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In this paper we construct a compact set K of zero Hausdor® dimension that satis¯es
certain àrithmetic-type’ thickness properties. The concept of àrithmetic thickness’
has its origins in applications to harmonic analysis, introduced in a paper by Lebedev
and Olevski̧³ . For example, there are no spectral sets whose èssential boundary’ can
contain the above set K .

1. Introduction

We say that a Borel set ¤ ³ R (more precisely the corresponding equivalence class)
is a spectral set for Lp(R), 1 < p < 1, if its indicator function belongs to the
multiplier algebra

1 ¤ 2 Mp(R): (1.1)

If ¤ satis­ es (1.1), then it yields a translation invariant complemented subspace E¤

in Lp(R),

E ¤
d ef
= Closff 2 Lp(R) \ L2(R) : f̂ jc¤ = 0g;

where f̂ denotes the Fourier transform of f .
Conversely, every invariant complemented subspace can be obtained in this way;

in a natural sense, ¤ is called the spectrum of E ¤ .
For p = 2, every ¤ is a spectral set. For p 6= 2, the situation is much more

di¯ cult. Some classical examples are known, like ¤ = R + , which is spectral for any
p 2 ]1; 1[, or more general ones, coming from the Littlewood{Paley decomposition.

Everything mentioned above is well known; see [2] or [4] for the precise de­ nitions
and references.

It was recently discovered in [2] that, for p 6= 2, spectral sets cannot have a
complicated structure.

For example, a Cantor set of positive Lebesgue measure is never spectral.

Theorem 1.1 (see [2]). If ¤ is spectral for some p 6= 2,

the essential boundary, @¤ , has Lebesgue measure zero; (1.2)
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or, equivalently

¤ and c¤ are both (equivalent to) open sets. (1.3)

In the above theorem we used the term essential boundary in the sense that
@¤ = ¤ d \ (c¤ ) d , where ¤ d denotes the Lebesgue density points of ¤ and by ·A we
denote the closure of A. In the sequel, we also use the (common) essential boundary
of two disjoint measurable sets ¤ and ¤ 0, denoted by @( ¤ ; ¤ 0), and x 2 R belongs to
it if and only if any U (x) neighbourhood of x contains portions of positive measure
of both sets.

This result means that every spectral set ¤ can be viewed as a union of some
family of disjoint open intervals accumulated to a closed set F of measure zero|its
essential boundary.

E¬ective characterization of such families is probably an extremely di¯ cult prob-
lem.

In this paper we are interested in what can be said about the essential boundary
of a spectral set.

Definition 1.2. For a given p 6= 2, a compact set K ³ R is called a spectral-
subboundary (K 2 SB) if and only if there exists a spectral set ¤ such that @¤ ¼ K.

Obviously, this notion means some kind of `thinness’. It is natural to compare it
to metrical `thinness’. Theorem 1.1 says that K 2 SB implies that mK = 0, where
m denotes the Lebesgue measure.

Is the converse implication true?
We prove that the answer is no, even if one replaces the Lebesgue measure with

the much more sensitive Hausdor¬ one.
We follow the general approach of [2, 3] which involves an analysis of possible

distributions of equidistant nets through ¤ .

Definition 1.3. We say that a given pair of disjoint sets ¤ , ¤ 0 has the universal
colouring property,

( ¤ ; ¤ 0) 2 UC; (1.4)

if, for any N 2 N and for any colouring of the set f1; : : : ; Ng by two colours (say,
by red and blue), there exists x0, h 2 R, such that

xk
d ef
= x0 + kh 2 ¤ or ¤ 0 if, k is blue or red, respectively. (1.5)

This notion plays a crucial role in [2,3]. It appeared there in a slightly stronger
form: xk was required to be a density point of the corresponding set; below we will
use the UC property for open sets and hence this stronger assumption will also be
satis­ ed.

Actually, theorem 1.1 was obtained by the following implications:

m(@( ¤ ; ¤ 0)) > 0 ) ( ¤ ; ¤ 0) 2 UC ) ¤ is not a spectral set. (1.6)

Next we introduce the property of `arithmetical thickness’ (A-thickness).

Definition 1.4. We say that a compact set K is A-thick, that is, K 2 A, if and
only if, for all pairs of disjoint open sets ¤ , ¤ 0,

K ³ @( ¤ ; ¤ 0) ) ( ¤ ; ¤ 0) 2 UC: (1.7)
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Our main result says that A-thick compact sets may be of small Hausdor¬ dimen-
sion. We remark that in [1] several di¬erent concepts of thin sets in harmonic analy-
sis were considered.

2. Main results

Theorem 2.1. There exists a compact perfect set K ³ R such that

(i) dimH K = 0, and

(ii) K 2 A.

We remark that dimH denotes the usual Hausdor¬ dimension, and by a suitable
re­ nement of our proof one can obtain compact sets with Hh(K) = 0, where Hh

is the Hausdor¬ measure de­ ned by using a function h (h(0) = 0, h(x) > 0, h is
monotone increasing and continuous from the right for all t > 0). In the special
case when h(x) = xs, that is, we use the s-dimensional Hausdor¬ measure, we will
use the notation Hs.

Theorem 2.2. There exists a compact perfect set K , satisfying property (i) and

(iii) K 62 SB.

Finally, our last result gives some additional information about A-thickness.

Theorem 2.3. If K 2 A, then it contains arbitrarily long arithmetical progressions.

Proof of theorem 2.2. We reduce this result to theorem 2.1, which will be proved
later. It is enough to show that property (ii) implies property (iii). Let K 2 A.
Suppose that for some p 6= 2, K 2 SB, that is, there exists a spectral set ¤ such
that @¤ ¼ K. Due to theorem 1.1, we can assume that ¤ is open and c¤ is equivalent
to an open set ¤ 0. It is clear that ¤ 0 is disjoint from ¤ . Since ¤ 0 and c¤ are equivalent,
( ¤ 0) d = (c¤ ) d , and hence K ³ @¤ = @( ¤ ; ¤ 0). Then K 2 A implies that the pair
( ¤ ; ¤ 0) satis­ es the UC-property. According to (1.6), ¤ is not a spectral set.

The construction used in the proof of theorem 2.1. We de­ ne K as the intersection
of the nested closed sets Ek. Each Ek consists of ­ nitely, say nk, many closed
intervals Ij;k , j = 1; : : : ; nk.

We assume that, for a ­ xed k, the intervals Ij;k are indexed from left to right
and they are disjoint.

Denote the length of Ij;k by `j;k. For notational convenience, we set `0
k = 1

2
`k for

k = 1; 2; : : : .
We choose the intervals Ij;k in a way that `j;k is non-increasing in j, that is,

`j1 ;k > `j2;k for j1 6 j2 when k is ­ xed. We denote by `k the length of the shortest
interval Ij;k. Clearly, `k = `nk;k . For a given j 0 6 nk¡1, by our choice Ij 0 ;k¡1 \ Ek

will consist of ¸ j 0 ;k¡1 many equally spaced intervals of the form Ij;k and all these
Ij;k will be of the same length, denoted by ² j 0 ;k¡1.

If j 0 < j00 holds, then the distance between the consecutive intervals Ij;k belonging
to Ij 0 0 ;k¡1 \Ek will be much less than the length of the Ij;k belonging to Ij 0 ;k¡1 \Ek.

Next, we give a formal inductive de­ nition of the sets Ek.
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Figure 1.

Put E1 = I1;1 = [0; 1].
Assume that k > 2, Ek¡1 =

Snk ¡ 1

j = 1 Ij;k¡1 is de­ ned and

`1;k¡1 > `2;k¡1 > ¢ ¢ ¢ > `nk ¡ 1 ;k¡1 = `k¡1:

We also assume that `j;k¡1 is an integer multiple of `k¡1 for j = 1; : : : ; nk¡1. Set

¶ 1;k¡1 =
`k¡1

2kk
and ¸ 1;k¡1 =

`1;k¡1

¶ 1;k¡1
:

Since `1;k¡1 is an integer multiple of `k¡1, it is easy to see that ¸ 1;k¡1 is an integer.
Divide I1;k¡1 into ¸ 1;k¡1 many intervals of length ¶ 1;k¡1 and denote these intervals
by H1; : : : ; Ḩ 1;k ¡ 1 . Finally, in each interval Hj , choose a small closed interval Jj ,
which has the same midpoint as Hj, and such that the length of Jj equals

² 1;k¡1 =
¶ 1;k¡1

¸ k¡1
1;k¡1

:

We will de­ ne Ek \ I1;k¡1 such that it will equal the union of the intervals Jj, that
is, Jj = Ij;k for j = 1; : : : ; ¸ 1;k¡1. Observe that `k¡1 is an integer multiple of ² 1;k¡1

and `j;k = ² 1;k¡1 for j = 1; : : : ; ¸ 1;k¡1.
Now assume that j0 > 2, the Ij;k are de­ ned in the intervals I1;k¡1; : : : ; Ij 0 ¡1;k¡1

and the ones in Ij 0 ¡1;k¡1 are of length ² j 0 ¡1;k¡1. We also assume that `k¡1 is an
integer multiple of ² j 0 ¡1;k¡1. Since `j 0 ;k¡1 is an integer multiple of `k¡1, it will also
be an integer multiple of ² j 0 ¡1;k¡1. Set

¶ j 0 ;k¡1 =
² j 0 ¡1;k¡1

kk
and ¸ j 0 ;k¡1 =

`j 0 ;k¡1

¶ j 0 ;k¡1
:

Observe that ¸ j 0 ;k¡1 is an integer. Now we subdivide Ij 0 ;k¡1 like we divided I1;k¡1,
that is, divide Ij 0 ;k¡1 into ¸ j 0 ;k¡1 many intervals of length ¶ j 0 ;k¡1 and denote them
by H1; : : : ; H ¸ j 0 ;k ¡ 1

. In each interval Hj , choose a small closed interval Jj, which
has the same midpoint as Hj, and such that the length of Jj equals

² j 0 ;k¡1 =
¶ j 0 ;k¡1

¸ k¡1
j 0 ;k¡1

:

Observe that ¶ j 0 ;k¡1 and ² j 0 ¡1;k¡1 are both integer multiples of ² j 0 ;k¡1. Finally, let
Ek \ Ij 0 ;k¡1 equal the union of the intervals Jj .
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Repeating the above steps for a ­ xed k we can de­ ne Ek \ Ij 0 ;k¡1 for all
j 0 = 1; : : : ; nk¡1. Continuing this process, de­ ne Ek for all k.

Put K =
T1

k = 1 Ek.
It is easy to see that K is a nowhere dense non-empty compact perfect set and,

for any k and j 6 nk, we have K \ Ij;k 6= ;. It is also clear that

`k¡1

2kk
= ¶ 1;k¡1 > ² 1;k¡1 > ¢ ¢ ¢ > ² nk ¡ 1;k¡1 = `k:

This implies that for any k > 1 we have

1X

j = k + 1

`j < `k:

Since for k = 2; 3; : : : the choice of ¶ j 0 ;k¡1 implies that each interval Ij 0 ;k¡1

contains more than four intervals belonging to Ek, it is always possible to ­ nd an
x 2 K that is in the ­ rst quarter of Ij 0 ;k¡1.

First we compute the Hausdor¬ dimension of K. Denote by d(U ) the diameter
of the set U . Assume that the integer m is ­ xed. Note that the intervals belonging
to Ek cover K for any integer k. Let

Sk =

nkX

j = 1

d(Ij;k)1=m:

Lemma 2.4. For any k > m + 1, we have Sk 6 Sk¡1.

Proof of lemma 2.4. Assume that j0 6 nk¡1 and Ij 0 ;k¡1\Ek consists of the intervals
Jj , j = 1; : : : ; ¸ j 0 ;k¡1. Then d(Jj) = ² j 0 ;k¡1 for all j and

X
d(Jj)1=m = ¸ j 0 ;k¡1 ¢ ²

1=m
j 0 ;k¡1 = ¸ j 0 ;k¡1

³
¶ j 0 ;k¡1

¸ k¡1
j 0 ;k¡1

1́=m

= A:

Using k > m + 1, we can continue the estimation by

A < ¸ j 0 ;k¡1

³
¶ j 0 ;k¡1

¸ m¡1
j 0 ;k¡1

1́=m

= ( ¸ j 0 ;k¡1 ¶ j 0 ;k¡1)1=m = (`j 0 ;k¡1)1=m = d(Ij 0 ;k¡1)1=m:

Recalling that the intervals Jj are those intervals Ij;k that are in Ij 0 ;k¡1, the above
result implies that

X

fj:Ij;k³Ij 0 ;k ¡ 1g

d(Ij;k)1=m < d(Ij 0 ;k¡1)1=m:

Summing this for all Ij 0 ;k¡1, we obtain Sk 6 Sk¡1. This proves lemma 2.4.

Lemma 2.5. The set K is of zero Hausdor® dimension.

Proof of lemma 2.5. We need to verify that, given any s > 0 and ¯ > 0, one can
­ nd a cover of K by sets Ui such that d(Ui) < ¯ and

P
d(Ui)

s < 1.
It is enough to verify that for each sm = 1=m a suitable cover can be found;

hence assume that m is ­ xed.
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The intervals belonging to Ek cover K for any integer k. From lemma 2.4, it
follows that Sk 6 Sm for all k > m. Using d(Ij;k) = `j;k < `k¡1 and `k ! 0 as
k ! 1, we obtain that, for any given ¯ > 0, we can ­ nd k such that d(Ij;k) < ¯
for j = 1; : : : ; nk and Sk =

P
j d(Ij;k)1=m < Sm. This implies H1=m(K) < 1. This

holds for all m; hence K is of zero Hausdor¬ dimension.

We turn to the proof of K 2 A.
To state lemma 2.6, and later lemma 2.8, we need more notation.
Denote by ª the union of the intervals contiguous to K and by sn the set

f1; : : : ; ng where n is a positive integer. Assume that ¤ and ¤ 0 are disjoint open sets
such that K ³ @( ¤ ; ¤ 0). Set G = ¤ [ ¤ 0. Then G ³ ª is open and we can introduce
the colouring function ¿ 1 : G ! fblue; redg by letting ¿ 1 = red on ¤ and ¿ 1 = blue
on ¤ 0. Since K ³ @( ¤ ; ¤ 0), the colouring ¿ 1 of G is dense ; by this we mean that
both red and blue intervals are `dense’ in K, that is, K ³ fx : ¿ 1(x) = redg and
K ³ fx : ¿ 2(x) = blueg. To verify that K 2 A, we need to show that, for any of
the above given open sets ¤ and ¤ 0, the universal colouring property is satis­ ed,
that is, we need to ­ nd x 2 R and h¤ 2 R such that x + ih ¤ 2 G for i = 1; : : : ; n,
and the two colourings ¿ 1 and ¿ 2 are compatible, that is, ¿ 1(x + ih ¤ ) = ¿ 2(i) for
i = 1; : : : ; n.

Next we state a rather technical lemma.

Lemma 2.6. Assume that k > 2n2, y and t are given such that y 2 G, the points
y + it for i = 1; : : : ; n belong to di® erent components of Ek and

[y + it; y + it + `0
k] ³ Ek for i = 1; : : : ; n:

Then there exists t0 such that

t 6 t0 6 t + n
`0

k

k
;

and the points

y + it0 2 [y + it; y + it + `0
k]; i = 1; : : : ; n;

belong to di® erent components of Ek + 1. Furthermore, if » n denotes the length of
the interval Ij;k + 1 ³ Ek + 1 that contains the point y + nt0, then

[y + it0; y + it0 + » n] ³ Ek + 1 for i = 1; : : : ; n:

Remark 2.7. Observe that » n > `k + 1 = 2`0
k + 1, and hence the conclusion of

lemma 2.6 implies that

[y + it0; y + it0 + `0
k + 1] ³ Ek + 1

also holds for i = 1; : : : ; n. This implies that we can repeat the application of
lemma 2.6.

Proof of lemma 2.6. We do induction on n.
For n = 1, we have [y + t; y + t + `0

k] ³ Ek. Choose j1 such that y + t 2 Ij1;k.
Then there exists ¶ 1 6 `0

k=(k + 1)(k + 1) such that during the construction of Ek + 1
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the interval Ij1;k is being split into intervals of length ¶ 1 and each such subinterval
contains a component of Ek + 1. Thus we can choose t0 such that

t 6 t0 6 t + ¶ 1 < t +
`0

k

k

and y + t0 is the left endpoint of a component of Ek + 1. Then

[y + t0; y + t0 + » 1] ³ Ek + 1;

where » 1 is the length of the interval Ij;k + 1 that contains y + t0. This completes the
proof when n = 1.

Now assume that n > 2, k > 2n2, and lemma 2.6 is true for n ¡ 1. Observe that
using y 2 G and the points y + it, i = 1; : : : ; n ¡ 1, the assumptions of lemma 2.6
(used for n ¡ 1) are satis­ ed. Hence, by the induction hypothesis, there exists t00

such that

t 6 t00 6 t + (n ¡ 1)
`0

k

k
;

and
y + it00 2 [y + it; y + it + `0

k] » Ek for i = 1; : : : ; n ¡ 1; (2.1)

and these points belong to di¬erent components of Ek + 1. Furthermore, for
i = 1; : : : ; n ¡ 1, we have

[y + it00; y + it00 + » n¡1] ³ Ek + 1; (2.2)

where » n¡1 is the length of the interval Ij;k + 1 that contains y + (n ¡ 1)t00. Clearly,
» n¡1 < `0

k=kk.
Now, by our assumptions,

y + nt 6 y + nt00 6 y + nt + n(n ¡ 1)
`0

k

k
< y + nt + 1

2
`0

k:

Hence
[y + nt00; y + nt00 + 1

2
`0

k] ³ [y + nt; y + nt + `0
k] ³ Ek: (2.3)

By (2.1), y +(n ¡ 1)t00 and y +(n ¡ 1)t belong to the same component of Ek. Denote
this component by Ijn ¡ 1;k . Similarly, by (2.3), y + nt00 and y + nt belong to the
same component, Ijn;k , of Ek. By (2.3) we have

[y + nt00; y + nt00 + 1
2`0

k] ³ Ijn;k ³ Ek: (2.4)

The de­ nition of Ek + 1 implies that there exists ¶ n and ² jn ;k = » n such that
Ijn ;k is divided into subintervals of length ¶ n. Each such subinterval contains a
component of Ek + 1, and this component is of length » n. From jn¡1 < jn and from
our construction, it follows that ¶ n < » n¡1=(k + 1)(k + 1); hence we can choose t0

such that

t00 6 t0 6 t00 + ¶ n < t00 +
» n¡1

(k + 1)(k + 1)
< t00 +

`0
k

k
6 t + n

`0
k

k
; (2.5)

and, using (2.3), we can also assume that y +nt0 is the left endpoint of a component
of Ek + 1 \ Ijn;k. Then

[y + nt0; y + nt0 + » n] ³ Ek + 1:
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It remains to check that, for i = 1; : : : ; n ¡ 1, the small intervals [y + it0; y + it0 + » n]
are in Ek + 1. From

t00 6 t0 6 t00 +
» n¡1

(k + 1)(k + 1)

and
» n < ¶ n <

» n¡1

(k + 1)(k + 1)
;

it follows that

y + it0 + » n < y + it00 +
(i + 1)» n¡1

(k + 1)(k + 1)
< y + it00 + » n¡1

for i = 1; : : : ; n ¡ 1. Thus y + it00 6 y + it0 and (2.2) implies

[y + it0; y + it0 + » n] ³ Ek + 1

for i = 1; : : : ; n ¡ 1. Observe that above we have already established the last property
for i = n. This completes the proof of lemma 2.6.

In the next lemma we will use the notation introduced before the statement of
lemma 2.6.

Lemma 2.8. Assume that n, k0, xn and hk0 are given such that k0 > 2n2, xn 2 G,
the points xn + ihk0 belong to di® erent components of Ek0 , we have two colourings
¿ 1 and ¿ 2, ¿ 1(xn) = ¿ 2(n), and

[xn + ihk0 ; xn + ihk0 + `0
k0

] ³ Ek0 for i = 1; : : : ; n:

Then there exists x 2 K and h 2 R such that

jh ¡ hk0
j < n`0

k0
;

jx ¡ (xn + nhk0 )j < n`0
k0

and
¿ 1(x ¡ ih) = ¿ 2(i) for i = 1; : : : ; n:

Proof of lemma 2.8. We do induction on n.
Assume that k0 > 2 is given. When n = 1, by our assumption, [x1 + hk0

; x1 +
hk0 + `0

k0
] ³ Ek0 . Choose j1 such that x1 + hk0

2 Ij1;k0 . Then there exists

¶ <
`k0

2kk0

0

=
`0

k0

kk0

0

< 1
2`0

k0

such that any subinterval of Ij1;k0 with length ¶ contains points of Ek0 + 1, and
hence points of K as well. Thus we can choose h > hk0 such that jh ¡ hk0

j < `0
k0

and x1 + h = x 2 K. Then jx ¡ (x1 + hk0 )j = jh ¡ hk0 j < `0
k0

also holds. Clearly,
¿ 1(x ¡ h) = ¿ 1(x1) = ¿ 2(1).

Assume that lemma 2.8 is valid for n ¡ 1 > 1 with all k0 > 2(n ¡ 1)2.
For the next step of the induction, assume that k0 > 2n2 is given and the assump-

tions of lemma 2.8 are satis­ ed for n, k0, xn and hk0 .
Since G is open and xn 2 G, there exists ° > 0 such that ]xn ¡ ° ; xn + ° [ ³ G.

Choose k1 > k0 such that ° =2n2 > `0
k1

.
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Assume k 2 fk0; : : : ; k1 ¡ 1g is given and hk is already de­ ned. Using y = xn and
t = hk in lemma 2.6, we choose t0 = hk + 1. Repeating this procedure we de­ ne hk

for k = k0 + 1; : : : ; k1. Then we have

hk0
6 hk1

6 hk0 + n

³
`0

k0

k0
+

`0
k0 + 1

k0 + 1
+ ¢ ¢ ¢ +

`0
k1¡1

k1 ¡ 1

´
< hk0 + 2n

`0
k0

k0
; (2.6)

the points xn + ihk1 belong to di¬erent components of Ek1 , and

[xn + ihk1 ; xn + ihk1 + » n;k1 ] ³ Ek1 for i = 1; : : : ; n;

where » n;k1
denotes the length of the interval Ij;k1

³ Ek1
that contains xn + nhk1

.
Using the fact that » n;k1

> 2`0
k1

, we also have

[xn + ihk1 ; xn + ihk1 + 2`0
k1

] ³ Ek1 for i = 1; : : : ; n:

Choose j1 such that xn + hk1 2 Ij1;k1 . Then there exists ¶ < `0
k1

=kk1

1 6 1
4 `0

k1
such

that any subinterval of length ¶ in Ij1;k1 contains points of Ek1 + 1 and points of K
as well. Since we have a dense colouring of G, we can choose an xn¡1 2 G such that
¿ 1(xn¡1) = ¿ 2(n ¡ 1) and xn¡1 2 [xn +hk1 ; xn +hk1 + ¶ ]. Observe that, using (2.6),
we have

jxn¡1 ¡ (xn +hk0 )j 6 jxn¡1 ¡ (xn+hk1 )j+jxn +hk1
¡ (xn +hk0 )j 6 ¶ +2n

`0
k0

k0
: (2.7)

An easy computation shows that

[xn¡1 + ihk1
; xn¡1 + ihk1

+ `0
k1

] ³ [xn + (i + 1)hk1
; xn + (i + 1)hk1

+ 2`0
k1

] ³ Ek1

holds for i = 1; : : : ; n ¡ 1 and, by lemma 2.8 applied for n ¡ 1, k1, xn¡1 and hk1 ,
there exists x 2 K and h 2 R such that

jh ¡ hk1
j < (n ¡ 1)`0

k1
;

jx ¡ (xn¡1 + (n ¡ 1)hk1 )j < (n ¡ 1)`0
k1

and

¿ 1(x ¡ ih) = ¿ 2(i) for i = 1; : : : ; n ¡ 1:

Then, using (2.6), we infer

jh ¡ hk0
j 6 jh ¡ hk1

j + jhk1
¡ hk0

j < (n ¡ 1)`0
k1

+ 2n
`0

k0

k0
< n`0

k0
:

Furthermore,

jx ¡ (xn + nhk0 )j 6 jx ¡ (xn¡1 + (n ¡ 1)hk1 )j + jxn¡1 + (n ¡ 1)hk1 ¡ (xn + nhk0 )j
6 (n ¡ 1)`0

k1
+ jxn¡1 ¡ (xn + hk0 )j + (n ¡ 1)jhk1 ¡ hk0 j

< (n ¡ 1)`0
k1

+ 2n
`0

k0

k0
+ ¶ + (n ¡ 1)2n

`0
k0

k0
< n`0

k0
;

where, in the last estimations, we used (2.7), k0 > 2n2, `0
k1

< `0
k0

=kk0

0 and ¶ < 1
4 `0

k1
.
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Finally, observe that

jx ¡ (xn + nh)j 6 jx ¡ (xn¡1 + (n ¡ 1)hk1
)j + jxn¡1 ¡ xn ¡ hk1

j + njhk1
¡ hj

< (n ¡ 1)`0
k1

+ ¶ + n(n ¡ 1)`0
k1

< ° :

Thus x ¡ nh 2 ]xn ¡ ° ; xn + ° [. By the choice of ° , the entire interval ]xn ¡ ° ; xn + ° [
belongs to G and hence either ]xn ¡ ° ; xn + ° [ ³ ¤ or ]xn ¡ ° ; xn + ° [ ³ ¤ 0. Hence

¿ 1(x ¡ nh) = ¿ 1(xn) = ¿ 2(n):

This, together with the induction hypothesis, implies

¿ 1(x ¡ ih) = ¿ 2(i) for i = 1; : : : ; n:

This completes the proof of lemma 2.8.

Proof of theorem 2.1. By lemma 2.5, K is of zero Hausdor¬ dimension. It remains
to show that K is in A.

Choose k0 > 2n2 and a j0 6 nk0¡1. Then it is easy to see that ¸ j0 ;k0¡1 > kk0

0 >
n + 1 and hence Ij0;k0¡1 \ Ek0 consists of more than n + 1 intervals of the form
Ij;k0 . Choose a j1 such that

Ij1 ;k0
; Ij1 + 1;k0

; : : : ; Ij1 + n;k0
³ Ij0 ;k0¡1:

Let hk0
= ¶ j0;k0¡1. Recall that the intervals Ij1 + i;k0

are equally spaced in Ij0;k0¡1

and Ij1 + i;k0 can be obtained from Ij1 ;k0 by a translation with ihk0 . It is also clear
that `j1;k0 = `j1 + 1;k0 = ¢ ¢ ¢ = `j1 + n;k0 = ² j0 ;k0 .

Since the colouring of G is dense and the ­ rst quarter of Ij1;k0 contains
points of K, we can choose an xn 2 G such that ¿ 1(xn) = ¿ 2(n) and
[xn; xn + 1

2`j1;k0 ] ³ Ij1;k0 . Using `k0 6 `j1 ;k0 and the translation property of the
intervals Ij1 + i;k0 , we have

[xn + ihk0 ; xn + ihk0 + 1
2
`k0 ] ³ Ij1 + i;k0

³ Ek0 for i = 0; : : : ; n:

The assumptions of lemma 2.8 are satis­ ed. Hence, using x 2 K and h from
lemma 2.8, let h ¤ = ¡ h and observe that ¿ 1(x + ih ¤ ) = ¿ 2(i), i = 1; : : : ; n, shows
that the colouring ¿ 1 of G and ¿ 2 are compatible.

Proof of theorem 2.3. Given ` 2 N, we denote by ¿ 2;` the colouring of s4` + 2 =
f1; : : : ; 4` + 2g for which ¿ 2;`(2i ¡ 1) = red, ¿ 2;`(2i) = blue for i 2 f1; : : : ; 2` + 1g.

We can assume that K is non-empty, compact and nowhere dense.
We also assume that K is perfect and does not contain ` > 3-long arithmetic

progressions. We need to show that K 62 A.
We denote by C K the set consisting of the intervals contiguous to K. If

x 2 ª = R n K, then IK(x) denotes the C K interval containing x.
Since the number ` is ­ xed, for ease of notation, we will just write ¿ 2 instead

of ¿ 2;`. Our goal is to ­ nd open sets ¤ and ¤ 0 such that K ³ @( ¤ ; ¤ 0), but
( ¤ ; ¤ 0) 62 UC . We will choose ¤ and ¤ 0 by de­ ning a colouring ¿ 1 : ª ! fblue; redg.
This colouring will be constant on each C K interval. We will let

¤ = fx 2 ª : ¿ 1(x) = redg and ¤ 0 = fx 2 ª : ¿ 1(x) = blueg:
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It is clear that if we assume that ¿ 1 is a dense colouring, that is, K ³ ·¤ \ ·¤ 0,
then K ³ @( ¤ ; ¤ 0). Choose an onto mapping ÁK : ª ! N that is constant on the
intervals contiguous to K and takes di¬erent values on di¬erent intervals.

We say that a pair (x; h) 2 R £ (R n f0g) is admissible if the terms of the
sequence fx + ih : i 2 s4` + 2g belong to ª and IK(x + 2ih) 6= IK(x + 2jh) for i 6= j,
i; j 2 f1; : : : ; 2` + 1g. The set of admissible pairs is denoted by P .

Remark 2.9. Observe that if ` and ¿ 2 are ­ xed as above, ¿ 1 is a colouring of ª
and ¿ 1(x + ih) = ¿ 2(i) for all i 2 s4` + 2, then (x; h) 2 P .

Given ² > 0, we denote by P ² the set of those (x; h) 2 P for which jhj > ² .
Clearly, P² 0 = ; for a su¯ ciently large ² 0.

Assume that ² 0 < ² , the (possibly empty) open set V is the union of ­ nitely many
C K intervals and, for each (x; h) 2 P ² 0 n P ² , there is at most one i 2 f1; : : : ; 2` + 1g
such that x + 2ih 2 V . Set

RV (x; h) = minfÁK(x + 2ih) : i = 1; : : : ; 2` + 1 and x + 2ih 62 V g

and R ² 0 ;² ;V = fRV (x; h) : (x; h) 2 P ² 0 n P ² g.

Lemma 2.10. With our assumptions about K , for any ² 0 < ² , the set R ² 0 ;² ;V is
bounded from above.

Proof of lemma 2.10. Assume that R ² 0 ;² ;V is not bounded from above. Using the
compactness of K and the ­ niteness of f1; : : : ; 2` + 1g, we can choose a sequence
(xn; hn) 2 P² 0 n P ² and an i¤ 2 f1; : : : ; 2` + 1g such that xn converges to an x 2 R,
hn ! h, with ² 0 6 jhj 6 ² , ÁK(xn + 2ihn) ! 1 and xn + 2ihn 62 V for any
i 2 f1; : : : ; 2` + 1g n fi ¤ g. Hence, if i 6= i ¤ is ­ xed and ]an; bn[ = IK(xn + 2ihn),
then

lim
n ! 1

bn ¡ an = 0:

Since an 2 K, we obtain that x + 2ih 2 K.
Therefore, fx+2ih : i = 1; : : : ; 2`+1; i 6= i ¤ g ³ K, but then K would contain an

arithmetic progression of length at least `, contradicting our assumption about K.

Now we continue the proof of theorem 2.3 and de­ ne by induction the suitable
colouring ¿ 1 on ª . In each step, ­ rst we colour by red ­ nitely many C K intervals
in order to `take care’ of `blocking’ sequences fx + ihg with (x; h) 2 P² k with a
suitable ² k > 0. Then, to obtain a dense colouring, we colour some C K intervals by
blue.

Step 1 of the colouring

Set V0 = ;, ² = ² 0 and choose ² 1 > 0 such that

² 1 <
diameter(K)

4(4` + 2)
:

Set R0(x; h) = RV0 (x; h) and R ² 1 = R ² 1;² 0;V0 . Using lemma 2.10, we can choose
M1 2 R such that each element of R ² 1 is bounded by M1. There are only ­ nitely
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many intervals on which ÁK(x) 6 M1. Denote the union of these intervals by U1.
Without loss of generality, we can assume that U1 contains the two unbounded
components of ª . Then ÁK(x) > M1 for x 2 R n (K [ U1). For x 2 U1, let
¿ 1(x) = red.

Whenever (x; h) 2 P ² 1
nP ² 0 = P ² 1 , we have R(x; h) 6 M1, and hence there exists

an i 2 f1; : : : ; 2` + 1g such that x + 2ih 2 U1. Thus ¿ 1(x + 2ih) 6= ¿ 2(2i) and hence
the colouring ¿ 2 of s4` + 2 is not compatible with the colouring of ¿ 1(x + 2ih).

Next, choose ­ nitely many C K intervals that are disjoint from U1 such that,
denoting their union by V1, the following two properties are satis­ ed.

( ¬ 1) If I1; I2 ³ V1 are disjoint C K intervals, then dist(I1; I2) > 2(4` + 2)² 1.

(­ 1) If x 2 K, then (x ¡ 3(4` + 2)² 1; x + 3(4` + 2)² 1) \ V1 6= ;.

It is easy to see that the choice of V1 can be made satisfying ( ¬ 1) and (­ 1). For
x 2 V1, let ¿ 1(x) = blue.

Clearly, property ( ¬ 1) says that blue intervals are not too close and (­ 1) says
that they are not too far either.

The general steps of the colouring

Assume now that we have already accomplished step k of our de­ nition. Thus we
have the number ² k > 0 and the sets Uk, Vk such that Uk [Vk ³ ª , ¿ 1(Uk) = fredg,
¿ 1(Vk) = fblueg, and the sets Uk; Vk consist of the union of ­ nitely many C K
intervals. If (x; h) 2 P ² k

, then there exists i 2 f1; : : : ; 2`+1g such that x+2ih 2 Uk.
Finally, the following two properties are satis­ ed.

( ¬ k) If I1; I2 ³ Vk are disjoint C K intervals, then dist(I1; I2) > 2(4` + 2)² k.

(­ k) If x 2 K, then (x ¡ 3(4` + 2)² k; x + 3(4` + 2)² k) \ Vk 6= ;.

Step (k + 1) of the colouring

Let ² k + 1 = 1
2
² k.

Set Rk(x; h) = RVk
(x; h) and R ² k+1

= R ² k+1;² k;Vk
.

Observe that assumption ( ¬ k) implies that, for each (x; h) 2 P ² k+1
n P ² k , there

is at most one i 2 f1; : : : ; 2` + 1g such that x + 2ih 2 Vk.
By lemma 2.10, for a suitable constant Mk + 1, each element of R ² k+1 is bounded by

Mk + 1. We can also assume that Mk + 1 is so large that Mk + 1 > k + 1 and, whenever
x 2 K , then there exists an interval ]a; b[ such that ]a; b[ \ ]x ¡ ² k; x + ² k[ 6= ;,
]a; b[ \Vk = ; and ÁK(]a; b[) is bounded by Mk + 1.

Denote by U 0
k + 1 the set of points x for which x 2 ª , ÁK(x) 6 Mk + 1, x 62 Uk [ Vk

(that is, we have not de­ ned ¿ 1 at x). For x 2 U 0
k + 1, put ¿ 1(x) = red, and let

Uk + 1 = Uk [ U 0
k + 1. Observe that Uk + 1 [ Vk contains all points x in ª for which

ÁK(x) 6 Mk + 1.
Now take (x; h) 2 P² k+1

n P ² k . Then Rk(x; h) 6 Mk + 1, and hence there exists
i 2 f1; : : : ; 2` + 1g such that x + 2ih 62 Vk and ÁK(x + 2ih) 6 Mk + 1. This implies
x + 2ih 2 Uk + 1, and hence ¿ 1(x + 2ih) = red 6= ¿ 2(2i), that is, the colouring ¿ 1 of
x + 2ih is incompatible with the colouring ¿ 2 of s4` + 2.

Next, choose ­ nitely many C K intervals that are disjoint from Uk + 1 such that,
denoting their union by Vk + 1, we have Vk ³ Vk + 1 and propositions ( ¬ k + 1)
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and (­ k + 1) are satis­ ed (that is, we have propositions ( ¬ k) and (­ k) satis­ ed with
k replaced by k + 1). It is an easy exercise to show that we can make a suitable
choice of Vk + 1. For x 2 Vk + 1, put ¿ 1(x) = blue.

By letting k ! 1, we can de­ ne a colouring ¿ 1 of ª . If one takes x 2 K, ¯ > 0,
then it is easy to ­ nd k such that Uk\]x ¡ ¯ ; x + ¯ [ and Vk\]x ¡ ¯ ; x + ¯ [, and hence
¿ 1 is dense.

Since P = P ² 0
[

S1
k = 1(P ² k+1

n P ² k
), our construction implies that, for any

(x; h) 2 P , there exists i 2 f1; : : : ; 2` + 1g such that

¿ 1(x + 2ih) = red 6= ¿ 2(2i): (2.8)

However, remark 2.9 implies that, for (x; h) 62 P , there always exists i 2 f1; : : : ; 2`+
1g such that (2.8) holds. Therefore, the open sets ¤ and ¤ 0 de­ ned by ¿ 1 do not
have the universal colouring property. Hence K 62 A. This concludes our proof for
perfect K.

Denote by N ` the set of those non-empty compact sets that does not contain
`-long arithmetic progressions. If K is not perfect, then we can use the following
result.

Lemma 2.11. If the compact set K 2 N `, then there exists a perfect compact set
K 0 2 N ` such that K ³ K 0.

First we show that, using this lemma, we can complete the proof of theorem 2.3.
Indeed, if K 2 N `, then choose K 0 according to lemma 2.11. Using our previous
argument, we can ­ nd open sets ¤ and ¤ 0 such that K ³ K 0 ³ @( ¤ ; ¤ 0) and
( ¤ ; ¤ 0) 62 UC . This implies that K 62 A.

Proof of lemma 2.11. For each isolated point yn of K, we will choose a suitable
neighbourhood In = ]yn ¡ rn; yn + rn[ and denote by G the union of these neigh-
bourhoods. By choosing the rn su¯ ciently small, we can assume that In\K = fyng.
Since K 2 N `, using induction on n, and at each step a compactness argument, we
can assume that the radii, rn, are so small that K [ G does not contain an `-long
arithmetic progression such that each component of G contains at most one of its
terms.

Choose a compact perfect set K0 for which 0 2 K0 ³ [0; 1] and K0 does not
contain a 3-long arithmetic progression. Set

K 0 = K [
[

n

(yn + 1
3
rnK0):

It is not di¯ cult to see that K 0 satis­ es the conditions of the lemma; we leave the
details to the reader.

3. Open problems

(3.1) Suppose that K is an independent compact set (see [1]). Is it true that
K 2 SB? Is it true that there exists a spectral set ¤ such that @¤ = K?

(3.2) Does the classical Cantor ternary set belong to SB?

(3.3) Are the classes SB di¬erent for di¬erent p? (This question is motivated
by x 6.2.5 of [5].)
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