
J. Fluid Mech. (2019), vol. 861, pp. 200–222. c© Cambridge University Press 2018
doi:10.1017/jfm.2018.894

200

Reconsideration of spanwise rotating turbulent
channel flows via resolvent analysis
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We study the effect of spanwise rotation in turbulent channel flow at both low and
high Reynolds numbers by employing the resolvent formulation proposed by McKeon
& Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382). Under this formulation,
the nonlinear terms in the Navier–Stokes equations are regarded as a forcing that
acts upon the remaining linear dynamics to generate the turbulent velocity field in
response. A gain-based decomposition of the forcing–response transfer function across
spectral space yields models for highly amplified flow structures, or modes. Unlike
linear stability analysis, this enables targeted analyses of the effects of rotation on
high-gain modes that serve as useful low-order models for dynamically important
coherent structures in wall-bounded turbulent flows. The present study examines
a wide range of rotation rates. A posteriori comparisons at low Reynolds number
(Reτ = 180) demonstrate that the resolvent formulation is able to quantitatively predict
the effect of varying spanwise rotation rates on specific classes of flow structure (e.g.
the near-wall cycle) as well as energy amplification across spectral space. For fixed
inner-normalized rotation number, the effects of rotation at varying friction Reynolds
numbers appear to be similar across spectral space, when scaled in outer units. We
also consider the effects of rotation on modes with varying speed (i.e. modes that are
localized in regions of varying mean shear), and provide suggestions for modelling
the nonlinear forcing term.

Key words: rotating turbulence, turbulence simulation, turbulence theory

1. Introduction
Turbulent flows in rotating systems are of great practical importance in industrial

applications involving turbomachinery. In such flows, system rotation introduces
additional body forces (i.e. Coriolis and centrifugal forces) arising from the
non-inertial reference frame. These additional forces are known to have a substantial
effect on turbulent flow statistics and structure.

The simplest flow in this category is a fully developed channel flow under spanwise
rotation (SR), i.e. where the entire system rotates around the spanwise axis at the
channel centreline. This particular model flow has been studied extensively through
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FIGURE 1. (a) Schematic geometry of SR in a turbulent channel flow. (b) Conceptual
illustration of the resolvent analysis.

both laboratory experiments and numerical simulations. The pioneering experiments
pursued by Johnston, Halleen & Lezius (1972) and direct numerical simulations (DNS)
carried out by Kristoffersen & Andersson (1993) showed that SR induces a number
of important changes relative to canonical turbulent channel flows. For example, the
streamwise mean velocity profile becomes asymmetric across the channel centreline.
In particular, a constant linear slope appears in the mean velocity at the channel
centreline, with a shear rate close to twice the angular velocity of the system rotation.
In other words, the absolute mean vorticity in this region reduces to almost zero.
Further, turbulence intensities are enhanced on the pressure side where the rotation is
in the same direction as the mean flow, and suppressed on the suction side where the
rotation is counter to the mean flow direction (see figure 1a). Finally, large-scale roll
cells emerge in rotating channel flows due to Taylor–Görtler instabilities, and these
roll cells move towards the pressure side with increasing rotation rates.

Building on these early studies, Wu & Kasagi (2004) investigated, using DNS, the
effect of arbitrary system rotation in turbulent channel flows by combining streamwise,
spanwise and wall-normal rotation, and found that SR has the dominant influence.
More recently, Grundestam, Wallin & Johansson (2008) have carried out DNS at much
higher rotation rates compared to those used by Kristoffersen & Andersson (1993).
These simulations show that, while turbulence is initially enhanced on the pressure
side due to system rotation, a further increase in rotation rate leads to turbulence
suppression on the pressure side. Moreover, complete flow laminarization occurs at a
rotation number of Roτ = 2Ωh/uτ 6 180 for friction Reynolds number Reτ = uτh/ν =
180. Note that Ω is the system rotation rate, uτ is the global friction velocity in the
channel, h is the channel half-height and ν is the kinematic viscosity. Subsequent
linear analyses conducted by Wallin, Grudestam & Johansson (2013) show results
consistent with the DNS of Grundestam et al. (2008), and indicate that the critical
rotation number for relaminarization is a monotonic function of Reynolds number. The
success of these analyses also suggests that laminarization in rapidly rotating turbulent
channel flows is dominated by linear mechanisms.

In addition to the studies described above, Yang & Wu (2012) and Xia, Shi &
Chen (2016) have also performed DNS of rotating channel flow at Reτ = 180. Based
on a helical wave decomposition, Yang & Wu (2012) showed that the fluctuation
energy is concentrated in large-scale modes for slow SR (Roτ < 2.5), but shifts
towards smaller scales as the rotation number increases (Roτ > 2.5). For Roτ > 20, the
wavenumber carrying maximum energy is larger than that in the non-rotating channel.
Xia et al. (2016) conducted DNS over a wider range of rotation number compared
to Kristoffersen & Andersson (1993) and Grundestam et al. (2008), providing more
detailed insight into the variation of turbulence statistics with rotation rate.
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In their latest work, Brethouwer (2017) investigated the effect of SR on channel
flow at constant bulk Reynolds number Reb in the range 3000–31 600. The friction
Reynolds number Reτ was allowed to vary with rotation rate. This is in contrast to the
studies mentioned above, which were all carried out for a constant pressure gradient
(i.e. fixed Reτ ). Two-point correlations obtained by Brethouwer (2017) indicated that
the roll cell-like structures that emerge under SR varied considerably with Reb.

The present work seeks to provide further insight into the mechanisms leading to
the changes to turbulent flow structure and statistics described above by conducting
resolvent analysis (McKeon & Sharma 2010) for turbulent channel flow under SR. We
consider the effect of SR on turbulent flow structures on the unstable pressure side
of the channel for a range of rotation rates at both low and high Reynolds number.
Specifically, we generate resolvent-based predictions at Reτ = 180, as considered
in previous DNS, and at Reτ = 2000, which corresponds roughly to conditions
under which the so-called very-large-scale motions (VLSMs) or superstructures
become important. In addition to allowing an exploration at high Reynolds number,
resolvent analysis also allows us to decouple the two different effects that can
influence turbulent flow structure and statistics: the changes in the mean profile
arising from system rotation and the introduction of additional body forces in the
governing equations. Further, this paper also serves to evaluate whether the resolvent
formulation, which has previously been shown to generate useful predictions for
flows with wall-based active control (Luhar, Sharma & McKeon 2014; Nakashima,
Fukagata & Luhar 2017), can account for flows in which the external forcing appears
as a distributed body force (e.g. the Coriolis term in turbulent channel flows with
SR).

The remainder of this paper is organized as follows. In § 2, we review the flow
configuration and governing equations (§ 2.1) and the theoretical formulation for
resolvent analysis (§ 2.2), and provide details of numerical implementation (§ 2.3). In
§ 3, we consider the effect of SR on turbulent flow structures on the pressure side at
Reτ = 180 (§ 3.1) and Reτ = 2000 (§ 3.2), focusing in particular on how the effect of
SR is distributed across spectral space. We provide further discussion of scale effects
and Reynolds number effects in § 3.3, and present concluding remarks in § 4.

2. Analysis method
2.1. Governing equations and flow configuration

As shown schematically in figure 1(a), we consider a fully developed turbulent flow
between two infinite parallel plates under SR with constant angular velocity Ω =
[0 0 Ω]T. The governing Navier–Stokes equations and continuity constraint for this
system can be expressed as

∇ · u= 0,
∂u
∂t
=−∇p− u · ∇u+

1
Reτ
∇

2u− Roτ
Ω

Ω
× u, (2.1a,b)

where u= [u v w]T represents the velocity with u, v and w being the streamwise (x),
wall-normal (y) and spanwise (z) components, p is the pressure and t is the time.
The last term of (2.1) represents the Coriolis force, while the centrifugal force is
absorbed into the pressure term. Here, the variables are made dimensionless using the
channel half-width h and the friction velocity uτ . The superscript + is used to denote
normalization with respect to uτ and the kinematic viscosity ν. The two dimensionless
parameters dictating system behaviour are the rotation number

Roτ =
2Ωh

uτ
(2.2)
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and the friction Reynolds number

Reτ =
uτh
ν
. (2.3)

As noted in § 1, under the SR, the streamwise mean velocity profile becomes
asymmetric and flow in the channel can be divided into two distinct parts: the
pressure side and the suction side. Thus, the friction velocity, which is defined as

uτ =

√
ν

∣∣∣∣dU
dy

∣∣∣∣
wall

(2.4)

for non-rotating channel flows, differs on the pressure and suction sides. The global
friction velocity for rotating channel flow is defined as

uτ =

√
(up
τ )

2
+ (us

τ )
2

2
, (2.5)

where up
τ and us

τ are the local friction velocities on the pressure and suction sides,
respectively.

2.2. Resolvent formulation
The resolvent formulation proposed by McKeon & Sharma (2010) is a systems-level
representation of the governing equations that considers the nonlinear term in the
Fourier-transformed Navier–Stokes equations as a forcing that acts upon the remaining
linear terms to generate velocity and pressure responses across wavenumber–frequency
space (figure 1b). Compared to linear stability analysis, resolvent analysis offers
two key advantages: (i) the nonlinearity is included explicitly in the input–output
system and (ii) resolvent analysis can account for the non-normal lift-up effects (i.e.
the action of the vertical fluctuating velocity on the mean shear) that give rise to
high transient growth, and are responsible for sustaining the dynamically important
near-wall (NW) cycle comprising streaks and streamwise vortices as well as the
VLSMs found further from the wall. Moreover, as discussed below, this non-normal
term is directly modified by the Coriolis force under SR, making resolvent analysis
an ideal candidate for generating low-order models for SR flows.

Over the past five years, a number of studies have demonstrated the utility of
this formulation in predicting coherent structure, turbulence statistics and scaling
behaviour in wall-bounded turbulent flows (e.g. McKeon, Jacobi & Sharma 2013;
Moarref et al. 2013, 2014; Sharma & McKeon 2013). Further, it has been shown
recently that resolvent formulation also has the potential to serve as a powerful
tool that can assess the performance of feedback control schemes for turbulent skin
friction reduction at low computational cost (Luhar et al. 2014; Luhar, Sharma &
McKeon 2015, 2016; Nakashima et al. 2017). The resolvent analysis methodology
described below for rotating flows is an extension of the work by McKeon & Sharma
(2010). Computations for the present study are performed by modifying the code of
Nakashima et al. (2017).

For a fully developed turbulent channel flow, the velocity and pressure fields can
be expressed as a superposition of Fourier modes with streamwise wavenumber kx,
spanwise wavenumber kz and temporal frequency ω:[

u(x, y, z, t)
p(x, y, z, t)

]
=

∫ ∫ ∫
∞

−∞

[
uk(y)
pk(y)

]
ei(kxx+kzz−ωt) dkx dkz dω, (2.6)
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where i = (−1)1/2 and [ukpk]
T
= [ukvkwk pk]

T are complex Fourier coefficients for
the velocity and pressure fields, which vary in the non-homogeneous y direction.
Each wavenumber–frequency combination k = (kx, kz, c = ω/kx) indicates a flow
structure with streamwise wavelength λx= 2π/kx and spanwise wavelength λz= 2π/kz
propagating downstream at speed c. Based on this Fourier transformation, at each k,
the Navier–Stokes equations can be expressed in the following operator-based form:[

uk
pk

]
=

(
−iω

[
I

0

]
−

[
Lk −∇k
∇

T
k 0

])−1 [I
0

]
f k =Hkf k. (2.7)

Here, ∇k = [ikx ∂/∂y ikz]
T and ∇T

k represent the gradient and divergence operators,
and f k = (−u · ∇u)k represents the Fourier transformed nonlinear term.

As noted earlier, the resolvent formulation considers the nonlinear terms to be a
forcing to the linear Navier–Stokes system. The transfer function Hk that translates
this forcing into a velocity and pressure response is known as the resolvent operator.
In (2.7), Lk is the linear operator:

Lk =

−ikxU + Re−1
τ ∇

2
k −(∂U/∂y)+ Roτ 0

−Roτ −ikxU + Re−1
τ ∇

2
k 0

0 0 −ikxU + Re−1
τ ∇

2
k

 , (2.8)

where U(y) represents the mean velocity profile and ∇2
k =−k2

x − (∂
2/∂y2)− k2

z . Note
that the boundary conditions (no-slip in the present case) are implemented in the
resolvent operator itself.

For each k combination, a complete basis in y can be determined using a
singular value decomposition (SVD) of the discretized resolvent operator: Hk =∑

m uk,mσk,mf k,m
∗. The SVD identifies orthonormal sets of unit-energy forcing modes

(f k,m) and unit-energy response modes (uk,m) that are ordered by the corresponding
gains, σk,m. Here, ∗ denotes the complex conjugate. Note that the resolvent is scaled
prior to conducting the SVD to enforce an L2 norm for the velocity response and
forcing modes.

Generally, for k combinations energetic in real flows, the resolvent operator tends
to be of low rank, i.e. the first singular value tends to be much larger than the rest.
In such conditions, the first singular mode (rank-1 mode) is expected to dominate the
turbulent flow field (e.g. McKeon & Sharma 2010). Bear in mind that, per Moarref
et al. (2013), singular values often come in equal pairs for channel flows due to the
wall-normal symmetry (i.e. σk,1 = σk,2� σk,3 = σk,4 > · · ·> 0). One singular value in
the pair corresponds to a mode shape that is symmetric across the centreline while
the other corresponds to a mode shape that is antisymmetric. In this case, one can
restrict analysis to either symmetric or anti-symmetric modes without much loss of
generality. This rank-1 approximation has been shown to yield useful predictions in
recent modelling studies of the effect of wall-based control for skin friction reduction
(Luhar et al. 2014, 2015; Nakashima et al. 2017).

For rotating channel flows, however, the symmetry across the centreline disappears
and the rank-1 approximation needs to be reconsidered. Recall that the mechanism of
energy transfer from the mean flow to the turbulence in wall-bounded flows is via the
non-normal lift-up term, i.e. v(dU/dy). As shown in (2.8), for flows with SR, this term
is modified to v(dU/dy − Roτ ). Since the sign of dU/dy changes from the pressure
side to the suction side of the channel, but the sign of Roτ does not, the symmetry
in energy extraction is broken. The singular values no longer come in equal pairs.
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FIGURE 2. Profile showing wall-normal variation of Reynolds shear stress structure for
resolvent modes resembling the near-wall coherent structure at Reτ = 180: (λ+x , λ

+

z , c+)≈
(103, 102, 10). Black dashed line, non-rotating case; red line, Roτ = 0.1 (rank-1); blue line,
Roτ = 0.1 (rank-2). Also, σk0,1= σk0,2≈ 3.6; σkc,1≈ 4.0; σkc,2≈ 3.3. Here, R(·) denotes the
real component.

Generally, odd-numbered singular values correspond to modes on the pressure side of
the channel, while even-numbered singular values correspond to modes on the suction
side. This is because modes localized on the pressure side are generally more highly
amplified under rotation.

As an example, figure 2 shows the wall-normal variation of Reynolds shear stress
for resolvent modes resembling the dynamically important NW cycle, i.e. structures
with (λ+x , λ

+

z , c+) ≈ (103, 102, 10) at Reτ = 180. The peak amplitude of Reynolds
shear stress for the rank-1 mode under rotation with Roτ = 0.1 (red line) is larger than
that for the non-rotating case (black line) near the lower wall. In contrast, Reynolds
shear stress for the rank-2 mode at Roτ = 0.1 (blue line) is smaller than that for the
non-rotating case near the upper wall. In other words, the NW cycle appears to be
energized on the pressure side and suppressed on the suction side. This result is also
consistent with previous DNS studies for Roτ = 0.1 (e.g. Xia et al. 2016).

For the remainder of this paper, we focus primarily on the amplification or
suppression of turbulent structures on the pressure side. As such, we primarily
consider the rank-1 system of singular values and forcing/response modes from here
onwards, dropping the subscript 1 for convenience, e.g. σk = σk,1.

2.3. Numerical implementation
Table 1 summarizes the range and resolution of the wave parameters utilized in
this study. For discretization in the non-homogeneous wall-normal (y) direction, the
Chebyshev collocation method developed by Weideman & Reddy (2000) is used. The
number of grid points used in the y direction increased from Ny = 100 at Reτ = 180
to Ny = 160 at Reτ = 2000. The number of discretization points in wave speed was
Nc= 200 for the case of Roτ ,180= 3, 8 and Roτ ,2000= 6× 101; other computations are
performed with Nc = 100. Note that Roτ ,180 denotes Roτ at Reτ = 180 and Roτ ,2000
represents that at Reτ = 2000. It has been verified that further refinement of grid
sizes and excluded wavenumber and frequency ranges do not appreciably change the
results presented below. Specifically, the grid number dependency was investigated by
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Reτ Ny Nx Nz Nc y+min λ+x,min λ+x,max λ+z,min λ+z,max U+CL

180 100 31 35 100 or 200 0.09 101 5× 103 101 5× 103 18.0
2000 160 44 41 100 or 200 0.2 101 5× 104 101 2× 104 23.8

TABLE 1. Parameters used for numerical computations. In the wall-normal direction, Ny
Chebyshev collocation points are used. In the streamwise and spanwise direction, Nx and
Nz logarithmically spaced wavelengths are used between λ+min and λ+max in spectral space.
Nc linearly spaced propagating speeds are employed between zero and centreline velocity.
(U+CL: centreline mean velocity).

evaluating the relative change in the singular value ratio σkc/σk0 between the cases
with Nc specified above and 2Nc. As an example, the differences in σkc/σk0 for modes
resembling the NW cycle (Reτ = 180 and 2000) and VLSMs (Reτ = 2000) were less
than 7 % at higher resolutions.

To assess how rotation affects resolvent modes that serve as models for important
turbulent flow features, we use the singular value itself, i.e. the forcing–response gain.
If the singular value in the rotating case decreases relative to that in a non-rotating
channel flow (σkc/σk0 < 1), we expect the mode to be suppressed by the rotation. If
the singular value increases (σkc/σk0 > 1), we expect the mode to be amplified (i.e.
turbulence enhancement). Of course, this indicator neglects the nonlinear interaction
between resolvent modes which generates the forcing. However, previous successes
of analogous rank-1 models for turbulence control (e.g. Nakashima et al. 2017) show
that the change in gain can still provide substantial insight into the problem.

It is worth noting that the mean velocity profile in Hk is obtained from a well-
known turbulent eddy viscosity model (Reynolds & Tiederman 1967) for both the
rotating and non-rotating cases. In other words, we assume exactly the same mean
velocity profile – corresponding to the non-rotating turbulent channel flow – for all
the rotating cases. We recognize this is a weak assumption since the mean velocity
profile in turbulent channel flow with SR is known to become increasingly asymmetric
with rotation. However, this also allows us to decouple the two effects that are likely
to be important in rotating channel flow: the asymmetric change in the mean velocity
profile and the appearance of the Coriolis force. The predictions provided below only
account for the latter effect. Therefore, strictly speaking, the present results are a better
indicator of the initial response of the non-rotating channel flow to the applied rotation
rather than the structure of statistically steady flow under rotation. Despite this, we
show that resolvent analysis is able to reproduce trends observed in previous DNS
reasonably well.

In a sense, this is not too surprising since many previous studies show that the
turbulence adjusts much quicker to the imposition of a body force compared to the
mean velocity profile. Nevertheless, we have also conducted additional analyses with
mean profiles obtained from DNS of rotating channel flow (Xia et al. 2016) at Reτ =
180. The predictions obtained under the true mean velocity obtained from DNS did
not change substantially relative to predictions made using the eddy viscosity model
for Roτ ,180 <O(1). For higher rotation rates, there were quantitative differences in the
distribution of singular values across spectral space, though the overall trends – and
therefore the conclusions drawn below – did not change. A more complete comparison
of predictions made using the eddy viscosity model with those made using the mean
profile from DNS for Reτ = 180 is presented in the Appendix. Note that a similar
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FIGURE 3. Amplification rate of singular value (σkc/σk0)− 1: (a) Roτ ,180 = 1× 10−1; (b)
Roτ ,180 = 3× 100; (c) Roτ ,180 = 7× 100; (d) Roτ ,180 = 4× 101. Cross symbol indicates the
location of (λ+x , λ

+

z ) ≈ (103, 102). A region enclosed by black dashed lines corresponds
to the domain used by the previous DNS studies (Grundestam et al. 2008; Yang & Wu
2012; Xia et al. 2016).

comparison is not possible for Reτ = 2000 since there are no prior DNS data for
rotating channel flow at this Reynolds number.

For further information regarding the resolvent framework as well as similarities and
differences compared to other modal analysis techniques, readers are referred to recent
review articles by McKeon (2017) and Taira et al. (2017).

3. Results and discussion
3.1. Effect of SR at low Reynolds number

In this section, we consider the effect of SR on turbulent flows with the friction
Reynolds number set at Reτ = 180. First, we investigate the effect of SR across
wavenumber space, by assuming broadband forcing in wave speed c, such that each
unit-energy mode is weighted by its singular value. In other words, we predict the
effect of rotation on modes as a function of streamwise and spanwise wavelength by
simply integrating the singular value over all propagation speeds (0< c+6U+CL, where
U+CL is a centreline velocity). Note that, under this broadband forcing assumption, the
resolvent operator, or equivalently the singular value, acts as a filter on what mode
speeds are likely to be dominant in real turbulent flows.

Figure 3 shows predictions for the normalized change in singular value relative to
the non-rotating case for four different rotation rates. For each wavelength combination
(λ+x , λ

+

z ), these plots indicate whether resolvent modes on the pressure side are
amplified (i.e. σkc/σk0 − 1 > 0) or attenuated (i.e. σkc/σk0 − 1 < 0) by rotation. The
region enclosed by black dashed lines corresponds the domain used in the previous
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DNS studies for rotating turbulent channel flow (Grundestam et al. 2008; Yang &
Wu 2012; Xia et al. 2016): (λ+x , λ

+

z ) 6 (4π × 180, 2π × 180). Hereafter, we refer
to this region as the near-wall domain (NWD). Unlike DNS, resolvent analysis is
not limited to small domains due to computation expense and so arbitrarily large
wavelengths can be considered.

Figure 3(a) shows predictions for Roτ ,180 = 1× 10−1, which is the smallest rotation
rate considered in previous DNS studies (Xia et al. 2016). For this low rotation
rate, a region of increased amplification (red shading) appears at large streamwise
wavelengths, λ+x > O(103). This region of increased amplification only marginally
enters into the NWD considered in previous DNS studies, which suggests that such
large-scale modes are unlikely to have been observed in the simulations. As Roτ ,180
increases, the amplified region expands across spectral space. At Roτ ,180 = 3 × 100,
the smallest streamwise length scale of the enhanced region reaches λ+x ≈ 2 × 102

(figure 3b), compared to λ+x ≈ 103 at Roτ ,180 = 1× 10−1. In addition, figure 3(b) also
shows a region of mode suppression (blue shading) at high streamwise wavelengths,
which appears just outside the NWD (i.e. λ+x > 4πh+ ∼ 2 × 103). However, as
Roτ ,180 increases further, the region of mode enhancement in the NWD starts
to diminish, while the region of mode suppression widens. In other words, the
region of mode suppression gradually erodes into the region of mode enhancement
with increasing rotation rate. This progression is clearly evident in figure 3(c),
which shows predictions for Roτ ,180 = 7. Finally, under the rapid rotation with
3 × 101 6 Roτ ,180 < 1.5 × 102, mode enhancement is limited to a very small region
of spectral space which represents relatively long streamwise structures with small
spanwise extent (around λ+x > 102 and λ+z ∼ 101 in figure 3d). For Roτ ,180 > 1.5× 102,
the region of mode enhancement disappears entirely, although not shown here for
brevity.

Note that all of the observations presented above are qualitatively consistent with
previous DNS. For instance, Grundestam et al. (2008) reported that under high
Roτ ,180 > O(10), turbulence is strongly damped by rotation. Significant wall-normal
fluctuations (v′) are only observed in a thin band close to the wall on the pressure
side. Mode shape predictions discussed in the following paragraph suggest that these
wall-normal fluctuations arise from structures corresponding to the highly amplified
streamwise-long and spanwise-short region marked B in figure 3(d). Previous DNS
studies have also reported that the streamwise component, u′, which is dominant in
non-rotating flows, yields the smallest contribution to total turbulent kinetic energy at
high rotation rates (see e.g. Grundestam et al. 2008).

Consistent with the results of Grundestam et al. (2008), the predicted resolvent
mode shapes also suggest that vertical velocity fluctuations tend to be more energetic
than streamwise velocity fluctuations under rapid rotation, i.e. |v| > |u|. Figure 4
shows the wall-normal variation in scaled amplitude of the streamwise velocity
(σkuk, blue) and wall-normal velocity (σkvk, red) on the pressure side for two
representative resolvent modes. Figure 4(a) shows a mode with length and velocity
scales comparable to the NW cycle (λ+x , λ

+

z , c+) ≈ (103, 102, 10) while figure 4(b)
shows a mode from the high-amplified region B in figure 3(d), with length and
velocity scales (λ+x , λ

+

z , c+)≈ (102, 20, 10). Note that the NW-type mode corresponds
to the damped region labelled A in figure 3(d).

As expected, the weighted streamwise and wall-normal velocities for the NW-type
mode are strongly reduced by rotation. This is primarily due to the singular value
for this mode being reduced by more than a factor of 10 under SR. However,
the mode from region B (Mode B) shows very different trends. Compared to the
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FIGURE 4. Amplitude profiles for streamwise velocity (blue) and wall-normal velocity
(red) on the pressure side for: (a) resolvent modes resembling the NW cycle, which are
damped by rotation (σkc/σk0≈ 0.23/3.6); (b) resolvent modes with wavenumber–frequency
combination corresponding to (λ+x , λ

+

z , c+)≈ (102, 20, 10) from the amplified region B in
figure 3(d), with σkc/σk0≈ 0.11/0.099. Dashed lines represent the non-rotating case; solid
lines show predictions for Roτ ,180 = 40.

non-rotating case (dashed lines), the weighted streamwise velocity is suppressed by
rotation while the wall-normal component is amplified (figure 4b). Further, the peak
wall-normal velocity is greater than the peak streamwise velocity (i.e. |vkc| > |ukc|).
These observations indicate that modes which are further amplified under SR tend
to produce larger wall-normal velocity fluctuations, which is consistent with the
Reynolds stresses obtained in previous DNS (Grundestam et al. 2008). Note also that,
for the non-rotating case, the weighted velocity components for the mode resembling
the NW cycle are much larger than those for Mode B. However, under rapid rotation,
Roτ = 40, the weighted velocities for both modes are comparable. In other words,
modes from the amplified region B are expected to be as energetically important as
the NW cycle at high rotation rates.

Figures 5 and 6 show, respectively, the cross-sectional velocity structure for the
NW mode and for Mode B on the pressure side at Reτ = 180. These velocity fields
are computed via an inverse Fourier transform of the response mode, scaled by the
singular value, and they include contributions from both oblique modes (kz > 0 and
kz < 0). Note that these figures show the cross-section where the magnitude of the
streamwise velocity is maximum. Since the resolvent formulation assumes periodic
flow structures, maxima and minima occur at intervals of λ+x /2 in the streamwise
direction. For the mode resembling the NW cycle, high- and low-speed streaks and
counter-rotating streamwise vortices are clearly observed in the non-rotating case
(Figure 5a). At Roτ = 1 (figure 5b), the streaks and streamwise vortices shift towards
the wall and are further amplified. On the other hand, at Roτ = 40 (figure 5c),
the velocity structure corresponding to the NW cycle is significantly suppressed.
As for Mode B, enhancement of cross-sectional velocity is observed at Roτ = 40
(figure 6b) as compared to the non-rotating case (figure 6a). Note that the highly
amplified Mode B is likely distinct from the Taylor–Görtler vortices observed in
previous DNS. The wall-normal velocity distributions averaged over one field and the
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FIGURE 5. Singular value-weighted velocity structure for NW modes at Reτ = 180: (a)
non-rotating; (b) Roτ ,180 = 1; (c) Roτ ,180 = 40. Velocities are normalized by the maximum
value in the non-rotating case.
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FIGURE 6. Singular value-weighted velocity structure for the amplified mode B in
figure 3(d), i.e. (λ+x , λ

+

z , c+)≈ (102, 20, 10): (a) non-rotating; (b) Roτ = 40. Velocities are
normalized by the maximum value in the non-rotating case.

two-point correlations at a similar rotation number (Roτ ≈ 37) shown in Grundestam
et al. (2008) suggest that the spanwise length scale of Taylor–Görtler vortices is
λ+z /h

+
≈ 0.5 and the wall-normal extent is about the channel half-height, which are

significantly greater than those of Mode B.
To provide further insight into the effect of rotation on turbulent flow structure and

energetics, Yang & Wu (2012) conducted DNS at Reτ = 180 and employed a helical
wave decomposition of the stored flow fields. Through this analysis, they evaluated
multiple nonlinear mechanisms leading to energy transfer from the mean flow to
the helical wave modes, as well as the nonlinear transfer of energy arising from
interactions between the helical wave modes. Following notation used by Yang & Wu
(2012), Ti(k) represents these various energy transfer pathways, which are evaluated
from the helical coefficients of the fluctuating velocity and the Lamb-vector, and
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are a function of the absolute wavenumber k. Also, T2 represents the mechanism by
which the fluctuating flow extracts energy from the mean flow field and T1 denotes
how this extracted energy is redistributed among different modes. The term we want
to focus on here is T3, which reflects energy transfer between fluctuating modes
(i.e. mode–mode interactions responsible for the forcing in the resolvent formulation).
Yang & Wu (2012) defined the nonlinear energy flux arising from this mechanism
as Π(K)=

∑
k>K

T3(k), which represents the energy flux through wavenumber K
for all modes with k>K. When this flux is positive, energy is transfered from large
scales to small scales, and vice versa. For small rotation rates, 0.1 6 Roτ 6 10, only
positive fluxes were observed by Yang & Wu (2012), and the peak value of this
flux was larger than in the non-rotating case. However, the peak value of this energy
flux decreased above Roτ > 20. Further, negative fluxes were observed for Roτ > 20,
suggesting the presence of an inverse energy cascade at high rotation rates, and these
negative fluxes extended to higher wavenumbers (i.e. smaller length scales) as the
rotation number increased.

The results obtained by Yang & Wu (2012) suggest the following interpretation
for the present resolvent-based predictions. The distribution of (σkc/σk0) − 1 across
spectral space for Roτ ,180 = 4 × 101 in figure 3(d) shows that there is a gradient in
amplification – a surrogate for energy in the present analysis – from small scales
to large scales, i.e. from the amplified region labelled B to the suppressed region
labelled A. We hypothesize that when there is a substantial difference in energy
content between neighbouring modes, or structures with similar length scales, energy
is redistributed from energetic modes to less energetic modes. Although the direction
and rate of energy transfer can only be evaluated by DNS, this hypothesis is supported
by the work of Gomez et al. (2016a,b), who demonstrated that the nonlinear forcing
in the resolvent formulation works to redistribute energy from high-gain modes to
low-gain modes. Based on this hypothesis, figure 3(d) suggests the presence of an
inverse energy cascade for Roτ ,180 = 4× 101. On the other hand, for low Roτ ,180 6 3,
increased amplification is only observed around large-scale modes with length scales
comparable to the NW cycle in the NWD (see figure 3a,b). This suggests that the
usual energy cascade persists, and energy transfer from large scales to small scales
is augmented by the SR at these low rotation numbers.

Of course, one should bear in mind that the present analysis does not explicitly
account for the nonlinear interactions responsible for this energy transfer (i.e.
mode–mode interactions), it merely provides insight into the distribution of energy
amplification across spectral space. However, since the resolvent formulation includes
the nonlinearity as an input or forcing (e.g. McKeon 2017) that appears to redistribute
energy from high-gain modes to low-gain modes (Gomez et al. 2016a,b), the
discussion above (largely supported by the DNS results of Yang & Wu (2012))
suggests that gradients in singular value across spectral space may serve as a useful
starting point for modelling the nonlinear forcing.

Up to now, we have discussed the effect of rotation across the entire spectral space.
Hereafter, we investigate the mode corresponding to the NW cycle in more detail.
It is well known that the dynamics and energetics of low-Reynolds-number wall
turbulence are dominated by the NW cycle comprising streaks and quasi-streamwise
vortices. These coherent structures have streamwise length and spanwise spacing
of approximately 103 and 102 viscous units, respectively. Therefore, we next focus
on how rotation affects modes with length scales comparable to the NW cycle:
(λ+x , λ

+

z ) ≈ (103, 102). Previous studies have shown that resolvent modes with these
length scales are structurally similar to the NW cycle, exhibiting the presence of
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FIGURE 7. Ratio of rotating to non-rotating case of singular value σkc/σk0 as a function
of (a) Roτ ,180 and (b) Roτ/Reτ . Black circle, Reτ = 180; red cross, Reτ = 2000. Each panel
considers modes with length scales comparable to the NW cycle.

counter-rotating quasi-streamwise vortices as well as periodic streaks (Luhar et al.
2014; Nakashima et al. 2017). As before, the results discussed below correspond to
integrals over all c+, assuming broadband forcing.

Figure 7(a) shows how the rotation rate, Roτ ,180, affects the singular value ratio,
σkc/σk0, for modes resembling the NW cycle. Initially, the singular value ratio
increases monotonically with increasing rotation. Maximum amplification is observed
at Roτ ,180 = 3. Above this threshold, the ratio starts to decrease and the modes
are suppressed relative to the non-rotating case for Roτ ,180 > 9. Note that these
resolvent-based predictions are quantitatively consistent with previous DNS results.
Specifically, Yang & Wu (2012) reported that the helical wave energy spectrum
exhibited a peak in the low wavenumber range corresponding to the NW cycle at
Roτ ,180= 2.5. For the lower and higher rotation rates considered in DNS, Roτ ,180= 1.0
and 5.0, the peak value of the energy spectrum decreased and moved to higher
wavenumbers. Similarly, figure 7(a) shows that the amplification of modes with
length scales comparable to the NW cycle is higher at Roτ ,180 = 2.5 compared to
that at Roτ ,180 = 1.0 and Roτ ,180 = 5.0. Yang & Wu (2012) also reported that the
magnitude of the peak in the helical energy spectrum was smaller that for the
non-rotating case for rotation rates Roτ ,180 > 30. Further, DNS results obtained by Xia
et al. (2016) show that the peak values of the Reynolds shear stress and turbulent
kinetic energy are smaller than those for the non-rotating case for Roτ ,180 > 80 and
Roτ ,180 > 100, respectively. For SR with Roτ ,180 > 30, resolvent analysis predicts
that modes resembling the NW cycle are suppressed substantially (σkc/σk0 < 0.3;
see figure 7a). This suppression of the NW cycle partially explains the suppressed
statistics observed in previous studies.

The series of a posteriori observations presented in this section confirm that
resolvent analysis is able to qualitatively and quantitatively predict the effect of
SR on turbulent channel flow at low Reynolds number (Reτ = 180). This holds
despite important simplifying assumptions regarding the mean velocity profile and the
distribution of nonlinear forcing across spectral space.

3.2. Effect of SR at high Reynolds number
One of the key advantages of resolvent analysis is low computational expense, which
is relatively independent of Reynolds number. This enables prediction at much higher
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FIGURE 8. Amplification rate of singular value (σkc/σk0)− 1: (a,b) Roτ ≈ 1× 100; (c,d)
Roτ ≈ 3× 101; (a,c) Reτ = 180; (b,d) Reτ = 2000. Fine black dashed lines indicate scales
with a wavelength h+. Cross symbols indicate the length scales comparable to the NW
cycle and VLSMs, respectively.

Reτ . As a result, in this section, we generate resolvent-based predictions for how
rotation affects turbulent flows at Reτ = 2000. In particular, we compare these results
with those obtained at Reτ = 180, and provide some insight into Reynolds number
scaling.

Figure 8 shows predictions for the normalized change in singular value relative to
the non-rotating case as a function of streamwise and spanwise wavelength for both
Reτ = 180 (figure 8a,c) and Reτ = 2000 (figure 8b,d). The fine black dashed lines
in the figure indicate wavelengths corresponding to h+ = Reτ . The + symbols in the
figure indicate length scales comparable to the NW cycle, which is dominant at low
Reynolds number, and the VLSMs, which are known to become increasingly important
at higher Reynolds numbers (λ+x ≈ 6h+ = 1.2 × 104 and λ+z ≈ 0.6h+ = 1.2 × 103;
see e.g. Hutchins & Marusic 2007). Note that the entire region shown in these plots
corresponds approximately to domain sizes employed in previous DNS studies at these
Reynolds numbers: the NWD at Reτ = 180, and (λ+x , λ

+

z ) 6 (8πh+, 3πh+) ≈ (5 ×
104, 2 × 104) at Reτ = 2000 (Lee & Moser 2015; Brethouwer 2017). Hereafter, we
refer to the spectral region corresponding to these high-Reynolds-number simulations
(λ+x , λ

+

z )6 (5× 104, 2× 104) as the large-scale domain.
Figure 8 shows some interesting features. First, for fixed rotation number Roτ , the

effects of SR at different friction Reynolds number appear to be similar when scaled
in outer units, i.e. the changes in amplification across spectral space appear similar
for outer-normalized wavelengths λ+x /h

+ and λ+z /h
+. This suggests the presence of
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some self-similarity across Reynolds number in rotating channel flows, which needs to
be evaluated further. The above observation also means that rotation at fixed Roτ has
different effects on the NW cycle, which scales in inner units, at different Reynolds
number. For low rotation rates, Roτ ≈ 1× 100, the NW cycle is strengthened at Reτ =
180 but essentially unaffected at Reτ = 2000 (figure 8a,b). For higher rotation rates,
Roτ ≈ 3 × 101, the structures are suppressed by rotation at Reτ = 180 but strongly
amplified at Reτ = 2000 (figure 8c,d). Finally, rotation rate has a non-monotonic effect
on VLSM-type modes at Reτ = 2000. Similar to observations for the NW modes at
Reτ = 180, the VLSMs are further amplified due to rotation at Roτ ,2000= 1 (figure 8b)
and suppressed at Roτ ,2000 = 30 (figure 8d).

It is not possible to directly compare the present resolvent-based predictions for
VLSMs with DNS, since no DNS is currently available for such high Reynolds and
rotation numbers. However, there is some support for these predictions in the DNS
results obtained by Brethouwer (2017) at constant flow rate with Reb= 20 000 (Reτ =
1000 for non-rotating case). Specifically, Brethouwer (2017) clearly observed energetic
wide and long structures at Roτ ≈ 3, but not at Roτ ≈ 30. This is broadly consistent
with the present resolvent-based predictions, despite the differences in flow conditions.

Next we focus on the effect of rotation on modes resembling the NW cycle at
different rotation and Reynolds numbers. Figure 7(b) shows the ratio of singular
values for the rotating case relative to the non-rotating case as a function of Roτ/Reτ .
In general, there is close correspondence between the black symbols, which show
predictions for Reτ =180, and the red symbols, which show predictions for Reτ =2000.
This suggests that the influence of rotation on the NW cycle scales depends primarily
on the ratio Roτ/Reτ . This dimensionless parameter can also be expressed as

Roτ
Reτ
=

2Ωh/uτ
uτh/ν

=
2Ω

u2
τ/ν
=

2Ω
(dU/dy)wall

∼
(Angular velocity)
(Mean wall shear)

. (3.1)

Equation (3.1) suggests that the effect of SR on the NW cycle depends on the ratio
of angular velocity to the mean shear at the wall. Since the NW cycle is thought to
scale purely with inner units, the velocity fluctuations associated with these structures
scale as uτ while the wall-normal distance scales as ν/uτ . As a result, the mean shear
at the wall, (dU/dy)wall = u2

τ/ν, also determines the shear associated with the NW
cycle. Thus, collapse of the singular value ratios with Roτ/Reτ simply suggests that
the effect of SR on the NW cycle depends on the ratio of angular velocity to the shear
associated with these structures. As Reτ increases, so does the friction velocity and the
shear associated with the NW cycle. This increase in shear means that larger rotation
rates, Roτ , are required for a similar effect. One should keep in mind that over the
range 10−2 6 Roτ/Reτ < 3× 10−2, the singular value ratio σkc/σk0 for Reτ = 2000 is
smaller than that for Reτ = 180 (figure 7b). This issue is discussed further in § 3.3.

The above discussion can also be framed in terms of time scales or frequencies.
The expression shown in (3.1) essentially represents the rotation rate normalized by
inner units, Roτ/Reτ = 2Ων/u2

τ = 2Ω+. The frequency associated with the NW cycle
is expected to scale with inner units, as ω+NW = 2πc+/λ+x ≈ 6 × 10−2. With this in
mind, the results shown in figure 7(b) suggest that it is the relative magnitude of
Ω+ and ω+NW that dictates how SR affects the NW cycle. The NW cycle is damped
substantially once Roτ/Reτ > O(10−2), or Ω+�ω+NW .

The expression shown in (3.1) is similar in form to the well-known stability
parameter for flows under SR:

S=−
2Ω

dU/dy
, (3.2)
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which represents the ratio of vorticity induced by the rotation to vorticity associated
with the mean shear. Previous theoretical studies and DNS results have shown that
turbulence is damped when S > 0 or S < −1, and amplified when −1 < S < 0 (e.g.
Tritton 1992; Brethouwer 2005). On the pressure side, the mean shear is expected
to remain positive dU/dy> 0, and so the stability parameter S is negative while the
parameter shown in (3.1) is positive. Thus, the non-monotonic behaviour observed
in previous studies for S< 0 is consistent with the predictions in figure 7(b), which
show amplification at low Roτ/Reτ and suppression at higher values. However, even
though the parameters shown in (3.1) and (3.2) reflect similar physical effects, they
are not identical. As discussed above, Roτ/Reτ essentially represents the rotation
rate normalized in viscous units. Note also that the ratio of angular frequency to
mean shear essentially reflects the relative magnitudes of the two contributions to the
modified non-normal term, (dU/dy − Roτ ) in (2.8), which is responsible for energy
transfer to the fluctuations.

The collapse of NW singular value ratios as a function of Roτ/Reτ also explains
some of the results shown in figures 3 and 8. For example, figure 8(b), which
corresponds to Roτ ,2000 = 1.1 × 100 (Roτ/Reτ = 5.5 × 10−4), shows similar behaviour
in the NWD to figure 3(a), which considers a similar Roτ/Reτ ratio at Reτ = 180.
However, there is a large region of enhanced amplification around length scales
comparable to the VLSMs in the larger domain considered at high Reynolds number.
These trends suggests that the low inner-normalized rotation rate Roτ/Reτ ≈ 5× 10−4

has little impact on NW coherent structures. However, the same rotation rate has a
strong amplifying effect on larger-scale turbulent structures found further from the
wall, where the mean shear is lower. These larger-scale structures also have lower
inner-normalized frequencies, with ω+VLSM ≈ 8 × 10−3 at Reτ = 2000. Figure 8(d)
also shows that for higher rotation rates, Roτ ,2000 = 3.3 × 101, which corresponds
to Roτ/Reτ = 1.6 × 10−2, the spectral region around modes resembling the VLSMs
is suppressed, while the spectral region around modes resembling the NW cycle is
enhanced. Since ω+VLSM < 1.6× 10−2 <ω+NW , this observation suggests that the relative
ratio of the inner-normalized rotation rate Roτ/Reτ and mode frequency dictates
whether the turbulent structure under consideration is suppressed or amplified.

Note that the collapse as a function of Roτ/Reτ is not perfect across Reynolds
number. For instance, the region of enhanced amplification in the NWD at Roτ/Reτ =
1.6 × 10−2 shown in figure 8(d) for Reτ = 2000 looks smaller than that shown in
figure 3(b) for a similar Roτ/Reτ at Reτ = 180. This Reynolds number dependence
is discussed further in § 3.3.

To provide further insight into the effect of SR on turbulent structures with varying
frequency, we consider resolvent modes with length scale comparable to the NW
cycle, but varying propagation speed. Figure 9(a) shows the singular values for
such modes at Reτ = 2000 as a function of propagation speed c+ ranging from
0 to the centreline velocity U+CL ≈ 23.8. Singular values for the non-rotating case
(black line) confirm that the broadband forcing assumption does not weigh all
propagating components equally: only modes with speeds in the range 8 6 c+ 6 20
show substantial amplification (i.e. σk > 0.2σk,max). This wave speed range corresponds
to inner-normalized frequencies ω+ ≈ 0.05–0.13. The lowest rotation rate considered
Roτ/Reτ = 5.5 × 10−4 (blue line) does not have a substantial influence on these
modes, which is likely due to the sufficiently large separation between rotation rate
and mode frequency. At slightly higher rotation rates, Roτ/Reτ = 2.5 × 10−3 (green
line), the energetic modes appear to be further amplified. For the highest rotation rate
considered, Roτ/Reτ = 1.6× 10−2, resolvent modes are highly amplified in the range
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FIGURE 9. (a) Singular values for the non-rotating (black line) and rotating cases
(coloured lines) at Reτ = 2000. Blue line, Roτ/Reτ = 5.5 × 10−4; green line, Roτ/Reτ =
2.5× 10−3; red line, Roτ/Reτ = 1.6× 10−2. The figure considers modes with length scales
comparable to the NW cycle. (b,c) Singular value ratios as a function of streamwise and
spanwise wavelength at Roτ ,2000 = 3.3 × 101 (Roτ/Reτ = 1.6 × 10−2): (b) integrated over
wave speed 0 6 c+ < 16; (c) integrated over wave speed 16 6 c+ 6 U+CL.

11 6 c+ < 17 and maximum amplification is observed at c+ ≈ 15. Note that modes
with speed c+ > 17 appear to be suppressed marginally at this high rotation rate.

For wavelengths comparable to the NW cycle, previous studies interpret slower
modes with speed c+ 6 10 as being attached to the wall (McKeon & Sharma 2010;
McKeon et al. 2013). This is because the wall-normal location of these slow-moving
modes does not change substantially with propagation speed. However, modes with
faster propagation speeds (c+ > 10) are regarded as critical modes because the
location of the peak mode amplitude traces the local mean velocity, i.e. the response
mode peaks near the critical layer yc where U+(y+c ) ≈ c+. Luhar et al. (2014)
and Nakashima et al. (2017) showed that wall-based active control (e.g. involving
blowing and suction) can affect slower-moving attached modes but not necessarily
high-speed modes with a limited near-wall footprint. In contrast, the present results
suggest that rotation has a markedly different effect. Despite the fact that body force
arising from Coriolis effects is present across the entire channel, rotation has a more
pronounced effect on high-speed critical modes compared to low-speed attached
modes. Specifically, attached eddies are damped and become much less dominant at
Roτ/Reτ = 1.6× 10−2 (Roτ = 33). This observation is consistent with the DNS result
of Brethouwer (2017), who deduced from energy spectra at Reτ = 544 and Roτ = 33.1
that attached eddies are much less prominent in very rapidly rotating wall-bounded
flows.

3.3. Discussion of Reynolds number effects
Finally, we consider Reynolds number effects. It should be noted again that the present
analysis does not account for the modification in the mean velocity profile. Therefore,
the Reynolds number effects discussed here are also more representative of the initial
response of a non-rotating channel flow to the applied rotation. Based on the form
of the resolvent operator and the self-similar nature of the turbulent mean velocity
profile in the inner region of the flow, Moarref et al. (2013) showed that resolvent
modes with c+ 6 16 (i.e. modes with critical layers at or below y+c ≈ 100) can be
considered universal inner region modes. Moarref et al. (2013) also showed that these
modes scale purely with inner units, and account for the vast majority of near-wall
turbulence intensity at all Reynolds numbers.
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FIGURE 10. Ratio of rotating to non-rotating case of singular value σkc/σk0 as a function
of Roτ/Reτ : cross, Reτ = 2000 integrating singular value over 0 6 c+ 6 U+CL; red dashed
line, Reτ = 2000 integrating singular value over 06 c+< 16; blue dashed line, Reτ = 2000
integrating singular value over 16 6 c+ 6 U+CL. The figure considers modes with length
scales comparable to the NW cycle.

Thus far, we have considered all propagating modes in the range 0< c+6U+CL. As
shown in the table 1, U+CL is 18 at Reτ = 180, while U+CL ≈ 24 at Reτ = 2000. This
suggests that the low-Reynolds-number case with Reτ = 180 focuses primarily on the
universal inner region modes, while the high Reτ case also accounts for other modes,
with critical layers far above y+c ≈ 100. With this in mind, it is instructive to consider
the effect of rotation on modes with c+6 16 and c+> 16 separately at high Reynolds
number.

Figure 9(b) shows the change in singular values under rotation at Roτ ,2000=3.3×101

(Roτ/Reτ = 1.6× 10−2) integrating contributions purely from the inner region modes
with 0 < c+ < 16, while figure 9(c) integrates contributions from faster modes with
16 6 c+ 6 U+CL. Figure 9(b) shows broadly similar trends to the predictions shown
in figure 8(d), which includes contributions from all modes (i.e. with 0< c+ <U+CL);
however, there is a much more limited region of mode suppression in the NWD. In
contrast, figure 9(c) shows that faster moving modes with 166 c+6U+CL are primarily
suppressed by rotation both inside and outside the NWD considered in low-Reynolds-
number DNS. Further, note that the behaviour inside the NWD observed in figure 9(b)
is consistent with the low Reτ case with similar Roτ/Reτ shown in figure 3(b). A
comparison of isocontours from figures 3(b) and 9(b) verifies that the region of mode
amplification in the NWD matches closely across the two different cases despite the
substantial difference in Reynolds number.

Taken together, the observations presented above suggest that the slight decrease
in singular value ratios observed in figure 7(b) at Reτ = 2000 compared to Reτ =
180 can be attributed to contributions from faster-moving modes with c+> 16. These
faster-moving modes are more prevalent at high Reynolds number and, as shown in
figure 9(c), rotation primarily serves to suppress such structures. Suppression of these
faster modes also explains the differences in mode amplification across spectral space
observed from Reτ = 180 (figure 3b) to Reτ = 2000 (figure 8d) at identical Roτ/Reτ .

Finally, figure 10 shows σkc/σk0 as a function of Roτ/Reτ for resolvent modes with
length scale comparable to the NW cycle, separating contributions from slower-moving
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inner-region modes and faster-moving outer modes. Similar to figure 7(b), the cross
markers show predictions for Reτ = 2000 integrating singular values over the entire
range 0 < c+ 6 U+CL. The integrated contribution to σkc/σk0 from the slower-moving
inner-region modes (red line, c+ 6 16) is similar to the total contribution represented
by the crosses. However, the degree of amplification is slightly larger over rotation
rates 7 × 10−3 < Roτ/Reτ < 3 × 10−2. Further, the greatest increase in amplification
for this inner-region contribution occurs near Roτ/Reτ = 1.6 × 10−2. In contrast, the
integrated contribution to σkc/σk0 from the faster-moving outer modes (blue line, c+>
16) peaks at Roτ/Reτ ≈ 7.8 × 10−3, and decreases for Roτ/Reτ > 1.6 × 10−2. These
observations provide further support to the hypothesis that the effect of rotation on
inner-region modes does not vary across Reτ . At both Reynolds numbers considered
here, Reτ = 180 and 2000, these inner-region modes are further amplified by rotation
when Roτ/Reτ ∼ O(10−2). Instead, the Reynolds number effects observed in earlier
sections can be attributed to contributions from faster-moving outer modes, which are
suppressed as the rotation rate increases above Roτ/Reτ > 1.6× 10−2.

Note that, in actual rotating channel flows, the mean velocity profile in the outer
layer is linear and follows dU/dy≈ 2Ω . This suggests the response of the large-scale
outer modes is less affected by the Reynolds number, and may depend primarily on
the rotation rate. Since modifications in the mean velocity profile are not considered
in the present study, the present results may show a stronger Reynolds effect for the
large-scale outer modes.

4. Concluding remarks
This paper shows that the resolvent analysis serves as a powerful tool for the

study of SR turbulent channel flow. The formulation employed in this study only
considers the effect of the Coriolis force, and neglects the asymmetric change to the
mean velocity profile relative to the non-rotating case. Despite this, resolvent analysis
reproduces a number of important qualitative and quantitative features observed in
previous DNS, and provides useful insight into Reynolds number scaling.

Consideration of mode amplification and suppression across spectral space for a
wide range of rotation numbers Roτ = 10−1–150 at low Reynolds number, Reτ =
180, corresponding to previous DNS (Grundestam et al. 2008; Yang & Wu 2012; Xia
et al. 2016) suggests the following trends. For low rotation number, Roτ ∼ 10−1, there
is a region of mode enhancement for large streamwise wavelengths (λ+x > O(103);
figure 3a). As the rotation number increases, this region of mode enhancement extends
to lower wavelengths. For Roτ > 4, a region of mode suppression emerges for large-
scale modes, and this suppressed region widens with increasing rotation rate, and
erodes the enhanced region discussed above. These trends are further strengthened
under rapid rotation. For Roτ > 30, mode enhancement is only observed in a thin band
of spectra space corresponding to structures that are short in the spanwise direction
(λ+z < 50; figure 3d). These resolvent-based predictions are generally consistent with
DNS observations of wavenumber spectra. In addition, the predicted structure modes
that are highly amplified under strong rotation indicate that the wall-normal component
of velocity, which is enhanced by rotation, tends to be larger than the streamwise
component, which is attenuated by rotation. This change in mode structure relative
to the non-rotating case, in which the streamwise component of velocity tends to be
dominant, is also consistent with observations from previous DNS (e.g. Grundestam
et al. 2008).

One of the weaknesses of the current formulation is that the nonlinear terms are
treated as a broadband forcing, with unit energy in the direction of the most amplified
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forcing mode at all wavenumber–frequency combinations. While this assumption
provides useful insight into the flow physics, it cannot quantitatively reproduce
turbulence statistics and spectra (Moarref et al. 2013, 2014). We hypothesize that
when there is a substantial difference in singular values, which is an indicator of
energetic content, between neighbouring modes, energy is redistributed from the
more energetic mode to the less energetic mode. Under this hypothesis, the spectral
predictions discussed above imply the presence of an inverse energy cascade at high
rotation rates, which is similar to observations made by Yang & Wu (2012). This
hypothesis also suggests that the gradient in singular value across spectral space may
serve as a concise first step for modelling the nonlinearity.

Focusing specifically on resolvent modes resembling the energetic NW cycle,
the present analysis shows that the rotation numbers corresponding to maximum
amplification (Roτ = 3) and suppression (Roτ > 20) of singular value are quantitatively
consistent with previous DNS.

We also generate resolvent-based predictions for rotating turbulent channel flows at
higher Reynolds number Reτ = 2000, where the effect of VLSMs begins to appear
in non-rotating flows. A comparison across Reynolds numbers shows that the effect
of SR across spectral space, when scaled in outer-units, may be similar for fixed
Roτ . This suggests the presence of some self-similarity across Reynolds number
in rotating turbulent channel flows, which needs to be evaluated further. For fixed
rotation number, Roτ , the effect of SR on modes resembling the NW cycle does
change with Reynolds number, Reτ . However, the singular value ratios at all rotation
and Reynolds numbers collapse together when the rotation rate is normalized in
inner-units, i.e. Roτ/Reτ = 2Ω+. Further, a comparison of time scales suggests that
the NW cycle is damped when Ω+�ω+NW .

Finally, we also considered modes with fixed streamwise and spanwise wavelengths
corresponding to the NW cycle, but summing together contributions across all mode
speeds 0 6 c+ 6 U+CL at different Reynolds numbers. In this case, the collapse as a
function of inner-normalized rotation rate 10−2 6 Roτ/Reτ = 2Ω+ < 3 × 10−2 was
not complete. The singular value ratios for Reτ = 2000 were smaller than that for
Reτ = 180. We conclude that this difference is due to the fact that SR at fixed Ω+

has differing effects on modes of varying speed. In particular, faster-moving modes
localized far from the wall (i.e. localized in regions of lower mean shear) are more
likely to be damped at these low rotation rates compared to slower-moving modes
found closer to the wall, in regions of higher mean shear. Since damped faster-moving
modes are more prevalent at high Reynolds number, the singular value ratio summing
together contributions from all modes is lower at Reτ = 2000. To demonstrate this
effect quantitatively, we separated the effect of SR on modes with c+> 16 (i.e. modes
with critical layer above y+c ≈ 100) and c+ 6 16 (i.e. modes with critical layer at or
below y+c ≈ 100). The effect of rotation on the slower-moving modes was found to be
nearly identical at both Reynolds numbers.
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FIGURE 11. Normalized change of singular values relative to the non-rotating case
(σkc/σk0)− 1: (a,b) Roτ = 1; (c,d) Roτ = 10; (e,f ) Roτ = 20; (a,c,e) using the RT model
to predict mean velocities for both rotating and non-rotating cases; (b,d,f ) using the RT
model for the non-rotating case and DNS data for rotating cases. The spectral region
covered is approximately equal to the NWD.

Appendix

As a preliminary sensitivity analysis, this appendix compares resolvent-based
predictions obtained using the mean velocity profile computed from the Reynolds
and Tiederman eddy viscosity model (RT model) against resolvent-based predictions
obtained using mean profiles from DNS of rotating channel flow at Reτ = 180 (Xia
et al. 2016).

Figure 11 shows the normalized change in singular values for rotating channel flow
relative to the non-rotating case at Reτ = 180: (σkc/σk0) − 1. Figure 11(a,c,e) shows
results obtained using the RT model for both rotating and non-rotating cases, while
figure 11(b,d,f ) shows results obtained using the RT model for the non-rotating case
and DNS profiles for rotating cases. At each rotation number, the overall trend is
similar in both scenarios, though there are important qualitative differences. As an
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FIGURE 12. Relationship between Roτ and (σkc/σk0). Black circles show predictions
obtained using the RT model for both non-rotating and rotating cases. Red crosses show
predictions obtained using the RT model for the non-rotating case and DNS data for
rotating cases.

example, at Roτ =1, the amplified region (red) in figure 11(a) for λ+z '300 is replaced
by a region of suppression (blue) in figure 11(b).

For a more quantitative evaluation of these differences, we focus on modes
resembling the NW cycle, i.e. the modes with (λ+x , λ

+

z , c+)≈ (103, 102, 10) considered
in § 3.1. Figure 12 shows the effect of the rotation rate, Roτ , on the singular value
ratio, (σkc/σk0). The black circles in figure 12 are the same as those in figure 7(a),
while the red crosses show predictions obtained using mean profiles from DNS. For
the DNS profile-based predictions (red crosses), the singular value ratio initially
increases monotonically with increasing rotation number; maximum amplification is
observed at Roτ = 1. For Roτ > 2.5, the singular value ratio decreases monotonically,
indicating that the NW modes are suppressed relative to the non-rotating case. These
trends are again qualitatively consistent with the RT model-based predictions (black
circles). However, there are some important differences: at Roτ ≈ 2.5, the black circles
show very high amplification, while the red crosses indicate suppression. Interestingly,
the model-based predictions show better agreement with the DNS results of Yang &
Wu (2012) discussed in § 3.1.

Nevertheless, the results presented in this appendix suggest that resolvent analysis
does not show extreme sensitivity to the mean profile when it comes to qualitative
trends (e.g. the effect of rotation rates). However, there are local differences in mode
amplification or suppression across spectral space.
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