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In this theoretical and numerical paper, we derive the adjoint equations for a
thermo-acoustic system consisting of an infinite-rate chemistry diffusion flame
coupled with duct acoustics. We then calculate the thermo-acoustic system’s linear
global modes (i.e. the frequency/growth rate of oscillations, together with their mode
shapes), and the global modes’ receptivity to species injection, sensitivity to base-state
perturbations and structural sensitivity to advective-velocity perturbations. Some of
these could be found by finite difference calculations but the adjoint analysis is
computationally much cheaper. We then compare these with the Rayleigh index. The
receptivity analysis shows the regions of the flame where open-loop injection of fuel
or oxidizer will have the greatest influence on the thermo-acoustic oscillation. We
find that the flame is most receptive at its tip. The base-state sensitivity analysis
shows the influence of each parameter on the frequency/growth rate. We find
that perturbations to the stoichiometric mixture fraction, the fuel slot width and
the heat-release parameter have most influence, while perturbations to the Péclet
number have the least influence for most of the operating points considered. These
sensitivities oscillate, e.g. positive perturbations to the fuel slot width either stabilizes
or destabilizes the system, depending on the operating point. This analysis reveals that,
as expected from a simple model, the phase delay between velocity and heat-release
fluctuations is the key parameter in determining the sensitivities. It also reveals that
this thermo-acoustic system is exceedingly sensitive to changes in the base state. The
structural-sensitivity analysis shows the influence of perturbations to the advective
flame velocity. The regions of highest sensitivity are around the stoichiometric line
close to the inlet, showing where velocity models need to be most accurate. This
analysis can be extended to more accurate models and is a promising new tool for
the analysis and control of thermo-acoustic oscillations.

Key words: acoustics, combustion, instability control

1. Introduction
In a thermo-acoustic system, heat-release oscillations couple with acoustic pressure

oscillations in a feedback loop. If the heat released by the flame is sufficiently in
phase with the pressure, the acoustic oscillations can grow (Rayleigh 1878), sometimes

† Email address for correspondence: lm547@cam.ac.uk
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238 L. Magri and M. P. Juniper

with detrimental consequences to the performance of the system. These oscillations are
a persistent problem. Their comprehension, prediction and control in the design of gas
turbines and rocket engines are areas of current research, as reviewed by Lieuwen &
Yang (2005) and Culick (2006).

This theoretical and numerical paper examines the linear stability of a thermo-
acoustic system. This system consists of an infinite-rate chemistry diffusion flame
coupled with one-dimensional duct acoustics. The flame is assumed to be compact,
meaning that it excites the acoustics as a pointwise heat source. The heat-release
is given by integration of the non-dimensional sensible enthalpy of the flame,
which is solved in an ad hoc two-dimensional domain. This simple combustor
was originally modelled by Tyagi, Chakravarthy & Sujith (2007a) and Tyagi, Jamadar
& Chakravarthy (2007b) using a finite-difference grid. We use a Galerkin method
for discretization of the flame, however, similar to that of Balasubramanian & Sujith
(2008a). We reformulate the problem with revised equations (Magri et al. 2013) using
a suitably normalized mixture fraction (Peters 1992; Poinsot & Veynante 2005), so
that the flame–acoustic coupled problem is well scaled, as suggested by Illingworth,
Waugh & Juniper (2013). Also, we simulate the temperature discontinuity (or jump)
in the mean flow, which is caused by the heat released by the steady flame. This
temperature jump induces a discontinuous change in the speed of sound, which affects
the thermo-acoustic modes’ frequencies and wavelengths. We model this jump with a
Galerkin method, drawing on the numerical model of Zhao (2012).

The adjoint-based framework that we apply stems from ideas developed for the
analysis of hydrodynamic instability (Hill 1992; Chomaz 2005; Giannetti & Luchini
2007). Hill (1992) and Giannetti & Luchini (2007) examined the flow behind a
cylinder at Re ≈ 50 and used this adjoint-based framework to reveal the region
of the flow that causes von Kármán vortex shedding. Giannetti & Luchini (2007)
also used adjoint methods to calculate the effect that a small control cylinder has
on the growth rate of oscillations, as a function of the control cylinder’s position
downstream of the main cylinder, and compared this with experimental results by
Strykowski & Sreenivasan (1990). This analysis was further developed by Luchini,
Giannetti & Pralits (2008) and Marquet, Sipp & Jacquin (2008), who considered
the cylinder’s effect on the base flow as well, which improved the comparison with
experiments. Adjoint-based techniques have been applied to a large range of fluid
dynamic systems, most of which have been reviewed by Sipp et al. (2010) and
Luchini & Bottaro (2014). Although Chandler et al. (2011) extended this analysis to
low-Mach-number flows for variable density fluids and flames, adjoint equations have
been used only recently in thermo-acoustics. Juniper (2011) used nonlinear adjoint
looping to find the nonlinear optimal states for triggering in a hot-wire Rijke tube.
More recently, Magri & Juniper (2013a,b, 2014) applied adjoint-based sensitivity
analyses to this hot-wire Rijke tube. This paper extends these techniques to the
infinite-rate chemistry diffusion flame coupled with one-dimensional duct acoustics
in order to reveal the most effective ways to change the stability/instability of the
system.

We describe the model in § 2 and the numerical discretization in § 3. The
definition and derivation of the adjoint operator and the general definition of the
sensitivity are in § 4. In § 5 we describe the most unstable mode of oscillation
and interpret its driving mechanism with the Rayleigh Index. We then define
and calculate: (i) the system’s receptivity to open-loop species injection in § 5.3;
(ii) the system’s sensitivity to changes in the combustion parameters in § 5.4, which
are the stoichiometric mixture fraction, Zsto, the fuel slot to duct width ratio, α,
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Fuel-rich

(a) (b)

Oxidizer-rich

FIGURE 1. Schematic of the dimensional thermo-acoustic model (dimensional quantities
are denoted with ˜). In non-dimensional variables (appendix A) the acoustic domain is
[0, 1] and the flame domain [0, Lc] × [−1, 1]. This model is based on the compact-flame
assumption, which means that the acoustic and flame space domains are decoupled.

the Péclet number, Pe, and the heat-release parameter, βT ; (iii) the system’s
structural sensitivity to a generic advection-feedback mechanism in § 5.5. These
results are summarized in the conclusions. Further details about the methods are
summarized in appendices A–D and in the online supplementary material available at
http://dx.doi.org/10.1017/jfm.2014.328.

2. Thermo-acoustic model
The thermo-acoustic model consists of a diffusion flame placed in an acoustic duct

(figure 1). The acoustic waves cause perturbations in the velocity field. In turn, these
cause perturbations to the mixture fraction, which convect down the flame and cause
perturbations in the heat-release rate and the dilatation rate at the flame. The dilatation
described above provides a monopole source of sound, which feeds into the acoustic
energy. We assume that the flame is compact, meaning that the heat release is a
pointwise impulsive forcing term for the acoustics. One limitation of this model is
that the velocity in the flame domain is assumed to be uniform in space. This allows
for convection, as described above, but does not allow for flame wrinkling or pinch-off.
Another limitation is that the infinite rate chemistry does not permit flame blow-off,
which is another source of heat release oscillations at large oscillation amplitudes.
Neither limitation will have much influence on a linear study such as this, however,
because perturbations are infinitesimal and therefore wrinkling, pinch-off and blow-off
will not occur. They would, however, be important for a nonlinear study.

2.1. Acoustic model
We model one-dimensional acoustic velocity and pressure perturbations, u and p, on
top of an inviscid flow with Mach number . 0.1. Under these assumptions, we can
neglect the effect of the mean-flow velocity (see figure 14 in appendix B). The flame
causes discontinuities in the mean-flow density and speed of sound, which we model
with a Galerkin method. The acoustics are governed by the momentum and energy
equations, respectively

ρ
∂u
∂t
+ ∂p
∂x
= 0, (2.1)

∂p
∂t
+ ∂u
∂x
+ ζp− βTQ̇avδ(x− xf )= 0, (2.2)

where ρ, u, p and Q̇av are the non-dimensional density, velocity, pressure and
heat-release rate integrated over the combustion domain. We label these the
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240 L. Magri and M. P. Juniper

direct equations. The characteristic scales used for non-dimensionalization are in
appendix A. The acoustic base-state parameters, which we can control, are ζ , which
is the damping; xf , which is the flame position; and the heat-release parameter,
βT = 1/Tav = 2/(T1 + Tad), where T1 is the reactants’ inlet temperature and Tad is
the adiabatic flame temperature. With the mixture fraction formulation adopted in
this paper (Poinsot & Veynante 2005), Tad = Zsto/2, where Zsto is the stoichiometric
mixture fraction defined afterwards in § 2.2, (2.7). The system (2.1), (2.2) reduces to
the D’Alembert equation when ζ = 0, βT = 0 and ρ is constant

∂2p
∂t2
− 1
ρ

∂2p
∂x2
= 0. (2.3)

The non-dimensional mean-flow density, ρ, is modelled as a discontinuous
function

ρ =
{
ρ1, 0 6 x< xf ,

ρ2, xf < x 6 1.
(2.4)

The densities can be obtained from the temperatures, which are T̃1 in the cold
flow upstream of the flame, 0 6 x < xf , and T̃2 in the hot flow downstream of
the flame, xf < x 6 1, by the first law of thermodynamics and ideal-gas state
equation:

ρ1

ρ2
= T2

T1
= T̃2

T̃1
= 1+

˜̄Q
c̃pT̃1

, (2.5)

where ˜̄Q is the steady heat release, c̃p is the constant-pressure heat capacity and ˜
indicates a dimensional quantity. This has assumed that the mean-flow pressure drop
across the flame is negligible, which is reasonable when γM2

1 and γM2
2 are small (see

e.g. Dowling 1997), where γ is the heat-capacity ratio and M1,M2 are the mean-flow
Mach numbers.

At the ends of the tube, p and ∂u/∂x are both set to zero, which means that
the system cannot dissipate acoustic energy by doing work on the surroundings.
Dissipation and end losses are modelled by the modal damping ζ = c1 j2+ c2 j0.5 used
by Matveev (2003), based on models by Landau & Lifshitz (1987), where j is the jth
acoustic mode and c1, c2 are the constant damping coefficients. The quadratic term
represents the losses at the end of the tube, while the square-rooted term represents
the losses in the viscous/thermal boundary layer.

2.2. Flame model
In the flame domain (right picture of figure 1), the fuel enters the left boundary at
−α6 η6 α and the oxidizer enters the left boundary at −1 6 η6−α and α6 η6 1.
The main assumptions are that: (i) the velocity and density in the flame domain are
uniform; (ii) the Lewis number, defined as the ratio of thermal diffusivity to mass
diffusivity, is 1; (iii) the mass-diffusion coefficients are isotropic and uniform; (iv)
the chemistry is infinitely fast with one-step reaction. We define the mass fraction
to be the mass of a species divided by the total mass of the mixture (kg kg−1).
The fuel mass fraction is labelled Y∗ and the oxidizer mass fraction is X∗. The
stoichiometric mass ratio is s = νXWX/(νYWY), where WX and WY are the molar
masses (kg mole−1) and νX and νY are the stoichiometric coefficients (mole kg−1).
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Receptivity and sensitivity analysis of diffusion flames with acoustics 241

We define a conservative scalar, Z, called the mixture fraction (Peters 1992; Poinsot
& Veynante 2005)

Z ≡ sY∗ − X∗ + X∗i
sY∗i + X∗i

= Y − X + Xi

Xi + Yi
, (2.6)

where X = X∗/(νXWX) and Y = Y∗/(νYWY), and the subscript i refers to properties
evaluated at the inlet.

Earlier definitions of the mixture fraction (Tyagi et al. 2007a; Balasubramanian &
Sujith 2008a; Magri et al. 2013), depended on the absolute value of the fuel mass
fraction, Yi. This dependency has been overcome by defining Z as in (2.6), which
can assume only values between 0 and 1, rendering the non-dimensionalization of the
coupled thermo-acoustic system well scaled. This flame formulation has been used
to characterize the nonlinear thermo-acoustic behaviour of ducted diffusion flames by
Illingworth et al. (2013).

The fuel and oxidizer diffuse into each other and, under the infinite-rate chemistry
assumption, combustion occurs in an infinitely thin region at the stoichiometric
contour, Z = Zsto, where

Zsto = 1
1+ φ , (2.7)

where φ≡Yi/Xi is the equivalence ratio (Poinsot & Veynante 2005, (3.17), p. 86). The
governing equation for Z is derived from the species equations (Tyagi et al. 2007a,b;
Balasubramanian & Sujith 2008a) and, in non-dimensional form, is

∂Z
∂t
+ (1+ uf )

∂Z
∂ξ
− 1

Pe

(
∂2Z
∂ξ 2
+ ∂

2Z
∂η2

)
= 0, (2.8)

where 1 is the non-dimensional mean-flow velocity (see appendix A for the scale
factors used), uf is the acoustic velocity evaluated at the flame location and Pe is
the Péclet number (defined in appendix A). The partial differential equation (2.8)
is parabolic and, when the flame is coupled with acoustics, quasilinear. Dirichlet
boundary conditions are prescribed at the inlet

Z(ξ = 0, η)= 1 if |η|6 α, (2.9)
Z(ξ = 0, η)= 0 if α < |η|6 1. (2.10)

These assume that axial back diffusion at ξ = 0 is negligible, which is a good
assumption for the Péclet numbers we investigate (Magina & Lieuwen 2014).
Neumann boundary conditions are prescribed elsewhere

∂Z
∂η
(ξ, η=±1)= 0, (2.11)

∂Z
∂ξ
(ξ = Lc, η)= 0. (2.12)

These ensure that there is no diffusion across the upper and lower wall of the
combustor, and that Z is uniform at the end of the flame domain.

The variable Z is split into two components, Z = Z̄ + z, in which Z̄ is the steady
solution,

Z̄ = Ȳ − X̄ + Xi

Xi + Yi
= Ȳ − X̄

Xi + Yi
+ Zsto, (2.13)
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242 L. Magri and M. P. Juniper

and z is the unsteady field,

z= y− x
Xi + Yi

. (2.14)

By decomposition (2.13) and (2.14), the mixture-fraction equation (2.8) is split into a
steady and fluctuating part governed by

∂Z̄
∂ξ
− 1

Pe

(
∂2Z̄
∂ξ 2
+ ∂

2Z̄
∂η2

)
= 0, (2.15)

∂z
∂t
− 1

Pe

(
∂2z
∂ξ 2
+ ∂2z
∂η2

)
+ (1+ uf

) ∂z
∂ξ
=−uf

∂Z̄
∂ξ
. (2.16)

The steady field, Z̄, has the same boundary condition as the variable Z, given in (2.9)–
(2.12). Equation (2.15) has an analytical solution (Magri & Juniper 2013a; Magina
et al. 2013), which is reported in appendix C. The unsteady component, z, must satisfy
the Neumann boundary conditions (2.11), (2.12) but must be zero at the inlet, ξ = 0.
In order to linearize (2.16), we assume that z∼ uf ∼O(ε), so that we discard the term
uf ∂z/∂ξ ∼O(ε2), yielding

∂z
∂t
− 1

Pe

(
∂2z
∂ξ 2
+ ∂2z
∂η2

)
+ ∂z
∂ξ
=−uf

∂Z̄
∂ξ
. (2.17)

2.3. Heat-release model
The non-dimensional heat release (rate) is given by the integral of the total derivative
of the non-dimensionalized sensible enthalpy

Q̇=
∫

R

d(Tb − Ti)

dt
dξdη, (2.18)

Tb = Ti + Z̄ + z, if Z < Zsto, (2.19)

Tb = Ti + Zsto

1− Zsto

(
1− Z̄ − z

)
, if Z> Zsto, (2.20)

where R≡ [0, Lc] × [−1, 1] is the flame domain, and Ti is the non-dimensional inlet
temperature of both species. Note that, following the notation used for the acoustics
in § 2.1, Ti≡T1. The value of the steady heat release rate, Q̄, depends on whether the
flame is closed (overventilated), Zsto >α, or open (underventilated), Zsto <α,

Q̄= 2α − 1
1− Zsto

∫ +1

−1
z(Lc, η)dη if Zsto > α, (2.21)

Q̄= 2
(

Zsto

1− Zsto

)
(1− α) if Zsto 6 α. (2.22)

The fluctuating heat release, integrated over the flame domain, is

q̇av ≡ Q̇− Q̄

=
∫ Lc

0

∫ 1

−1

{
Θ(Z > Zsto)

( −Zsto

1− Zsto

)
∂z
∂t
+Θ(Z < Zsto)

∂z
∂t

}
dξ dη+ uf Q̄, (2.23)
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where Θ(Z >Zsto) is one in the fuel side (Z >Zsto) and zero otherwise, and Θ(Z<Zsto)
is one in the oxidizer side (Z< Zsto) and zero otherwise. Numerical calculations show
that the term

∫ +1
−1 z(Lc, η)dη in (2.21) is negligible, being of order ∼10−13. Expression

(2.23) is valid for both closed and open flames. The heat release (2.23) has to be
scaled further in order to be consistent with the non-dimensionlization of the acoustic
energy equation (2.2). Bearing in mind that the dimensional width of the duct is 2H̃
(figure 1) and considering the scale factors in appendix A, then the heat-release term
forcing the acoustic energy equation (2.2) is Q̇av = q̇av/2.

3. Numerical discretization
Both the acoustics and flame are discretized with the Galerkin method. The

partial differential equations (2.1), (2.2), (2.16) are discretized into a set of ordinary
differential equations by choosing a basis that matches the boundary conditions and
the discontinuity condition at the flame. The Galerkin method, which is a weak-form
method, ensures that the error is orthogonal to the chosen basis in the subspace
in which the solution is discretized, so that the solution is an optimal weak-form
solution. The pressure, p, and velocity, u, are expressed by separating the time and
space dependence, as follows

p(x, t) =
K∑

j=1

{
α
(1)
j (t)Ψ

(1)
j (x), 0 6 x< xf ,

α
(2)
j (t)Ψ

(2)
j (x), xf < x 6 1,

(3.1)

u(x, t) =
K∑

j=1

{
η
(1)
j (t)Φ

(1)
j (x), 0 6 x< xf ,

η
(2)
j (t)Φ

(2)
j (x), xf < x 6 1.

(3.2)

The following procedure is applied to find the bases for u and p:

(a) substitute the decomposition (3.1) into (2.3) to find the acoustic pressure
eigenfunctions Ψ (1)

j (x), Ψ (2)
j (x);

(b) substitute the pressure eigenfunctions Ψ
(1)

j (x), Ψ
(2)

j (x) into the momentum
equation (2.1) to find the acoustic velocity eigenfunctions Φ(1)

j (x), Φ(2)
j (x);

(c) impose the jump condition at the discontinuity, for which p(x→ x−f )= p(x→ x+f )
and u(x→ x−f )= u(x→ x+f ) (see e.g. Dowling & Stow 2003), to find the relations
between α(1)j , α(2)j , η(1)j , η(2)j .

Similarly to Zhao (2012), these steps give

p(x, t) =
K∑

j=1


−αj(t) sin

(
ωj
√
ρ1x
)
, 0 6 x< xf ,

−αj(t)
(

sin γj

sin βj

)
sin
(
ωj
√
ρ2(1− x)

)
, xf < x 6 1,

(3.3)

u(x, t) =
K∑

j=1


ηj(t)

1√
ρ1

cos
(
ωj
√
ρ1x
)
, 0 6 x< xf ,

−ηj(t)
1√
ρ2

(
sin γj

sin βj

)
cos
(
ωj
√
ρ2(1− x)

)
, xf < x 6 1.

(3.4)

where
γj ≡ωj

√
ρ1xf , βj ≡ωj

√
ρ2(1− xf ). (3.5a,b)
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Point (c) of the previous procedure provides the equation for the acoustic angular
frequencies ωj

sin βj cos γj + cos βj sin γj

√
ρ1

ρ2
= 0. (3.6)

Note that in the limit ρ1 = ρ2, we recover the Galerkin expansion for a flow with
no discontinuity of the mean properties across the flame (e.g. Balasubramanian &
Sujith 2008a,b). Importantly, in this limit the angular frequencies of the acoustic
eigenfunctions are ωj = jπ (figure 2a). Such a limit is justified when the temperature
jump is sufficiently low, i.e. T2/T1 . 1.5 (Heckl 1988; Dowling & Morgans 2005).
On the other hand, when the temperature jump is higher, as in realistic combustors,
we have to consider the effect of the change of mean properties on the shape
and frequency of oscillations (Dowling 1995). When the discontinuity is high,
i.e. T2/T1 = 5 (Nicoud & Wieczorek 2009), the fundamental angular frequency is
almost 1.6–1.8 times that of the case with no discontinuity, as depicted in figure 2(a).
The quantity Ej in figure 2(b), which originates from the projection of the energy
equation (2.2) along the Galerkin basis (3.1), is physically the acoustic-pressure
energy stored in the jth mode, scaled by 0.5α2

j . The system with no discontinuity has
a constant acoustic pressure energy distribution with no dependence on the acoustic
mode. When the discontinuity is modelled, however, the acoustic-pressure energy
is mode-dependent and always lower (figure 2b) than it is in the system with no
temperature jump. The acoustic modes, which are the basis functions for the Galerkin
method, are markedly affected by the presence of the temperature jump (figure 3).
When the temperature jump is present, the acoustic wavelength rises across the
discontinuity, as inferable from (3.3), (3.4). In addition, the effect that the mean-flow
velocity has on the acoustic angular frequencies is negligible for M1 . 0.1, as reported
in figure 14 in appendix B.

By the Galerkin method, the flame is discretized as

z(ξ , η, t)=
M∑

m=1

N−1∑
n=0

Gn,m(t) cos(nπη) sin
[(

m− 1
2

)
πξ

Lc

]
. (3.7)

Via discretization (3.7), the space resolution of the flame is half the shortest
wavelength, which is Lc/(M − 0.5) in the ξ direction and 1/N in the η direction.
(Although the flame mode n = 0 is necessary to make the basis complete, in our
calculations we noticed that this mode is negligible, having no effect on the system’s
dynamics and stability.)

The state of the discretized system is defined by the amplitudes of the Galerkin
modes that represent the flame, Gn,m, the velocity, ηj, and the pressure, αj. These are
collected in the column vector χ ≡ (G; η; α), where G ≡ (G0,1; G0,2; . . . ; G1,1; . . . ;
GNM,NM); η ≡ (η1; η2; . . . ; ηK); and α ≡ (α1; α2; . . . ; αK). Therefore, the Galerkin-
discretized thermo-acoustic system can be represented in state-space formulation as

M
dχ
dt
= Bχ − uf Aχ, (3.8)

where M , B and A are (NM + 2K)× (NM + 2K) matrices (all of which are invertible,
see the online supplementary material) and χ is the (NM + 2K)× 1 state vector. The
term uf Aχ is the quasilinear term, which is discarded in linear analysis (2.17).

The strength of the Galerkin method is that the system can be expressed in
state-space formulation (3.8). This is particularly useful when the adjoint algorithm is
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FIGURE 2. The effect of the temperature jump on (a) the angular frequency and (b) the
pressure energy of each mode of the undamped acoustic system (with no unsteady heat
source). The flame position is xf = 0.25. The presence of the temperature jump markedly
affects the acoustic frequencies and the modal distribution of the pressure energy.

to be implemented. Other numerical discretizations, such as Chebyshev polynomials
used by Illingworth et al. (2013), are numerically more efficient but make the
implementation of the adjoint problem much more difficult because of the way that
the integration of the heat release is handled. It is worth pointing out that Sayadi
et al. (2013) have developed a new numerical method for the acoustics that, amongst
other things, prevents the Gibbs’ phenomenon across the discontinuity, which arises
with a fine Galerkin discretization of the acoustics (Magri & Juniper 2013b).

4. Adjoint analysis
4.1. Adjoint operator

In this section the adjoint operator is defined. This definition is an extension for
functions (arranged in vector-like notation) over the time domain of the definition
given by Dennery & Krzywicky (1996). Let L be a partial differential operator of
order M acting on the function q(x1, x2, . . . , xK, t), where K is the space dimension,
such that Lq(x1, x2, . . . , xK, t)= 0. We refer to the operator L as the direct operator
and the function q as the direct variable. The adjoint operator L+ and adjoint variable
q+(x1, x2, . . . , xK, t) are defined via the generalized Green’s identity:∫ T

0

〈
q+, Lq

〉− 〈q, L+q+
〉

dt =
∫ T

0

∫
S

K∑
i=1

[
∂

∂xi
Fi
(
q, q+∗

)]
nidSdt

+
∫

V
Q
(
q, q+∗

) |T0 dV, (4.1)
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FIGURE 3. The acoustic eigenfunctions of (a) pressure and (b) velocity with temperature
jump (dashed lines) and without temperature jump (solid lines). The flame position is
xf = 0.25.

where i= 1, 2, . . . , K. Here Fi(q, q+∗), which is referred as the bilinear concomitant
(see e.g. Giannetti & Luchini 2007), and Q

(
q, q+∗

)
, which is a functional, depend

bilinearly on q, q+∗ and their first M− 1 derivatives. The complex-conjugate operation
is labelled by ∗. For brevity, we define 〈a, b〉 ≡ ∫V a∗ · b dV , where a, b are suitably
differentiable vector functions; and the Euclidean scalar product is indicated with the
dot ‘·’. (We choose to define the adjoint equation through an inner product, but any
non-degenerate bilinear form could have been used.) The domain V is enclosed by the
surface S, for which ni are the projections onto the coordinate axis of the unit vector
in the direction of the outward normal to the surface dS. The time interval is T . The
adjoint boundary and initial conditions on the function q+ are defined as those that
make the right-hand side of (4.1) vanish identically on S, t= 0 and t= T .

The adjoint equations can either be derived from the continuous direct equations
and then discretized (CA, discretization of the continuous adjoint) or be derived
directly from the discretized direct equations (DA, discrete adjoint). For the CA
method, the adjoint equations are derived by integrating the continuous direct
equations by parts and then applying the Green’s identity equation (4.1). For the
DA method the adjoint system is the negative Hermitian of the direct system. This
can be obtained algorithmically by reverse routine-calling (Errico 1997; Bewley 2001;
Luchini & Bottaro 2014). In general, the DA method has the same truncation errors
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as the discretized direct system, while the CA method has different truncation errors,
depending on the choice of the numerical discretization (Vogel & Wade 1995; Magri
& Juniper 2013b).

The continuous adjoint equations of the linear thermo-acoustic system, consisting of
(2.1), (2.2), are

∂u+f
∂t
+ ∂p+f
∂x
− z+

∂Z̄
∂ξ
+
(

1
1− Zsto

)
q̇+Q̄= 0, (4.2)

∂u+

∂x
+ ∂p+

∂t
− ζp+ = 0, (4.3)

p+δ(x− xf )− βT q̇+ = 0, (4.4)
∂z+

∂t
+ Ū

∂z+

∂ξ
− 1

Pe

(
∂2z+

∂ξ 2
+ ∂

2z+

∂η2

)
+
(

1
1− Zsto

)
A(Z̄)

∂ q̇+

∂t
= 0, (4.5)

where u+= u+(x, t), p+= p+(x, t) and z+= z+(ξ , η, t). The area enclosed by the steady
stoichiometric line is labelled A(Z̄). The adjoint boundary conditions are

p+ = 0 at x= 0, x= 1, (4.6)
z+ = 0 at ξ = 0, (4.7)

∇z+ · n= 0 at ξ = Lc, η=±1. (4.8)

The adjoint boundary conditions (4.7)–(4.8) are the same as those of the direct
problem, which means that the basis used in (3.7) is suitable for spanning the flame’s
adjoint space.

The adjoint equations govern the evolution of the adjoint variables, which can
be regarded as Lagrange multipliers from a constrained optimization perspective
(Belegundu & Arora 1985; Gunzburger 1997; Giles & Pierce 2000). Therefore, u+
is the Lagrange multiplier of the acoustic momentum equation (2.1), revealing the
spatial distribution of the acoustic system’s sensitivity to a force. Likewise, p+ is the
Lagrange multiplier of the pressure equation (2.2), revealing the spatial distribution
of the acoustic system’s sensitivity to heat injection. Finally, z+ is the Lagrange
multiplier of the flame equation (2.16), revealing the spatial distribution of the
combustion system’s sensitivity to species injection (§ 5.3). A mathematical treatment
of the adjoint equations, interpreted for thermo-acoustics, is given by Magri & Juniper
(2014).

For linear thermo-acoustic systems arranged in a state-space formulation, such as
system (3.8), the DA method is more accurate and easier to implement than the CA
method (see, for example, Magri & Juniper 2013b). Therefore, we will use the DA
method in this paper.

So far we have considered the thermo-acoustic system in the (x, ξ , η, t) domain.
In modal analysis, we consider it in the (x, ξ , η, σ ) domain using the modal
transformations u(x, t) = û(x, σ )exp(σ t), p(x, t) = p̂(x, σ )exp(σ t), and z(ξ , η, t) =
ẑ(ξ , η, σ )exp(σ t). The symbol ˆ denotes an eigenfunction. The complex eigenvalue
is σ = σr + σii, where (σr, σi) ∈ R2. The behaviour of the system in the long-time
limit is dominated by the eigenfunction whose eigenvalue has the highest real part
(i.e. growth rate), σr.

4.2. Sensitivity
Adjoint eigenfunctions are useful because they provide gradient information about
the sensitivity of the system’s stability to first-order perturbations to the governing
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operator. Defining the operator in § 4.1 as L≡M∂/∂t− B, the continuous generalized
eigenproblem of (3.8) and its adjoint are

σMq̂ = Bq̂, (4.9)
σ ∗M+q̂+ = B+q̂+, (4.10)

respectively, where M may be a non-invertible matrix of operators. The adjoint
operators M+ and B+ can be regarded as the conjugate transpose of the corresponding
direct operators, M and B, respectively. The sensitivity of the eigenvalues to generic
perturbations to the system can be obtained by introducing a perturbation operator,
δC · P, such that the perturbed operator is B → B + δC · P, where δC is a gain
operator and P is the perturbation operator. The gain is small such that its (suitably
defined) norm is ‖δC‖ = |ε| � 1. This perturbation changes the eigenvalues and
eigenfunctions accordingly: σ → σ + εδσ , q̂→ q̂ + εδq̂, and q̂+→ q̂+ + εδq̂+. By
retaining only first-order terms ∼O(ε1), and taking into account the bi-orthogonality
condition (Salwen & Grosch 1981), the sensitivity of the eigenvalue is calculated as
follows

δσ

δC
=
〈
q̂+, Pq̂

〉〈
q̂+,Mq̂

〉 . (4.11)

This result is well known from spectral theory and was used for the first time in flow
instability by Hill (1992) and Giannetti & Luchini (2007). For the thermo-acoustic
system in this study, the eigenfunctions are arranged in column vectors as q̂≡ [ẑ; û; p̂],
q̂+ ≡ [ẑ+; û+; p̂+]; the integration domain is V = [0, 1] ⊕ [0, Lc] × [−1, 1]; and the
perturbation operator is

P=
Pzz Pzu Pzp

Puz Puu Pup
Ppz Ppu Ppp

. (4.12)

In Magri & Juniper (2013b) we interpreted the perturbation operators Puu, Pup, Ppu, Ppp

as possible passive feedback mechanisms (structural sensitivity) and then investigated
the base-state sensitivities through Ppu, Ppp. In this paper we analyse Ppz, which is
the coupling between the flame and the energy equation (base-state sensitivity), and
Pzu, which is the coupling between the velocity and the flame equation (structural
sensitivity). Ppz is regarded as a base-state perturbation because it represents a small
modification to the flame parameters, such as Pe or Zsto (see § 5.4). Here Pzu is
regarded as a structural perturbation because it represents a small modification in
the intrinsic thermo-acoustic feedback mechanism, in this case between the acoustic
velocity and the flame equation (see § 5.5).

In this thermo-acoustic system, there are base-state parameters for the acoustics and
for the flame. The former, which were investigated in Magri & Juniper (2013b), are
the acoustic damping, ζ , and the flame position, xf . (The sensitivity of this thermo-
acoustic system to perturbations of these parameters is qualitatively identical to that
of Magri & Juniper (2013b) because the acoustic models and the direct and adjoint
acoustic eigenfunctions are very similar.) The latter, which are new to this study, are
the Péclet number, Pe, the stoichiometric mixture fraction, Zsto, the half-width of the
fuel slot, α, and the heat-release parameter, βT = 1/Tav, which is the inverse of the
average flame temperature.
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5. Results

We calculate the global modes, Rayleigh index, receptivity and sensitivity of two
marginally stable/unstable thermo-acoustic systems: (i) an under-ventilated (open)
flame with Zsto = 0.125, Pe= 35, c1 = 0.005, c2 = 0.0065; and (ii) an over-ventilated
(closed) flame with Zsto = 0.8, Pe = 60, c1 = 0.0247, c2 = 0.018. Both systems
have α = 0.35 and Tav = 2/1.316 = 1.520. We use M = 225 × N = 50 flame
modes and K = 20 acoustic modes. In appendix D the numerical convergence is
shown. The dominant eigenvalue of the open flame is σ = 0.00088 + 3.1487i with
no temperature jump and σ = −0.00279 + 5.0938i with a temperature jump of
T2/T1 = 5. The closed flame has σ = 0.00408 + 3.1710i with no temperature jump
and σ = −0.00756 + 5.1046i with a temperature jump of T2/T1 = 5. The sets of
parameters for T2/T1 = 1 have been found to be marginally stable also with the
nonlinear code of Illingworth et al. (2013), which uses a Chebyshev method for
the flame and a Galerkin method for the acoustics with no temperature jump. The
dominant portion of the spectrum and pseudospectrum of the open-flame case is
shown in figure 18 in appendix D.

5.1. The direct eigenfunction (global mode)
Figure 4(a–d) show the real and imaginary parts of the direct eigenfunctions of the
open flames with T2/T1 = 1 (a,c) and T2/T1 = 5 (b,d). The corresponding Galerkin
coefficients, Ĝn,m, are plotted in figure 16 in appendix D. The real and imaginary
parts are in spatial quadrature, which shows that the mixture fraction perturbation, ẑ,
takes the form of a travelling wave that moves down the flame in the streamwise
direction. Figure 4(e, f ) show the local phase speed of the wave in the streamwise
direction, which is calculated via a Hilbert transform. (Each solid line corresponds to
a different cross-stream location, showing that the phase speed varies only slightly in
the cross-stream direction.) In both cases, the average phase speed is slightly greater
than the mean-flow speed, which is 1. This shows that a simple model of the flame, in
which mixture fraction perturbations convect down the flame at the mean-flow speed,
is a reasonable first approximation. The validity of this approximation increases as the
Péclet number increases (not shown here) because convection becomes increasingly
more dominant than diffusion. It is worth noting that the magnitude of ẑ decreases
in the streamwise direction. This is because the reactants diffuse into each other
relatively quickly at this Péclet number. The influence of the mean-flow temperature
jump can be seen by comparing the direct eigenfunctions without (figure 4a,c) and
with temperature jump (figure 4b,d). When the temperature jump is present, the
oscillatory pattern has a shorter wavelength because the frequency of the coupled
thermo-acoustic system is higher (figure 2a).

In both flames, the mixture fraction perturbation starts at the upstream boundary and
causes heat-release fluctuations when it reaches the flame. To the first approximation
described above, the time delay between the velocity perturbation and the subsequent
heat-release perturbation scales with Lf /U, where Lf is the length of the steady flame
and U is the mean-flow speed (which is 1 in this paper). The phase delay between the
velocity perturbation and the subsequent heat-release perturbation therefore scales with
Lfσi/U, where σi is the dominant eigenvalue’s imaginary part, i.e. the linear-oscillation
angular frequency. We will return to this model and this scaling in the following
sections.
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FIGURE 4. (Colour online) Dominant direct eigenfunction (a–d) and local phase speed
(e,f ) of the open flame coupled with acoustics. Results of the left/right column are
obtained without/with mean-flow temperature jump. Panels (a,b) show the real parts of
the mixture-fraction eigenfunction, panels (c,d) show the imaginary parts. Light/dark spots
correspond to positive/negative value. The dashed line is the steady-flame position. The
acoustic component of the eigenfunction is not shown here. Panels (e,f ) show the local
phase speed, c, of the mixture-fraction travelling wave obtained via a Hilbert transform.
In (e,f ), the solid lines show the phase speed at different cross-stream locations, while
the dotted line is the uniform mean-flow speed. The local phase speed is close but not
exactly equal to the mean-flow speed. In (a,c,e), T2/T1 = 1, and in (b,d,f ), T2/T1 = 5.

5.2. The Rayleigh index
The Rayleigh criterion states that the energy of the acoustic field can grow over one
cycle if

∮
T

∫
V pq̇ dV dt exceeds the damping, where V is the flow domain and T is the

period. The spatial distribution of
∮

T pq̇ dt, which is known as the Rayleigh index,
reveals the regions of the flow that contribute most to the Rayleigh criterion and,
therefore, gives insight into the physical mechanisms contributing to the oscillation’s
energy. We consider the undamped eigenproblem of the momentum equation (2.1) and
energy equation (2.2). Then we multiply the former by û∗ and the latter by p̂∗ and
add them up to give

2σEac(x)− p̂∗q̂δ(x− xf )=−
(

û∗
∂ p̂
∂x
+ p̂∗

∂ û
∂x

)
, (5.1)

where Eac =
(
û∗û+ p̂∗p̂

)
/2 is the thermo-acoustic eigenfunction’s acoustic energy.

Integration of (5.1) over the flame domain, [0, Lc] × [−1, 1], and the acoustic domain,
[0, 1], gives

2σ(2Lc)Eac,t −
∫ 1

−1

∫ Lc

0
p̂∗f q̂ dξdη=−(2Lc)

∫ 1

0

(
û∗
∂ p̂
∂x
+ p̂∗

∂ û
∂x

)
dx, (5.2)

where Eac,t is the (total) acoustic energy, i.e. Eac integrated over the acoustic domain.
Applying the acoustic boundary conditions, which in this model preclude energy loss
at the boundaries (see § 2.1), the real part of (5.2) gives

σrEac,t = 1
4Lc

∫ 1

−1

∫ Lc

0
Re(p̂∗f q̂) dξ dη. (5.3)
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FIGURE 5. The Rayleigh index for the open flame shown as a function of distance along
the flame contour ξsto. This shows the part of the flame that most contributes to the
increase (positive RI) or decrease (negative RI) in energy of the oscillation over a cycle.
The RI reaches a maximum around ξsto= 0.5–0.75 and then decreases because the mixture
fraction fluctuations diffuse out as they are convected downstream.

By Green’s theorem applied to the mixture-fraction equations (2.15), (2.17), the right-
hand side of (5.3) can be expressed as∫ 1

−1

∫ Lc

0
Re(p̂∗f q̂) dξ dη = Re

{
p̂∗f

[
− 1

Pe

∫ +1

−1

(
∂ ẑ
∂ξ

)
ξ=0

dη+ ûf

∫ +1

−1
ẑ (Lc, η) dη

+ ûf Q̄− 1
Pe (1− Zsto)

∮
C
∇ ẑ · nds

]}
, (5.4)

where C is the curve enclosing the steady stoichiometric line, (ξsto, ηsto), and the fuel
side; ds is the curvilinear coordinate along the stoichiometric line; and the linearized
unit-vector normal to the stoichiometric line is

n=
[(

∂Z̄
∂ξ

)2

+
(
∂Z̄
∂η

)2
]−1/2 (

∂Z̄
∂ξ
,
∂Z̄
∂η

)
. (5.5)

Mixture-fraction fluctuations are created at the base of the flame by the velocity
fluctuations. They then convect downstream and cause heat-release fluctuations when
they meet the flame. The influence of these fluctuations depends on their phase relative
to the pressure, as described by the Rayleigh index, which is the part of (5.4) that
spatially varies in the flame domain

RI =Re
(−p̂∗f∇ ẑ · n) . (5.6)

Figure 5 shows the Rayleigh index as a function of the distance along the flame, ξsto.
The Rayleigh index reveals that mixture-fraction perturbations induced by the system
itself (as opposed to those induced by external control in the next section) have the
greatest influence on the growth rate of thermo-acoustic oscillations in the upstream
part of the flame 0 < ξsto < 1.5. This is because ∇ ẑ is steepest there, so the rate of
species diffusion, and hence reaction rate, is largest there. The magnitude and sign
of this influence depends on ξsto because the phase relationship between heat release
and pressure varies as the perturbations convect down the flame. The Rayleigh index
will be compared with maps derived from receptivity and sensitivity analysis in the
following sections.

5.3. Receptivity to species injection
A receptivity analysis creates a map in the flame domain of the first eigenfunction’s
receptivity to species injection (Magri & Juniper 2014). This is given by the adjoint
eigenfunction (the adjoint global mode). It shows the most effective regions at which
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FIGURE 6. (Colour online) Absolute value of the dominant adjoint eigenfunction (a)
without and (b) with mean-flow temperature jump. This is for the same operating
conditions as those of the direct eigenfunction in figure 4 of the open flame. This is
a map of the eigenvalue’s receptivity to open-loop forcing via species injection into the
mixture-fraction field. It has high amplitude along the flame because species injected
into the flame directly affects the reaction rate. It has highest amplitude at the flame tip
because the mixture fraction perturbations of the unforced mode have small amplitude at
the tip, so the injected species has a proportionately large influence. Panels (c,d) show the
(dominant) left singular modes, which here correspond to the optimal initial conditions for
a final state at t= 0.5. In (a,c) T2/T1 = 1, in (b,d), T2/T1 = 5.

to place an open-loop active device to excite the dominant thermo-acoustic mode. We
imagine perturbing the z-field (2.17) on the right-hand side with a forcing term that
is localized in space:

δz δ(ξ − ξ0, η− η0) sin(ωst), (5.7)

where δz is the amount of species injected, δ(ξ − ξ0, η− η0) is the Dirac (generalized)
function to localize the injection in space at (ξ0, η0) and ωs≈ σi is the forcing angular
frequency.

The adjoint eigenfunction (figure 6a,b) has high magnitude around the flame. (The
corresponding Galerkin coefficients, Ĝ+n,m, are plotted in figure 17 in appendix D.) This
is because species injection affects the heat release only if it changes the gradient
of ẑ at the flame itself, which is achieved by injecting species around the flame. Its
magnitude increases towards the tip of the flame, where ∇ ẑ is weakest. It is worth
comparing this with the Rayleigh index (figure 5), which is greatest towards the base
of the flame, where ∇ ẑ is strongest. This reveals that the influence of this particular
open-loop control strategy is strongest at flame positions where the intrinsic instability
mechanism is weakest. This is because mixture fraction fluctuations diffuse out as they
convect down the flame, which means that open-loop forcing has a proportionately
large influence on the mixture fraction towards the tip. From a practical point of view,
this shows that open-loop control of the mixture fraction has little influence at the
injection plane but great influence at the flame tip. In this case, this could be achieved
by injecting species at the wall.

To check the physical significance of the adjoint eigenfunctions, which in principle
live in a different space from those of the direct eigenfunctions, we compare them
with the left singular modes, which live in the same space as the direct eigenfunctions.
On the one hand, the adjoint eigenfunction is the optimal initial condition/forcing
maximizing the L2-norm of the thermo-acoustic state in the limit t →∞ (see e.g.
Magri & Juniper 2014). On the other hand, the left singular mode is the optimal
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FIGURE 7. (Colour online) As for 6 but for the closed flame. The features are the same
as for the open flame. In (a,c), T2/T1 = 1, and in (b,d), T2/T1 = 5.

initial condition maximizing the L2 norm of the thermo-acoustic state over a finite
time, t<∞. Figure 6(c,d) show the (dominant) left singular modes for a final state at
t= 0.5. Mathematically, these are the (dominant) left singular modes of the propagator
exp(Lt) (see e.g. Schmid 2007; Schmid & Brandt 2014), where L is the linearized
thermo-acoustic operator (L=M−1B, see (4.9)), evaluated at t= 0.5. As expected, the
adjoint eigenfunction’s shape is very similar to that of the left singular mode. There
is no substantial difference when the temperature jump is considered (figure 6b,d).

We also investigate the case of a closed flame, shown in figure 7. Qualitatively,
the receptivity is similar to that of the open flame: the system is most sensitive to
forcing along the flame and at the flame’s tip. In this case, however, the flame tip
lies along the centreline, not along the wall. This makes a species-injection strategy
more difficult unless it could be performed, for example, by injecting droplets that
evaporate and burn when they hit the flame’s tip at the centreline.

5.4. Sensitivity to base-state perturbations
The base-state sensitivity analysis quantifies how the dominant eigenvalue of the
thermo-acoustic system, σ , is affected by first-order changes to Pe, Zsto, α and βT .
The eigenvalue drift is

δσ =
(
δσ

δα

)
δα +

(
δσ

δPe

)
δPe+

(
δσ

δZsto

)
δZsto +

(
δσ

δβT

)
δβT, (5.8)

in which the terms in brackets are the (complex) sensitivities. When Pe, α, Zsto
are perturbed, Z̄ (2.15) changes, which changes the steady flame shape, which then
changes the eigenvalues. The derivatives of Z̄ with respect to Pe, α and Zsto can be
evaluated analytically because Z̄ has an analytical solution (C 1). The heat-release
parameter of the flame, βT , does not directly affect Z, as can be inferred from (2.8).
However, it directly affects the amount of heat that feeds into the acoustics (2.2) and
therefore changes the growth rate without changing the flame shape directly.

To evaluate the influence of base-state perturbations via (4.11), we choose ‖δC‖ ∼
O(10−6), which is sufficiently small for nonlinearities to be negligible (Illingworth
et al. 2013). This was checked by repeating the analysis with a smaller perturbation,
‖δC‖ ∼ O(10−7), for which the real and imaginary parts of the eigenvalues changed
by ∼O(10−9). We analyse the sensitivities around marginally stable points: δσ/δZsto,
δσ/δα in the range Zsto = [0.02, 0.12] and α = [0.25, 0.4]; and δσ/δPe and δσ/δβT
in the range Pe = [20, 50] and βT = [0.4, 0.8]. The sensitivities are calculated with
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FIGURE 8. Unperturbed steady flame length, Lf , as a function of (a) the fuel slot half-
width, α, and the stoichiometric mixture fraction, Zsto; and (b) the heat-release parameter,
βT , and the Péclet number, Pe. Here Lf is the same for all values of T2/T1.
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FIGURE 9. (Colour online) Sensitivities to base-state perturbations of α and Zsto:
(a) δσr/δZsto; (b) δσi/δZsto; (c) δσr/δα; (d) δσi/δα; (e) δσr/δZsto; (f ) δσi/δZsto; (g) δσr/δα;
(h) δσi/δα. In (a–d), T2/T1 = 1, and in (e–h), T2/T1 = 5, with the steady-flame length
contours of figure 8 superimposed. From top to bottom the steady flame length is Lf = 4,
3, 2. The sensitivities depend strongly on Zsto and α but are similar at similar values of Lf .

T2/T1=1 and T2/T1=5. In the following analysis, the length of the unperturbed flame
emerges as a key parameter. This is defined here as the distance between the inlet and
the tip of the steady flame. It is shown as a function of Zsto and α in figure 8(a) and
as a function of Pe and βT in figure 8(b). The flame length increases as Zsto increases,
as α decreases, and as Pe increases, but is not a function of βT or T2/T1.

The change of the growth rate, σr, and the frequency, σi, due to small changes in
Zsto and α are shown in figure 9 and those due to small changes in Pe and βT in
figure 10. Changes in Zsto can be achieved by diluting the fuel or oxidizer. As shown
by (2.7), Zsto increases when the oxidizer mass fraction, Xi, increases or the fuel
mass fraction, Yi, decreases. Changes in Pe are achieved by adjusting the mean-flow
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FIGURE 10. (Colour online) Sensitivities to base-state perturbations of Pe and βT :
(a) δσr/δPe; (b) δσi/δPe; (c) δσr/δβT ; (d) δσi/δβT ; (e) δσr/δPe; (f ) δσi/δPe; (g) δσr/δβT ;
(h) δσi/δβT . In (a–d), T2/T1 = 1, and in (e–h), T2/T1 = 5, with the steady-flame length
contours superimposed. From top to bottom the steady flame length is Lf = 4, 3, 2. The
sensitivities δσ/δPe depend strongly on Pe but not βT .

velocity (see appendix A), as long as the mean-flow Mach number is small. These
results, obtained by an adjoint-based approach, have been checked against the
solutions obtained via finite difference and agree to within ∼O(10−9).

These figures are useful from a design point of view. For example, they reveal that
at Zsto= 0.12 and α= 0.38, changes in Zsto strongly influence the growth rate but that
at Zsto = 0.11 and α = 0.40, changes in Zsto strongly influence the frequency instead.
This demonstrates an inconvenient feature of thermo-acoustic instability: the influence
of each parameter is exceedingly sensitive to small changes in the base state (i.e. the
operating point).

It can be seen that δσ/δZsto, δσ/δα and δσ/δPe, oscillate in spatial quadrature in
parameter space (e.g. local maxima of δσr/δZsto lie between local maxima of δσi/δZsto
and vice versa). Furthermore, lines of constant δσ/δZsto, δσ/δα and δσ/δPe very
nearly follow the lines of constant Lf shown in figure 8.

These observations can be explained physically by considering the simple criterion
of the thermo-acoustic instability mechanism described in § 5.1. In this criterion,
the velocity perturbations cause z perturbations at the base of the flame. These are
convected downstream and cause a heat-release perturbation some time later. This
time delay, τ , scales with Lf /U, where Lf is the length of the flame. The influence
of this heat-release perturbation depends on the phase of the heat release relative to
the phase of the pressure (for the growth rate) or velocity (for the frequency), which
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FIGURE 11. The data from figure 9 plotted as a function of the phase between
pressure and heat release oscillations, as estimated by ψ ≡ Lfσi/U. Solutions (a) with no
temperature jump (T2/T1 = 1) and (b) with temperature jump (T2/T1 = 5). The data does
not collapse exactly to a curve because perturbations in z do not convect down the flame
exactly at speed U.

are in temporal quadrature. This is why the base-state sensitivity plots are in spatial
quadrature in parameter space. The oscillatory pattern is not observed for δσ/δβT
because βT affects only the heat release at the flame and not the steady flame length
and therefore has no direct influence on the phase delay.

The phase delay, ψ , is given by τ/T , where T = 2π/σi. In this simple model,
δσ depends only on ψ , which means that, if the simple model were sufficient, the
eigenvalue drifts in figures 9 and 10 would collapse onto a single curve when plotted
as a function of ψ =Lfσi/U. This is shown in figure 11 for δσr/δZsto and δσi/δZsto as
a function of ψ for (a) T2/T1= 1 and (b) T2/T1= 5. The data at each T2/T1 collapse
somewhat closely to a curve, particularly for δσ/δα. The data does not collapse
exactly because perturbations in z do not convect down the flame at a uniform speed,
as shown in figure 4(e,f ), and the flame length, Lf , is a simplistic measure of the
change in shape of the flame caused by changes in Zsto, α and Pe. Nevertheless,
this simple criterion is useful for physical understanding, while the data in figures 9
and 10 shows the influence of base-state modifications exactly.

5.5. Structural sensitivity to species advection fluctuations
By inspection of the governing equation of the perturbed z field (2.17), we can
interpret the term −uf ∂Z̄/∂ξ as an intrinsic forcing of z due to advection in the
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FIGURE 12. (Colour online) Real (a), imaginary (b) and absolute (c) values of the
structural sensitivity of the open flame with T2/T1 = 5. This shows where the eigenvalue
of the thermo-acoustic system is most sensitive to changes in the advective-velocity field.

streamwise direction. In this section we perform a structural sensitivity analysis using
the framework in § 4.2 in order to reveal the locations where a small change in the
advective velocity field most influences the eigenvalue of the thermo-acoustic system
through this term. This can be loosely interpreted as the location of the core of the
thermo-acoustic instability, which can then be compared with the Rayleigh index.

The structural perturbation to the flame-velocity field is assumed to be localized in
the flame domain:

δP=−δCzuûf
∂Z̄
∂ξ
δ(ξ − ξ0, η− η0), (5.9)

where δCzu is the small perturbation coefficient and δ(ξ − ξ0, η − η0) is the Dirac
(generalized) function, which reproduces the impulsive effect of the perturbation at
(ξ0, η0). Note that such a flame-velocity perturbation occurs at the acoustic flame
location, x= xf , because the flame is a pointwise source for the acoustics (see figure 1).
Therefore, the structural perturbation (5.9) is naturally localized in the acoustic domain.
Following (4.12), the perturbation operator representing feedback proportional to the
acoustic velocity and entering the flame equation is Pzu =−ûf ∂Z̄/∂ξ . The overlap of
ẑ+∗ and −ûf ∂Z̄/∂ξ gives a map of the flame’s sensitivity to small changes in the
velocity field:

δσ

δCzu
= −ẑ+∗ûf

∂Z̄
∂ξ∫

V

[
ẑ+∗; û+∗; p̂+∗] · [ẑ; û; p̂] dV

. (5.10)

This is shown in figure 12. It is worth noting that the adjoint eigenfunction, ẑ+
(figure 6a,b) has highest amplitude near the flame tip, that ûf is uniform, and that
∂Z̄/∂ξ has highest amplitude near the flame base (figure 13), where the steady
mixture-fraction axial gradient is greatest. These combine to give the structural
sensitivity, δσ/δCzu. This shows that changes to the velocity field have most influence:
(i) at the flame, because changes in velocity advection there directly change the
reaction rate, as did the open-loop species injection in § 5.3; (ii) in the region 0<ξ <1
which, as expected, is the region in which the Rayleigh index is large (figure 5).

The structural sensitivity also shows where a passive feedback device would have
most influence on the eigenvalue. For example, the drag from a small cylinder
generates a negative perturbation to the velocity, δCzu < 0. The first-order effect of
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FIGURE 13. (Colour online) Axial gradient of the steady mixture fraction, ∂Z̄/∂ξ . It
has high amplitude near the inlet plane.

such a cylinder has no influence on the steady flame (the base flow) because its
equation (2.15) is linear. This means that the presence of a small cylinder changes
the eigenvalue of the thermo-acoustic system only through the unsteady z field.
(This structural sensitivity analysis is simple, because the momentum equation is not
solved in the flame domain.) When placed in the dark region of figure 12(a), this
perturbation would destabilize the thermo-acoustic system, and when placed in the
light region, it would stabilize it.

6. Conclusions
The main goal of this paper is to apply adjoint sensitivity analysis to a low-order

thermo-acoustic system. Our first application of this analysis (Magri & Juniper 2013b)
was to an electrically heated Rijke tube with an imposed time delay between velocity
fluctuations and heat-release fluctuations. Our application in this paper is to a diffusion
flame in a duct. The model and its discretization originate from Balasubramanian &
Sujith (2008a, 2013), which was revised recently (Magri et al. 2013). The model
contains a diffusion flame with infinite-rate chemistry coupled with one-dimensional
acoustics in an open-ended duct. It includes the effect of the mean-flow temperature
jump at the flame. Rather than impose a time delay between velocity and heat release
fluctuations, we model convection and reaction in the flame domain. This provides
a more accurate representation of the thermo-acoustic system and the base-state
variables that influence its stability, which are the main focus of this paper.

We use adjoint equations to calculate the system’s receptivity to species injection,
sensitivity to base-state perturbations and structural sensitivity to advective-velocity
perturbations. We compare these with the Rayleigh index. We derive the continuous
adjoint equations for completeness but we use the discrete adjoint approach for the
calculations because it is easier and more accurate for this application.

The receptivity to species injection reveals that the thermo-acoustic system is most
receptive to open-loop forcing of the mixture fraction towards the tip of the flame.
This is because mixture-fraction fluctuations diffuse out as they convect down the
flame. Consequently, open-loop forcing has a proportionately large influence on the
mixture fraction towards the tip of the flame. For the same reason, the Rayleigh index
is small there. The receptivity map is useful when designing open-loop strategies for
control/excitation of thermo-acoustic oscillations. Without performing a receptivity
analysis, it may not be obvious that the flame is most sensitive to forcing of the
mixture fraction at positions along the flame where the Rayleigh index is small.

The sensitivity to base-state perturbations reveals the sensitivity to perturbations
in the combustion parameters, which in this case are the stoichiometric mixture
fraction, Zsto; the fuel slot to duct width ratio, α; the Péclet number, Pe; and
the heat-release parameter, βT . Although these can be found with classical finite
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difference calculations, using the adjoint equations significantly reduces the number
of computations without affecting the accuracy. Overall, the thermo-acoustic system
is most sensitive to changes in δZsto, δβT and δα, but least sensitive to δPe. As
expected, these sensitivities depend strongly on the phase delay between velocity
perturbations and subsequent heat release perturbations. This phase delay scales with
Lfσi/U, where Lf is the flame length, U is the flow speed and σi is the oscillation
angular frequency. The stoichiometric mixture fraction, Zsto, and fuel slot with, α,
change the flame length. These are the easiest parameters to change in an experiment,
although control with these would be delicate because of the sensitivity’s oscillatory
patterns (figure 9). The inverse of the average flame temperature, βT , changes the
influence of the flame’s heat release. If this can be changed, then control with this
is attractive because βT does not directly affect the flame length and therefore the
sensitivity to this parameter does not oscillate (figure 10). The Péclet number, Pe,
has very little influence for most of the operating points considered in this paper.
Even if it could be changed, it would not be a useful parameter for passive control.
The base state sensitivity analysis also reveals a feature that seems to be common
to all thermo-acoustic systems: the influence of base state parameters is exceedingly
sensitive to small changes in the operating point.

The structural sensitivity shows the effect that a generic advection-feedback
mechanism would have on the frequency and growth rate of the thermo-acoustic
oscillations. It can be loosely interpreted as the location of the core of the
thermo-acoustic instability. This structural sensitivity analysis is simple, because
the momentum equation is not solved in the flame domain. Nevertheless, it shows:
(i) the regions in which a passive control device is most effective at controlling
the thermo-acoustic oscillations; (ii) the regions where future velocity models must
capture the species advection most accurately. As expected, the structural sensitivity
is large in regions in which the Rayleigh index is large.

This paper shows that adjoint receptivity and sensitivity analysis can be applied to
thermo-acoustic systems that simulate the flame, as well as to those that impose a time
delay between velocity and heat-release fluctuations (Magri & Juniper 2013b). With
very few calculations, this analysis reveals how each parameter affects the stability
of a thermo-acoustic system, which is useful information for practitioners. Although
many technical challenges remain, this analysis can be extended to more accurate
models, particularly those that simulate the velocity field in the flame domain and is
a promising new tool for the analysis and control of thermo-acoustic oscillations.
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Appendix A. Scale factors for non-dimensionalization

Dimensional quantities are denoted with .̃ The acoustic variables are scaled as L̃ax=
x̃ (m), L̃atac/c̃1 = t̃ (s), ũ1u= ũ (m s−1), ρ̃1ρ = ρ̃ (kg m−3), γM1p̃1p= p̃ (Pa), where
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FIGURE 14. Comparison between the acoustic angular frequencies, Im(σ ), calculated by
the wave approach (circles) and the Galerkin method (dots). Here M1 is the Mach number
of the mean flow upstream of the flame: (a) M1 = 0.02; (b) M1 = 0.05; (c) M1 = 0.075;
(d) M1 = 0.1; (e) M1 = 0.15; (f ) M1 = 0.2.

L̃a (m) is the length of the duct, c̃1 (m s−1) is the speed of sound in the cold mean
flow, ũ1 (m s−1) is the cold mean-flow velocity, ρ̃1 (kg m−3) is the cold mean-flow
density, p̃1 (Pa) is the mean-flow pressure, γ = c̃p/c̃v and M1 is the cold mean-flow
Mach number. Here c̃p and c̃v are the mass heat capacities at constant pressure and
constant volume of the mixture (J kg−1 K−1).

The combustion variables are scaled as H̃ξ = ξ̃ (m), H̃η = η̃ (m), H̃tc/ũ1 = t̃ (s),
T̃ref T = T̃ (K), where T̃ref = (Y∗i Q̃h)/c̃p and Q̃h is the heat released by combustion
of 1 kg of fuel (J kg−1/Y∗i ) (Poinsot & Veynante 2005). The combustion time scale
has been chosen to be exactly the same as the acoustic time scale, i.e. tac = tc. This
can be achieved provided that ML̃c/H̃ = 1 (compact-flame and low-Mach-number
assumptions). The non-dimensional length of the combustion domain along ξ is
Lc = L̃c/H̃. The Péclet number is the ratio between the diffusion and convective time
scales, Pe= ũ1H̃/D̃ , where D̃ is the (uniform) mass-diffusion coefficient (m2 s).

Appendix B. Effect of the mean flow on the acoustic frequencies
The acoustic angular frequencies obtained by the wave approach (see the online

supplementary material for details) are shown in figure 14 and compared with the
angular frequencies calculated via the Galerkin method (3.6). The effect of the mean-
flow velocity, which is neglected in the Galerkin formulation, becomes influential for
mean-flow Mach numbers & 0.1.
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FIGURE 15. Dominant eigenvalue convergence with respect to the number of axial
Galerkin flame modes, M. Transversal Galerkin flame modes and acoustic modes are fixed
to N = 50 and K = 20, respectively. The system’s parameters are those of the open-flame
case (see § 5): (a,c) T2/T1 = 1; (b,d) T2/T1 = 5.

Appendix C. Steady flame solution
The steady flame solution is obtained by separation of variables (Magri et al. 2013;

Magri & Juniper 2013a):

Z̄ = α + 2
π

+∞∑
n=1

sin(nπα)

n (1+ bn)
cos(nπη)

[
exp(an1ξ)+ bn exp(an2ξ)

]
, (C 1)

where

an1 ≡ Pe
2
−
√

Pe2

4
+ n2π2, an2 ≡ Pe

2
+
√

Pe2

4
+ n2π2, (C 2a,b)

bn ≡−an1

an2
exp

(
−2Lc

√
Pe2

4
+ n2π2

)
. (C 3)

Note that if Lc →∞, then bn → 0. In this limit, (C 1) coincides with the solution
proposed by Magina et al. (2013, (7), p. 966). (Note that they defined the
characteristic convective scale for the Péclet number, Pe, to be αH̃.)

Appendix D. Numerical convergence, spectrum and pseudospectrum
We use as many Galerkin modes as required to obtain numerical convergence of

the direct/adjoint dominant eigenvalues and eigenfunctions. A numerical discretization
of M = 225 × N = 50 flame modes and K = 20 acoustic modes achieves such a
convergence. Figure 15 shows the convergence rate of the dominant eigenvalue for the
open-flame system without temperature jump (b,d) and with temperature jump (a,c).
The relative errors are Re(σM=225 − σM=200)/Re(σM=200) ∼ O(10−4) and Im(σM=225 −
σM=200)/Im(σM=200)∼ O(10−7). When M = 225, N = 75 and K = 30 modes are used,
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FIGURE 16. Absolute value of the direct Galerkin coefficients Ĝn,m, of the open flame:
(a) T2/T1 = 1; (b) T2/T1 = 5.
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FIGURE 17. Absolute value of the adjoint Galerkin coefficients, Ĝ+n,m, of the open flame:
(a) T2/T1 = 1; (b) T2/T1 = 5.

−10 −5 0 4
−10

−8

−6

−4

−2

0

2

4

6

8

10(a) (b)

−
0.4

−
0.4

−
0.4

−0.2

−0.2

−0.2

−
0.

2

−0.2

0

0

0

0

0

00

0

0
0.

4

0.4

0.
4

0.4

0.4
0.4 0.4

0.4

0.4

0.4

0.
4

0.
4

0.
4

0.4

0.4

0.4
0.4

0.4
0.4

0.8

0.
8

0.8
0.8

0.8

0.
8

0.8
0.8

0.
8

0.8

0.
8

0.8

0.
8

0.8

0.8

0.
8

0.8

1.2

1.
2

1.
2

1.2

1.2

1.
6

1.6

1.
6

1.6

1.6

−10 −5 0 4

−
0.6

−
0.

6
−

0
6

−0.4

−
0.

4

−0.4

−0.2

−
0.2

−0
.2

−0.2

0

0

0

00

0

0
0.

4

0.4

0.
4

0.4

0.4
0.4

0.4

0.4

0.4

0.4

0.
4

0.4

0.
4

0.4

0.4
0.4

0.4
0.4

0.8

0.
8

0.8
0.8

0.8

0.
8

0.8
0.8

0.
8

0.8

0.
8

0.8

0.
8

0.8

0.8

0.
8

0.8

1.2

1.
2

1.
2

1.2

1.2

1.
6

1.6

1.
6

1.6

1.6

FIGURE 18. (Colour online) Dominant portion of the spectrum and pseudospectrum of
the open flame: (a) T2/T1 = 1; (b) T2/T1 = 5.
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the relative errors are ∼O(10−4), for the growth rate, and ∼O(10−10), for the angular
frequency. We therefore used M = 225, N = 50 and K = 20 as a good compromise
between accuracy and computational time. Similar accuracy has been obtained for the
closed-flame case. The most significant Galerkin coefficients of the direct and adjoint
eigenproblems, (4.9) and (4.10), are depicted in figures 16 and 17, respectively. These
figures show that the most energetic direct and adjoint modes are concentrated in
the first modes, and the Galerkin coefficients decrease as the mode indices increase.
Finally, the dominant portion of the spectrum and pseudospectrum of the open-flame
case is shown in figure 18. The pseudospectra are nearly concentric circles centred on
the eigenvalues even when the temperature jump in modelled (figure 18b). This means
that this thermo-acoustic system is weakly non-normal, in agreement with Magri et al.
(2013), regardless of the temperature jump.
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