean vorticity at the wall. The integral length scales are given
by

δ1(x)=
−1
Ue

∫ yΩ

0
y〈Ωz〉(x, y) dy, and (2.12)

δ2(x)=
−2
U2

e

∫ yΩ

0
yUΩ〈Ωz〉(x, y) dy− δ1(x). (2.13)

2.4. Numerical details
The numerical details of the present simulations are summarised in table 1. The table
lists the number of collocation points in the streamwise (Nx) and wall normal (Ny)
directions, and the number of spanwise Fourier modes after de-aliasing (Nz). The
extent of the computational domain in the streamwise, wall normal and spanwise
directions is denoted by Lx, Ly and Lz, respectively. The computational domain size
is non-dimensionalised with respect to the displacement thickness (δ1(x?)), at the
streamwise position, x?, which is where the displacement thickness-based Reynolds
number Reδ1≡Ueδ1(x?)/ν=4800. The streamwise dependent boundary layer properties
for each of the three TBLs are later presented starting from x?, and hence the same
Reynolds number. The strong APG TBL DNS has a larger wall normal domain (Ly)
and more points in this direction (Ny), than the mild APG TBL, which in turn has a
larger wall normal domain than the ZPG TBL simulations. This is necessary since the
present APG TBL expands more quickly whilst evolving in the streamwise direction.
Two additional strong APG TBL DNS were also undertaken: one with Ny = 700 and
Ly at 58 % of the wall normal domain of the present strong APG TBL DNS; and
a second with Ny = 900 and Ly at 78 % of the present strong APG TBL DNS wall
normal domain. It was found that a wall normal domain of the size of the present
strong APG TBL DNS was required in order for the potential flow far-field BC to
be applied at a location of sufficiently low mean spanwise vorticity.

The grid resolutions are also presented in table 1. The grid spacings in the
streamwise (1x) and spanwise directions (1z) are constant. The smallest wall normal
grid spacing is located at the wall (1ywall), and increases monotonically to the
maximum wall normal grid spacing located at the far-field boundary (1y∞). These
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ZPG Mild APG Strong APG

Nominal β 0 1 39
Nx 8193 8193 8193
Ny 315 500 1000
Nz 1362 1362 1362
Lx/δ1(x?) 480 345 303
Ly/δ1(x?) 22.7 29.8 73.4
Lz/δ1(x?) 80.1 57.6 50.7
1x/δ1(x?) 0.0585 0.0421 0.0370
1ywall/δ1(x?) 1.53× 10−3 1.10× 10−3 9.71× 10−4

1y∞/δ1(x?) 0.0992 0.0714 0.254
1z/δ1(x?) 0.0585 0.0421 0.0370
δ1(x?)/δ1(x?; strong APG) 0.63 0.88 1
Reδ1 range in DoI 4800→ 5280 4800→ 5280 22 200→ 28 800
Reδ2 range in DoI 3500→ 3880 3100→ 3440 10 000→ 12 300
LDoI/δ1(x?) 82 20 37
LDoI/δ1(xDoI) 82 20 7
TUe(x?)/δ1(x?) 621 720 1160
TUe(xDoI)/δ1(xDoI) 621 720 165

TABLE 1. Numerical details of the ZPG, mild APG and strong APG TBL DNS: number of
collocation points in the streamwise (Nx) and wall normal (Ny) directions, and the number
of spanwise Fourier modes after de-aliasing (Nz); domain size Lx, Ly and Lz in these
respective directions non-dimensionalised by the displacement layer thickness (δ1) at the
position, x?, where Reδ1 = 4800; uniform streamwise (1x) and spanwise (1z) grid spacing
and wall normal grid spacing at the wall (1ywall) and at the far-field boundary (1y∞)
non-dimensionalised by δ1(x?); δ1(x?) relative to δ1(x?) of the strong APG TBL; Reδ1 and
Reδ2 range of the domain of interest (DoI); streamwise extent of the domain of interest
(LDoI) in terms of δ1(x?), and the displacement thickness at the beginning of the domain
of interest δ1(xDoI); and the time taken to accumulate the statistics (T) in terms of the
eddy-turnover times at x? (i.e. TU∞(x?)/δ1(x?)) and at xDoI (i.e. TU∞(xDoI)/δ1(xDoI)).

grid spacings are again non-dimensionalised by δ1(x?). Using figure 3(b) one can
determine the relative resolutions and domain sizes with respect to the displacement
thicknesses at other streamwise positions. The relative size of the boundary layers at
Reδ1 = 4800 is also presented in table 1 by listing the ratio of δ1(x?) for each TBL to
that of the strong APG TBL. The Courant number is set to unity. The time (T) taken
to accumulate the statistics in terms of the eddy-turnover times at reference positions
x? and xDoI are also listed in table 1.

3. Flow characterisation
To give a qualitative indication of the differences in the size and complexity of the

boundary layers, figure 2 illustrates instantaneous iso-surfaces of the discriminant of
the velocity gradient tensor (D) for the ZPG TBL (left, green) and the strong APG
TBL (right, red). Quantitative comparisons between these flows and also the mild APG
case are to follow. In figure 2, the streamwise direction is into the page, the wall
normal direction is normal to the dark grey surface, and the spanwise direction is
across the image from left to right. The computational domain appears to shrink in
the spanwise direction due to perspective foreshortening. At the inlet plane the ZPG
and APG boundary layers have the same boundary layer thickness and maximum
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400 V. Kitsios and others

FIGURE 2. (Colour online) Instantaneous iso-surfaces of the discriminant (D) of the
velocity gradient tensor for the: ZPG TBL (left, green) with iso-surface levels of
D/〈D〉yz = 1; and strong APG TBL (right, red) with iso-surface levels of D/〈D〉yz = 10,
where 〈D〉yz(x) is the discriminant averaged within the local boundary layer height (δ(x))
and over the span. The streamwise direction is into the page, the wall normal direction is
normal to the dark grey surface, and the spanwise direction is across the image from left
to right. The colour intensity of the iso-surfaces increases with distance from the wall.

mean streamwise velocity. The iso-surface levels for the ZPG TBL is D/〈D〉yz = 1,
where 〈D〉yz is the discriminant averaged within the local boundary layer height (δ(x))
and over the span. The iso-surface levels for the strong APG TBL are D/〈D〉yz = 10.
The colour intensity of these iso-surfaces increases with distance from the wall. This
figure clearly illustrates the shear size and complexity of the two flows, with the
APG TBL undergoing significantly more wall normal expansion as it progresses in
the streamwise direction than its ZPG counterpart.

We now quantitatively show how the boundary layer properties of the ZPG (β =
0), mild APG (β = 1) and the strong APG (β = 39) TBL evolve in the streamwise
direction. Each of the remaining plots in this section, and the plots in § 4, have (x−
x?)/δ1(x?) as the independent variable. Since x? is the position at which Reδ1 = 4800,
the shifting of the independent axis by x? ensures that Reδ1 = 4800 at the origin for
all of the three TBLs. The portions of each of the lines in figure 3 with symbols
indicate the respective domains of interest. For the ZPG case the domain of interest
spans Reδ1 = 4800 to 5280, which is in fact the entire illustrated ZPG domain. The
first streamwise position of the domain of interest (xDoI) is hence equal to x?. The
mild APG TBL is self-similar over a larger Reynolds number range (Kitsios et al.
2016); however, the domain of interest is purposely selected to span the same Reδ1

as the ZPG case. This is done in an attempt to remove any Reynolds number effects
and isolate the impact of the pressure gradient. The strong APG TBL, however, is not
in a self-similar state over this same Reynolds number range. Instead the domain of
interest for the strong APG case spans Reδ1 = 22 200–28 800. The streamwise extent
over the respective domains of interest (LDoI) is equivalent to 28δ1(x?) for the ZPG,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

54
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.549


DNS of a self-similar APG TBL at the verge of separation 401

10

20

30

2.5

3.0

 0.5

1.0

1.5

2.0

 0.5

1.0

1.5

2.0

0 30 60 90 120 150 0 30 60 90 120 150

1

2

3

4

0 30 60 90 120 150 0 30 60 90 120 150

0 30 60 90 120 150 0 30 60 90 120 150

2

4

6

8

0.2

0.4

0.6

0.8

1.0

(a) (b)

(c) (d )

(e) ( f )

FIGURE 3. (Colour online) Boundary layer properties of the strong APG (solid red
lines, with domain of interest indicated byE), mild APG (short dashed blue lines, with
domain of interest indicated by @) and ZPG (long dashed green lines, with domain of
interest indicated by A) TBL: (a) displacement thickness-based Reynolds number (Reδ1 );
(b) displacement thickness (δ1); (c) shape factor, H = δ1/δ2, with empirical value of H =
2.35 for the incipient case (Mellor & Gibson 1966) indicated by the black dash-dotted line;
(d) outer reference velocity, Ue; (e) wall shear stress, τw; and ( f ) skin friction coefficient,
Cf = 2τw/U2

e . Note x? is the streamwise position at which Reδ1 = 4800.

20δ1(x?) for the mild APG TBL, and 37δ1(x?) (equivalent to 7δ1(xDoI)) for the strong
APG TBL, as listed in table 1. The range of the respective domains of interest are also
listed in terms of the momentum thickness-based Reynolds number, Reδ2 , in table 1.

The displacement thickness Reynolds numbers in figure 3(a) illustrate that the
domains of interest of the ZPG and mild APG case span the same Reδ1 range.
Figure 3(a) also demonstrates that as the pressure gradient increases, so too does
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Reδ1 ≡Ueδ1/ν, due to δ1 increasing more rapidly with x. The increase in displacement
thicknesses (δ1), as defined in (2.12), is illustrated in figure 3(b). This length scale
is larger in the strong APG TBL compared to the mild APG, which in turn is larger
than that of the ZPG TBL. This indicates that the boundary layer expands in the
streamwise direction more rapidly as the pressure gradient increases. The shape factor
H = δ1/δ2 is illustrated in figure 3(c), and is relatively constant over the domain of
interest for each case. The shape factor of the strong APG TBL also approaches the
empirical value of H = 2.35 (Mellor & Gibson 1966). The mild and strong APG
TBL are decelerated via the BC as illustrated in figure 3(d), where their respective
outer reference velocities (Ue) decrease with x. The expansion of the boundary
layers coincides with a reduction of the mean wall shear stress (τw). In figure 3(e),
τw decreases with increasing pressure gradient, since the pressure gradient expands
the TBL, thus reducing the mean gradient at the wall. The effect of the boundary
layer expansion is also evident in the reduced skin friction coefficient (Cf = 2τw/U2

e )
illustrated in figure 3( f ), which is the wall shear stress non-dimensionalised by the
local reference velocity.

4. Conditions for self-similarity

To achieve a self-similar boundary layer there are various quantities that must be
independent of x. Following the ideas and analysis of Townsend (1956), George &
Castillo (1993) and Castillo & Wang (2004), we start with the Reynolds averaged
Navier–Stokes (RANS) continuity, streamwise momentum and wall normal momentum
equations given by

∂x〈U〉 + ∂y〈V〉 = 0, (4.1)
〈U〉∂x〈U〉 + 〈V〉∂y〈U〉 + ∂x〈P〉 + ∂x〈uu〉 + ∂y〈uv〉 − ν∂y∂y〈U〉 = ν∂x∂x〈U〉, (4.2)
∂y〈P〉 + ∂y〈vv〉 =−〈U〉∂x〈V〉 − 〈V〉∂y〈V〉 − ∂x〈uv〉 + ν∂x∂x〈V〉 + ν∂y∂y〈V〉, (4.3)

respectively. Note we have set the density to unity in the above equations and
throughout the paper. In the thin shear layer approximation, the terms on the right of
the equals sign in (4.2) and (4.3) are assumed to be negligible (Pope 2000). Integrating
the thin shear layer version of (4.3) with respect to y, returns 〈P〉 = Pe − 〈vv〉, where
Pe is the streamwise dependent far-field pressure. An expression for 〈V〉 is also
attained by integrating (4.1) with respect to y. Substituting these results into the thin
shear layer version of (4.2), produces the momentum equation

〈U〉∂x〈U〉 −
∫ y

0
∂x〈U〉(x, ỹ) dỹ ∂y〈U〉 =UeU′e + ∂x〈vv〉 − ∂x〈uu〉 − ∂y〈uv〉 + ν∂y∂y〈U〉.

(4.4)

The ′ operator represents streamwise derivatives of quantities that are only a function
of x.

The conditions for self-similarity are determined by expanding the momentum
equation (4.4), using the following similarity ansatz

〈U〉(x, y)=Ue(x)+U0(x)f (ζ ), (4.5)
〈uv〉(x, y)=−Ruv(x)ruv(ζ ), (4.6)
〈uu〉(x, y)= Ruu(x)ruu(ζ ), (4.7)
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〈vv〉(x, y)= Rvv(x)rvv(ζ ), (4.8)
ζ = y/L0(x), where (4.9)

L0(x)≡ δ1(x)Ue(x)/U0(x), (4.10)

and U0 is used to non-dimensionalise the velocity deficit. The integrals from ζ = 0
to ζ = δ/L0 of the similarity functions for the Reynolds stresses ruv(ζ ), ruu(ζ ) and
rvv(ζ ) are all defined to be equal to 1. This means the functions Ruv(x), Ruu(x), and
Rvv(x) can be determined at each x position from the integrals in the ζ direction
of −〈uv〉(x, y), 〈uu〉(x, y) and 〈vv〉(x, y), respectively. As first presented in George
& Castillo (1993), by substituting (4.5)–(4.8) into (4.4), one can determine that the
following quantities must be independent of x for the flow to be self-similar

Cuu = Ruu/U2
e , (4.11)

Cvv = Rvv/U2
e , (4.12)

Cuv = Ruv/(U2
eδ
′

1), (4.13)
Cν = ν/(Ueδ1δ

′

1), and (4.14)
Λ=−δ1U′e/(Ueδ

′

1)= δ1P′e/(U
2
eδ
′

1)= (Up/Ue)
2/δ′1, (4.15)

with Ue also linearly proportional to U0. The Λ parameter, as defined in Castillo &
Wang (2004), quantifies the relationship between the pressure gradient and the outer
velocity scale, with Up =

√
P′eδ1 the pressure velocity of Mellor & Gibson (1966).

Streamwise regions of constant Cuu, Cvv, Cuv and Cν for a given TBL indicate
self-similarity of the 〈uu〉, 〈vv〉 and 〈uv〉, and ν∂y∂y〈U〉 profiles, respectively. The
magnitude of these coefficients indicates their relative contribution to determining the
self-similarity of the system. If all conditions are met then the TBL is self-similar
throughout the entire wall normal domain. If all but the Cν coefficient is streamwise
independent then the scaling applies only to the outer flow.

The above generalised theory of boundary layer self-similarity also reproduces
the classical results of linearly expanding boundary layers. As stated in Skote et al.
(1998) the terms Λδ′1/δ1=−U′e/Ue, rearranged from (4.15), can be integrated to yield
the relationship Ue ∝ δ

−Λ
1 . For the case of a linearly growing boundary layer, where

δ1∝Kx, the proportionality of the reference velocity becomes Ue∝ (Kx)−Λ∝ x−Λ≡ xm,
with m = −Λ. Additionally for the incipient separation case, substituting in the
empirical values of Up/Ue = 1/10.27 and δ′1 = K = 0.041 from Mellor & Gibson
(1966) into (4.15), one can determine the power exponent for linearly growing
boundary layers to be m = −Λ ≡ −(Up/Ue)

2/δ′1 = −1/10.272/0.041 = −0.23, which
is the expected value for the incipient APG TBL. Again linking back to the classical
theory of Mellor & Gibson (1966), the widely quoted β parameter is equivalent to
U2

p/U
2
τ , where for a unit density the friction velocity Uτ ≡

√
τw. The β parameter,

however, becomes undefined as one approaches the incipient separation case as τw
(and hence Uτ ) approaches zero. For this reason, the self-similarity of the pressure
gradient term for all pressure gradients (zero to incipient) is more appropriately
assessed via the streamwise dependence of Λ≡ U2

p/U
2
e/δ
′

1, or equivalently Up/Ue in
the case of a linearly growing displacement thickness of constant δ′1.

Each of the similarity coefficients are now discussed in terms of both their relative
magnitude and streamwise independence. For each TBL the coefficients UP/Ue,
Cuu, Cvv, Cuv, and Cν are illustrated in figure 4(a–e), respectively. Their streamwise
averaged values and standard deviations over the domain of interest are also listed
in table 2. The magnitude of the similarity coefficients indicate the importance of
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ZPG Mild APG Strong APG

Nominal β 0 1 39
UP/Ue 0(0) 3.3× 10−2 (2.6× 10−4) 8.5× 10−2 (1.3× 10−3)

Cuu 2.3× 10−2 (1.4× 10−4) 2.5× 10−2 (2.8× 10−5) 1.9× 10−2 (3.2× 10−4)

Cvv 8.4× 10−3 (4.4× 10−5) 1.0× 10−2 (2.2× 10−5) 8.2× 10−3 (1.2× 10−4)

Cuv 2.8 (1.3× 10−2) 1.1 (2.5× 10−3) 8.9× 10−2 (2.2× 10−3)

Cν 9.9× 10−2 (2.1× 10−3) 3.0× 10−2 (7.8× 10−4) 7.3× 10−4 (5.6× 10−5)

TABLE 2. Streamwise average of the similarity variables within the domain of interest
for each TBL. The quantities shown between parentheses are the associated streamwise
standard deviations.

each of the terms in the boundary layer equations. As one would expect UP/Ue
increases with pressure gradient. For the strong APG TBL UP/Ue is also within
9 % of the empirical value of the incipient case of 1/10.27 = 0.097 from Mellor &
Gibson (1966). The coefficients Cuu and Cvv are of the same order of magnitude
for all TBL. The term Cuv decreases with pressure gradient due to the increased
slope in the displacement thickness. Note for the calculation of Cuv, the slope of the
displacment thickness is quite noisy, so we use a value streamwise averaged over the
respective domains of interest. For each TBL the coefficients UP/Ue, Cuu, Cvv, and
Cuv, are all relatively constant over the domain of interest, with standard deviations at
worst 2.5 % of their associated streamwise averaged value (as derived from table 2).
The only term that is a strong function of x is Cν , see figure 4(e), which measures
the self-similarity of the viscous term in the boundary layer streamwise momentum
equation (4.4). However, as can be seen in table 2, the streamwise average value of
Cν decreases monotonically as the pressure gradient increases. The magnitude of Cν

relative to each of the other coefficients (e.g. Cν/Cuu) also decreases as the pressure
gradient increases, indicating that the viscous term is becoming a weaker constraint
on self-similarity. In fact, the mean and Reynolds stress profiles for the strong APG
TBL are shown in §§ 5 and 6 to collapse at different streamwise positions.

5. Mean streamwise velocity
In this section the self-similarity of the strong APG TBL is first assessed based

upon the collapse of the mean streamwise velocity profiles. This is followed by the
impact that the pressure gradient has on the log-layer, viscous sublayer and mean field
inflection points.

The self-similarity is assessed by comparing the mean streamwise velocity profiles
(〈U〉) at various streamwise stations. The velocity profiles are non-dimensionalised by
the local Ue, and the wall normal position by the local δ1. The dash-dotted black lines
in figure 5(a) are profiles from the strong APG TBL at equally spaced streamwise
locations within the domain of interest. These profiles collapse under this scaling,
indicating the mean field is self-similar. The solid red line represents the streamwise
average in scaled coordinates throughout this streamwise domain.

The impact of the pressure gradient on the log-layer is illustrated by comparing the
〈U〉 profiles across each of the TBL. The streamwise averaged profiles within their
respective domains of interest are illustrated in figure 5(a) for the ZPG (long dashed
green line), mild APG (short dashed blue line), and the strong APG TBL (solid red
line). From a comparison of these profiles, it is clear that as the pressure gradient
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FIGURE 4. (Colour online) Coefficients to assess the self-similarity of the strong APG
(solid red lines, with domain of interest indicated by E), mild APG (short dashed blue
lines, with domain of interest indicated by @) and ZPG (long dashed green lines, with
domain of interest indicated by A) TBL on the basis of: (a) pressure gradient velocity
ratio, UP/Ue, with empirical values of UP/Ue = 0.097 (Mellor & Gibson 1966) indicated
by the black dash-dotted line; (b) Cuu; (c) Cvv; (d) Cuv; and (e) Cν . Note, x? is the
streamwise position at which Reδ1 = 4800.

increases, the wall normal extent of the wake region increases and the extent of the
log-layer decreases. The existence of a log-layer is derived on the basis that there is a
wall normal region within which there are two important length scales: an inner scale
based on the wall shear stress; and an outer scale based on a measure of the boundary
layer thickness (δ1 for example). The fact that the log-layer is almost non-existent
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FIGURE 5. (Colour online) Streamwise averaged statistical profiles non-dimensionalised
by Ue and δ1 of the strong APG (solid red lines), mild APG (short dashed blue lines)
and ZPG (long dashed green lines) TBL DNS: (a) log–linear plot of 〈U〉; (b) log–log
plot of 〈U〉; and (c) log–linear plot of ∂y〈U〉. The dash-dotted black lines are profiles of
the strong APG at individual streamwise positions.

for the strong APG case is indicative that for the vast majority of the wall normal
domain, there is only one pertinent length scale, the outer scale. Note that a theoretical
velocity profile valid in the log-layer was derived in Skote & Henningson (2002) for
both attached and separated boundary layer flows, which compared well with their
DNS data as well as with more recent simulations (Cheng, Pullin & Samtaney 2015).

The viscous sublayer is also shown to reduce in extent as the pressure gradient
increases. Figure 5(b) presents the same profiles as those discussed above but with
log–log axes. For all of the TBL, there is a linear relationship between y and 〈U〉 in
the near wall region. A linear relationship implies that ν/Uτ is the only important
length scale in this zone. For the ZPG and mild APG case, this linear region appears
to end at y ≈ 0.05δ1. The linear region in the strong APG case ends an order
of magnitude closer to the wall. These observations can be explained by deriving
the functional form of 〈U〉 from the equations of motion, specific to the viscous
sublayer. Let us make the standard assumptions that within the viscous sublayer
the Reynolds stress terms and advective terms are also negligible in the boundary
form of the momentum equations, which reduces (4.2) to P′e = ν∂y∂y〈U〉. Integrating
this expression with respect to y twice, and applying the BCs 〈U〉(y = 0) = 0 and
µ∂y〈U〉(y= 0)= τw =U2

τ returns

〈U〉(y)=
1

2ν
P′ey

2
+

1
ν

U2
τy, (5.1)
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where µ is the dynamic viscosity. Substituting the definition of the pressure velocity,
Up =

√
P′eδ1, into (5.1) then gives

〈U〉(y)=
δ1

ν

[
1
2

U2
P

(
y
δ1

)2

+U2
τ

y
δ1

]
. (5.2)

One could equally chose to define pressure gradient-based length and velocity
scales as per Skote & Henningson (2002). However, we make the above choice
for consistency with the analysis in § 4. In the limit of ZPG, 〈U〉/Uτ = yUτ/ν (or
equivalently U+ = y+), with 〈U〉 proportional to y. In the limit of zero mean wall
shear stress (incipient separation), 〈U〉/UP= y2UP/(2νδ1), with 〈U〉 proportional to y2.
As the pressure gradient increases with respect to the wall shear stress, within the
viscous sublayer 〈U〉 transitions from being a linear function of y to a quadratic one.

Finally the impact of the pressure gradient of the location of the inflection points
is illustrated by the wall normal gradient of the mean streamwise velocity profiles.
The wall normal gradient of 〈U〉 is illustrated in figure 5(c) again scaled in terms of
the local δ1 and Ue. There are two evident points of inflection in the APG TBL, one
in the near wall region, and another at the approximate height of the displacement
thickness. These points of inflection coincide with the inner and outer peaks of
turbulent production, which is discussed further in § 8. As can be seen the gradient at
the wall for the strong APG case is smaller than in the other TBL in non-dimensional
terms, but not zero. This is again consistent with the model of the viscous sublayer
in (5.2). The relative contribution of the pressure gradient to the wall shear stress
term is given by the ratio

U2
P(y/δ1)

2/2
U2
τ (y/δ1)

=
U2

P

U2
τ

y
2δ1
= β

y
2δ1

. (5.3)

As discussed above, equation (5.3) indicates that as the pressure gradient relative
to the shear stress increases (quantified by β), the contribution of the UP term
increases. Importantly this expression also indicates that as one approaches the wall,
the contribution of the pressure gradient term decreases. In fact for y/δ1 � 2/β
the pressure gradient dominates, and for y/δ1 � 2/β the viscous terms dominates.
Therefore, in all but the limiting incipient separation case of infinite β, there will
always be a region in which 〈U〉 is linearly related to y.

6. Reynolds stresses
The self-similarity of the strong APG TBL is now assessed based upon the

collapse of the Reynolds stress profiles. The impact that the pressure gradient has on
the location and magnitude of the inner and outer peaks is then discussed, followed
by a proposed physical explanation based upon linear stability arguments.

As was undertaken for the mean velocity profiles, the Reynolds stresses are
presented scaled on the basis of Ue and δ1. Profiles of 〈uu〉, 〈vv〉, 〈ww〉, and 〈uv〉,
are respectively illustrated in figure 6(a–d), for the ZPG, mild APG and strong APG
TBL. Note, according to the theoretical framework presented in § 4, the profiles
of 〈uv〉 in figure 6(d) should in fact be non-dimensionalised by U2

eδ
′

1 instead of
U2

e . However, we adopt the latter scaling for consistency with the other Reynolds
stresses, in order to clearly illustrate their relative magnitudes. Each of the individual
profiles of the strong APG case (dash-dotted black lines) collapse within the domain
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FIGURE 6. (Colour online) Streamwise averaged statistical profiles non-dimensionalised
by Ue and δ1 of the strong APG (solid red lines), mild APG (short dashed blue lines)
and ZPG (long dashed green lines) TBL DNS: (a) 〈uu〉; (b) 〈vv〉; (c) 〈ww〉; and (d)
−〈uv〉. The dash-dotted black lines are profiles of the strong APG at individual streamwise
positions.

of interest over most of the wall normal domain. As expected the largest spread is
located at the point of maximum variance (i.e. the outer peak). Additional temporal
sampling would reduce the variation across the profiles.

The existence, location and magnitude of the outer peaks are strongly dependent
upon the pressure gradient, whilst the properties of the inner peak are Reynolds
number dependent. The inner peak of 〈uu〉 and 〈ww〉 for the ZPG and mild APG
cases are located at similar distances from the wall, due to the streamwise averaging
undertaken over the same Reδ1 range. No inner peak is evident in the profiles of
〈vv〉 and 〈uv〉, as it is dominated by the presence of the outer peak. An outer peak
is evident in all of the Reynolds stresses for the mild and strong APG TBL, and
becomes more evident as the pressure gradient increases. The outer peak in all of the
Reynolds stresses is located at y= δ1 for the strong APG TBL, and at y= 1.3δ1 for
the mild APG flow. For both TBLs it is the same position as their respective outer
inflection points in their mean streamwise velocity profiles illustrated in figure 5(c).
The coincidence of the outer peak in the Reynolds stresses and inflection point in the
mean velocity profile, has also been observed in previous APG TBL DNS (Araya &
Castillo 2013). This observation suggests that a shear flow instability is the dominant
mechanism contributing to the fluctuations in the outer region.
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Linear stability theory provides an explanation for the location of the inner and
outer peaks in the Reynolds stresses. Take the two limiting cases of the incipient APG
TBL and the ZPG TBL. The incipient APG TBL has zero mean shear stress at the
wall, with the only source of mean shear being that imparted by the pressure gradient.
The stability properties in this case are analogous to those of a free shear layer,
which would generate fluctuations in all velocity components across all spanwise
and streamwise scales distributed about the point of inflection. For the ZPG TBL
the only source of shear is the wall itself. Linear stability theory has also identified
modes that represent the fluctuations of the near wall and outer regions in analogous
turbulent channel flows (del Álamo & Jiménez 2006; Kitsios et al. 2010). Fluctuations
generated by such instabilities imprint themselves as peaks in the Reynolds stress
profiles. Arguably as the pressure gradient increases the flow starts to behave less
like a ZPG TBL and more like a free shear layer. The Reynolds stresses centred at
the outer point of inflection (outer peak), would then begin to dominate over any
wall driven shear instabilities (inner peak), which is precisely what is observed. This
is a somewhat simplified view, since the linear stability properties of two separate
flows with different background states (i.e. ZPG TBL and free shear layer) cannot
simply be superimposed. The stability properties are dependent on the details of the
base flow. The transfer of momentum between these turbulent fluctuations and the
mean field is discussed in § 7. These fluctuations are also transferred throughout the
wall normal domain via nonlinear process quantified by the turbulent kinetic energy
transfer term, as presented in § 8.

7. Streamwise and wall normal momentum terms

The relative magnitude (and arguably importance) of the terms in the Navier–Stokes
equations is now assessed. The terms in the streamwise RANS equation (4.2) and
the wall normal RANS equation (4.3) are time and spanwise averaged, for the ZPG
and the strong APG TBL. The Reynolds stress gradients in these equations quantify
the transfer of momentum between the fluctuating and mean fields. The statistics
in figure 7 are presented such that negative values of the Reynolds stress gradients
represent a transfer of momentum from the mean field to the fluctuating field, with
positive values representing the reverse transfer. All terms are non-dimensionalised on
the basis of δ1 and Ue. The limits on the independent and dependent axes are kept
constant to facilitate a direct comparison between the statistics.

Firstly we compare the two TBLs on the basis of the relative magnitudes of the x
momentum terms. For the ZPG TBL, figure 7(a) illustrates that the positive viscous
term (−ν∂y∂y〈U〉) is in balance with the negative Reynolds stress gradient (∂y〈uv〉),
each with a single inner peak. Here there is a net transfer of streamwise momentum
from the mean field to the fluctuating field via the dominant Reynolds stress gradient.
The remaining y momentum terms are negligible in comparison. The x momentum
terms for the strong APG TBL are illustrated in figure 7(b). The obvious difference
is the non-zero positive pressure gradient (∂x〈P〉), which is relatively constant in y. In
the inner region −ν∂y∂y〈U〉 is positive, ∂y〈uv〉 is negative, and they are in balance
with the pressure gradient. Both −ν∂y∂y〈U〉 and ∂y〈uv〉 are reduced in magnitude in
comparison to their respective ZPG counterparts. In the outer region the viscous term
becomes negligible. The ∂y〈uv〉 term has a positive outer peak, with the sign changing
from negative to positive at y= δ1. This is consistent with −〈uv〉 having a maximum
at y = δ1, as observed in figure 6(d). Note that the momentum transfer in the inner
region is the same as in the ZPG TBL. However, in the outer region there is a net
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FIGURE 7. (Colour online) Streamwise averaged momentum term profiles non-
dimensionalised by δ1 and Ue. The streamwise momentum equation terms 〈U〉∂x〈U〉
(+), 〈V〉∂y〈U〉 (×), ∂x〈P〉 (∗), ∂x〈uu〉 (@), ∂y〈uv〉 (E), −ν∂x∂x〈U〉 (A), −ν∂y∂y〈U〉 (C),
and the residual given by the negative sum of the aforementioned terms (grey line) for
the (a) ZPG TBL; and (b) strong APG TBL, with same vertical axis as (a). The wall
normal momentum equation terms 〈U〉∂x〈V〉 (+), 〈V〉∂y〈V〉 (×), ∂y〈P〉 (∗), ∂x〈uv〉 (@),
∂y〈vv〉 (E), −ν∂x∂x〈V〉 (A), −ν∂y∂y〈V〉 (C), and the residual given by the negative sum
of the aforementioned terms (grey line) for the (c) ZPG TBL; and (d) strong APG TBL,
with same vertical axis as (c).

transfer of momentum from the fluctuating to the mean field. In contrast to the ZPG
statistics, the convective terms are no longer negligible, and are in fact dominant. This
is due to the non-zero streamwise and wall normal derivatives of the velocity field,
and a non-negligible 〈V〉 as a result of the decelerating velocity and zero vorticity
boundary conditions detailed in § 2.2. At the outer peak, the convective term 〈U〉∂x〈U〉
is negative and 〈V〉∂y〈U〉 is positive.

The two TBLs are now compared on the basis of the relative magnitudes of the
y momentum terms. For the ZPG TBL, the negative ∂y〈P〉 and positive ∂y〈vv〉 are
dominant and in balance, each with a single inner peak, as illustrated in figure 7(c).
For the strong APG TBL illustrated in figure 7(d), at the inner peak the negative
∂y〈P〉 and positive ∂y〈vv〉 are again dominant and in balance, with the remaining terms
negligible. At the outer peak these terms have the opposite sign. The Reynolds stress
gradient (∂y〈vv〉) has a negative outer peak with the sign change occurring at y =
δ1. This is consistent with 〈vv〉 being a maximum at this location, as illustrated in
figure 6(b). The convective term 〈U〉∂x〈V〉 is also significant in the far field, which is
consistent with the increased mean field shear.
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In summary the convective terms transition from being negligible in the ZPG
TBL to dominant in the strong APG TBL in the outer region. The enhanced
convective terms are consistent with an increase in mean shear, which using the
linear stability arguments from § 6, is advantageous for the enhanced generation
of turbulent fluctuations. In the inner region there is a net transfer of streamwise
momentum from the mean to the fluctuating field, and a net transfer of wall normal
momentum from the fluctuating to the mean field. In the outer region the transfers
are reversed.

8. Kinetic energy budgets
The generation, dissipation and transfer of turbulent fluctuations in each of the TBL

are now further quantified by the kinetic energy budgets. For flows in statistical steady
state (i.e. time derivatives are zero) the kinetic energy budget is given by

0=M+Z + T +P +D+ V, (8.1)

where M is the mean convection, Z pressure transport, T turbulent transport, P
production, D is the pseudo-dissipation, and V the viscous diffusion. Each term is
defined as

M=−〈Uj〉∂xjE, (8.2)
Z =−∂xi〈pui〉, (8.3)

T =−∂xj〈uiuiuj〉/2, (8.4)
P =−〈uiuj〉∂xj〈Ui〉, (8.5)

D=−ν〈(∂xjui)(∂xjui)〉, (8.6)
V = ν∂xj∂xjE, (8.7)

where E= 〈ukuk〉/2 is the kinetic energy.
The terms in the kinetic energy budget are time and spanwise averaged, and then

scaled using Ue and δ1 as the pertinent velocity and length scale respectively. Within
the domain of interest these profiles are then additionally streamwise averaged in the
scaled coordinates. These streamwise averaged profiles are presented in figure 8(a) for
the strong APG TBL. There is a clear outer peak in the production and dissipation
terms located at y = δ1. This indicates that turbulent kinetic energy produced in the
outer flow is also locally dissipated. The turbulent transfer term (T ) also gives insight
as to the source of the fluctuations. Negative values of T indicate that on average
energy is leaving that wall normal position to be redistributed elsewhere, whilst
positive values of T indicate that energy is being directed toward that position. The
most negative peak in T is located at y= δ1, with the turbulent transfer positive both
above and below this wall normal location. This is consistent with the view that at
the point of inflection (y= δ1) a shear flow instability produces fluctuations (peak in
P) that are locally dissipated (negative peak in D), and transferred to regions both
closer to and further away from the wall (negative peak in T ).

The production term provides further information on the relative importance of the
sources of turbulent kinetic energy. The streamwise averaged production profiles from
each simulation are compared in figure 8(b). The ZPG TBL has one inner peak, with
the mild and strong APG cases having both an inner and outer peak. As mentioned
previously these peaks coincide with the points of inflection in the respective mean
streamwise velocity profiles. When scaled in outer variables, the magnitude of the
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FIGURE 8. (Colour online) Streamwise averaged kinetic energy budget profiles non-
dimensionalised by Ue and δ1. (a) For the strong APG TBL, profiles of mean convection
(M, E), pressure transport (Z , ∗), turbulent transport (T , @), production (P , +),
pseudo-dissipation (D, ×), and viscous diffusion (V ,A), are all defined in (8.2) to (8.7)
respectively, with the residual given by the negative sum of the aforementioned terms (grey
line). (b) Production profiles of the strong APG (solid red lines), mild APG (short dashed
blue lines) and ZPG (long dashed green lines) TBL.

inner production peak decreases as the pressure gradient increases from ZPG to mild
APG and finally to the strong APG TBL. The inner production peak of the ZPG and
mild APG cases are located at very similar distances from the wall. This is because
any Reynolds number effects between the ZPG and mild APG cases are minimised as
they are streamwise averaged over the same Reδ1 range. Note the maximum Reδ1 in
the domain of interest for the strong APG case is over five times that of the ZPG
and mild APG cases. The higher the Reynolds number the smaller the near wall
structures with respect to δ1, hence the inner peak being located closer to the wall.
The magnitude of the outer production peak increases with pressure gradient. For the
ZPG TBL there is no outer production peak, whilst for the mild APG TBL the outer
peak is approximately one-eighth the magnitude of the inner production peak. In the
strong APG TBL, the outer peak is three times the magnitude of the inner peak. This
transition in dominance from the inner production peak to the outer peak, is again
consistent with the view that the flow is becoming less like a ZPG TBL and more
like a free shear layer as the pressure gradient increases.

9. Streamwise velocity spectra

The relative contribution of the spanwise scales to the turbulent fluctuations
throughout the wall normal domain, in particular at the outer peak, is determined from
the streamwise velocity spectra (figure 9). The spectra are presented as a function of
spanwise wavelength (λz) and wall normal position (y). We compare the ZPG case to
the strong APG case to accentuate the difference in the scaling of the spectra. Three
streamwise positions, listed in the caption of figure 9, are presented for the ZPG and
strong APG cases throughout the respective computational domains.

In figure 9(a) the ZPG spectra are plotted against y and λz, both scaled by
the δ1 at the first streamwise station (of Reδ1 = 2.07 × 103). The location of the
maximum variance is positioned in the near wall region, and relatively independent
of streamwise position. As one moves downstream and the boundary layer thickens,
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FIGURE 9. (Colour online) Streamwise velocity spectra at various streamwise positions
for the ZPG and strong APG TBL. In the wall normal/spanwise wavelength plane scaled
by the displacement thickness at the position of the first spectrum: (a) ZPG TBL; and
(b) strong APG TBL. In the wall normal/spanwise wavelength plane scaled by the local
displacement thickness for the: (c) ZPG TBL; and (d) strong APG TBL. Contour levels
are 0.3, 0.5 and 0.7 times the maximum variance in the (y, λz) plane for each streamwise
position. The ZPG TBL positions are Reδ1 = 2.07× 103 (black dotted line), Reδ1 = 3.55×
103 (magenta dashed line), and Reδ1 = 4.84× 103 (cyan solid line). The strong APG TBL
positions are Reδ1 = 1.10× 104 (black dotted line), Reδ1 = 1.84× 104 (magenta dashed line),
and Reδ1 = 2.55× 104 (cyan solid line).

the outer spectral peak moves further away from the wall and to larger spanwise
wavelengths. Note when plotted in viscous units the inner peak of the ZPG spectra
collapse. We chose not to present the data in this manner since the viscous lengths
scale, l+ ≡ ν/Uτ , becomes undefined for the incipient separation APG TBL. As done
above for the ZPG case, in figure 9(b) the spectra of strong APG TBL is plotted
against y and λz scaled by the δ1 at the first streamwise station (of Reδ1 = 1.10× 104).
Here the outer peak is dominant, with the location of the maximum variance strongly
dependent upon the streamwise position. When y and λz are scaled by the local δ1

the location of the outer peak collapses for different streamwise positions of the ZPG
TBL in figure 9(c), and of the strong APG TBL in figure 9(d). For the strong APG
case the maximum variance is located at a wall normal position of δ1 and with a
spanwise wavelength of approximately 2δ1. Note, a structure with a spanwise width
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of δ1, separated in the spanwise direction by a distance of δ1 to the next similar
structure, would have a dominant spanwise wavelength of 2δ1.

10. Two-point correlations
To give an indication of the spatial coherence of the structures centred at

the displacement thickness height, two-point correlations are calculated in the
streamwise/wall normal plane for each of the TBL. The two-point correlation function
for the streamwise velocity component is defined as

ρuu(x, y; x̆, y̆)=
〈u(x, y)u(x̆, y̆)〉√
〈u2(x, y)〉〈u2(x̆, y̆)〉

, (10.1)

where x̆ and y̆ are the reference locations with respect to which the correlation is made,
and the averaging is done over the spanwise direction and time. There are analogous
two-point correlation function definitions for the wall normal (ρvv) and spanwise (ρww)
velocity components. In the analysis to follow the streamwise reference position x̆
is located in the middle of the respective domains of interest, and the wall normal
reference position is located at y̆ = δ1(x̆). We select this wall normal position as it
is in the vicinity of the maximum fluctuations of the Reynolds stresses in the APG
cases.

The correlation fields for ρuu, ρvv and ρww are illustrated in figure 10(a–c),
respectively. In each of these figures the horizontal and vertical axes are to scale
in order to accurately visualise the aspect ratio and inclination of the correlation
structures. To facilitate a direct comparison between each of the correlation fields,
the vertical axis has the same range in all figures; however, the horizontal axis in
figure 10(a) is twice the range of that in figure 10(b,c). The green long dashed
contour lines represent the ZPG TBL, the blue short dashed contours the mild APG
TBL, and the solid red contours the strong APG TBL. The thick contour lines in
order radiating out from the reference point are 0.8, 0.6, 0.4, and 0.2. The thin
contour lines with the symbols in figure 10(c) represent a contour value of −0.1.

For each TBL the ρuu correlation field in figure 10(a) is elliptic in shape, with the
ZPG contour lines extending further downstream and upstream from the reference
point than the mild APG case, which in turn extends further back than the strong
APG TBL. The major axis of these elliptical structures is tilted upwards in the
streamwise direction at an approximate angle of 7◦ for the ZPG, 14◦ for the mild
APG, and 27◦ for the strong APG TBL. The ρuu correlation field, therefore, becomes
more compact and more inclined in the streamwise direction as the pressure gradient
increases. The correlation fields for ρvv in figure 10(b) are not tilted in any particular
direction, but also become more compact with increasing pressure gradient. The ρww
fields in figure 10(c) are elliptical in shape, slant upward in the streamwise direction,
and are flanked by regions of negative correlation. As the pressure gradient increases
the ρww structures also become more compact. The properties of the ZPG two-point
correlations presented above are also consistent with those previously discussed in
Sillero (2014) and Sillero, Jiménez & Moser (2014).

The observation that the correlation structures are more compact with increasing
pressure gradient is consistent with the form of the Reynolds stress profiles. Recall
that the two-point correlations in figure 10 are based upon the fluctuating velocity
fields with a wall normal reference position of y̆= δ1. The outer peak in the Reynolds
stress profiles represents the variance of the fluctuating velocity fields localised in the
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FIGURE 10. (Colour online) Two-point spatial correlation coefficients centred at y = δ1
and x at the middle of the domain of interest for the strong APG (solid red lines, positive
correlation – thick lines, negative correlation – thin lines withE), mild APG (short dashed
blue lines, positive correlation – thick lines, negative correlation – thin lines with@) and
ZPG (long dashed green lines, positive correlation – thick lines, negative correlation – thin
lines withA) TBL on the basis of: (a) ρuu; (b) ρvv; and (c) ρww. In all figures the contour
lines radiating out from the reference point are for values of 0.8, 0.6, 0.4, 0.2 and −0.1.
The horizontal and vertical axes are to scale. The vertical axis has the same range in all
figures. Note the horizontal axis in (a) is twice the range of that in (b,c).

vicinity of y = δ1. One would then expect that the width of the outer peak in the
Reynolds stress profiles is proportional to the size of the wall normal extent of the
correlation structures, and would hence decrease with pressure gradient. This is in fact
the case. For example the half-width of the outer peak in the 〈uu〉 profiles illustrated
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in figure 6(a) is 0.6δ1 for the strong APG case, as compared to 2δ1 for the mild APG
case. The half-width is defined here as the distance between the location of the outer
peak and the position further away from the wall at which the variance drops to half
of its peak value.

11. Concluding remarks

We compared three TBLs generated using DNS: a ZPG (β = 0); a mild APG
(β = 1); and a strong APG (β = 39). The coefficients quantifying the extent of
self-similarity of each of the terms in the boundary layer equations were assessed. For
all but the viscous term, Cν , the streamwise standard deviation of the self-similarity
coefficients were found to be less than 2.5 % of the associated streamwise average.
The absolute magnitude of Cν , and its magnitude relative to the other self-similarity
coefficients (e.g. Cν/Cuu) decreases with increasing pressure gradient, indicating that
the viscous term is becoming a weaker constraint. Within the domain of interest, the
strong APG TBL mean velocity and Reynolds stress profiles are shown to collapse
under outer scaling.

The manner in which the properties of the mean and fluctuating fields of the
boundary layers change with increasing pressure gradient were documented. For the
mean streamwise velocity field, the extents of the log-layer and viscous sublayer
decrease, and the wake region expands with increasing pressure gradient. The zone
of influence of the viscous length and velocity scales is therefore reduced. This is
consistent with only the outer length and velocity scales being required to collapse
the mean velocity and Reynolds stress profiles. The Reynolds stresses of the APG
TBL cases were shown to exhibit a second outer peak, coinciding with the outer
point of inflection in the mean streamwise velocity profile, and is suggestive of a
shear flow instability. The outer peak becomes more pronounced and more spatially
localised as the pressure gradient increases. Consistent with this increased localisation
of the Reynolds stresses, two-point correlations of the velocity field centred at this
outer peak illustrate that the statistical structures become more compact. For the
strong APG TBL, the streamwise velocity spectra were shown to also collapse in
outer scaling, with the outer peak located at y= δ1 of dominant spanwise wavelength
λz = 2δ1. At this outer peak there is a net transfer of streamwise momentum from
the fluctuating to the mean field, and a transfer of wall normal momentum from the
mean to the fluctuating field. The momentum transfers are reversed for the inner
peak. The turbulent production term of all TBL exhibit inner peaks associated with
the near wall shear, and the APG TBL also exhibit a second outer peak associated
with the shear imparted as a result of the pressure gradient. The outer production
peak is non-existent in the ZPG TBL, small relative to the inner peak in the mild
APG TBL, and dominant in the strong APG TBL. The turbulent transfer term for
the strong APG TBL has a negative peak at y= δ1 surrounded by positive turbulent
transfer both above and below.

The above observations have led to the following physical model of APG TBL.
The application of an APG imparts additional far-field shear resulting in a point
of inflection in the mean streamwise velocity profile, given the APG is sufficiently
strong. A shear flow instability at this point of inflection locally generates turbulent
kinetic energy that is transferred to regions both closer to and further away from
the wall. Likewise, instabilities are also generated as a result of the wall shear.
The combined instabilities generate Reynolds stresses, and the mean field is then
modified by a momentum transfer via the Reynolds stress gradients. This modified
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mean field will generate a modified set of instabilities, producing modified Reynolds
stress gradients, and so the cycle continues. Finally, the above observations of the
mean field, Reynolds stresses and production profiles all indicate that as the pressure
gradient increases, the flow becomes less like a ZPG TBL (no mean far-field shear)
and more like a free shear layer (no mean wall shear).
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