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Abstract

The evolution of a high-density electron beam in the field of a super-intense laser pulse is considered. The one-dimensional
(1D) theory for the description of interaction, taking into account the space-charge forces of the beam, is developed, and
exact solutions for the equations of motion of the electrons are found. It was shown that the length of the high-density
electron beam increases slowly in time after initial compression of the beam by the laser pulse as opposed to the low-
density electron beam case, where the length is constant on average. Also, for the high-density electron beam, the
sharp peak frozen into the density distribution can appear in addition to a microbunching, which is characteristic for a
low-density electron beam in a super-intense laser field. Characteristic parameters for the evolution of the electron
beam are calculated by an example of a step-like envelope of the laser pulse. Comparison with 1D particle-in-cell
simulations shows adequacy of the derived theory. The considered issue is very important for a special two-pulse
realization of a Thomson scattering scheme, where one high-intensity laser pulse is used for acceleration, compression
and microbunching of the electron beam, and the other probe counter-streaming laser pulse is used for scattering with
frequency up-shifting and amplitude enhancement.

Keywords: Laser-plasma interaction; Microbunching of electron beams; Super-intense laser pulse; Ultrashort electron
beams

1. INTRODUCTION

Laser generation of ultrashort particle beams is currently
a topic of very intense research and has experienced much
progress during recent years (Koyama et al., 2006;
Lifschitz et al., 2006; Sakai et al., 2006; Zhou et al., 2007;
Flippo et al., 2007; Gupta & Suk 2007; Karmakar &
Pukhov 2007) because such beams can be very important
for many applications. For example, the ultrashort energetic
electron beams can be used for injection purposes in accel-
erators (Umstadter et al., 1996; Reitsma et al., 2001), in fem-
tosecond physics and chemistry (Barbara et al., 1994;
Crowell et al., 2004), for generation of bright ultrashort
X-ray pulses through Thomson backscattering of a probe
laser pulse (Esarey et al., 1993), in technological appli-
cations, and in many other fields. Besides, engineering of

an ultrashort electron beam with a predefined internal
structure (i.e., the beam having fast longitudinal density
modulation, which is called microbunching) can be interest-
ing for application in free-electron lasers (Marshall, 1985;
Brau, 1990; Saldin et al., 1999), where the microbunching
is an inherent feature vitally important for functioning of
the device.

Due to progress in super-intense lasers during the last
decade (Danson et al., 2005; Neumayer et al., 2005,
Zvorykin et al., 2007; Kalashnikov et al., 2007; Canova
et al., 2007), high-density electron beams with linear dimen-
sions of 10–20 mm became available in laboratories by using
table-top laser-plasma accelerators (Mangles et al., 2004;
Geddes et al., 2004; Faure et al., 2004; Hafz et al., 2007).
Such a high-density electron beam can be additionally accel-
erated, compressed, and microbunched by a field of another
super-intense laser pulse to improve the properties of the
electron beam (Kulagin et al., 2006a, 2006b).
Alternatively, ordinary electron beams can be used for accel-
eration, compression, and microbunching by a super-intense
laser pulse. After that, these preprocessed electron beams can
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be effectively utilized, e.g., for Thomson backscattering of a
probe counter-streaming laser pulse with frequency
up-shifting and amplitude enhancement (Cherepenin &
Kulagin, 2004; Kulagin et al., 2004a, 2004b). These two-
pulse methods allow in principle to control all parameters
of the converted electromagnetic pulse in a full extent
(duration, frequency, shape of an envelope, carrier-envelope
phase, etc.) in contrast with the case of one-pulse method of
over critical plasma excitation (Baeva et al., 2007), or with
the case of free electron lasers (Saldin et al., 2008), where
it is not easy to change these parameters. In the two-pulse
generation scheme, coherent properties of the electron
beam directly influence the statistics of the generated high-
frequency radiation. Therefore, an investigation of the
dynamic behavior of the dense electron beam in the field
of a high-intensity laser pulse is a very important issue,
and we address it in this paper.

Having in mind the above mentioned application for the
dense electron beam, one can define the differences of our
problem from the usual study of the electron beams: high
density of the beam, large energy spread of the electrons
(sometimes reaching 100%), relatively short (with respect
to the ordinary electron beams) propagation distance, for
which the parameters of the electron beam should be calcu-
lated (for backscattering, the evolution time of the beam on
the order of 0.3–0.5 ps is more than enough so that the
required maximal propagation distance of the beam is less
than 0.15 mm), and last, permanent action of an ultrastrong
electromagnetic wave on the electron beam during evolution.
Therefore, several analytic and numeric algorithms (Reiser,
1994; Lapostolle et al., 1996; Wangler, 1998; Fubiani
et al., 2006) used so far for description of the electron
beam evolution in the presence of the space-charge forces
can be hardly applied to our case.

For a dense electron beam interacting with an ultraintense
laser pulse, two extreme cases are possible. In the first case
(case 1 below), the electromagnetic wave gives only small
modification to the dynamics of the electron beam evolving
under the space-charge forces. In the second case (case 2),
which is considered below in details, the space-charge
forces can be considered as a small perturbation (at least,
within some initial interval of time) to the electron beam
dynamics in the field of an ultraintense electromagnetic
wave. The limiting situation of this second case, when space-
charge forces and radiation of the electrons can be entirely
omitted, was considered earlier (Kulagin et al., 2006a;
Kulagin et al., 2006b), and the solutions for the electron
motion in a given laser field were utilized to study the evol-
ution of low-density electron beams in the field of ultrain-
tense laser pulses. It was shown that the laser pulse front
compresses and accelerates the electron beam, and induces
a density wave inside the beam producing characteristic
microbunching. This spatial structure can be supported
without change during all time of interaction. However, it
is not evident beforehand, what value of the electron
density for the electron beam with a certain initial length

can be considered as low in our particular problem,
besides, if the density is not low, then how will the dynamics
of the electrons in a laser field be modified by the space-
charge forces of the electron beam, and what new effects
can arise? In this paper, the answers to these questions are
presented.

The paper is organized as follows: the one-dimensional
(1D) mathematical model with equations of motion for the
electrons and exact analytical solutions to these equations
are specified in Section 2. In Section 3, the characteristic par-
ameters for the evolution of the high-density electron beam
are investigated by an example of the laser pulse with a step-
like envelope acting on the initially nonrelativistic electron
beam. The analytical expression for the length of the electron
beam as a function of time is derived. Taking into account the
space-charge forces in the high-density electron beam results
in a slow longitudinal spreading of the beam with corre-
sponding decrease of an average electron density. However,
the microbunching is still present here, and during the evol-
ution, the total number of humps in the beam increases. In
Section 4, the analytical expression for the longitudinal
density profile of the electron beam as a function of time
is derived and compared with the results of the 1D particle-
in-cell (PIC) simulations showing good agreement. Also
here, the other difference from the vanishingly low electron
beam density case is revealed: it is the presence of a very
short and very high frozen density peak in the front side of
the electron beam (side illuminated with the laser pulse),
which originates from the modulation of initial counter-
velocities of the electrons that are accelerated by the space-
charge forces. In Section 5, discussion of the results is
presented and conclusions are derived.

2. MATHEMATICAL MODEL AND EQUATIONS
OF MOTION FOR THE ELECTRONS

For description of the interaction of an intense laser pulse
with an electron beam, a 1D model is used below.
Formally, this model can be applicable in cases, where all
variables depend only on one coordinate and time, i.e., diam-
eters of laser and electron beams are infinite. In reality, 1D
model can also be useful for a quasi-1D character of inter-
action of a laser pulse with an electron beam, when variables
change along the transverse coordinates much slowly than
along the longitudinal coordinate. For this case, a laser
spot size and an electron beam diameter should be much
larger than longitudinal (along the laser beam axis) dimen-
sions of the electron medium (for example, this situation is
realized quite well in laser pulse interaction with solid nano-
films (Kulagin et al., 2007a); for high-density electron beams
from laser-plasma accelerators, the requirement for quasi-1D
character of interaction can be fulfilled if the laser spot is
larger than 20–30 mm).

The laser pulse is modeled below by a plane electromag-
netic wave with amplitude E0, frequency v, and wave vector
k(k ¼ v/c), which is running along the z axis and is linearly
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polarized with only Ey ¼ E0ey non-zero component. The
electron beam is modeled by a set of parallel electron sheets
(ESs) each labeled by its initial position Z0e (Lagrangian
description). Each ES has infinite dimensions in x- and
y-directions, besides, the motion of the ESs is assumed to be
plane-parallel (one of the ESs is shown in Fig. 1).

Let us first consider only one ES. Charge and current den-
sities for it are r(z, t) ¼ sd[z2Z(t)] and j(z, t) ¼ sv(t)d[z 2

Z(t)], where s is the surface charge density, v and Z are the
velocity and the coordinate of the ES. Then, formal solutions
to the Maxwell’s equations for the fields of the ES at coordi-
nate z and time t can be obtained with the help of Green func-
tion and have the form (Il’in et al., 1999; Kulagin et al.,
2004b; Kulagin et al., 2007b)

Eze(z, t) ¼ 2ps sign[z� Z(t0)],

E?e(z, t) ¼ �2ps
~b?(t0)

1� bz(t0) sign[z� Z(t0)]
,

He(z, t) ¼
2ps sign[z� Z(t0)][~b?(t0)� ez]

1� bz(t0) sign[z� Z(t0)]
,

(1)

where ~b ¼ v/c, c is the velocity of light in vacuum, E?e ¼

Exeex þ Eyeey, v? ¼ vxex þ vyey, and t0 is the retarded time

c(t � t0) ¼ jz� Z(t0)j: (2)

Eq. (1) describe the field of an infinite ES, in which case the
field components Eze and E?e can be interpreted as the longi-
tudinal (Coulomb) field and the radiation field of the sheet,
respectively.

The total fields of the electron beam can be considered as
the sum of the fields of all ESs calculated in accordance with
Eqs. (1) and (2) with proper time and space variables. In a
general case, the total field can be calculated only numeri-
cally (Kulagin et al., 2007b). However, if the longitudinal
dimension of the electron beam after compression (Kulagin
et al., 2006a; 2006b) is not very small (not less than the
laser wavelength), a coherent part of the electron beam radi-
ation in the laser field greatly reduces (Kulagin et al., 2007b),
and the radiation reaction force due to E?e can be omitted in
the model. This condition is fulfilled if the laser amplitude
is not very high to compress the initial electron beam into
a bunch with the length much smaller than the laser wave-
length. Therefore, only static Coulomb forces due to Eze

can be accounted for in the model (we will call this a
Coulomb interaction below). For initially very thin targets
such as foils, this approximation is not valid, and both com-
ponents of the field for the ESs should be considered
(Cherepenin & Kulagin, 2004; Kulagin et al., 2004b).

When calculating the Coulomb interaction between the
ESs below, we suppose that there are no intersections of tra-
jectories Z(t) of the ESs (none of the ESs overtakes the other
ES, and the numbers of the ESs on the left and the right sides
of a particular ES are constants in time). Then, the Coulomb
force between each ES and other ESs can also be considered
as constant in time. The equations of motion for the elec-
trons, which belong to the ES with initial coordinate Z0e,
have the following form:

dpy

dt
¼ eEy 1�

pz

mcg

� �
,

dpz

dt
¼

eEypy

mcg
þ 2pn0e2(2Z0e � l),

dg

dt
¼

eEypy

m2c2g
þ 2pn0e2(2Z0e � l)

pz

m2c2g
,

dZ

dt
¼

pz

mg
,

(3)

where py and pz are the transversal and the longitudinal
momenta of the electron, e and m are the charge and the
rest mass of an electron, n0 and l are the initial density and
the initial length of the electron beam, and g2 ¼ 1 þ py

2/
(mc)2

þ pz
2/(mc)2. In Eq. (3), we suppose that initial coordi-

nate for the left end of the electron beam is Z0e ¼ 0 and, for
the right end, it is Z0e ¼ l (other configurations can be con-
sidered on the similar basis).

Below, it is convenient to use normalized momenta
py/(mc)! py and pz/(mc)! pz. When the density of the
electron beam is vanishing, n0! 0, and the field of an elec-
tromagnetic wave is the only present, the value

k(t) ¼ g(t)� pz(t) (4)

is invariant and is equal to unity for the electrons with the
zero initial momenta (Landau & Lifshitz, 1975). In our
case, the Coulomb forces are also present in the model,Fig. 1. Geometry of the model.
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however, as we supposed, they give only some correction
to the motion of the electrons in the ultraintense electro-
magnetic wave (cf. case 2 of the Introduction) so again
it is convenient to transfer to the variable k, which will
be a slowly varying variable, instead of g and pz, whose
variations are fast. Then, introducing a new independent
variable

u(Z0e, t) ¼ vt � kZ(Z0e, t), (5)

which is different for the different ESs, one has the fol-
lowing equations of motion for the electrons with the
initial coordinate Z0e

dpy

du
¼ �a0ey(u),

dk

du
¼ n(kl� 2kZ0e),

d(kZ)
du
¼

1þ p2
y

2k2
�

1
2

,

(6)

where a0 ¼ jejE0/(mcv), n ¼ vp
2/(2v2) ¼ n0rel

2/(2p),
vp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pn0e2=m

p
is the characteristic plasma frequency, re

and l are the classical radius of an electron and the laser
wavelength correspondingly. Also, the variable g and the
longitudinal momentum pz can be defined from the usual
expressions

g ¼ (1þ p2
y þ k2)=(2k),

pz ¼ (1þ p2
y � k2)=(2k): (7)

General solutions to Eqs. (3) and (6) have the following
parametric form

py(u) ¼ py0 �

ðu
u0

a0(u 0)ey(u 0)du 0,

k(u) ¼ k0 þ n(kl� 2kZ0e)u,

kZ(u) ¼ kZ0e þ

ðu
u0

[1þ p2
y (u 0)]du 0=[2k2(u 0)]� u=2,

vt ¼ uþ kZ(u),

(8)

where u0 ¼ vt0 2 kZ0e, py0 and k0 are the initial values at the
initial moment of time t ¼ t0 for the transversal momentum
py and the parameter k, which depend on the initial position
Z0e of the electron and can be different for the electrons
belonging to the different ESs.

From Eqs. (6) and (8), one can conclude that the motion of
the central ES with the coordinate Z0e ¼ l/2 have no pertur-
bation due to the Coulomb forces, so this ES is moving just as
in the given field of the electromagnetic wave only, and
k(u) ¼ k0. Besides, the outermost ESs feel the maximal
Coulomb force, which is defined by all electrons in the elec-
tron beam and is proportional to a parameter a (Vshivkov

et al., 1998; Kulagin et al., 2004b)

a ¼ nkl ¼ p
v2

p

v2

l

l
: (9)

The parameter k for the most left electrons is increasing with
u according to equation kl ¼ kl0 þ au, and, for the most right
electrons, it is decreasing, kr ¼ kr0 2 au. For the first
glance, for some value of u, the parameter kr can become
equal to zero, giving the divergence for pz and g. However,
it can be verified that this value of u cannot be achieved
for any finite time t.

General solutions (8) are valid for both cases 1 and 2 con-
sidered in the Introduction. The electron momentum py has a
period up ¼ 2p. If, during this time, a change in k is small
enough, i.e., 2pa ,, k0 then the Coulomb forces give only
some perturbation for the dynamics of the electron beam in
the given external electromagnetic wave, and case 2 is rea-
lized. In the opposite situation, the dynamics of the electrons
will be defined primarily by the Coulomb forces (case 1 in
the Introduction). It is necessary to note, that parameter a

depends not only on the density n0 of the electron beam,
but on the total length (l ) of the beam also, so even in a
long low-density electron beam, the Coulomb forces can be
important (this conclusion is true if the 1D model is appli-
cable, i.e., the diameter of the beam is considerably larger
than its length). Below, only case 2 with 2pa ,, k0 will
be considered. For k0 ’ 1 and l ¼ 10 mm, this condition cor-
responds to n ,, 2.5�1023 and n0 ,, 5.5.1018cm23.

3. CHARACTERISTIC PARAMETERS OF THE
ELECTRON BEAM EVOLUTION FOR THE
STEP-LIKE ENVELOPE OF THE LASER PULSE

3.1. Solutions for Equations of Motion for Initially
Nonrelativistic Electron Beam

To study the characteristics of a dense electron beam evol-
ution and to demonstrate the capabilities of the theory, it is
useful to consider one of the simplest form for the laser
pulse envelope, e.g., a step-like envelope, where the integral
for py can be calculated analytically (smooth envelope cases
can be considered on the similar basis using Eq. (8)). Also,
we will suppose initially nonrelativistic electron beam,
which most prominently demonstrates the peculiarities of
the evolution of the dense electron beam in the super-intense
laser field (non-zero initial momenta for py and px lead
only to the changes in numbers due to electron mass
scaling and leave the qualitative results intact). Let us
assume that the front of the laser beam touches the
electron beam at point Z0e ¼ 0 when vt ¼ 0. Then, the
laser field is Ey(u) ¼ E0 sin u for u � 0 and zero for u , 0,
and for the transversal momentum py, one has for u � 0
from Eq. (8)

py(u) ¼ a0( cos u� 1), (10)
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and py ¼ 0 for u , 0, if the zero initial value is supposed for
py. It is convenient to consider the evolution of the electron
beam in two intervals, u , 0 and u . 0, separately. Laser
pulse need some time to reach the ES with the initial coordi-
nate Z0e. During this time, this ES will move due to the space-
charge (static Coulomb) forces, so when the laser pulse
reaches it, this ES will have the following parameters of
motion, which are the solutions of Eq. (3) with the zero
amplitude of the electromagnetic field

kZin ¼ kZ0e{1þ [1þ n(kl� 2kZ0e)kZ0e]�1}=2,

kin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ [n(kl� 2kZ0e)kZin]2

p
þ n(kl� 2kZ0e)kZin ¼ 1þ n(kl� 2kZ0e)kZ0e,

(11)

where akl , 1, and zero value for the initial longitudinal
momentum pz is supposed (k0 ¼ 1). The values kin and kZin

are just the initial values for the evolution of the electron
beam in the field of the laser pulse, and with this values as
initial, the parameter u0 in Eq. (8) should be considered as
zero. Then, equation for the coordinate Z can be split into two
equations for slow Zs and fast Zf parts according to the formulas

d(kZs)
du
¼

1þ 3a2
0=2

2[kin þ n(kl� 2kZ0e)u]2 �
1
2

,

d(kZf )
du
¼ a2

0
cos 2u� 4 cos u

4[kin þ n(kl� 2kZ0e)u]2 (12)

with correspondent solutions

kZs ¼ kZin þ
(1þ 3a2

0=2)u
2kin[kin þ n(kl� 2kZ0e)u]

�
u

2
,

kZf ¼ a2
0

sin 2u� 8 sin u

8[kin þ n(kl� 2kZ0e)u]2

þ a2
0n(kl� 2kZ0e)

1� cos 2uþ 16( cos u� 1)

8[kin þ n(kl� 2kZ0e)u]3 ,

(13)

where the solution for Zf is correct up to the first order in
n(kl 2 2kZ0e) (cf. 2pa ¼ 2pnkl ,, k0 and kin � k0 ¼ 1).

From Eq. (13), one can conclude that jZfj ,, Zs for not
very small values of u. Then, the slow evolution of the elec-
tron beam can be evaluated only using Zs, and the transition
from parameter u to the time vt becomes simple

vt ¼ kZin þ
u

2
1þ

(1þ 3a2
0=2)

kin(kin þ n(kl� 2kZ0e)u)

� �
: (14)

From the first equation of the system (12), one can con-
clude that the coordinate of the electron with the initial
coordinate Z0e � l/2 will increase infinitely, while the elec-
trons with the initial coordinates Z0e , l/2 will turn back at
point

utb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3a2

0=2
p

� kin

n(kl� 2kZ0e)
, (15)

or, for laboratory time,

vttb ¼ kZin þ
1� k2

in þ 3a2
0=2

2kinn(kl� 2kZ0e)
: (16)

At this moment, the coordinate Z will have the value

kZtb ¼ kZin þ
(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3a2

0=2
p

� kin)2

2kinn(kl� 2kZ0e)
, (17)

and, for a0 .. 1 supposed below, it is about kZin þ 3a0
2/

[4kinn(kl 2 2kZ0e)]. So the most left ES (Zin ¼ Z0e ¼ 0,
kin ¼ 1) will turn first at

uce ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3a2

0=2
p

� 1
a

’ a0

a

ffiffiffi
3
2

r
,

vtce ¼
3a2

0

4a
,

(18)

and this value of vt can be considered as a time of coherent
evolution for the beam. Actually, after the turning of the
most left ES, electrons in the beam will move away with
relativistic velocity so the total beam cannot be considered
as a single whole (however, major part of the ESs continues
to move relativistically at this time, so a truncated electron
beam can still be used). The maximal coordinate of the
most left ES is

kZlmax ¼
(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3a2

0=2
p

� 1)2

2a
’ 3a2

0

4a
: (19)

Also, the most left ES returns to its initial point with the
coordinate Z0 ¼ 0 at the moment

ur ¼ vtr ¼
3a2

0

2a
: (20)

For the vanishingly small density of the electron beam, none
of the ESs will return to the initial position.

3.2. Analysis of the Motion for the ESs

The motion of the ESs in the laser fields with large ampli-
tudes consists of two parts (cf. Fig. 2): a long period of
forward longitudinal movement with a relativistic velocity
and a short period of movement with a small velocity in
forward (for the right ESs) or in backward (for the left
ESs) directions. During this short interval, the ES switches
from one cycle of the laser field to the other. For n0! 0,
the period of time between two successive switches, which
is determined by successive vanishing of py, i.e., for un ¼

2pn and unþ1 ¼ 2p(n þ 1), does not depend on time and
initial coordinate of the ES, and is equal to (Kulagin et al.,
2006a)

vTsw ¼ 2p(1þ 3a2
0=4): (21)
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Hence, the most left and the most right ESs in the electron
beam with vanishingly small density switch within one
cycle of the laser field, so the length of the electron beam
does not grow in average. For the dense electron beam,
this period depends on time. Moreover, Tsw depends also
on the initial coordinate Z0e: it grows for the ESs with the
initial coordinates Z0e . l/2 and decreases for the ESs
with Z0e , l/2. For Z0e ¼ l/2, this period is constant and
is determined by Eq. (21). So, the length of the high-density
electron beam will grow in average. Actually, from Eq. (14),
one has for the times of switching for the most right and the
most left ESs

vtswr ¼ kZinr þ
un

2
þ

un(1þ 3a2
0=2)

2kinr(kinr � aun)
,

vtswl ¼
un

2
þ
un(1þ 3a2

0=2)
2(1þ aun)

, (22)

where one has now from Eq. (11) for the coordinate Zinr and
the parameter kinr:

kZinr ¼ kl[1þ (1� akl)�1]=2,

kinr ¼ 1� akl: (23)

Depending on the values of vtswr and vtswl, the electron
beam can exist either in a single layer (only one hump in
the density distribution along z) or multilayer configurations.
When the multilayer configuration is realized, the number of
full layers in the electron beam at time vt can be defined as
the difference between the numbers of the switchings for the
most left and for the most right ESs, which is given by the

whole part of the value

Nl ¼
ul

2p
�

ur

2p
, (24)

where ur and ul are the corresponding values of u for the most
right and the most left ESs (we suppose that the front of the
laser pulse already reached the most right ES, and all ESs are
in motion, vt � kZinr):

vt ¼ kZinr þ
ur

2
þ

ur(1þ 3a2
0=2)

2kinr(kinr � aur)
,

vt ¼
ul

2
þ
ul(1þ 3a2

0=2)
2(1þ aul)

: (25)

Then, for ur and ul, one has quadratic equations with the fol-
lowing solutions:

ur ¼
4k2

inr(vt � kZinr)

Dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � 8k3

inra(vt � kZinr)
p ,

D ¼ 1þ 3a2
0=2þ k2

inr þ 2kinra(vt � kZinr),

ul ¼
2vt

E þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ 2avt
p ,

E ¼ 1þ 3a2
0=4� avt:

(26)

The length of the electron beam at time t is defined as
lb(t) ¼ Zr(t) 2 Zl(t) ¼ Zr[ur(t)] 2 Zl[ul(t)]. Then from Eq.
(5), one has

lb(t) ¼
ul(t)� ur(t)

2p
l ¼ Nl(t)l: (27)

Fig. 2. (Color online) Trajectories of some ESs of the electron beam in the field of a super-intense laser pulse with the step-like envelope
(a0 ¼ 5): (a) n ¼ 1024 and n0 ¼ 2.2 � 1017 cm23, (b) n ¼ 1025 and n0 ¼ 2.2 � 1016 cm23. In the insets, the zoomed views of the tra-
jectories are shown: (a) multilayer structure of the beam and the third switching of the left ESs; (b) monolayer configuration of the beam
(from vt ’ 470 to vt ’ 490) and switchings—third for the right ESs (below vt ’ 470) and forth for the left ESs (above vt ’ 490).
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So the electron beam in the strong electromagnetic wave can
be imagined as a set of Nl layers each having the same full
length equal to l (may be, barring the boundary layers),
and this length does not depend on time and the initial coor-
dinate Z0e. Actually, such a structure in space is defined by
the electromagnetic wave itself, for which every two neigh-
boring maxima or minima are separated just by the same dis-
tance l.

For not very large time vt long before the turning of the
most left ES (2avt ,, 3a0

2/2, cf. Eqs. (18)), the length of
the electron beam can be estimated from Eq. (26) as

klb(t) ¼
kZinr

1þ 3a2
0=4

1þ
2akinr(vt � kZinr)

1þ k2
inr=ð1þ 3a2

0=2Þ

� �

þ
a(vt)2

(1þ 3a2
0=4)2 þ

4ak3
inr(vt � kZinr)2

(1þ 3a2
0=2þ k2

inr)
2 : (28)

So for vt&kZinr, the initial compression of the electron beam
is defined by very similar formula as for a ¼ 0 case (Kulagin
et al., 2006a), however, the equivalent initial thickness of the
beam now is Zinr, which is greater than Z0e due to the action
of the static Coulomb forces. For the vanishing density of the
electron beam, Zinr ¼ Z0e and Eq. (28) gives exactly the same
value for the length of the beam as in the paper by Kulagin
et al. (2006a).

The single-layer configuration after the nth switching is
possible if vtswl(unþ1) . vtswr(un), which gives the follow-
ing condition for n

An2 þ Bnþ C , 0, (29)

where the coefficients A, B, and C are the following

A ¼ 2pa[(1þ 3a2
0=2)(1þ kinr)� 2pakinr(kZinr=p� 1)],

B ¼ (1� kinr þ 2pa)[(1þ 3a2
0=2)(1þ kinr)

� 2pakinr(kZinr=p� 1)],

C ¼ k2
inr[(kZinr=p� 1)(1þ 2pa)� 1� 3a2

0=2]: (30)

Realization of the single-layer configuration after the nth
switching requires at least an existence of the single-layer con-
figuration after the initial compression of the electron beam.
Then, one has (Kulagin et al., 2006a) kZinr , 2p(1 þ 3a0

2/
4), and the coefficient C is negative, while A and B are posi-
tive. Then, for the maximal value of n, one has

n ¼ (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC
p

� B)=(2A)
h i

, (31)

and [x] means the whole part of x.
In Figure 2, the evolutions of the beams with l ¼ 10 mm

and n ¼ 1024 (a) or n ¼ 1025 (b) are presented (laser
amplitude is a0 ¼ 5, laser wavelength is l ¼ 1 mm).
The initial electron density for the n ¼ 1024 case is
n0 ¼ 2.2�1017 cm23, and for the n ¼ 1025 case, it is
n0 ¼ 2.2�1016 cm23. The trajectories of the ESs in

Figure 2 were calculated with the help of 1D MATLAB
code EXACT (Cherepenin et al., 2001; Kulagin et al.,
2004b, 2007b), which uses the exact expressions for the elec-
tromagnetic fields of the ESs and takes into account self-
consistently the radiation of the electron beam. Also, the
crossings of the trajectories are allowed in the code. In
Figure 2a, the increase due to the static Coulomb forces of
the coordinate of the right ESs before interaction with the
laser pulse is evident (from kZ0e ’ 63 to kZin ¼ 84 for the
most right ESs). For the smaller beam density n ¼ 1025,
the single-layer configuration still exists after the forth
switching of the ESs; for n ¼ 1024, it disappears after the
first switching, and the single-layer configuration exists
here only after the primary compression of the electron
beam (from vt ’ 84 to vt ’ 120). In the inset of
Figure 2a, the multilayer structure of the beam and the
third switching of the left ESs are shown. In the inset of
Figure 2b, the single-layer configuration of the beam after
the third switching is shown (from vt ’ 470 to vt ’ 490),
and also, third switching for the right ESs (below vt ’
470) and forth switching for the left ESs (above vt ’ 490).

Fig. 3. (Color online) The length of the high-density electron beam (with
initial length of 10 mm) as a function of time in the field of a super-intense
laser pulse with the step-like envelope: (a) n ¼ 1024 (n0 ¼ 2.2 �
1017 cm23), (b) n ¼ 1025 (n0 ¼ 2.2 � 1016 cm23), (c) n ¼ 1026 (n0 ¼

2.2.1015 cm23). Solid lines (red online) is for a0 ¼ 10, dash-dotted lines
(green online) is for a0 ¼ 5, and dashed lines (blue online) is for a0 ¼ 3.
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All these switching times, numbers of layers and lengths of
the electron beam coincide rather well with the analytic pre-
dictions from Eqs. (22)–(31).

In Figure 3, the lengths of the electron beam as a functions
of time, which are calculated from Eq. (27), are presented for
different laser pulse amplitudes a0 and initial electron beam
densities n0 (the initial length of the electron beam is
10 mm). From these figures, one can conclude that, if the
time of evolution is not too large (less than 1 ps), the electron
beam with the initial density n0 , 1015 cm23 can be con-
sidered as a low-density beam in the fields of laser pulses
with amplitudes a0 . 3.

4. DENSITY DISTRIBUTION FOR THE DENSE
ELECTRON BEAM

4.1. Analytical Expression for the Density Distribution of
the Electron Beam

Let us now derive analytically the density distribution for
the electron beam. For the constant initial density n0 of
the beam, one has, taking the conservation of charge into
account

n(Z0e, t) ¼ n0
d[kZ(Z0e, t)]

d(kZ0e)

� ��1

: (32)

In our case, the coordinate Z of some ES depends on its initial
coordinate Z0e directly and, also, through the dependence of
u on Z0e. So one has

d[kZ(Z0e, t)]
d(kZ0e)

¼
@[kZ(Z0e, u)]
@(kZ0e)

þ
@[kZ(Z0e, u)]

@u
�

@u

@(kZ0e)

� �
u¼u(Z0e,t)

:

(33)

Expression for @[kZ(Z0e, u)]/@u can be defined from Eq. (6),
and @u/@(kZ0e) can be evaluated from Eq. (5) with the help of
the rule for the differentiation of implicit functions. Then,
one has

d[kZ(Z0e, t)]
d(kZ0e)

¼
@[kZ(Z0e, u)]
@(kZ0e)

�
k(Z0e, u)
g(Z0e, u)

� �
u¼u(Z0e,t)

: (34)

Partial derivative @[kZ(Z0e, u)]/@(kZ0e) can be evaluated
either from Eq. (8) using the rules for the differentiation
of integrals depending on parameters, or, alternatively,
directly from Eq. (13) (which will be different for differ-
ent laser pulse envelopes). For the case of the step-like
envelope of the laser pulse, one can obtain from Eq.
(13) the following equations, which define analytically
the density distribution for the high-density electron

beam interacting with the ultra-intense laser pulse:

n(Z0e, t) ¼
n0(1þ p2

y þ k2)

2k2

�
@[kZs(Z0e, u)]
@(kZ0e)

þ
@[kZf (Z0e, u)]
@(kZ0e)

� ��1

u¼u(Z0e,t)

,

@(kZs)
@(kZ0e)

¼
@(kZin)
@(kZ0e)

�
(1þ 3a2

0=2)u
2kink

�
1
kin
þ

1
k

� �
@kin

@(kZ0e)
�

2nu
k

� �
,

@(kZf )
@(kZ0e)

¼ �a2
0

sin 2u� 8 sin u
4k3

@k

@(kZ0e)

� a2
0n

1� cos2uþ 16(cosu� 1)
8k3

� 2þ
3(kl� 2kZ0e)

k

@k

@(kZ0e)

� �
,

@kin

@(kZ0e)
¼ n(kl� 4kZ0e),

@k

@(kZ0e)
¼

@kin

@(kZ0e)
� 2nu,

@(kZin)
@(kZ0e)

¼ 1�
kin � 1

2kin
�

kZ0e

2k2
in

@kin

@(kZ0e)
:

(35)

4.2. PIC Simulations for the Density Distribution of the
Electron Beam

To verify the predictions of the derived theory for the evolution
of the dense electron beam in the super-intense laser field, the
PIC simulations with the 1D version of the XOOPIC code were
executed. Full details of this object-oriented fully relativistic
PIC code are described by Usui et al. (2000). The main goal
of the PIC simulations was to test the adequacy of the
model, i.e., the possibility for omitting the radiation reaction
force of the electrons and the importance of the supposition
that the trajectories of the ESs do not cross.

In the simulations, the laser pulse had the step-like
envelope with the amplitude a0 ¼ 5 and the wavelength
l ¼ 1 mm. The length of the laser pulse was equal to 20 l

(actually, electron beam evolution will be the same for any
step-like laser pulse with length greater than ’8l for con-
sidered time of interaction of ’0.4 ps since only eight first
laser pulse cycles interact with the electron beam during
this time). In Figures 4 and 5, the electron density distri-
butions inside the laser pulse are presented for different
moments of time. The electron beam before interaction had
the length of l ¼ 10 mm, and two different electron densities,
n0 ¼ 2.2�1017 cm23 (n ¼ 1024) in Figure 4 and n0 ¼ 2.2 �
1016 cm23 (n ¼ 1025) in Figure 5, were utilized. In both
cases, initial velocity of the electrons was equal to zero.
There were 2000 (Fig. 4) or 1100 (Fig. 5) spatial grid
points on the laser wavelength l, and there were 50 macro-
particles in one grid cell. Since the left sharp peaks in the
density distribution are considerably higher than smooth
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peaks to the right, the values for the maximal heights nmax of
the sharp density peaks obtained from the PIC simulation are
indicated in Figure 4 also.

In the same figures, the results of calculations for the
theoretical value of the electron density according to
Eq. (35) are presented. Here, for every initial coordinate
Z0e of the ES (1000 in total), the value for parameter u at
some moment of time, t, was calculated from Eq. (5) using
Eq. (13) for the value of the coordinate (the fast part Zf of
the ES’s coordinate was also taken into account). Then,
these values for u for all ESs were used for plotting the elec-
tron density distribution at this moment of time, t. When the
density from Eq. (35) has negative and positive values sim-
ultaneously in some points Z (many-valued function, cf.
Section 4.3), then for such points, the absolute values of
positive and negative parts of the density distribution were
added to calculate the total density.

From these figures, one can conclude that the theory gives
good agreement with the PIC simulations. There is a small
difference in the positions of the sharp peaks in calculated

Fig. 4. (Color online) Evolution of the electron beam density distribution
(n0 ¼ 2.2.1017 cm23, n ¼ 1024) in the field of an ultra-intense laser pulse
with a step-like envelope and a0 ¼ 5 [black line—theory, grey line (cyan
online)—PIC simulations]. The electron density (in units of the initial
density n0) is presented for different times: vt ’ 57, 138, 258, 377, 591,
748 for (a)–(f). Also, the maximal heights nmax for the sharp density
peaks, obtained in the PIC simulation, are indicated for these times. Note
the different vertical scales for plots (a)– (f).

Fig. 5. (Color online) Same as in Figure 4, but for n0 ¼ 2.2 � 1016 cm23,
n ¼ 1025 [black line—theory, grey line (cyan online)—PIC simulations].
The electron density (in units of the initial density n0) is presented for the
following times: vt ’ 57, 138, 396, 779 for (a)–(d). Note the different
vertical scales for plots (a)–(f).
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and simulated density distributions. This difference oscillates
with time, and its maximal values are about l for n ¼ 1024

and about l/10 for n ¼ 1025 for vt ’ 750 (0.4 ps from
the beginning of interaction). The difference in the positions
of the sharp peaks can be explained by two reasons. The first
reason is the physical one, i.e., the acceleration of the elec-
trons by the radiation reaction force, which is omitted in
the analytical calculations and is present in the PIC simu-
lations. This radiation reaction force accelerates more effec-
tively those electrons, which are incorporated into a very
short bunch with length considerably smaller than the laser
wavelength (Cherepenin et al., 2001; Kulagin et al.,
2004b). Therefore, the position of the sharp simulation
peak changes with respect to the position of the theoretical
peak due to this force, while the positions of the wide
diffuse simulation peaks to the right of the sharp peak are
almost unchanged with respect to their theoretical positions.
The other reason is numerical, i.e., not high enough accuracy
of the PIC simulations. Actually, if one takes 1000 grid
points on the laser wavelength l instead of 2000 (which
was used for simulations in Fig. 4) with other parameters
as in Figure 4, the discrepancy in the positions of calculated
and simulated sharp peaks increases. An excess noise
(around sharp peaks) of the PIC simulations at large times
in Figures 4 and 5 can also be explained by not high
enough accuracy of the PIC simulations (to remove the
noise it is necessary to increase considerably the number of
spatial grid points on the laser wavelength).

4.3. Sharp Density Peak Frozen Into the Density
Distribution of the Electron Beam

There is the sharp peak in the electron density distribution
at the left end of the electron beam, where the laser pulse
strikes first (cf. Figs. 4 and 5). Since the position of this
peak does not change with time with respect to the electron
beam, it can be considered as frozen into the density dis-
tribution. All other peaks are the peaks of the density
wave inside the electron beam (Kulagin et al., 2006a)
defined by the factor g, and they change their position
with time. The position of the frozen peak is defined by
the factor @[kZ(Z0e, u)]/@(kZ0e) in the expression for the
density distribution (34), more precisely, by the points,
where this factor is close (or equal) to zero. To investigate
the conditions for the appearance of the frozen density
peak, let us consider more closely Eq. (35) for the
density distribution in the field of the laser pulse with
the step-like envelope. The height of the density peak
changes slowly with time so the fast part kZf of the coor-
dinate of ESs can be disregarded, and only the slow part
kZs should be analyzed. Then, from the last equation of
the system (35), one can estimate that @(kZin)/@(kZ0e) ’ 1
for reasonable parameters of the electron beam, and the
only term, which can give the divergence of n, is the
term proportional to @kin/@(kZ0e) in @(kZs)/@(kZ0e). This
means that, for the electron beams without initial

modulation of velocity, there will be no frozen peak in
the density distribution. For the dense electron beams,
such a modulation is provided by the space-charge
(Coulomb) forces in the beam. Also, since initial velocity
modulation is strongly dependent on the initial conditions
of the problem, the parameters of the frozen density peak
will be varied for different initial conditions, e.g., will
depend on the presence of focusing forces for the electron
beam, etc. The parameters of the laser pulse front also
influence on the appearance and characteristics of the
sharp density peak.

From the physical point of view, the equality of the deriva-
tive d[kZ(Z0e, t)]/d(kZ0e) to zero, which causes the diver-
gence of the density, means only the crossing of the
trajectories of the ESs, i.e., after some time, two ESs with
different initial coordinates arrive at the same point zcr.
This, of course, does not mean any inconsistency in the
approach since the surface charge density is limited for any
layer with finite length around zcr (the infinity is “integr-
able”). On the other hand, our model and exact solutions
(8) are based on the assumption that there are no crossings
of the trajectories of ESs during evolution of the electron
beam in the super-intense laser pulse. If such crossings
occur then the Coulomb forces for the ESs with the
crossed trajectories are calculated inaccurately, and the
motion of these ESs is reproduced only approximately by
the model. So, strictly speaking, Eq. (8) are valid only for
such parameters of the electron beam and the laser pulse,
for which there are no divergence of the electron beam
density. However, if the number of crossings is not large
(only small part of the trajectories of the ESs crosses), then
Eq. (8) can be considered as the approximate solutions for
those ESs, which suffer the crossings of the trajectories,
and as exact solutions for the other ESs.

To derive approximate conditions for the appearance of
the frozen density peak and the crossings of the trajectories,
let us suppose that k ’ kin ’ 1, that is, reasonable for not
very large values of u. Then, from the second equation of
the system (35), one has

@(kZ)
@(kZ0e)

’ 1� (1þ 3a2
0=2)u(nkl� 4nkZ0e � nu): (36)

The electron beam density will be infinite in the points where
this partial derivative is equal to zero. Then, from quadratic
equation for u, one can estimate two possible solutions

u ¼
1
2

{kl� 4kZ0e +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(kl� 4kZ0e)2 � 4=[n(1þ 3a2

0=2)]
q

}: (37)

The frozen density peak can appear only during interaction
of electromagnetic wave with the dense electron beam; when
the beam evolves freely under the action of the Coulomb
forces only, the density distribution has no sharp peaks. So
for the parameter u, only positive values are possible.
Then, from Eq. (37), one can conclude that kZ0e , kl/4.
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To have real solutions, the determinant should be non-
negative, that gives together with the previous condition
the following inequality kZ0e � kl=4� [2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(1þ 3a2

0=2)
p

]�1,
and the divergence in the density distribution of the electron
beam is possible only for n(kl)2(1 þ 3a0

2/2) ¼ akl(1 þ 3a0
2/

2) � 4.
The crossings of the trajectories begin first for the ESs with

initial coordinates around Z0e ’ 0 (the left ESs, which are
touched first by the laser pulse front). This occurs at

ucr1 ¼ [(1þ 3a2
0=2)a]�1, vtcr1 � (2a)�1, (38)

where (1 þ 3a0
2/2)akl .. 4 is supposed, and for the tran-

sition from u to vt, Eq. (14) is utilized with the same assump-
tions that were used for deriving Eq. (36). Then, at time

ucr2 ¼ kl, vtcr2 � 3kla2
0=4, (39)

the crossings of the trajectories for these ESs will disappear
(however, the frozen density peak will die only when the
condition u .. ucr2 ¼ kl is fulfilled for the left ESs). The
value (39) for ucr2 is less accurate than Eq. (38) for ucr1

since, for such a large time, approximation of k by unity
can be invalid.

The initial coordinate Z0e of the last (the most right) ES,
which still suffer the crossings of the trajectories, is defined
by expression

kZ0max ¼ kl=4� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(1þ 3a2

0=2)
q� ��1

: (40)

The value

kZ0max=kl ¼
1
4
�

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
akl(1þ 3a2

0=2)
p , (41)

gives just the part of the ESs, which outstrips the neighboring
ESs. So in the worst case, this part is about 0.25. The ES with
the initial coordinate kZ0max will suffer the crossing of the tra-
jectories, or, more exactly, touching of the trajectories as long
as ucr1 ¼ ucr2, at time

ut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1þ 3a2

0=2)n
q� ��1

, vtt �

ffiffiffiffiffiffiffi
3a2

0

8n

r
: (42)

It can be checked easily that vtcr1 � vtt � vtcr2 for all para-
meters of the electron beam and the laser pulse.

Let us now make some estimates for the simulated electron
beams with n ¼ 1024 and n ¼ 1025. For the n ¼ 1025 case,
akl(1 þ 3a0

2/2) ’ 1.5 , 4, and there are no crossings of the
trajectories and divergence of the density distribution.
However, the frozen peak still exists, because the value for
akl(1 þ 3a0

2/2) here is comparable with 4. For the n ¼

1024 case, akl(1 þ 3a0
2/2) ’ 15.. 4, and there are the

crossings of the trajectories and the divergence of the
density distribution. The first crossing takes place according

to the estimate (38) at vtcr1 ’ 80, this value from numerical
solutions of Eq. (6) is equal to 88. So in Figure 4a, there are
no crossings of the trajectories. The crossings of the trajec-
tories disappear at vtcr2 ’ 1180 (numerical value is about
950), and the time for the touching of the trajectories by
the ES with the initial coordinate kZ0max ’ 0.12kl is vtt ’
310 (numeric value is about 320). Therefore, in Fig. 4b to
4f, the trajectories are crossed near the left end of the electron
beam, and the analytic expression for the electron beam
density has the divergence here. However, from the calcu-
lations with the self-consistent MATLAB code EXACT
(Cherepenin et al., 2001; Kulagin et al., 2004b, 2007b),
the results for which are presented in Figure 2a, one can con-
clude that all the ESs, which suffer the crossings of the trajec-
tories, stay within the distance of l/10 near the sharp density
peak. In this case, the value, obtained from the PIC simu-
lation for the maximal height hmax of the sharp density
peak, characterizes indirectly the part of the ESs with the
crossed trajectories. So the estimates (38), (39), and (42)
provide the reasonable approximations to the characteristic
time points of the evolution for the frozen density peak.

5. DISCUSSION OF RESULTS AND CONCLUSIONS

The theory, presented above for the interaction of the high-
density electron beam with the super-intense laser pulse,
shows that there are two conditions, which define the charac-
teristics for the evolution of the electron beam. The first con-
dition is applicable to the initial period of motion of the
electrons in the beam, when the laser pulse still have not
reached them. This condition defines whether the space-
charge (Coulomb) forces do or do not play a determinative
role in the evolution of the electrons during this period.
More exactly, when akl ¼ 2p2l2/lp

2 ,, 1, where lp ¼

2pc/vp, or, equivalently, l ,, l p=(p
ffiffiffi
2
p

), the Coulomb
forces do not change significantly the initial coordinates of
the electrons before the laser pulse reaches them, so the elec-
tron beam can be considered as a low-density beam (with
regard to this particular problem of interaction). In the oppo-
site case, when akl.1, the Coulomb forces considerably
change the initial coordinates of the electrons during the
time, required for the laser pulse to reach them (Fig. 2a).

The second condition deals with the crossings of the elec-
tron trajectories resulting in the infinite analytical value for
the electron density in the beam. This occurs when
akl(1 þ 3a0

2/2) � 4. When the crossings of the trajectories
start, some electrons in the electron beam become to partici-
pate in the multi-stream motion. The crossings of the trajec-
tories result in appearance of the sharp high-density peak
frozen into the density distribution at the side of the electron
beam, which is touched first by the laser pulse front. The
characteristics of this sharp density peak strongly depend
on the initial conditions of the motion for the electrons,
i.e., on initial modulation of velocity of the electrons, on
the presence of the focusing forces, etc., and on the para-
meters of the laser pulse front.
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It is necessary to note that both conditions depend not only
on the initial density of the electron beam, but also on its
length. So electron beams with relatively low density but
large length can demonstrate the described effects. The
second condition depends also on the amplitude of
the laser pulse, therefore, for high enough amplitudes, the
sharp peak of the density can appear in the low-density elec-
tron beams.

These sharp peaks in the electron beams can be effectively
used as attosecond electron beams in different applications.
Thus, estimates based on Figures 4 and 5 give the length
of this peaks on the level of several nanometers, which
results in the duration of about several attoseconds. Also,
these sharp peaks can be used for the generation of coherent
X-ray radiation, required in many applications (Barbara et al.,
1994; Crowell et al., 2004).

If the laser pulse will have a smooth front, then the trans-
verse momentum of the electrons will be determined by an
expression different from Eq. (10). However, all parameters
for the electron beam evolution can be easily recalculated
for this case with the help of Eq. (8). Qualitatively, the
main difference for the smooth front will be the other dis-
tance between the layers in the multilayer configuration
- l/2 instead of l for the sharp front (Kulagin et al.,
2006a, 2006b). Spread of initial parameters for the electrons
in the beam due to, e.g., thermal effects, can increase the
sharp peak width. However, for high enough laser pulse
amplitudes and not very large initial electron temperatures,
this effect will be not prominent, at least, in the beginning
of interaction. Note that the microbunching structure of the
electron beam is extremely stable and does not depend on
the thermal properties of the electrons since the microbunch-
ing is defined only by the distribution of the electromagnetic
field in space.

Let us estimate at last some practical laser parameters
required for realization of considered scheme for high-
density electron beam preprocessing. If the longitudinal
dimensions of the electron medium is about 10 mm (that is
inherent for electron beams from laser-plasma accelerators,
and can be achieved for focused ordinary electron beams in
the scheme of perpendicular propagation of electron and
accelerating laser beams) then the laser spot should be not
less than 20 mm. For a0 ¼ 5, this requires the laser power
of 50–100 TW that is easily accessible in experiment.

In summary, the evolution of the high-density electron
beam in the field of the super-intense laser pulse was con-
sidered. The theory for the interaction was developed, and
the exact solutions for the equations of motion of the elec-
trons were found. The main differences of this high-density
electron beam case from the low-density case (Kulagin
et al., 2006a, 2006b) are the slow increase of the electron
beam length in time after initial compression of the beam
and the appearance of the sharp density peak frozen into
the density distribution of the electron beam. Characteristic
parameters for the evolution of the electron beam were calcu-
lated by an example of a step-like envelope of the laser pulse.

Comparison with the 1D PIC simulations shows that, for
akl(1 þ 3a0

2/2) , 4 the theory correctly describes the
density of the electron beam inside the super-intense laser
pulse. In the opposite case, akl(1 þ 3a0

2/2) � 4, the theory
adequately describes the smooth part of the density distri-
bution, where the trajectories of the electrons do not cross
and approximately describe the density distribution around
the sharp density peak, where the crossings of the electron
trajectories exist (multi-stream region).
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