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The present study considers a shear-thinning viscoelastic liquid layer sheared by the air
and flowing past a deformable-solid layer in the presence of a surfactant at the air–liquid
interface to model the airflow in the oral area and airways. The stability analysis reveals the
existence of purely elastic and unconditionally unstable ‘liquid elastic’ and ‘solid elastic’
modes. The mechanism responsible for the destabilisation of the solid elastic mode is
the shear stresses exerted by the air on the liquid and by the liquid on the deformable solid
while for the liquid elastic mode, the mechanism is the first normal stress difference across
the air–liquid interface. The liquid and solid elastic modes undergo resonance, resulting in
the ‘resonance mode’ of instability. The resonance mode exhibits a much higher growth
rate than the liquid and solid elastic modes. The shear-thinning characteristic of the liquid
and presence of the surfactant leads to enhancement in the growth rate of the resonance
mode. An estimate shows a good correlation between the exhaled fluid particle (i.e.
droplets and aerosols) diameters and the wavelength of the perturbations with maximum
growth rate. In essence, the present analysis predicts that the airflow in the airways and
oral area could lead to an elastic instability arising due to the elastic nature of the saliva,
mucus and underlying muscle layers.

Key words: pulmonary fluid mechanics, absolute/convective instability

1. Introduction

The human oral area is lined with saliva (thickness ∼1–10 μm) (Collins & Dawes
1987; Zussman, Yarin & Nagler 2007) while the airways, from the trachea through the
bronchioles to the alveoli, are lined with mucus of varying thicknesses from ∼0.1 μm in
the alveoli to ∼10 μm in the trachea (Widdicombe & Widdicombe 1995; Widdicombe
1997; Chen et al. 2019). The saliva lines the oral area, including the tongue, possessing a
shear modulus of ∼103 Pa (Cheng et al. 2011; Nakamori et al. 2020) while the mucus lines
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the mucosa and submucosa layers of trachea, having a shear modulus of ∼104 Pa (Wang,
Mesquida & Lee 2011) and is thus deformable. The present study aims to understand the
role of the air, shear-thinning viscoelastic saliva and mucus, and deformable muscles lined
by saliva or mucus in introducing elastohydrodynamic instabilities. These instabilities
could play a role in airway closure or in the formation of fluid particles (i.e. droplets and
aerosols) expelled from a person during breathing, talking, coughing and sneezing (Tang
et al. 2012, 2013; Theriault et al. 2018; Mittal, Ni & Seo 2020), which may lead to the
spread of respiratory diseases.

1.1. Flows of non-Newtonian liquids
The saliva and mucus exhibit strong viscoelastic properties owing to their constituents
(Hwang, Litt & Forsman 1969; Sims & Horne 1997; Stokes & Davies 2007; Zussman et al.
2007; Lai et al. 2009; Hamed & Fiegel 2014; Chen et al. 2019). The viscoelasticity of the
mucus is caused by the mucins and non-mucin proteins secreted by the mucous glands
(Wu & Carlson 1991; Moriarty & Grotberg 1999; Chen et al. 2019). These characteristics
help the mucus to protect the airways from abrasion of the particles and pathogens carried
by the air inhaled during breathing or exhaled during coughing and sneezing (Stokes
& Davies 2007; Lai et al. 2009; Hamed & Fiegel 2014). The thickness of the mucus
can substantially increase or mucus properties could be drastically altered by respiratory
diseases such as the common cold and cystic fibrosis (Shah et al. 1996). The elastic nature
of the saliva and mucus could substantially affect the exhibited instabilities. Thus, it is
essential to first review the instabilities exhibited by flows of viscoelastic liquids.

The study of the onset of transition from laminar to turbulent flow in viscoelastic liquids
has received renewed interest in part due to the unambiguous demonstration of ‘early
transition’ in the flow of polymer solutions through tubes at Reynolds numbers (Re ∼ 800)
much lower than Re ∼ 2000 at which the Newtonian transition is typically observed in
experiments (Samanta et al. 2013; Chandra, Shankar & Das 2018; Choueiri, Lopez & Hof
2018). In addition, there have been several reports of instabilities in the flow of highly
concentrated polymer solutions in tubes and channels, and the Reynolds number at which
this transition is observed is again significantly lower than Re ∼ 2000 (Bodiguel et al.
2015; Poole 2016; Picaut et al. 2017; Wen et al. 2017; Chandra et al. 2018). The linear
stability of the plane Couette flow of an upper convected Maxwell (UCM) liquid was first
studied by Gorodtsov & Leonov (1967), who predicted the existence of two stable discrete
modes in the creeping-flow limit. Renardy & Renardy (1986) studied the same flow, but
for non-zero Reynolds number, and concluded that the flow is linearly stable for arbitrary
Re.

Viscoelastic liquid flows sheared by the air can be encountered in coating processes
(Kistler & Schweizer 1997). The air that flows past the coated film during the drying
process could lead to an instability which may result in the formation of undesirable
patterns. The formation of these patterns on the surface of a coating film degrades the
quality of the final product and plays a crucial role in coating technology (Weinstein &
Ruschak 2004). Thus, the present study is also relevant to processes where air cooling is
employed to dry the coating.

Besides viscoelasticity, saliva and mucus also exhibit shear thinning that depends on
the concentration of the mucins and other constituent proteins (Lafforgue et al. 2017). As
the concentration of the mucin in the mucus increases, the shear-thinning nature of the
mucus increases. If the shear dependence of the viscosity is modelled using a power-law
model, Lafforgue et al. (2017) showed that the power-law index (n) characterising the
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Purely elastic instabilities in the airways and oral area

shear-thinning nature of the mucus is given by n = 1 − 0.346C where C (in wt %) is the
concentration of the mucin. The power-law index for a healthy individual is n ∼ 0.1–0.5
(Lai et al. 2009), thus it is a highly shear-thinning fluid. Nouar & Frigaard (2009) studied
the combined plane Couette–Poiseuille flow of a Carreau fluid in a rigid channel to
understand the role of the wall velocity and shear-thinning behaviour on the stability. Their
analysis predicted that the wall velocity and thus Couette component has a stabilising
effect on plane Couette–Poiseuille flow and that increasing the shear-thinning behaviour
stabilises the long-wavelength modes. Furthermore, they concluded that the plane Couette
flow of an inelastic Carreau fluid in a rigid channel is linearly stable.

Additionally, at the air–mucus interface, a pulmonary surfactant secreted by the alveolar
type II cells (Grotberg 2001) is also present, which leads to the Marangoni stresses. The
Marangoni stresses caused by the secreted surfactant play a major role in regulating
the air–mucus interface tension. Thus, the absence of the surfactant at the air–mucus
interface could lead to respiratory distress syndrome due to a high air–mucus interfacial
tension, which in turn may lead to the inhibition of normal breathing (Grotberg 2001).
Blyth & Pozrikidis (2004, 2006), Bassom, Blyth & Papageorgiou (2012) and Halpern
& Grotberg (1992) predicted a strong effect of the surfactant along the fluid–fluid
interface on the stability of flows where the surfactant effect arises due to the Marangoni
stresses caused by the inhomogeneity of the surface tension due to its dependence on the
concentration of the surfactant.

1.2. Flows past a deformable-solid layer
The surfaces lined by the saliva and mucus are deformable owing to their shear modulus
of O(103–104) Pa (Cheng et al. 2011; Wang et al. 2011; Nakamori et al. 2020). The
deformability of the wall plays a major role in fluid flows past a deformable-solid layer.
Thus, next, we review the instabilities exhibited by the flows past a deformable-solid layer.

The stability of plane Poiseuille flow through a channel with deformable walls was
studied by Hains & Price (1962), Gajjar & Sibanda (1996) and Davies & Carpenter (1997).
They used the plate-and-spring model for the deformable walls, assuming that the solid is
made up of plates connected by Hookean springs. However, the continuum models, such
as linear viscoelastic, neo-Hookean models, describe the dynamics of the solid better than
the plate-and-spring model (Malvern 1969; Holzapfel 2000). Thus, Kumaran, Fredrickson
& Pincus (1994) used the linear viscoelastic model for the solid to study the linear stability
of the plane Couette flow past a deformable solid in the creeping-flow limit (Re = 0) and
predicted the presence of the ‘viscous instability.’ The viscous instability arises as a result
of the shear work done by the flowing fluid on the deformable solid (Kumaran et al. 1994).
The experiments of Kumaran & Muralikrishnan (2000) confirmed the existence of the
viscous instability predicted by Kumaran et al. (1994).

To account for the finite base-state deformations of the solid, Gkanis & Kumar
(2003) used the frame-invariant neo-Hookean model for the solid and predicted the
‘short-wave instability’ in addition to the viscous instability in plane Couette flow past
a deformable solid. Neelamegam, Giribabu & Shankar (2014) studied the stability of the
plane Couette flow past a two-layered gel and showed an excellent agreement between
theory (using the neo-Hookean model) and experiments, thereby proving the usefulness
of the neo-Hookean model to describe the dynamics of the deformable solid. Gkanis
& Kumar (2005), Gaurav & Shankar (2010) and Patne & Shankar (2017) subsequently
studied the plane Poiseuille flow through a channel lined with neo-Hookean solid and
predicted the existence of the short-wave instability in the creeping-flow limit. The analysis
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of Gaurav & Shankar (2010) also predicted a new class of unstable modes at low Re and
two classes of modes, viz. wall modes, and inviscid modes at high Re. Experiments on
plane Poiseuille flow past a deformable solid by Verma & Kumaran (2013) found good
agreement with theory provided that the solid is modelled using the neo-Hookean model
and the change in the shape of the deformable wall due to a decrease in pressure along the
length of the channel and its effect on the base-state velocity profile are considered.

The stability of the plane Couette flow of viscoelastic liquids past a deformable-solid
layer has been studied by Shankar & Kumar (2004) and Chokshi & Kumaran (2008a,b).
Shankar & Kumar (2004) predicted the destabilisation of the stable modes predicted
by Gorodtsov & Leonov (1967) in the creeping-flow limit due to the deformability of
the solid. A subsequent study by Joshi & Shankar (2019) showed the existence of a
new mode of instability that results from the elastic nature of the viscoelastic liquid
and solid. Thus, Shankar & Kumar (2004) and Joshi & Shankar (2019) showed the
importance of considering the deformability of the solid in viscoelastic liquid flows past a
deformable-solid layer.

The effect of the shear thinning on the stability of the plane Couette flow past a
deformable solid in the creeping-flow limit was first studied by Roberts & Kumar (2006).
Their analysis predicted a non-monotonic effect of the variation in the power-law index
on the viscous and short-wave modes of instability. Their work was extended to arbitrary
Reynolds number by Giribabu & Shankar (2017) and Tanmay, Patne & Shankar (2018).

1.3. Liquid layer sheared by the air
In the oral area and airways, the saliva and mucus layers are sheared by the air, which
becomes the driving force to set in the instabilities. The stability of a Newtonian liquid
layer sheared by the air was first studied by Miles (1960). He considered the shear
stress exerted by the flowing air and subsequent shear flow generated in the liquid. His
study predicted critical Reynolds number Rec ∼ 203 for the existence of the instability.
Later, Smith & Davis (1982) pointed out a ‘missing term’ in the normal stress continuity
boundary condition of Miles (1960). Upon inclusion of the missing term, Smith & Davis
(1982) predicted Rec ∼ 34 in the absence of the air–liquid interfacial tension. Furthermore,
they observed that the air–liquid interfacial tension leads to a strong stabilisation.

1.4. Present study
As explained above, mucus and saliva exhibit a strong shear-thinning viscoelastic
behaviour. Thus, a fluid model which considers both of their properties is necessary to
successfully capture the dynamics of these fluids sheared by the air. Furthermore, in the
literature, the power-law index and relaxation time values for mucus are available (see
Lai et al. 2009; Lafforgue et al. 2017), which indicate that a model must have a power-law
variation of the viscosity. These requirements are fulfilled by the phenomenological White
& Metzner (1963) (WM) model. The WM model introduces shear thinning or thickening
and strain softening or hardening by assuming dependences of the viscosity, shear modulus
and relaxation time on the second invariant of the strain-rate tensor. Thus, data reported in
the literature for the rheological parameters of the WM model such as viscosity, relaxation
time and shear modulus, can be readily fit into the power-law model, thereby making it
easy to relate the experimental observations to theoretical predictions. The linear stability
analysis of pressure-driven channel flow of a WM fluid was first studied by Wilson &
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Purely elastic instabilities in the airways and oral area

Rallison (1999), Wilson & Loridan (2015) and Castillo & Wilson (2017). Their analysis
predicted the existence of a new shear-thinning elastic instability.

Halpern & Grotberg (1992) analysed the stability of a Newtonian liquid lining the
inner surface of an elastic tube. The role of the pulmonary surfactant on the fluid-elastic
instabilities in a Newtonian liquid-lined elastic tube was studied by Halpern & Grotberg
(1993), where they predicted a delay in the airway closure due to the surfactant. It must
be noted that Halpern & Grotberg (1992, 1993) utilised the plate-and-spring model to
describe the dynamics of the deformable wall. Moriarty & Grotberg (1999), motivated by
the understanding of the instabilities related to mucus clearance, studied the stability of
a bilayer (formed by the elastic sheet of the mucin and serous layers) sheared by the air.
They modelled the elastic sheet formed by the mucin layer using the Kelvin–Voigt model
while the serous layer lying below the mucus layer was modelled as a viscous liquid. Their
analysis predicted a minimum air speed necessary for the existence of the instabilities in
the airways. Heil & White (2002), by using nonlinear shell theory for the deformable
wall, studied the airway closure due to elastic instabilities for a Newtonian fluid. A
thin-film model for the airway closure due to the surface-tension-driven instabilities was
later developed by White & Heil (2005). Halpern, Fujioka & Grotberg (2010) studied
the stability of a viscoelastic film coating a rigid tube and flowing under the action of
gravity. Their analysis predicted a destabilising influence of viscoelasticity. Zhou et al.
(2014) extended the study of Halpern et al. (2010) to include the effect of imposed shear
at the free surface and the presence of an insoluble surfactant. Their analysis predicted a
destabilising effect of the surfactant.

The study of Moriarty & Grotberg (1999) suffers from some important drawbacks as
follows. The differentiation of the mucus into the elastic sheet formed by the mucins at the
air–liquid interface and serous layers assumes a sharp interface between the mucin surface
layer and serous layer which is unphysical since the mucins and other solutes are in fact
dissolved in the serous solution (Chen et al. 2019). Furthermore, Halpern & Grotberg
(1992, 1993), Moriarty & Grotberg (1999), Heil & White (2002), White & Heil (2005)
and Halpern et al. (2010) neglect the shear-thinning viscoelastic nature of the mucus,
saliva and presence of the surfactant at the air–mucus interface. A consistent physical
model requires treating the mucin and serous layers as a single layer with viscoelastic and
shear-thinning properties possessing a finite air–liquid interfacial tension and surfactant at
the free surface. Furthermore, Moriarty & Grotberg (1999), Halpern et al. (2010) and Zhou
et al. (2014) neglected the dynamics of the deformable mucosa and submucosa layers lined
by the mucus. However, as shown in the present study, the dynamics of these deformable
layers can introduce a whole new mode of instability, thereby showing their importance.

Studies that take into consideration the deformable nature of the walls of the airways are
due to Halpern & Grotberg (1992, 1993), Heil & White (2002) and White & Heil (2005).
They employ a plate-and-spring model or shell theory to describe the dynamics of the
deformable wall. However, continuum models, such as linear viscoelastic, neo-Hookean
models, offer a better description of the deformable wall dynamics instead of lumped
parameter models, such as the plate-and-spring model or shell theory (Malvern 1969;
Holzapfel 2000). Furthermore, the plate-and-spring model allows only vertical oscillations
of the deformable wall. However, as noted by Thaokar & Kumaran (2002), tangential
motion of deformable media is necessary for the existence of a class of instabilities
exhibited by the flows past deformable surfaces. The airflow in the airways and oral area
is turbulent (Moriarty & Grotberg 1999), however, Halpern & Grotberg (1992, 1993),
Moriarty & Grotberg (1999), Heil & White (2002), White & Heil (2005) and Halpern
et al. (2010) assume a laminar flow of air.
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Liquid
y

x
y = 0

Deformable solid

y = –H

y = 1
Air

Figure 1. Schematic of the flow geometry in dimensionless coordinates. The liquid flows as a consequence of
the driving force imparted by the air blowing past the liquid layer at y = 1. The flowing liquid exerts stress on
the deformable solid to cause deformation, which leads to the coupling. The boundary at y = −H is assumed
to be perfectly bonded to a rigid and impermeable surface, a reasonable assumption for the trachea due to the
presence of the relatively rigid outer musculocartilaginous and adventitia layers (Wang et al. 2011).

The three-layer system consisting of the air, saliva or mucus, and underlying muscles
requires a consistent model that will take into account the dynamics and properties of
the three layers, as shown in figure 1. The present study removes the shortcomings of the
previous studies by using the WM and neo-Hookean models to describe the dynamics of
the mucus and saliva and underlying muscles, respectively, while the turbulent airflow is
accounted for by the shear stress exerted at the air–liquid interface. Additionally, the effect
of the surfactant and its impact on the stability analysis is also considered.

The airflow through airways could be better described in a cylindrical flow geometry due
to the tubular structure of the airways. However, we assume a planar flow in the present
study for the following reasons. The airflow through airways is similar to the sliding
Couette flow with a deformable wall studied by Patne & Shankar (2020). The sliding
Couette flow with a deformable wall consists of an outer stationary and deformable
cylinder and a steadily moving inner cylinder. The stability analysis of Patne & Shankar
(2020) showed that if the parameter ξ = ri/ro approaches unity, then the predicted results
approach the results for the plane Couette flow, i.e. the effect of the curvature can be
neglected. Here, ri is the radius of the inner cylinder and ro is the sum of the radius of the
inner cylinder and fluid layer thickness. Their analysis also predicted that the axisymmetric
mode is most unstable for the sliding Couette flow. The flow geometry in the present study
is essentially the same as the sliding Couette flow except that the inner cylinder should be
replaced by the flowing air. The thickness of the mucus is considerably smaller than the air
domain, implying ξ → 1, thereby justifying the planar flow assumption. It must be noted
that the planar flow assumption neglects the possible stabilising/destabilising mechanism
caused by the surface tension at the air–liquid interface in a core–annular geometry which
may quantitatively alter the growth rate of the instabilities predicted in the present study.

The rest of the paper is arranged as follows. The perturbation governing equations and
boundary conditions are derived in § 2. The numerical methodology employed here to
carry out the linear stability analysis is presented in § 3. The results obtained from the
stability analysis and the mechanism of the instabilities predicted here are presented in
§ 4. Finally, the major conclusions obtained in the present study are presented in § 5.

2. Governing equations

Consider an incompressible viscoelastic liquid of a constant shear modulus Gf is flowing
past a deformable layer having shear modulus Gs, as shown in figure 1. For the processes
considered here, the same density ρ of the liquid and deformable solid is assumed.
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Purely elastic instabilities in the airways and oral area

The driving force for the liquid is provided by the air flowing past the liquid at y = 1.
The resulting flow in the liquid then induces a deformation field in the deformable solid.
The deformation leads to a coupling between the flowing liquid and deformable solid
which may result in the elastohydrodynamic instabilities (Kumaran 1995; Kumaran &
Muralikrishnan 2000). The Cartesian reference frame chosen here is such that the liquid
flows in the x − z plane while the y-axis is normal to the flowing liquid.

The dimensional fluid viscosity (μ∗
p) and relaxation time (λ∗p) are assumed to be

functions of the second invariant (γ̇ ∗) of the strain-rate tensor (γ̇ ∗; refer to (2.5f )). For
simplicity, we use the power-law model for the polymer viscosity (Bird, Armstrong &
Hassager 1977; Wilson & Rallison 1999), which relates the viscosity to the shear rate as

μ∗
p(γ̇

∗) = Kγ̇ ∗(n−1), (2.1)

γ̇ ∗ =
√

1
2 γ̇ ∗

ij γ̇
∗
ji . (2.2)

Here, K denotes the consistency parameter in the power-law model and n is the power-law
index. The superscript ‘∗’ in the above equation and in the subsequent discussion denotes
dimensional quantities while subscript ‘p’ denotes a polymer quantity. By using the above
definition of viscosity, the relaxation time (λ∗p) for the WM fluid becomes

λ∗p(γ̇
∗) = μ∗

p(γ̇
∗)

Gf
= K

Gf
γ̇ ∗(n−1). (2.3)

At the air–liquid interface the surfactant is also present. Following Blyth & Pozrikidis
(2004, 2006) and Bassom et al. (2012), we assume a linear dependence of the surface
tension (Σ∗) on the surfactant concentration (ζ ∗) such that Σ∗ = Σ∗

0 − γ ∗(ζ ∗ − ζ ∗
0 ),

where ζ ∗
0 is the reference concentration of the surfactant and γ ∗ = −dΣ∗/dζ ∗.

Before proceeding further, we present the non-dimensionalisation scheme for the
problem under consideration. The power-law model does not have a natural viscosity
scale, thus we define the viscosity scale as μ∗

sc = K(Vm/R)(n−1), where Vm and R are
respectively the maximum velocity and height of the liquid layer. The maximum velocity
of the liquid is Vm = τaR/μ, where τa is the shear stress exerted by the air at the
air–liquid interface. We non-dimensionalise lengths, velocities, viscosities and pressures
and stresses, respectively, by R, Vm, μ∗

t = μ∗
s + μ∗

sc and μ∗
t Vm/R, where μ∗

t and μ∗
s

are the total (solution) and solvent viscosities. To relate the perturbed state equations
with the Oldroyd-B equations for a non-shear-thinning viscoelastic fluid, the viscosity
of the polymer is non-dimensionalised by μ∗

sc. Hence, the dimensionless viscosity for the
power-law model (2.1) becomes

μp(γ̇ ) = γ̇ (n−1). (2.4)

The liquid layer extends from y = 0 to y = 1 while the deformable layer extends from
y = −H to y = 0. Thus, liquid–deformable-solid form an interface at y = 0.

Let the velocity field in the liquid be v = (vx, vy, vz). The dimensionless continuity and
Cauchy momentum equations are

∇ · v = 0, (2.5a)

Re
(

∂v

∂t
+ (v · ∇)v

)
= −∇p + ∇ · τ , (2.5b)

τ = τ s + τ p, (2.5c)
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where, v = (v1, v2, v3) is the velocity field, vi is the component of the velocity in the
ith direction, the Reynolds number Re = ρVmR/μ∗

t , p is the pressure, τ , τ s, τ p are
respectively the total, solvent and polymer stress tensors and ∇ is the gradient operator. To
relate the stress tensor with the shear-rate tensor, we use following constitutive relations:

τ s = βγ̇ , (2.5d)

τ p + Wλ(γ̇ )

(
∂τ p

∂t
+ v · τ p − (∇v)T · τ p − τ p · (∇v)

)
= (1 − β)μp(γ̇ )γ̇ , (2.5e)

γ̇ = (∇v) + (∇v)T . (2.5f )

Here, β = μ∗
s /μ

∗
t . The shear-rate-dependent dimensionless relaxation time in the above

equation is λ(γ̇ ) = μp(γ̇ )/G, which is non-dimensionalised by using scale λ∗sc = μ∗
sc/G.

Also, W = λ∗scVm/R is the Weissenberg number. The constitutive relation for τ p is given
by the WM model, which differs from the Oldroyd-B model due to the dependence of the
polymer viscosity on the shear rate.

In between the mucus and the deformable muscle layers, another liquid layer of much
less viscous fluid, the periciliary layer (PCL), is also present. As discussed in § 4, the
existence of the PCL will not affect the qualitative picture of the instabilities predicted
here.

For the solid, consider a representative particle with position vector X = (X1, X2, X3)
in the undeformed solid. Assuming the solid to be incompressible and letting liquid flow
past it, the representative particle will now assume position vector, x = (x1, x2, x3). The
current and undeformed position vectors are related by,

x(X ) = X + u(X ), (2.6)

where u(X ) is the Lagrangian displacement in the solid. Hence, the deformation gradient
is, F = ∂x/∂X . The incompressibility condition is given by

det (F ) = 1. (2.7a)

The dimensionless Cauchy stress (σ ) for a purely elastic neo-Hookean solid is (Macosko
1994; Holzapfel 2000; Patne, Giribabu & Shankar 2017),

σ = −pgI + 1
Γ

F · F T , (2.7b)

where pg is the pressure field in the solid and Γ = μVm/(GR) is the dimensionless
maximum velocity of the base flow. The parameter Γ is also measure of the deformation
in the deformable solid. The non-dimensionalised momentum balance equation (Malvern
1969; Holzapfel 2000) is

Re
∂2u
∂t2

= ∇x̄ · P, (2.7c)

P = F−1 · σ , (2.7d)

where P is the first Piola–Kirchoff stress tensor. At the rigid-solid–deformable-solid
interface (ȳ = −H) there will be no perpendicular or tangential motion as it is assumed
that the neo-Hookean solid is perfectly bonded to the rigid solid. Hence, the boundary
condition at this interface becomes u = 0. At the liquid–solid interface, continuity
conditions are imposed for the velocity and stresses. Similarly, at the air–liquid interface,
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Purely elastic instabilities in the airways and oral area

the boundary conditions are the kinematic boundary condition and continuity of the
tangential and normal stresses. The presence of the pulmonary surfactant at the air–liquid
interface does not affect the base state.

Here, we have considered an axisymmetric deformation of the airways which allows
us to consider the assumption of a planar flow geometry due to the small thickness of
the saliva and mucus. However, the airways may undergo non-axisymmetric deformation
which is not considered in the present study. Such a deformation in a cylindrical flow
geometry with a neo-Hookean model for the mucosa and submucosa layers leads to a
base-state deformation which is a function of the angular coordinate θ . The stability
analysis of such a flow is mathematically a cumbersome exercise and will necessitate
global stability analysis. Thus, for the sake of simplicity in the present study, we have
not considered the non-axisymmetric nature of airway deformation.

The trachea wall is lined with the cells containing small hair-like projections called cilia,
with tips reaching the bottom of the mucus layer (Bustamante-Marin & Ostrowski 2017).
The cilia layer helps in the entrapment and ejection of the pathogens and food particles that
have strayed into the trachea by the mucociliary clearance mechanism. The present study
assumes the cilia layer is also a part of the deformable-solid layer and neglects phenomena
involving the active role of the cilia such as the mucociliary clearance mechanism owing
to the related mathematical intricacies.

2.1. Base state
The fully developed, steady-state base-state velocity profile for the sheared flow is (Miles
1960; Smith & Davis 1982)

v̄x = y; v̄y = 0; v̄z = 0; p̄ = 0. (2.8a)

In the above equation and henceforth, an overbar signifies a base-state quantity. By using
the above velocity profiles and constitutive equations, the base-state stresses are given by

τ̄ p
xy = (1 − β)μ̄p( ¯̇γ )

dv̄x

dy
; τ̄ p

xx = 2Wλ̄( ¯̇γ )τ̄ p
xy

dv̄x

dy
; τ̄ p

yy = 0. (2.8b)

Here, μ̄p( ¯̇γ ) and λ̄( ¯̇γ ) are the dimensionless shear-rate-dependent viscosity and relaxation
time of the polymer in the base state.

For the deformable layer, in the base state, the motion is, x̄(X ) = X + ū(X ), which leads
to the base-state deformation gradient F̄ = ∂ x̄/∂X . Substitution of F̄ in (2.7a)–(2.7d), and
following the procedure outlined by Patne et al. (2017), the steady base-state deformation
in the solid in terms of the pre-stressed state coordinates is

ūx = Γ (ȳ + H); p̄g = 0. (2.8c)

2.2. Linearised perturbation equations
Next, we impose two-dimensional infinitesimally small perturbations on the base state
(2.8). It must be noted that Squire’s theorem, in general, is not applicable for the present
three-layer system. However, for a Newtonian liquid layer sheared by the air past a
rigid solid, Squire’s theorem is applicable (Smith & Davis 1982). For the planar flows
past a deformable solid from the analysis of Patne & Shankar (2019), two-dimensional
perturbations are more unstable than the corresponding three-dimensional perturbations.
For planar flows of an Oldroyd-B fluid past a rigid surface, Squire’s theorem is applicable
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(Bistagnino et al. 2007), i.e. two-dimensional disturbances are more unstable than the
corresponding three-dimensional disturbances. A similar demonstration is not possible for
the WM fluid sheared by air, but we nonetheless assume, in the interests of simplicity, that
two-dimensional perturbations to be more unstable than three-dimensional ones, and we
restrict our attention to two-dimensional perturbations. For the perturbed state, the motion
is described by x(x̄) = x̄ + u′(x̄, t). Here, u′(x̄, t) is the Lagrangian displacement of the
particle from base state and prime indicates that it is a perturbation quantity (henceforth,
perturbation quantities will be indicated by a prime). The deformation gradient becomes
F = ∂x/∂X . The incompressibility condition for perturbed state after using base-state
incompressibility condition becomes det (F ′) = 1. Further, we assume two-dimensional
disturbances with normal modes of the form

f ′(x, t) = f̃ ( y) ei(kx−ωt), (2.9)

where f ′(x, t) is the perturbation to a quantity and f̃ ( y) is the corresponding eigenfunction.
Here, k is the (real-valued) wavenumber, while ω = ωr + iωi is the complex frequency
of the disturbances. The flow is linearly unstable if at least one eigenvalue satisfies the
condition ωi > 0.

Substituting (2.9) in the linearised governing equations, we obtain the following
linearised continuity and momentum equations

ikṽx + Dṽy = 0, (2.10a)

Re[i(kv̄x − ω)ṽx + Dv̄xṽy] = −ikp̃ + β(D2 − k2)ṽx + ikτ̃ p
xx + Dτ̃ p

xy, (2.10b)

i Re(kv̄x − ω)ṽy = −Dp̃ + β(D2 − k2)ṽy + ikτ̃ p
xy + Dτ̃ p

yy, (2.10c)

where D = d/dy. The constitutive equation (2.5e) gives

Wλ̄( ¯̇γ )[i(kv̄x − ω)τ̃ p
xx + ṽyDτ̄ p

xx − 2ikτ̄ p
xxṽx − 2Dv̄xτ̃

p
xy − 2τ̄ p

xyDṽx]

−2W τ̄ p
xyDv̄x

(
dλ
dγ̇

)
γ̇= ¯̇γ

[ikṽy + Dṽx] + τ̃ p
xx = 2ik(1 − β)μ̄p( ¯̇γ )ṽx, (2.10d)

Wλ̄( ¯̇γ )[i(kv̄x − ω)τ̃ p
xy + ṽyDτ̄ p

xy − ikτ̄ p
xyṽx − Dv̄xτ̃

p
yy − ikτ̄ p

xxṽy − τ̄ p
xyDṽy]

+τ̃ p
xy = (1 − β)

[
μ̄p( ¯̇γ ) +

(
dμp

dγ̇

)
γ̇= ¯̇γ

¯̇γ
]

(ikṽy + Dṽx), (2.10e)

Wλ̄( ¯̇γ )[i(kv̄x − ω)τ̃ p
yy − 2ikτ̄ p

xyṽy] + τ̃ p
yy = 2(1 − β)μ̄p( ¯̇γ )Dṽy, (2.10f )

where (dλ/dγ̇ )γ̇= ¯̇γ and (dμp/dγ̇ )γ̇= ¯̇γ are the derivatives of the polymer viscosity
and relaxation time with respect to γ̇ evaluated at the base state. The underlined
terms in (2.10d)–(2.10e) are a consequence of the WM model. Additionally, the WM
model modifies all the terms of Oldroyd-B equations due to multiplication by λ̄( ¯̇γ )

for the elastic terms and μ̄p( ¯̇γ ) for the viscous terms. The explicit expressions for
μ̄p, λ̄( ¯̇γ ), (dμp/dγ̇ )γ̇= ¯̇γ and (dλ/dγ̇ )γ̇= ¯̇γ for a WM fluid are

λ̄( ¯̇γ ) = μ̄p( ¯̇γ ) = ¯̇γ (n−1);
(

dλ
dγ̇

)
γ̇= ¯̇γ

=
(

dμp

dγ̇

)
γ̇= ¯̇γ

= (n − 1) ¯̇γ (n−2). (2.10g)

Similarly for the solid, the incompressibility condition is

ikũx + Dũy = 0, (2.11a)
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Purely elastic instabilities in the airways and oral area

and momentum balance equations are

−ReΓ ω2ũx = −ikΓ p̃g + (D2 + 2ikΓ D − k2(1 + Γ 2))ũx, (2.11b)

−ReΓ ω2ũy = −Γ Dp̃g + (D2 + 2ikΓ D − k2(1 + Γ 2))ũy, (2.11c)

where D = d/dȳ.
The above equations (2.10) and (2.11) are subject to the following boundary conditions.

At the air–liquid interface, let the free surface be specified by y = 1 + h(x, t), where h(x, t)
is the displacement of the surface from mean position y = 1. At the air–liquid interface,
the dimensionless equation governing the transport of the surfactant is (Halpern & Frenkel
2003)

∂

∂t
(

√
1 + h2

x ζ ) + ∂

∂t
(

√
1 + h2

x ζ vx) = 1
Pe

∂

∂x

(
1√

1 + h2
x

∂ζ

∂x

)
, (2.12a)

where hx = ∂h/∂x and Pe = VmR/Ds is the Péclet number with Ds as the surface
diffusivity of the surfactant. We assume an insoluble pulmonary surfactant for which
Ds/(VmR) � 1, thus the diffusion term can be neglected. At y = 1, the boundary
conditions are the kinematic boundary condition, the surfactant evolution equation and
the continuity of the tangential and normal stresses (Smith & Davis 1982)

i(kv̄x − ω)h̃ = ṽy, (2.12b)

i(kv̄x − ω)ζ̃ = −kṽx, (2.12c)

τ̃ p
xy + β(ikṽy + Dṽx) − 2ik(1 − β)Wh̃ = ikMaζ̃, (2.12d)

−p̃ + τ̃ p
yy + 2βDṽy − 2ikh̃ = −Tk2h̃, (2.12e)

where h(x, t) = h̃ ei(kx−ωt), ζ(x, t) = ζ̃ ei(kx−ωt), Ma = γ ∗ζ ∗
0 /μ∗

t Vm is the Marangoni
number and T = T∗/(μVm) is the dimensionless interfacial tension with T∗ as the
dimensional interfacial tension. At y = 0, i.e. at the liquid–deformable-solid interface,
velocity and stress continuity give

ṽy = −iωũy, (2.12f )

ṽx + ũy = −iωũx, (2.12g)

1
Γ

Dũx + ik
Γ

ũy = τ̃ p
xy + β(ikṽy + Dṽx) − 2ik(1 − β)Wũy, (2.12h)

−p̃g + 2
Γ

(ikΓ + D)ũy = −p̃ + τ̃ p
yy + 2βDṽy. (2.12i)

At y = −H, as deformable solid is perfectly bonded to the rigid solid, the displacement of
the deformable solid will be zero i.e.

ũx = 0, ũy = 0. (2.12j)

The present study aims to probe the instabilities induced by the airflow in the airways
and oral area and the role of the air, saliva, mucus and muscles lined by the saliva or mucus
in causing such instabilities. Thus, the parameter values used in probing the instabilities
will be restricted to the physically relevant range. The dimensional and dimensionless
parameters relevant in the processes under consideration are listed in tables 1 and 2. From
table 2, it is clear that the mode of instability predicted by Smith & Davis (1982), which
becomes unstable for Re > 34.2, will not be relevant for the processes under consideration.
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Part R HR λ Va G

Oral area 10−5–10−6 m 10−3–10−4 m 10−3 s 10 − 1 m s−1 103 Pa
Trachea 10−5–10−6 m 10−5–10−6 m 10−2–10−3 s 10 − 1 m s−1 104 Pa
Bronchi 10−6–10−7 m 10−6–10−7 m 10−2–10−3 s 10 − 1 m s−1 104 Pa
Bronchioles 10−7–10−8 m 10−6–10−7 m 10−2–10−3 s 10 − 1 m s−1 104 Pa

Table 1. Order of magnitude of dimensional parameters, thickness of the viscoelastic liquid (R), thickness of
the deformable muscle layer (HR), relaxation time of the viscoelastic liquid (λ), air speed past the liquid (Va)
and the shear modulus of the deformable layer (G) for various parts of the airways and oral area relevant during
breathing, talking, coughing and sneezing actions. For the oral area, the data are from Collins & Dawes (1987),
Cheng et al. (2011), Nakamori et al. (2020), Stokes & Davies (2007), Zussman et al. (2007) and Geoghegan
et al. (2017), for the trachea from Sims & Horne (1997), Lawrence et al. (2014), Hwang et al. (1969), Wang
et al. (2011), Tang et al. (2012), Chen et al. (2019) and Shields & Jeffery (1987) and for bronchi and bronchioles
from Hwang et al. (1969), Wang et al. (2011), Theriault et al. (2018) and Lai et al. (2009). Other properties
such as density and viscosity of the liquids are ∼103 kg m−3 and ∼102–10−3 Pa s, respectively and air–liquid
interfacial tension is ∼10−1–10−2 N m−1 (Hwang et al. 1969; Lai et al. 2009; Hamed & Fiegel 2014; Chen
et al. 2019). For the oral area, the viscoelastic liquid is saliva while for the airways the viscoelastic liquid is the
mucus. For the trachea, the parameters are for the mucosa and submucosa layers since the shear modulus of
the musculocartilaginous layer and adventitia is high enough to treat them as a rigid solid (Wang et al. 2011).
Using Va, the maximum velocity Vm is 10−2–10−6 m s−1. The power-law index for the mucus of a healthy
individual is n ∼ 0.1–0.5 (Lai et al. 2009).

Part Γ H W

Oral area 10−3–10−7 103–10 10−1–10−6

Trachea 1 − 10−6 10 − 1 1 − 10−6

Bronchi 1 − 10−6 10 − 1 1 − 10−5

Bronchioles 1 − 10−6 102 − 1 1 − 10−6

Table 2. Order of magnitude of the dimensionless parameters using the dimensional parameters listed in
table 1. The range of Reynolds number is 10−2–10−5 while the range of T is 103–10−1.

3. Numerical methodology

3.1. For Re = 0, n = 1 and β = 0
In the creeping-flow limit (Re = 0), for a Newtonian fluid (W = 0 and n = 1), the
perturbation equations for the liquid (2.10) can be analytically solved to give

ṽy = e−ky(a1 + ya2) + eky(a3 + ya4), (3.1)

where a1, a2, a3 and a4 are constants. For a UCM fluid (n = 1 and β = 0), the reduced
governing equation is (Gorodtsov & Leonov 1967)

( y2
nD2 − 2ynD − k2y2

n + 2)(D2 + 2ikD − 2k2W2 − k2)ṽy = 0, (3.2)
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Purely elastic instabilities in the airways and oral area

where yn = y − ω/k − i/(kW). The solution of the above differential equation is

ṽy = a1(ω − kyn)

2k3W(i + W)
exp(ω + i/W − kyn) + a2(ω − kyn)

4k4W(−i + W)
exp(−ω − i/W + kyn)

+ a3 exp

[
−(ikW +

√
k2(1 + W2))(−i − ωW + kWyn)

kW

]

+ a4 exp

[
(−ikW +

√
k2(1 + W2))(−i − ωW + kWyn)

kW

]
. (3.3)

Similarly, for the solid, the perturbation governing equations (2.11) can be solved to obtain
the solution for ũy as

ũy = e−ky[c1 + e−iΓ ky(e2kyc2 + c3) + e2kyc4], (3.4)

where c1, c2, c3 and c4 are constants.
The dispersion relation can be obtained as follows. Substitute the solutions (3.3)

and (3.4) in boundary conditions (2.12). The corresponding expressions for the liquid
quantities ṽx, p̃ and solid quantities ũx, p̃g can be obtained from the respective continuity
and x-component of the momentum equations. Upon substitution, the result is eight
equations using which a matrix can be formed as

Ma = 0, (3.5)

where M and a are the matrix formed of the coefficients of the eight equations and a
vector containing the eight constants a1, a2, a3, a4, c1, c2, c3 and c4, respectively.
The determinant of the matrix M then gives the required dispersion relation. The general
dispersion relation derived above is unwieldy but can be reduced by specifying the value
of the parameters and then solving the resulting equation for ω. Thus, the stability analysis
reduces to finding an eigenvalue ω with ωi > 0 as the parameters k, H, Γ and W are varied.

3.2. Arbitrary Re, n and β

To carry out the linear stability analysis of (2.10) and (2.11) subject to boundary
conditions (2.12) at an arbitrary Re, the pseudo-spectral method is employed, in which
the eigenfunctions corresponding to each dynamic field are expanded into series of the
Chebyshev polynomials as

f̃ ( y) =
m=N∑
m=0

amTm( y), (3.6)

where Tm( y) are Chebyshev polynomials of degree m and N is the highest degree of
the polynomial in the series expansion or, equivalently, the number of collocation points.
The series coefficients am are the unknowns to be solved for. The generalised eigenvalue
problem is constructed in the form

Ae + ωBe + ω2Ce = 0, (3.7)

where A, B and C are matrices obtained from the discretisation procedure and e is the
vector containing the coefficients of all series expansions.

Further details of the discretisation of the governing equations and boundary conditions,
and of the construction of the matrices A, B and C can be found in the standard procedure
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Smith & Davis (1982)
Present numerical approach

Figure 2. The neutral stability curve (ωi = 0) at W = 0, n = 1, Ma = 0 and T = 0 corresponding to the curve
for vanishing air–liquid interfacial tension in figure 3 of Smith & Davis (1982). The data points from Smith &
Davis (1982) are digitally extracted. The excellent agreement between the present numerical approach and data
points of Smith & Davis (1982) validates the former.

described by Trefethen (2000) and Schmid & Henningson (2001). We use the polyeig
MATLAB routine to solve the constructed, generalised eigenvalue problem given by (3.7).
To filter out the spurious modes from the genuine, numerically computed spectrum of the
problem, the latter is determined for N and N + 2 collocation points, and the eigenvalues
are compared with an a priori specified tolerance, e.g. 10−4. The genuine eigenvalues are
verified by increasing the number of collocation points by 25 and monitoring the variation
of the obtained eigenvalues. Whenever the eigenvalue does not change up to a prescribed
precision, e.g. to the sixth significant digit, the same number of collocation points is used to
determine the critical parameters of the system. As W increases, the number of collocation
points to capture the unstable mode also increases. Thus, in the subsequent analysis, we
restrict the analysis to W < 1.

4. Results and discussion

Before proceeding further, we validate the numerical methodology utilised here in two
ways. First, for arbitrary Re, the curve predicted by Smith & Davis (1982) for vanishing
air–liquid interfacial tension is reproduced and compared with the digitally extracted data
points in figure 2. The critical Reynolds number (Rec) for the unstable Newtonian mode
for T = 0 is predicted to be 34.2, in excellent agreement with Smith & Davis (1982).
Second, the unstable mode predicted by using the pseudo-spectral method in creeping flow
is compared with the one obtained using the analytical method outlined in § 3.1, thereby
validating the pseudo-spectral code in two ways.

To understand the individual roles of the liquid and deformable solid in triggering the
instability for a viscoelastic liquid sheared by air and flowing past a deformable layer, four
different cases are considered here. First, a Newtonian liquid sheared by the air and flowing
past a rigid solid, henceforth abbreviated as ‘NR’, where N stands for Newtonian and ‘R’
stands for the rigid. This case has been studied in detail by Miles (1960) and Smith & Davis
(1982). Their analyses reported the existence of an instability for Re > 34.2. Thus, the NR
case will not be studied further but the related results will be frequently referred to from
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Miles (1960) and Smith & Davis (1982). The instability mode predicted by Smith & Davis
(1982) will be henceforth referred to as the ‘Newtonian mode.’ Second, a shear-thinning
viscoelastic liquid sheared by the air and flowing past a rigid solid, henceforth abbreviated
as ‘VR’, will be considered where ‘V’ stands for viscoelastic. The VR case will shed light
on the role of the elasticity of the liquid in triggering the instability. To understand the
effect of the solid elasticity, the third case considers a Newtonian liquid sheared by the
air and flowing past a deformable solid, hereafter abbreviated as ‘ND’, where ‘D’ stands
for deformable. Finally, the fourth case is a shear-thinning viscoelastic liquid sheared by
the air and flowing past a deformable solid, hereafter abbreviated as ‘VD’. This case will
show the combined effect of the elastic nature of the liquid and solid. The effect of the
pulmonary surfactant on the instabilities predicted in the present study is discussed in
§ 4.4.

4.1. Viscoelastic liquid sheared by the air and flowing past a rigid solid (VR)
To understand the role of the elasticity of the liquid in introducing instability, first, we study
a shear-thinning viscoelastic liquid layer sheared by the air and flowing past a rigid solid,
i.e. G → ∞ or Γ → 0. For the VR case, the boundary conditions at y = 0 are the no slip
and impermeability, i.e. ṽx = 0 and ṽy = 0. For ease of the discussion and presentation,
the results have been divided into two sections dealing with stability in the creeping-flow
limit and non-zero Re.

4.1.1. Creeping flow
A typical spectrum of the VR in the creeping flow is shown in figure 3(a). The figure
shows the existence of a downstream travelling unstable mode (ωr > 0). From the analysis
of Smith & Davis (1982), the NR case is linearly stable in the creeping flow. However,
from figure 3(a), there is an unstable mode for a viscoelastic liquid layer, hereafter
termed the ‘liquid elastic mode’. This clearly shows that the elasticity of the liquid
leads to the predicted instability. Another discrete mode in figure 3(a) is ω = k, which
remains stable for the parameters considered here. Thus, its variation with the other
parameters will not be explored in the following discussion. Using the analytical solutions
(3.3) and (3.4), the shooting code employing the vpasolve MATLAB function gives
ω = 0.433075 + 0.023960i, in excellent agreement with the eigenvalue obtained using
the pseudo-spectral method thereby validating the latter. This further affirms the genuine
nature of the liquid elastic mode.

The continuous spectrum in figure 3(a) corresponds to ωi ∼ −3.3333, which is an
equivalent of the high-frequency Gordotsov–Leonov line for the plane Couette flow
reported in the literature (Renardy & Renardy 1986; Joshi & Shankar 2019). It must
be noted that the plane Couette flow of a viscoelastic liquid exhibits a high-frequency
Gordotsov–Leonov line at ωi ∼ −1/(2W) (Joshi & Shankar 2019). However, in the present
case from figure 3(b), we observe that the continuous spectrum line obeys the rule
ωi ∼ −1/W. Therefore, a viscoelastic liquid layer sheared by the air not only introduces a
new mode of instability but also affects the continuous spectrum compared with the plane
Couette flow of a viscoelastic liquid.

To further understand the new mode of instability, the variation of ωi with k for select
values of W, n, β and T is shown in figure 4. For T = 0, Smith & Davis (1982) predicted
that, for the Newtonian mode to become unstable, Re > 34.2, thus Rec = 34.2, thereby
showing that a minimum Re is needed for the existence of the Newtonian mode. However,
from figure 4, the flow is unstable at an arbitrary W, implying an absence of the minimum
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Figure 3. Panel (a) shows the spectrum of the flow at Re = 0, k = 0.5, T = 1, n = 1, Ma = 0, β = 0 and W =
0.3 for the VR case obtained using the pseudo-spectral method. A downstream travelling unstable mode (ω =
0.433075 + 0.023960i) exists in the spectrum since ωi > 0. Such an unstable mode is absent for the Newtonian
liquid layer sheared by the air (Smith & Davis 1982), thereby showing that the liquid elasticity is responsible
for the destabilisation of this mode. Besides the unstable mode, a neutrally stable mode with ω = k is also
present. The overlap of the unstable mode for N = 50 and N = 75 confirms the genuine nature of the mode.
The continuous spectrum line at ωi = −3.3333 is made up of multiple stable modes. The number of modes
in the continuous spectrum depends on the number of collocation points utilised in obtaining the spectrum.
The same unstable mode has been also predicted by the shooting code. Panel (b) illustrates the movement
of the continuous spectrum due to variation in W. For W = 0.3 and W = 0.1, the continuous spectrum is
located at ωi ∼ −3.3333 and ωi ∼ −10, respectively, which confirms the rule for the continuous spectrum as
ωi = −1/W.

W needed for the instability to exist. Thus, a viscoelastic liquid layer sheared by the air
and flowing past a rigid solid is unconditionally unstable. However, from figure 4(a), the
parameter W does affect the growth rate of the perturbations. Also, at low k, the growth
rate shows characteristic scaling ωi ∼ Wk2. According to the analysis of Smith & Davis
(1982), Rec for a Newtonian liquid rapidly increases with an increasing T . However, from
figure 4(b), the unstable mode still exists, albeit with a lesser growth rate and at low values
of k.

The effect of the shear thinning on the growth rate is illustrated in figure 4(c). A
decreasing power-law index signifies increasing shear thinning. From figure 4(c), as the
shear-thinning nature of the fluid increases the growth rate of the liquid elastic mode
increases. The increasing contribution of the solvent to the solution, i.e. β leads to a
decrease in the growth rate of the liquid elastic mode, as shown in figure 4(d). This is to
be expected since the NR case is linearly stable in the creeping-flow limit and increasing
β implies an increase in the Newtonian solvent contribution.

The mechanism of the liquid elastic mode can be understood as follows. For simplicity,
consider the case of a UCM fluid sheared by air which corresponds to n = 1 and β = 0.
For the existence of an instability, a term is necessary which can lead to an energy
transfer from the base-state quantities to the perturbation quantities. From (2.10) for n = 1
and β = 0, there are several terms including the convective terms ikWyτ̃xx, ikWyτ̃xy and
ikWyτ̃yy and other interaction terms −4ikW2ṽx, −2ikW2ṽy, −2WDṽx, −2W τ̃xy in the
constitutive equations that satisfy this criterion. However, similar terms are also present
for the plane Couette flow of UCM liquid yet it is linearly stable in the creeping-flow
limit (Gorodtsov & Leonov 1967; Renardy & Renardy 1986; Joshi & Shankar 2019).
This indicates that the terms responsible for the instability exhibited by VR may not be
the terms present in the linearised constitutive equation. The other terms that represent
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Figure 4. Variation in the growth rate ωi with the disturbance wavenumber k in the creeping-flow limit at
Ma = 0. Panel (a) shows that the liquid layer is unconditionally unstable since a minimum W is unnecessary
for the instability to exist. The Weissenberg number only affects the growth rate of the disturbances. The curve
for W = 0.1 is incomplete due to the elimination of the negative values of ωi to use a log scale. Panel (b)
shows the effect of the surface tension on the dispersion curves. An increasing surface tension suppresses the
instability at moderate and high wavenumbers but fails to stabilise at low wavenumbers, thereby showing that
the flow remains unconditionally unstable. Panel (c) illustrates the destabilising effect of the shear-thinning
nature of the fluid. Panel (d) shows the decrease in the growth rate of the perturbations as the contribution of
the solvent viscosity signified by β is increased. Parameters are: (a) n = 1, β = 0 and T = 0; (b) n = 1, β = 0
and W = 0.1; (c) W = 0.1, β = 0 and T = 1; (d) n = 1, T = 1 and W = 0.1.

the interaction between the base-state and perturbed state quantities are in the boundary
conditions at y = 1, i.e. (−2ikh̃), which is also present for the Newtonian liquid, and
(−2ikWh̃), which is only present for the viscoelastic liquid. Since the NR case is stable
in the creeping flow, the instability predicted in the present study could be due to the
term −2ikWh̃.

To verify the above hypothesis, eigenvalues are obtained with/without the term
(−2ikWh̃) in the boundary condition (2.12d), as shown in table 3. Table 3 shows that the
above hypothesis is indeed correct and the term responsible for the existence of an unstable
liquid elastic mode is (−2ikWh̃). The term (−2ikWh̃) in the basic form is (ik(τ̄yy − τ̄xx)h̃),
where the quantity (τ̄yy − τ̄xx) is the first normal stress difference across the air–liquid
interface in the base state. Thus, the term (−2ikWh̃) originates from the first normal stress
difference, a feature unique to a viscoelastic liquid, thereby showing that the liquid elastic
mode is driven by the first normal stress difference exhibited by the viscoelastic liquid.
The plots of the normalised perturbations for the liquid elastic mode are shown in figure 5.
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Figure 5. The normalised perturbations, for the liquid at W = 0.3, β = 0, n = 1, T = 1, k = 0.5, Ma = 0
and Re = 0 for the eigenvalue ω = 0.433075 + 0.023960. Here, v′

x = Re[ṽx eikx] and v′
y = Re[ṽ′

y eikx]. For
convenience, the axes have been normalised to the interval [0, 1]. The length of the domain in the x-direction
is equal to a wavelength (2π/k) of the perturbations. The plots shows that the perturbations exhibit maximum
variation near the air–liquid interface, thereby indicating the destabilisation caused by the term (−2ikWh̃).
The perturbations vanish at y = 0 as needed by the no-slip and impermeability conditions at y = 0; (a) v′

x and
(b) v′

y.

Parameters With (−2ikWh̃) Without (−2ikWh̃)

W = 0.2, k = 0.2 0.194339 + 0.006561i 0.195093 − 0.000763i
W = 0.3, k = 0.5 0.433075 + 0.023960i 0.448042 − 0.0203088i
W = 0.4, k = 0.3 0.277459 + 0.023752i 0.285738 − 0.004219i

Table 3. The most unstable eigenvalue (ω = ωr + iωi) for the VR case with/without the (−2ikWh̃) term in the
tangential stress boundary condition (2.12d) at n = 1, β = 0, Ma = 0 and T = 1. The presence of the stable
eigenvalues in the second column of the table shows that the term responsible for the predicted instability is
(−2ikWh̃). The term (−2ikWh̃) originates from the first normal stress difference across the air–liquid interface.
Thus, the liquid elastic mode is triggered by the first normal stress difference exhibited by a viscoelastic liquid.

Since the energy for the perturbations is supplied by the term (−2ikWh̃) at the air–liquid
interface, the perturbations exhibit the highest variation at y = 1.

4.1.2. A simple model for liquid elastic mode
The above discussion shows that the driving force for the liquid elastic mode is the first
normal stress difference exhibited by a viscoelastic solid across the air–liquid interface. In
the following analysis, we derive a simple model which will incorporate the basic driving
force for the liquid elastic mode based on the long-wave analysis. Thus, we scale x = X/ε

and t = τ/ε and expand the fluid quantities as

vx = v̄x + εv′
x + · · · , (4.1)

vy = εv′
y + · · · , (4.2)

p = p′ + · · · , (4.3)

where ε � 1. Further, we assume creeping flow (Re = 0) and UCM fluid in the absence
of the surfactant which implies n = 1, β = 0 and Ma = 0. The above expansion closely
follows the linear stability analysis derivation discussed in § 2. Next, we substitute the
above expansions in (2.5). At O(1), recalling p̄ = 0 for the present problem, we obtain
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the base-state quantities specified in (2.8) and the air–liquid interface is flat. At O(ε) we
obtain the perturbed state equations which can be further simplified due to the long-wave
approximation

∂2v′
x

∂y2 − ∂p′

∂X
= 0, (4.4)

∂p′

∂y
= 0. (4.5)

The boundary conditions at O(ε) are

at y = 0, v′
x = 0, (4.6)

at y = 1 + εh(X, τ ),
∂v′

x

∂y
− 2Ŵ

∂h
∂X

= 0; p′ = −T̂
∂2h
∂X2 , (4.7)

where Ŵ = εW and T̂ = ε3T and the underlined term is due to the first normal stress
difference exhibited by the viscoelastic fluid. Thus, v′

x at O(ε) is

v′
x = 1

2
y
[

4Ŵ
∂h
∂X

− T̂( y − 2)
∂3h
∂X3

]
. (4.8)

The kinematic boundary condition at O(ε) is

∂h
∂t

+ ∂h
∂X

+ ∂

∂X

∫ 1

0
v′

x dy = 0. (4.9)

Substituting (4.8) in the above equation yields

∂h
∂τ

+ ∂h
∂X

+ ∂

∂X

[
1
3

(
3Ŵ

∂h
∂X

+ T̂
∂3h
∂X3

)]
= 0. (4.10)

Rescaling the above equation yields

∂h
∂t

+ ∂h
∂x

+ ∂

∂x

[
1
3

(
3W

∂h
∂x

+ T
∂3h
∂x3

)]
= 0, (4.11)

where h is still a small deviation of the air–liquid interface from the base-state equation
y = 1. Equation (4.11) is strictly applicable in the limit of small perturbations.

To carry out the linear stability analysis, we substitute h = h̃ ei(kx−ωt) and simplify to
yield

ω = k − 1
3 ik4T + ik2W. (4.12)

A comparison between the dispersion curves predicted by using the simple model and the
numerical approach is shown in figure 6. The above model correctly predicts ωi ∼ Wk2 at
low k, as shown in figure 4(a), thereby capturing the importance of the first normal stress
difference exhibited by the viscoelastic fluid at the air–liquid interface. Also, the simple
model succeeds in capturing the stabilisation due to the increasing air–liquid interfacial
tension shown in figure 4(b). However, for k > 0.1, both the models disagree, which clearly
points out the stabilising influence of the other terms at high k, a feature missing in the
simple model.
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Figure 6. A comparison of the growth rate predicted by the proposed simple model and numerical prediction
for the liquid elastic mode at n = 1, W = 0.1, T = 0.1 and β = 0 in the creeping-flow limit. Panel (a) shows
the dispersion curves predicted by both methods for the whole range of k. Panel (b) illustrates the excellent
agreement between two methods for k < 0.1. (a) Complete curves and (b) magnified low k region.

It must be noted that, here, we have assumed a planar flow geometry due to the small
thickness of the saliva and mucus layers which removes the curvature effects through the
air–liquid interfacial tension. From the analysis of Zhou et al. (2014), the surface tension
plays a destabilising role on the long-wave (k < 1) instabilities for a viscoelastic film
coating a tube and flowing under the action of gravity and imposed shear at the free
surface. Thus, given the presence of the long-wave instabilities in the present study if
we consider a flow coating a deformable tube and sheared by the airflow then the surface
tension may result in the growth rate enhancement of the liquid elastic mode.

4.1.3. Non-zero Re
The effect of an increasing inertia, i.e. Re, on the growth rate of the perturbations is shown
in figure 7. For the NR case, Smith & Davis (1982) predicted a destabilising effect of
increasing inertia on the Newtonian mode. However, from figure 7, an increasing inertia
has a stabilising effect on the liquid elastic mode. The stabilising effect of increasing
inertia further affirms the purely elastic nature of the liquid elastic mode.

4.2. Newtonian liquid sheared by the air and flowing past a deformable solid (ND)
To understand the role of the deformable-solid layer, next, we consider the ND case for
which n = 1 and λ→ 0 or W → 0. Similar to the VR case, the results are divided into
two sections dealing with the results in the creeping-flow limit and at finite Re.

4.2.1. Creeping flow
For the ND case, there are three eigenvalues in the creeping-flow limit, as shown in table 4.
The unstable mode is a downstream travelling mode while the remaining two stable modes
are upstream travelling. As per the stability analysis of Smith & Davis (1982), the NR case
is linearly stable in the creeping-flow limit. Thus, the instability predicted here is a pure
consequence of the elasticity of the deformable layer. Henceforth the mode of instability
introduced by the elastic nature of the solid will be referred to as the ‘solid elastic mode.’
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Figure 7. The effect of variation in Re on the growth rate of the perturbations for the liquid elastic mode at
n = 1, β = 0, Ma = 0, T = 1 and W = 0.1. The figure shows the stabilising effect of an increasing inertia on
the elastic mode.

Eigenvalue (ω = ωr + iωi) Characteristics

0.607434 + 0.052304i Unstable, downstream travelling
−0.811623 − 1.9204i Always stable, upstream travelling
−6.98187 − 38.7634i Always stable, upstream travelling

Table 4. Typical eigenspectrum in the creeping-flow limit at k = 0.8, H = 10, Γ = 0.5 and T = 1 for the
ND case by using the analytical solution. The other two modes always remain stable. The unstable mode
predicted by the pseudo-spectral method is 0.607433 + 0.052304i, which shows an excellent agreement with
the eigenvalue predicted by the analytical solution thereby validating the former.

To further understand the role of the deformable layer in introducing the solid elastic
mode, dispersion curves are plotted for select values of Γ and T in figure 8. A plane
Couette flow of a Newtonian liquid past a deformable layer in the creeping-flow limit
exhibits a finite-wave instability referred to as the ‘viscous instability’ in the literature
(Kumaran et al. 1994; Kumaran & Muralikrishnan 2000; Gkanis & Kumar 2003; Patne
& Shankar 2017; Patne et al. 2017; Joshi & Shankar 2019). For the existence of the
viscous instability, a minimum value of Γ is necessary, thus a finite critical Γ , i.e. Γc
exists. However, the dispersion curves of figure 8(a) illustrate that, for an arbitrary Γ , the
flow is unstable, thereby ruling out the existence of Γc. Therefore, a Newtonian liquid
sheared past a neo-Hookean solid is unconditionally unstable. The effect of the air–liquid
interfacial tension T on the solid elastic mode is shown in figure 8(b). An increasing T
has a stabilising effect on the high-wavenumber part of the solid elastic mode but fails to
stabilise the low-wavenumber part of the solid elastic mode. From figure 8(b), the growth
rate increases with an increasing H. However, for H > 10 the growth rate is relatively
insensitive to variation in H.

The mechanism of the solid elastic mode can be understood as follows. Kumaran et al.
(1994), Kumaran & Muralikrishnan (2000) and Gkanis & Kumar (2003) showed that the
viscous instability is triggered due to the shear work done by the flowing liquid on the
deformable layer. This shear work is transferred via the tangential velocity continuity
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Figure 8. Variation in the growth rate ωi with the disturbance wavenumber k in the creeping-flow limit for the
ND case. Panel (a) shows the dispersion plots for Re = 0, Ma = 0 and T = 0. The plots show that, similar to the
viscoelastic liquid layer sheared past a rigid solid, the Newtonian liquid layer sheared past a deformable layer
is unconditionally unstable since a minimum Γ is not needed for the instability to exist. The parameter Γ only
affects the growth rate of the disturbances. Panel (b) shows the effect of the air–liquid interfacial tension on the
dispersion curves for Γ = 0.5. An increasing surface tension suppresses the instability at moderate and high
wavenumbers but fails to stabilise at low wavenumbers, thereby showing that the flow remains unconditionally
unstable. Panel (c) shows the effect of variation in the dimensionless thickness of the deformable solid on
the growth rate of the solid elastic mode; (a) H = 10 and T = 0, (b) H = 10 and Γ = 0.5 and (c) T = 1 and
Γ = 0.5.

interface condition (2.12g) at the liquid–deformable-solid interface at y = 0. The particular
term responsible for the transfer of the shear work in (2.12g) is (ũy), which in basic form
is (Dv̄xũy). However, in the present study for the ND case, another term (−2ikh̃) at y = 1
in the normal stress continuity boundary condition (2.12e) is equally important, as shown
in table 5. In basic form, the term (−2ikh̃) can be written as (−2ikτ̄xyh̃). But at y = 1, in
the base state, the shear stress in the liquid is equal to the shear stress exerted by the air
thus, in dimensionless terms τ̄xy = τaR/(μVm), modifying the term to (−2ikτaR/(μVm)h̃).
Therefore, the energy for the solid elastic mode is provided by the shear stress exerted by
the air on the liquid. To conclude, the energy for the destabilisation of the solid elastic
mode is provided by the shear stresses exerted by the air at the air–liquid interface and by
the liquid at the liquid–deformable-solid interface.

The plots of the normalised velocity perturbations v′
x and v′

y in the liquid and
displacement perturbations u′

x and u′
y in the deformable solid are shown in figure 9.

Since the destabilisation mechanism of the solid elastic mode is the shear stresses exerted
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Parameters With (−2ikh̃) Without (−2ikh̃)

Γ = 0.2, k = 0.4 0.367323 + 0.005958i 0.398237 − 0.006277i
Γ = 0.3, k = 0.6 0.509174 + 0.018373i 0.581442 − 0.019596i
Γ = 0.5, k = 0.8 0.607434 + 0.052304i 0.732631 − 0.041142i

Table 5. The most unstable eigenvalue for the ND case with/without (−2ikh̃) term in the normal stress
boundary condition (2.12e) at H = 10, Ma = 0 and T = 1. From the second column of the table the solid
elastic mode is stable in the absence of (−2ikh̃), thereby showing the importance of the same in triggering
the solid elastic mode. The shear stress exerted at the air–liquid interface is responsible for the term (−2ikh̃).
A similar vital role is also played by the term (ũy) in the tangential velocity continuity condition (2.12g) at
the liquid–deformable-solid interface (y = 0). Therefore, the solid elastic mode is combined effect of the shear
stresses exerted by the air at the air–liquid interface and by the liquid at the liquid–deformable-solid interface.

by the air at the air–liquid interface and by the liquid at the liquid–deformable-solid
interface, the velocity perturbations exhibit maximum variation near both the air–liquid
and liquid–deformable-solid interfaces. However, the displacement perturbations exhibit
highest variation near the liquid–deformable-solid interface due to the shear stresses
exerted by the liquid on the deformable solid while they vanish at y = −H, which
corresponds to y = 0 in figures 9(c) and 9(d), as required by the boundary condition
(2.12j).

It must be noted that, similar to the first normal stress difference exhibited by the
viscoelastic fluid at the air–liquid interface, the neo-Hookean solid also exhibits a first
normal stress difference across the liquid–deformable-solid interface. As discussed in
§ 4.1, the first normal stress difference exhibited by the viscoelastic fluid across the
air–liquid interface gives rise to the liquid elastic mode. Similarly, Gkanis & Kumar
(2003) predicted that the first normal stress difference exhibited by the neo-Hookean
solid also exhibits a new mode of instability, termed the ‘short-wave instability’, for
Γ > 1. However, for the processes under consideration here, Γ < 1, thereby ruling
out the presence of the short-wave instability and thus the role of the first normal
stress difference exhibited by the neo-Hookean solid at the liquid–deformable-solid
interface.

4.2.2. Non-zero Re
The effect of the inertia on the solid elastic mode is shown in figure 10. Similar to the
liquid elastic mode, increasing inertia has a stabilising effect on the solid elastic mode,
thereby confirming its purely elastic nature. The viscous mode of instability predicted
by Kumaran et al. (1994), Kumaran & Muralikrishnan (2000) and Chokshi & Kumaran
(2007) for the plane Couette flow past a deformable solid in the creeping-flow limit can be
destabilised by increasing inertia. For Re > 10, the viscous mode of instability exhibits
a characteristic scaling Γc ∼ Re−1 (Chokshi & Kumaran 2008a; Giribabu & Shankar
2017; Tanmay et al. 2018). However, from figure 10, the inertia has a stabilising effect
on the solid elastic mode, which further sets apart the viscous mode of instability from
the solid elastic mode predicted here. The stabilising effect of the increasing inertia also
implies the purely elastic nature of the solid elastic mode similar to the liquid elastic
mode.
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Figure 9. The normalised perturbations for the liquid and deformable-solid layer for the ND case at Γ =
0.5, T = 1, k = 0.8, H = 10, Ma = 0 and Re = 0 for the solid elastic mode ω = 0.433075 + 0.023960.
Here, u′

x = Re[ũx eikx] and u′
y = Re[ũ′

y eikx]. For convenience, the axes have been normalised to the interval
[0, 1]. The length of the domain in the x-direction is equal to a wavelength (2π/k) of the perturbations.
The velocity perturbations (panels a and b) show maximum variation both near the air–liquid (y = 1) and
liquid–deformable-solid (y = 0) interface, thereby indicating the destabilisation caused by the terms (−2ikh̃)

and (ũy). For the solid displacement perturbations (panels c and d), the perturbations exhibit maximum at
the liquid–deformable-solid (y = 1) interface and vanish at the rigid-solid–deformable-solid (y = 0) interface;
(a) v′

x, (b) v′
y, (c) u′

x and (d) u′
y.
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Figure 10. The effect of variation in Re on the growth rate of the solid elastic mode at H = 10, T = 1,
Ma = 0, and Γ = 0.5. The figure shows the stabilising effect of an increasing inertia on the solid elastic
mode.
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Liquid elastic mode

Resonance mode

ωi

ωr

Figure 11. The solid elastic mode (Γ = 0.2, W = 0), liquid elastic mode (Γ = 0, W = 0.2) and resonance
mode (Γ = 0.2, W = 0.2) at n = 1, β = 0, Re = 0, k = 0.5, Ma = 0, T = 1 and H = 10 obtained using the
pseudo-spectral method. Here, the resonance mode refers to the unstable mode for the VD case. The spectrum
shows that the resonance mode exhibits a higher growth rate compared with the solid and liquid elastic modes
as a result of the resonance between the solid and liquid elastic modes, thus the name resonance mode. To
obtain the liquid elastic mode, Γ = 0 and for the solid elastic mode W = 0.

4.3. Viscoelastic liquid sheared by the air and flowing past a deformable solid (VD)
In §§ 4.1 and 4.2, the individual influence of the solid and liquid elasticity was shown to
manifest in the form of two elastic modes, viz. the liquid elastic mode due to the elasticity
of the viscoelastic liquid layer in the absence of the deformable solid and the solid elastic
mode due to the elasticity of the solid for which we considered a Newtonian liquid sheared
by the air and flowing past a deformable solid. Both modes of instability were found to
be unconditionally unstable. In this section, we consider the VD case, which involves the
elastic liquid and solid relevant to the processes under consideration. Similar to the VR
and ND cases, here, we divide the discussion into two sections dealing with creeping-flow
and finite Re results.

4.3.1. Creeping flow
From §§ 4.1 and 4.2, the liquid and solid elastic modes are unconditionally unstable. For
the VD case, the elastic characteristic of the solid and liquid can either lead to two different
unstable modes representing the elasticity of the liquid and solid, or the two modes could
reinforce each other, i.e. undergo a resonance to result in a more destructive mode of
instability. Figure 11 shows that, for the VD case, the resonance pathway is preferred,
thereby leading to a single mode resulting from the resonance of the liquid and solid
elastic modes thus the name ‘resonance mode.’ For the resonance mode, both the elastic
modes reinforce each other, which leads to a higher growth rate. The resonance between
both modes for the whole range of k and select values of the other parameters is shown in
figure 12.

The resonance mode has combined characteristics of both the modes, thus it is
unconditionally unstable. Additionally, the growth rate of the resonance mode will increase
with increasing Γ, W and H or decreasing n while its growth rate will decrease with
increasing T and β, as shown in figure 12. As β → 1, the dispersion curve approaches
the corresponding curve for the purely solid elastic mode explored in § 4.2. The physical
mechanism responsible for the resonance mode is a combination of the mechanisms
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Figure 12. Variation in the growth rate ωi with the disturbance wavenumber k in the creeping-flow limit for
the VD case at Ma = 0. The figure illustrates an increase in growth rate due to the resonance between the liquid
and solid elastic modes. Panel (a) illustrates the growth rate increase as W increases, thereby showing the proof
of the resonance between the liquid and solid elastic modes over whole k. A similar effect is also exhibited if
W is fixed and Γ is increased. The stabilising effect of the air–liquid interfacial tension on the resonance mode
is illustrated in panel (b). The destabilising effect of increasing H on the resonance mode is shown in panel
(c). Panel (d) illustrates destabilising effect of the shear thinning on the resonance mode. The stabilising effect
of increasing β is shown in panel (e). The figure illustrates that the resonance mode exhibits features of both
the liquid and solid elastic modes, thereby affirming its origin: (a) H = 10, Γ = 0.2, β = 0, n = 1 and T = 1;
(b) H = 10, W = 0.2, β = 0, n = 1 and Γ = 0.2; (c) Γ = 0.2, β = 0, n = 1, W = 0.2 and T = 1; (d) T = 1,
W = 0.2, β = 0, H = 10 and Γ = 0.2; (e) T = 1, W = 0.2, H = 10, n = 1 and Γ = 0.2.
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responsible for the destabilisation of the liquid and solid elastic modes. Thus, the first
normal stress difference exhibited by the viscoelastic liquid across the air–liquid interface
and the shear stresses exerted by the air at the air–liquid interface and by the liquid on the
deformable solid at the liquid–deformable-solid interface are responsible for the existence
of the resonance mode.

In addition to the first normal stress difference across the air–liquid interface, there is
also the first normal stress difference across the liquid–deformable-solid interface due to
the viscoelastic nature of the liquid. From § 4.1, the first normal stress difference across
the air–liquid interface leads to the liquid elastic mode. However, the first normal stress
difference across the liquid–deformable-solid interface due to the viscoelastic fluid does
not introduce a new mode of instability, instead, it only affects the growth rate of the
unstable modes and thus does not play a major role in determining the stability of the flow.

Please note that in the present study we have neglected the existence of the PCL, which
may lead to some modifications in the predictions obtained in the present study regarding
the solid elastic mode due to its proximity to the deformable muscle layers. However, it will
not affect the liquid elastic mode which originates at the air–liquid interface. Additionally,
the solid elastic mode exists even for a Newtonian fluid layer subjected to airflow induced
shear, thus the solid elastic mode will exist even in the presence of the PCL. Thus, the
PCL layer can affect the growth rate predicted for the solid elastic and resonance modes
but may not affect the liquid elastic mode.

4.3.2. Non-zero Re
Since the resonance mode is a result of the resonance between the liquid and solid elastic
modes, the inertia is expected to lead to the stabilisation. The effect of increasing inertia on
the resonance mode as illustrated in figure 13 is indeed stabilising, which further affirms
its purely elastic nature.

4.4. Effect of pulmonary surfactant
The surface tension at the mucus–air interface in the mucus could be lowered due to the
presence of the pulmonary surfactant. The surfactant is secreted by the alveolar type II
cells (Grotberg 2001; Grotberg & Jensen 2004), which lower the air–mucus interfacial
tension by introducing Marangoni stresses. In this section, we try to understand the
effect of the pulmonary surfactant on the stability of the flow. The destabilising effect
of increasing Ma on the resonance mode is illustrated in figure 14. It must be noted that
an increasing Marangoni stresses at the air–mucus interface leads to the corresponding
decrease in the surface tension T (Grotberg & Jensen 2004), which in turn fuels the growth
of the perturbations. Thus, the presence of the pulmonary surfactant in the airways leads
to an increase in the severity of the unstable perturbations.

5. Conclusions

Saliva and mucus are known to have a strong shear-thinning viscoelastic nature.
Furthermore, these viscoelastic liquids are supported by a deformable-solid layer such
as the tongue, mucosa and submucosa layers. Thus, a consistent fluid mechanical
model for this three-layer system needs to consider the dynamics of the turbulent air,
viscoelastic saliva or mucus and deformable muscles. This three-layer system is modelled
here as a shear-thinning viscoelastic liquid layer sheared by the air and flowing past a
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deformable solid. The dynamics of the liquid and solid is described using the White &
Metzner (1963) and neo-Hookean models, respectively.

To understand the role of the elasticity of the liquid and solid, the stability analysis has
been divided into four cases as follows. The first case is the Newtonian liquid (n = 1 and
W → 0) sheared by the air and flowing past a rigid solid (NR) known to be unstable for
Reynolds numbers Re > 34.2 in the absence of the air–liquid interfacial tension (Smith &
Davis 1982). The second case is the shear-thinning viscoelastic liquid sheared by the air
and flowing past a rigid solid (VR) which highlights the shear thinning and elasticity of the
liquid. The stability analysis carried out here reveals that the VR case is unconditionally
unstable, i.e. does not possess a critical Weissenberg number W = λscVm/R or Re even
in the presence of the air–liquid interfacial tension T . The elastic mode arising due to the
elasticity of the liquid for the VR case is termed the ‘liquid elastic mode.’ The growth rate
of the liquid elastic mode increases with increasing W and decreasing T and n (power-law
index). The destabilisation mechanism for the liquid elastic mode is found to be the first
normal stress difference across the air–liquid interface, a unique feature of viscoelastic
liquids.

The third case is the Newtonian liquid (n = 1 and W → 0) sheared by the air and
flowing past a deformable solid (ND) which sheds light on the elasticity of the solid. The
stability analysis carried out here reveals that the ND case is also unconditionally unstable,
thereby showing that the elastic characteristics of the liquid and deformable solid give rise
to the unconditionally unstable modes. The elastic mode caused by the deformable solid is
termed the ‘solid elastic mode.’ The growth rate of the solid elastic mode increases with
increasing dimensionless speed of the air Γ and decreasing T . The mechanism responsible
for the destabilisation of the solid elastic mode is the shear stresses exerted by the air
on the liquid at the air–liquid interface and by the liquid on the deformable solid at the
liquid–deformable-solid interface.

The fourth case considers a viscoelastic liquid sheared by the air and flowing past a
deformable solid layer (VD) which shows the combined effect of the liquid and solid
elasticity. The analysis shows that the liquid and solid elastic modes undergo resonance to
result in the ‘resonance mode’ of instability. The resonance mode exhibits a much higher
growth rate than the liquid and solid elastic modes and exhibits characteristics of both
liquid and solid elastic modes. Additionally, the effect of the pulmonary surfactant on
the growth rate of the resonance mode has been also investigated. The analysis predicts a
growth rate enhancing effect of Marangoni stresses arising due to the pulmonary surfactant
due to lowering the air–mucus interfacial tension. To conclude, the present analysis shows
that the shearing action of the air induces instabilities in the airways and oral area. These
instabilities originate as a result of the elastic nature of the fluids lining the oral and airways
organs such as saliva and mucus and the muscle layers supporting the liquid layers.

Furthermore, we hypothesise that the predicted instability may lead to the fluid particle
generation in the airways and oral area. The fluid particle size exhaled during breathing,
talking and coughing is in the range of 10−5–10−7 m with a preponderance of particles
with diameters less than 10−6 m (Papineni & Rosenthal 1997). From figure 12(b),
the resonance mode achieves maximum growth rate for km ∼ 0.2–1 depending on the
air–liquid interfacial tension T . This implies that the dimensional wavelength of the most
unstable disturbances is λm ∼ 10πR − 2πR. From table 1, R ∼ 10−5–10−8 m which yields
λm ∼ 10−4–10−7 m, which is in good correlation with the exhaled fluid particle size
distribution measured by Papineni & Rosenthal (1997).

To further understand the fluid particle formation due to the elastic instabilities, it would
be useful to carry out a nonlinear stability analysis which could shed light on the process
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Figure 13. The effect of increasing inertia in the growth rate on the resonance mode at Γ = 0.2, n = 1, β = 0,
H = 10, W = 0.2, Ma = 0 and T = 1. Similar to the liquid and solid elastic modes, the resonance mode is
stabilised by increasing inertia, implying the purely elastic nature of the resonance mode.
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Figure 14. The destabilising effect of the pulmonary surfactant on the growth rate of the resonance mode at
Γ = 0.2, n = 0.5, β = 0, H = 10, W = 0.2 and T = 1. The lowering of the air–mucus interfacial tension due
to Marangoni stresses results in the growth rate enhancement of the resonance mode.

through which the elastic instabilities lead to the formation of the fluid particles. The
exhaled fluid particles could also be a result of the turbulent bursts caused during coughing
and sneezing, thus the present analysis needs to be extended to include such turbulent
bursts. Considering the thin layer of the mucus and saliva, a thin-film analysis could be
carried out which could give a better idea of the thin-film rupture that results in fluid
particle formation.
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