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Abstract Consider a C2 family of mixing ct piecewise expanding unimodal maps ¢ € [a, b] — f;, with
a critical point ¢, that is transversal to the topological classes of such maps. Given a Lipchitz observable
¢ consider the function

Ro0) = [ ¢du.

where p; is the unique absolutely continuous invariant probability of f;. Suppose that o; > 0 for every

t € [a, b], where
; 2
Yz (b0f! — [odn
0,2=Ut2(¢):ninéo/( J_O( — t) dps.

N

We show that

mAte€la,bl:t+h € |a,b] and

1 <R¢(t+h)—R¢(t)><y}
w(r)y/—log k] h N
converges to
| o
E /_Oo e 2 ds,
where W (t) is a dynamically defined function and m is the Lebesgue measure on [a, b], normalized in such

way that m([a, b]) = 1. As a consequence, we show that Ry is not a Lipchitz function on any subset of
[a, b] with positive Lebesgue measure.

Keywords: linear response; dynamical systems; unimodal maps; expanding maps; ergodic theory; Central

Limit Theorem
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1. Introduction and statement of the main results

Let f; be a smooth family of (piecewise) smooth maps on a manifold M, and let us
suppose that for each f; there is a physical (or SBR) probability u; on M. Given an
observable ¢ : M — R, we can ask if the function

Ry :10,1] — R
t r—>/¢dut

is differentiable and if we can find an explicit formula for its derivative. The study of this
question is the so called linear response problem.

Ruelle showed that Ry is differentiable and also gave the formula for R}, in the case of
smooth uniformly hyperbolic dynamical systems (see Ruelle in [16, 17], and Baladi and
Smania in [4] for more details).

In the setting of smooth families of piecewise expanding unimodal maps, Baladi and
Smania (see [2]) proved that if we have a C? family of piecewise expanding unimodal
maps of class C3, then Ry is differentiable in fy, with ¢ € C'*Lir  provided that the
family f; is tangent to the topological class of f;, at t =#. It turns out that the family
s — fy is tangent to the topological class of f; at the parameter ¢ if and only if

M;—1
e uffey
10 = 2 p ey ="

where v, = 95 fs|s=+ and M; is either the period of the critical point c if ¢ is periodic, or
o0, otherwise (see [3]). Now, let us consider a C? family of piecewise expanding unimodal
maps of class C* that is transversal to the topological classes of piecewise unimodal maps,

that is et
— v (ff©)
J(fe,vr) = ———— #0 1
fi k; DiF ey T W
for every t.

Baladi and Smania, [2, 5], proved that Ry is not differentiable, for most of the
parameters ¢, even if ¢ is quite regular. One can ask what is the regularity of the function
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Ry in this case. We know from Keller [9] (see also Mazzolena [14] and Keller et al. [11])
that Ry has modulus of continuity |k|(log(1/|k]) 4 1).

We will show the Central Limit Theorem for the modulus of continuity of the function
Ry where ¢ is a lipschitzian observable. Let

Sz (o0 = [ ddu)
Jn

o? =) = lim_[ dps #0.

Let t — f; be a C? family of C* piecewise expanding unimodal maps. Note that each
f; has a unique absolutely continuous invariant probability u; = p;m, where its density
pr has bounded variation. Let

1
VL

Indeed p; is continuous except on the forward orbit f,j (c) of the critical point (see
Baladi [1]). Let S; be the jump of p, at the critical value, that is

L= /10g|sz|sz >0, 4= (2)

S;= lim p(x)— lim px)= lim p(x)>0. (3)

x— fi(e)” x> fi(e)t x— fi(e)~

Theorem 1.1. Let
1 e [a7 b] = ff’

be a transversal C* family of mizing C* piecewise expanding unimodal maps
fe: 10,11 — [0, 1].

If ¢ is a lipschitzian observable satisfying oy # O for every t € [a, b], then for every y € R

limm {1 € [a,b]: 1+ € [a, b] and 1 <R¢(t+h)_R¢(t)><y} (4)

W(t),/—log || h

converges to
1 /y 2
—_ e 2 ds,
V21 J—co

\If(t) = otStJtZI.

where

and m is the Lebesgue measure normalized in such way that m([a, b]) = 1.

Corollary 1.2. Under the same assumptions above, the function Ry is not a lipschitzian
function on any subset of [a, b] with positive Lebesque measure.

The proof of Corollary 1.2 will be given in the last section as a consequence of a stronger
result (Corollary 9.1).
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2. Families of piecewise expanding unimodal maps

We begin this section by setting the one-parameter family of piecewise expanding
unimodal maps.

Definition 2.1. A piecewise expanding C” unimodal map f : [0, 1] — [0, 1] is a continuous
map with a critical point ¢ € (0, 1), f(0) = f(1) = 0 and such that f|jo,¢] and f]i, 1] are
C" and

1
‘— < 1.
Df |

We say that f is mixing if f is topologically mixing on the interval [ f2(c), f(c)]. For
instance, if

inf | Df (x)| > V2

then f is not renormalizable. In particular, f is topologically mixing on [ f2(c), f(c)].

We can see the set of all C” piecewise expanding unimodal maps that share the same
critical point ¢ € (0, 1) as a convex subset of the affine subspace {f € B": f(0) = f(1)}
of the Banach space B” of all continuous functions f: [0, 1] — R that are C” on the
intervals [0, c] and [c, 1], with the norm

|flr = 1floo +1fl10.c1lcr + 1 flie.yler-
Let f; :[0,1] — [0, 1], t € [a, b] be a one-parameter family of piecewise expanding ct
unimodal maps. We assume
(1) For all r € [a, b] the critical point of f; is c.
(2) The maps f; are uniformly expanding, that is, there exist constants 1 <2 < A < oo
such that for all # € [a, b],
1

1
— — and |D A.
AN IDfiloo <

A

o0

(3) The map
t €la, bl f, € B*

is of class C2.

Each f; admits a unique absolutely continuous invariant probability measure u, and
its density p; has bounded variation (see [12]). By Keller (see [9]),

1
|or+n — pel 1 <Clh|<logm+1>. (5)

3. Good transversal families

It turns out that we can cut the parameter interval of a transversal family f; in smaller
intervals in such way that the family, when restricted to each one of those intervals
satisfies stronger assumptions. Here, we introduce the notation of partitions following
Schnellmann in [19]. Let us denote by K (¢) = [ftz(c), fi(c)] the support of p;.
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Let P;(t), j > 1 be the partition on the dynamical interval composed by the maximal
open intervals of smooth monotonicity for the map f/ : K(t) — K(t), where t is a fixed

parameter value. Therefore, P;(#) is the set of open intervals @ C K(f) such that ftj :
w — K(t) is C* and w is maximal.
We can also define analogous partitions on the parameter interval [a, b]. Let

xo : [a,b] — [0, 1]
t —> fi(c)

be a C? map from the parameter interval into the dynamical interval. We will denote by

xj(t) == f (xo(0)),

j = 0, the orbit of the point x¢(t) under the map f;.

Consider a interval J C [a, b]. Let us denote by P;|J, j > 1, the partition on the
parameter interval composed by all open intervals w in J such that x;(t) # ¢, for all i
satisfying 0 < i < j, that is

fixo®) = £ # ¢,

for all € w, and such that w is maximal, that is, if s € dw, then there exists 0 <i < j
such that x;(s) = c.

The intervals w € P; are also called cylinders.

We quote almost verbatim the definition of the Banach spaces V, given in [19]. The
spaces V, were introduced by Keller [10]. Let m be the Lebesgue measure on the interval
[0, 17.

Definition 3.1 (Banach space V). For every v : [0, 1] = R be a function in L'(m) and
y > 0, we can define

osc (¥, ¥, X) = esssup ¥l(x—y.xty) — €88 inf ¥y x1p).
Given A > 0 and 0 < o < 1 denote

1 1
[V|e = sup —a/ osc (¥, y, x)dx.
o<y<a VY Jo

The Banach space V, is the set of all ¥ € L!(m) such that ||, < 00, endowed with the
norm

1Wla = 1¥la+ ¥l

We quote almost verbatim the definition of the almost sure invariant principle given
in [19].

Definition 3.2. Given a sequence of functions & on a probability space, we say that
it satisfies the almost sure invariance principle (ASIP), with exponent x < 1/2 if one
can construct a new probability space that has a sequence of functions o;, i > 1 and a
representation of the Weiner process W satisfying
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o We have

= 0n"),

‘W(n) — Z o;
i=1

almost surely as n — oo.

e The sequences {0;};>1 and {&;};>1 have identical distributions.

A piecewise expanding C" unimodal map f is good if either ¢ is not a periodic point
of f or

liminf [ DfP (x)| > 2
X—>C

where p > 2 is the prime period of ¢ (see [2, 3] for more details).

Definition 3.3. A C? transversal (see equation (1)) family of good mixing C* piecewise
expanding unimodal maps f;, t € [c, d] is a good transversal family if we can extend this
family to a C? transversal family of good mixing C* piecewise expanding unimodal maps
fi, t € [c —8,d+ 6], for some § > 0, with the following properties

M

(111

There exists jo > 0 with the following property. For every ¢ € [c, d] and for each
J = Jjo there exists a neighborhood V of ¢ such that for all ' € V\{r} and all 0 <
i < j, we have t", (¢) # c. In particular, the one-sided limits

fm — 27O 4 tim 2 rAC 7 (©

‘=t DT (fu () ‘=1 DI (fu ()
exist for every j > jo, and there is C > 1 so that

1 3 f!
L ltim 209 | ¢ (6)
C =" DT (fr (o)

and .
1 3y f1
— <| lim —j’_{’ © <C, (7)
C == DI (fr(0))

forall j > jo and t € [c —§,d +8].

The map f; is mixing and there are constants § > 0, L > 1 and 0 < 8 < 1 such that
for all ¥ € V,

1L e < LA™ [¥lo + LWL, ®)
forall t € [c —§,d 4 8]. Here L; is the Ruelle-Perron—Frobenius operator of f; given
by

1
L)) = Y ———P(y).
S IDAO)]

There is 8 > 0 such that for every ¢ > 0 there is a constant C satisfying

>

=~ nt
| | < Ce
wePy|la—8,b+8) Fnloo

foralln > 1.
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(IV) For all ¢ € Vy such that o,(¢) > 0 the functions & : [c —§,d + 8] — Ri > 1, defined

by
1 .
&i(n) = <¢(f,‘“(0))—/<pduz>
or(9)
satisfy the ASIP for every exponent y > 2/5.

(V) There are positive constants C‘l, C‘z, C~'3, C~‘4, C~‘5, 6'6 and B € (0, 1) such that for every
t € [c—6,d+ 8] and its respective density p; of the unique absolutely continuous
invariant probability of f;

(A1) The Perron—Frobenius operator £; satisfies the Lasota—Yorke inequality in the
space of bounded variation functions

1LEplsy < CoBX1dlY + Cs1l L1 om)-

(Az) We have p; € BV and |p;|gy < Ci.
(A3) We have p; € BV and |p/|py < C». Moreover,

M, —1

pr(x) = /0 Pl du+ Y st H g (1),
k=1

where H,(x) =0if x <a and H,(x) = —1if x > a,

_ pi(c) pi(c)
SO = 15501 T Dfen)

and

51(1)

O =—1
O DA o)

Note that S; = s1(¢).
(A4) We have p;' € BV and |p)|py < C3. Moreover,

X M—1
i) = [ ot dut Y S0 H .
k=1
where _
Cy
IDF (filenl

(VI) Let jo > 0 be the constant given by condition (I). For all i, j satisfying 0 < i, j < jo
and ¢ € [c, d], such that t +h € [c — §,d + 8] we have

cé¢ i@t h),

where [; j(t, h) is the smallest interval that contains the set

U O 7 0 fle £ . £ o F o)

AGIES

Remark 3.4. Conditions (I)-(III) are exactly those that appears in Schnellmann [19],
with obvious cosmetic modifications.
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Remark 3.5. If f; is a good transversal family then of course equation (4) converges to

1 y 52 J
—_— e 2ds
\/27'[ /—oo

if and only if

Jim m {z € [a, b]: ! (R¢<t+h> —Rw))

< 10
W(r),/— log [A] h S y} (10)

converges to it as well.

Proposition 3.6. Let f;, t € [a, b, be a transversal C* family of mizing C* piecewise
expanding unimodal maps. Then there is a countable family of intervals [c;, d;] C [a, b],
i € A C N, with pairwise disjoint interior and

m ([a, b]\ e, di]> =0,
ieA

such that f; is a good transversal family on each [c;i, d;], i € A.

Proof. Since f; is transversal, there is just a countable subset Q of parameters where
f; has a periodic critical point. It is easy to see that the subset Q' C Q of parameters ¢
such that f; is not good and it has a periodic critical point is finite, so without loss of
generality we can assume that all maps f; are good. Consider 2 = [a, b]\ (Q U{a, b}). It
follows from the analysis in the proof of [4, Theorem 4.1] and [1, Proposition 3.3] that for
every t' € Q there exists €| = €1 (¢') such that if [c,d] C (' — €|, ' +¢€1) then the family
/i restricted to [c, d] satisfies condition (V). By Schnellmann [19], for every ' € Q there
exists €2 = (') such that if [c, d] C (' — €3, 1’ + €7) then the family f; restricted to [c, d]
satisfies conditions (I)—(IV).

We claim that for every ¢’ € Q there is €3 = €3(¢’) such that if [c,d] C (' — €3, +€3)
and § > 0 is small enough then the family f;, with ¢ € [c, d], satisfies condition (VT).
Indeed, since ¢ is not a periodic point of f;/, there is €3(¢t') > 0 such that

n=min{| £/ T ) —c]:0<j<joand 0 <i < jo.t € (' —e3, t +e3)} > 0. (11)

Since t € [t/ —€3/2,1' +€3/2] — f; is a C? family the map
(t,h) = fl(f ©)

is continuous for every 0 < i < jo and every j satisfying 0 < j < jo. Therefore, there is
y1 :=y1(i, j) < €3/2 such that, if |h| < y; and t € [’ —€3/2,t' +€3/2], then

LFEN @) = AN ol <,
and

) i i

Ln P @) = 1 e <,
for all 0 < j < jo and 0 <i < jo. Let y :=min{y1(i,j):0<j < jo and 0<i < jo}
In particular, if |h| < y; and ¢ € [t —€3/2, 1" +€3/2] then ¢ ¢ I; j(t, h) for all 0 < j < jo,
0<i<jo
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Let €4(t") = min{e| (t"), €2(¢'), y}. Consider the family F of intervals [c, d] C [a, b] such
that [c, d] C (t' —eq(t'), I’ + €4(t")) for some ¢’ € Q. By the Vitali’s covering theorem there
exists a countable family of intervals [¢;, d;] C [a, b], [ci, d;i] € F,i € A C N, with pairwise
disjoint interior and

m ([a, b]\ U[c,-, d,-]) =m (sz\ U[c,-, d,-]) =0. O
ieA ieA

We will also need

Lemma 3.7. Let
tela,bl— fi
be a good transversal C* family of good and mizing C* piecewise expanding unimodal
maps
fe: 10,11 — [0, 1].

If ¢ is a lipschitzian observable satisfying oy # O for every t € [a, b] then

J = inf |J(f;, vy, = inf , = inf 8§, £= inf ¥;,

J re[u,b]l (fr,v)l, o te[u’b]Ut(fﬁ) §= dnf S L= dnt &
are positive, where S; and £, are as defined in equations (3) and (2), respectively.
Moreover, J(fy, vy) does not changes signs for t € [a, b]. In particular, the function

t — \Il(t) = O‘IS[J[E[
does not change signs for t € [a, b] and satisfies

inf W (1)] > 0.

Proof. The function
t — J(flv U[)

is mot continuous in a transversal family (see [3]). Indeed, its points of discontinuity lie
on the parameters r where the critical point ¢ is periodic for f;, where this function
has one-sided limits. However, in [3], Baladi and Smania showed that if v, converges
to v and f, converges to f, then if J(fy,v,) = 0 when n — oo we have J(f,v) =0
and if J(f,v) # 0 then J(fy, v,) has the same sign that J(f, v) for n large. From this
it follows that J > 0 and that J(f;, v;) does not changes signs for 7 € [a, b]. In [19],
Schnellmann proved that ¢t — o; is Holder continuous. Therefore, o > 0. Note that S, =
s1(t) > 0 everywhere, where s is as defined in equation (9). Suppose that limy, s1(#,) = 0.
Remember that (see [1, 2]),

M, —1

s1(tn)
Pt, = Pabs,t, t Psal,t, = Pabs,t, T YA H .« (12)
,; D (fy )
where pgps., is absolutely continuous, (oaps,,)” has bounded variation and
|(Pabs.i,) |Bv < C. (13)
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Taking a subsequence, if necessary, we can assume that lim, 7, = ¢t and that p,, converges
in L'(m) to p;. But if lim, s1(#,) = 0 then by equations (12) and (13) we conclude that
oy is a continuous function. But this is absurd since s{(t) # 0 for every t. O

Remark 3.8. As an example, we have the family of tent maps defined by

tx, if x <1/2,
fi(x) =
t—tx, ifx>1/2,

t € (1,2). Tsujii [20] shows that the family of tent maps satisfies
J(ftos 8tft|t:l0) 7& 0

at every parameter ty where f;, has a periodic turning point. So the restriction of this
family to a small neighborhood of such parameter fy is a transversal family. We can
observe that, since f; is a piecewise linear map for all ¢, the density p; is purely a saltus
function.

4. Decomposition of the Newton quotient for good families

In this section, we will assume that f; is a good family. In order to prove Theorem 1.1
we will decompose the quotient
Ryt +h)—Re (@)
h
in two parts which will be called the Wild part and the Tame part of the decomposition.

Definition 4.1. Let g : [0, 1] = R be a function of bounded variation and t € [a, b]. We
define the projection
M, : BV — BV

§ —> &P / gdm.
Indeed I1, is also a well-defined operator in L!(m) and
sup [TI¢|py < oo and  sup [II| 1, < 0.
t '
A function g € L'(m) belongs to I1,(BV) if and only if [ gdm = 0. In particular, the

operator (I —£;)~! is well defined on II;(BV). We are going to use the following
observation quite often. If [ gdm =0, and

oo
8= Z 8i»
i=0
with g; € BV and the convergence of the series is in the BV norm, then

(I—L) g =) (I —L) Mg,
i=0
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Note also that
H[Oﬁ[ = L[ OH;.

Proposition 4.2. Assume that f; is a family of piecewise expanding unimodal maps as
defined in §2 and let L; be the Perron—Frobenius operator. Then

_ L - L
/Ot+hh Pr _ I = Loin)~! < t+h(pt)h t(lot)).

Proof. Note that (I — £;)~! is well defined in IT,(BV) and is given by
e .
(I =L p) =) Lip),
i=0

for every p € I1;(BV). Therefore, the result follows as an immediate consequence of the
identity
(I = Litn)Pr4n — 1) = L = Le)(pr) — U — L) (or)- O

Proposition 4.3. Let f; be a C? family of good mizing C* piecewise expanding unimodal
maps that satisfies property (V) in Definition 3.3. There exists C > 0 with the following
property. For every t € [a, b] such that the critical point of f; is not periodic, we can
decompose

Li+n(pr) — Li(or)

/’l hT7Th

where
o0
1
= DSkt (DM (Hfr+h(ftk(0)) - Hﬁ(f,"(c)))
k=0
and ry satisfies

/rhdm:O and sup|rplgy < C.
h#£0

We will prove Proposition 4.3 in §8. We will call W(t, h) = (I — L;1) ' ®;, the Wild
part and (I — L)~ 'ry will be called the Tame part of the decomposition. Note that

Rd)(t"‘h}:_R"’(t) = f¢W(t,h)dm+f¢(1—£t+h)_1rh dm.

Definition 4.4. Given h # 0 and ¢ € [0, 1], let N := N (¢, h) be the unique integer such
that
1 < 1
- < -
DAY (fi(e))] IDFN (fi(e))]

There is some ambiguity in the definition of N (¢, #) when f,k (¢) = ¢ for some k > 0. But
since the family is transversal, there exists just a countable number of such parameters
(see [3]).

A (14)
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Given a € R define
la| = max{k € Z: a > k}.

The following proposition gives us a control on the orbit of the critical point.

Proposition 4.5. For large I > 0 and every y > 0 there exists 8§ > 0 such that for every
small ho there are sets Fg,’ho, F,‘io c I = [a, b], with FZ’,ho C Fgo, for every h' satisfying
0 < ' < hg, with the following properties

(A) limy o m(T, he) = m(r;jo) >1—y

(B) Ift eI?, o and |h| < I’ then there exists N3(t, h) such that

g log N(t, h)J < N(t, h) — Na(t, h) < CsKlog N(t, h) (15)

and
c¢lij (16)
for all0 < j < N3(t, h) and 0 <i < N3(t, h) — j, where I; j is the smallest interval
that contains the set
1 i+j+1 i 1 j
U @, #7740, flo 177 @, £ o F ),
(C) For everyt € Fh, the critical point of f; is not periodic.

(D) If0 < h < h < ho then T, cry,.

where m 1s the normalized Lebesgue measure on I = [a, b].

We will prove Proposition 4.5 in §6. The following proposition is one of the most
important results in this work. It relates the Birkhoff sum of the observable ¢ with the
Wild part. This fact will allow us to use the almost sure invariance principle obtained by
Schnellmann [19].

Proposition 4.6. Let f; be a good transversal family. Let ¢ : [0, 1] — R be a lipschitzian
observable. If t € Ffl’ho, where Fz,h is the set given by Proposition 4.5, then

1
<¢(ft (©)) — / ¢duz) +0 <log log ﬂ)

N3(t,h)

/ W, )y dm = s1(1)J (fi, vr) Z
Jj=
We will prove Proposition 4.6 in §7.

Proposition 4.7. Let f; be a good transversal family. Let ¢ : [0, 1] — R be a lipschitzian
observable. If t € Fg,hy where Fli,ho is the set given by Proposition 4.5, then

N3(t,hn)

Ryt +hy) —Rep(t) _ j _/ ) ( 1 )
ST o = 2= (W’ (D= [ odie)+0 o]

J=0

——— | ¢ = Ligp) 'rpdm.
sl(tmf,, v) / "
The proof follows directly from Propositions 4.3 and 4.6.
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5. Proof of the Central Limit Theorem for the modulus of continuity of R4

To simplify the notation in this section, given a transversal family ¢ — f; we will denote
Stf = slf(t), J,f = J(ft, 05 fs|s=t), O,f = otf(qb). Moreover,

L;f=/10g|sz|du,f,

where ,utf is the unique absolutely continuous invariant probability of f;, and
1
ol = —.
L/

When there is no confusion with respect to which family we are dealing with, we will
omit f in the notation.

Lemma 5.1 (Functional Central Limit Theorem). Let f; be a good transversal C* family
of C* unimodal maps and o;(¢p) # 0 for every t. For each t € [a, b] let us consider the
continuous function 6 — Xy (6,1), where

INO|—1
k() — d)M( L] _/d)
o aPD (¢(f, ©) [ e CALGMCIE R0

Considering the normalized Lebesgue measure on t € [a, b], for each N the function
t — Xn(, 1) induces a measure on the space of continuous functions and such measures

Xn @, 1) =

. ) D
converge in distribution to the Wiener measure. We denote Xy —n W.

Proof. By Schnellmann [19], we know that the sequence of functions

1 . 1
B =~ (¢(f;+‘<c)> - / ¢>dur)
(o3 0

satisfies the ASIP for every exponent error larger than 2/5. By [15, Theorem E|, the
ASIP implies the Functional Central Limit Theorem for Xy (0, t). O

As in Leplaideur and Saussol [13] we are going to need

Proposition 5.2 [6]. If

Vv, P
RN (17)
an
where L is a positive constant and (a,), 1 a sequence such that a, — 0o when n — 00,
then
D
XN —>N w
implies
D
Yn —>n Ws

where Y, is

| [vn0]—1

= k — M [vaf] _/ >
o /o, 1) P <¢(fz (©) /¢dﬂt>+ <¢(fz () bdu, ).

o1/ vp (1)
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Proof. See [6, p. 152]. O

From now on we will denote

1 Y 52
D ( )=—/ e 2 ds.
NV V21 -
The following lemma will be used many times

Lemma 5.3 (A variation of Slutsky’s Theorem). Let A,: [0,1] = R be functions and
Q, C [0, 1] be such that

liminfm(2,) > 1 —y,
n
and for every y € R the sequence
an(y) =m(t € Qy: Ap(t) < y)
eventually belongs to
O(y,€) = (Dn(y) —€, Dnr(y) +€),
that is, there is no = no(y) such that a,(y) € O(y, €) for every n = ng. Then
(A) There exists 8§ > 0 such that if B,: [0, 1] = R is a function such that
liminfm(t € [0,1]: |B,(t) —1] <8) > 1—y,
n
then the sequence
bn(y) =m(t € [0,1]: Ay(£)Bu(t) < y)
eventually belong to O(y, € +3y).
(B) There exists § > 0 such that if B,: [0, 1] — R is a function such that

liminfm(t € [0, 1]: |B,(t)| <§8) > 1 —vy,
n
then the sequence

by(y) =m(t €[0,1]: Apy(t) + B, (1) < y)

eventually belong to O(y, € +3y).

Proof of A. Define
Dli(y) = {t € Qu: Ap(t) < y)
Dy = {t € [0.1]: |By(t) — 1] < 8)
DY p(y) = {t €[0,1]: A,(t)B,(r) < y}.
Choose § > 0 such that

sup sup [Dar(y) —Dpar(y(1—8))| < v,
yeR |8'|<8

and

sup sup [Dar(y) = Dar(y(1 =8N < y.
yeR |8/|<8
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Ify>0
D ((1=8€)y)NDy C Djp(y) and D)g(y)NDENQ, C D}((1— 8 y).

Thus, if n is large

m(DY g (y)) = m(D% ((1—=38)y) N D%)
> m(DY((1=8)y) —y > Dn((1=8)y)—e—vy
> Dpr(y) —€ —2y, (18)
and
m(D)yp(y)) < m(D)ypg(y)NDg)+y

m(D%((1—=8)"'y) +2y < Da((1—8)"1y) +e+2y

<

<m(Dyg(NNDENR,)+2y

<

< Dy (y) +€+3y, (19)

and if y < 0 we have
D (1 -8 yn Dy C Dig(y) and DYz(y)NDENQ, C DY((1—138)y),
and an analogous analysis as above gives

m(Dlyp(y) € O(y, € +3y). O
Proof of B. Since the proof is quite similar to the proof of A, we will skip it. O
Lemma 5.4. Lett +— f;, t € [a, b] be a good transversal C* family of C* unimodal maps.

Let ¥ : [c,d] — [a, b] be an affine map, ¥ (c) = a and ¥ (d) = b and go = fy ). For every
small enough h # 0 we can define

Q(h,y) =0 € [c.d]: ! <R¢g(9+h)—72¢g(9))<y
o oS E Toglhl i <
and
1 Re, (t+w)—R
Q(w,y) =1 €la, bl: ———— ( g, (L +w) ¢f<z>)<y
o; 4 S} J! /—log|w| w
If
m(S2g(h, y))
m([c, d])

eventually belong to O(y, y) when h converges to 0 then

m(Qy(rh, y))
m([a, b])

eventually belong to O(y, y’) when h converges to 0, for every y' > y. Here r = '.
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Proof. Tt follows easily from Lemma 5.3(A). O

Remark 5.5. Lemma 5.4 implies that it is enough to show our main theorem for families
parametrized by [0, 1].

Proposition 5.6. For every y > 0 there exists Q1 with the following property. Let f; be a
good transversal C* family of C* piecewise expanding unimodal maps with o;(¢p) # 0 for
every t and

| Lv
L

t

Q= sup < Q1.

t,t'€lc,d]

Then for every h small enough we have

1 1 R¢(t+h)—7€¢(z))
—_— ,d]: <
mie.ap™ | <1 G,Z,S,J,,/i—log|h|( h y}

belongs to O(y, 13y).

Proof. Without loss of generality we assume that [c, d] = [0, 1]. It is enough to prove the
following claim: For every sequence

hy, =, 0
and every y > 0, the sequence
1 R¢(t+hn)_R¢(t)>
sp,=m7t €[0,1]: < <y
" { 00018, Ji/— log [y hy,

eventually belong to the interval O(y, 12y).
Fix a large I > 0. By Proposition 4.5, for every y > 0 there exist § > 0, hp > 0 and
sets F/i,ho’ on C I, with Fi,ho C onv for every h # 0 satisfying |h| < hg, such that

(A) limy—om(T) , ) =m(Th) > 1—y.
(B) Ift € Fg,ho then there exists N3(¢, k) such that

Blog NG, h)J < N(t, h) — N3(t, h) < CsK log N (1, h)
and . o ' ‘
c & Ui o i@, £ o £ (]
forall 1 < j < N3(t,h) and 0 <i < N3(t,h) —j.

For all h #0 and ¢t € [0, 1], define N4(t,h) = N3(t,h) if t € Fg,ho and || < hg, and
Ny(t, h) = N(t, h), otherwise. Therefore, for B we have

N(t, h) — Na(t, h) < CsKlog N(t, h) (20)
for every (¢, h). Since
NG h)1+1 < |kl < ﬁ
IDf T (fr(0))] IDfy " (fi(0))]
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we have
N(t,h) —log |h| 1 N(t,h)+1
log | DS, (f} < log | Df; (fF(e))l.
NG ]; og [Dfi(fi ()] < NG SNEw ]; og | Df; (£ (e))

By Schnellmann [18], we have for almost every ¢

N—+o00

N

. 1

lim > logIDfi(ff ()] =L = / log |Dfi| dp,
k=1

which implies that for almost every ¢

—log |h| /1 \Df.|d
im ——— = :
0 Nt h) OB 1ZJrl it
And by equation (20)

—loglh] _ —loglh] _ —log ||
N(t,h) ~ Na(t,h) ~ N(t,h)—CsKlogN(t, h)’

we also have

LiNy(t, h)
im ——— =1
h—0 —log|h|
for almost every ¢ € [0, 1]. Fix #p € [0, 1] such that L;, = min;c[o,11L;. Then
Li/LyyNa(t,hy) P 1
_— H _—
—IOg |hn| Lt()

By Lemma 5.1 and Proposition 5.2,

Yo(0.1) 2>, W, (23)
where Y, is given in Proposition 5.2 and W is the Wiener measure, with
Ly
Vp(t) = Na(t, hp)—.
Ly,
Hence, taking 6§ = 1 we conclude that

Yu(l, 1) -2, N(O, 1), (24)
where N (0, 1) denotes the Normal distribution with average zero and variance one. Let

Lt()

0= sup |1

t€[0,1]

Fix a € (0, 1/2). The Lévy’s modulus of continuity theorem (see for instance Karatzas
and Shreve [8]) implies that for almost every function f with respect to the Wiener
measure there exists Cy such that

|f@) = f@O)<Crlo -0
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for all 6’,60 €[0,1]. In particular, there exist H = H(y) and a set ©, of a-Holder
continuous functions in C ([0, 1], R), whose measure with respect to the Wiener measure
is larger than 1 — y, such that

|f(6") = fO) < HI'—0|".
In particular, for f € Q, we have

Ge[rfl_aé’ulf(l)—f(é’)l < HQ“. (25)

Due to equation (23),

liminf m {t e[0,1]: max |Y,(1,1)—Y,0,1)] < HQ“} >1—y.
n 0ell-0,1]

Yol ) — Y, (20
L

then liminf, m(D,) > 1 — y. Let us apply Lemma 5.3(B) with @, = D,, A,(t) = Y, (1, 1)
and B,(t) = Yn(li—’?,t)—Yn(l,t). Observe that by equation (24) the sequence ay(y)
defined in Lemma 5.3 eventually belongs to O(y, €) for all € > 0. Hence, taking € = y,
there exists §; = §;(y) > 0 such that if 2H Q% < § we have

m (t €[0,1]: Y, (ﬁ, t) < y> (26)
L;

eventually belongs to O(y, 4y). Choose Qg = Qoy > 0such that if 0 < Qg then 2H Q% <
81. Note that

Ly, L, 1 LN4(t,hn)]—1 )
Y, <L_t’ f) = L_t—Gz AU 1; (‘P(f; () —/del/vt) . (27)

By equation (21) and Lemma 5.3(A), the sequence

\/H \_N4(f’hn)J—1< . )
Pefo, 1] — Y0 o ( ())—/¢>d <
" o1y/—1og | g fie AV

eventually belongs to O(y, 7y). Applying again Lemma 5.3(A), with

\/rto [N4(t,hn)]—1 < ' / )
Apt) = —F———= d(fr@)— | ¢dui ),
o1/~ 1og || ,;0 fie .

In particular, if

D, = {te [0, 1]:

ane

Q, =1[0,1] and
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there exists §» = §2(y) > 0 such that if
L _ 1
Ly,

N4 (t.hn)]—1

2

k=0

for every t then

v VL
o1/ —log|hy|

m|tel01]:

<52

(¢(ft"<c)> — / ¢duz> <y

691

eventually belong to O(y, 10y). Choose Qi = min{Qy, 2} such that QO < Q; implies
equation (28). Finally, by Propositions 4.6 and 4.7, if 0 < |h,| < ho and 7 € an,ho we

have
N3(1,hn)
Ryt +hp) —Rep(t) ( j / 1
= d(fi () — | ¢du, )+ O |loglo
Sidiln g i ’ % )
1
I —=Lon) 'y dm.
+S;Jz /¢( t+h) " Thdm
Since
loglogﬁ
—— %n
and
sup [(1 = Lon) il < oo,
we have
N3(t,hy)
Ryt +hn) =Ry (1) 1 ( j
= o (f, (C))—/fﬁduz +r(t, hn),
Si01Jihny/=10g [hnl 01/ Tog [y ; ’ ’
where
lim sup |r(t, h,)| =0.
tel‘,‘jmho
Hence, it is easy to conclude that
R¢([ +hn) - Rq}(t)
Statgt-]thn\/ —log |hy|
N3(t,hn)

1

~ ory/~log|hy| ;

8
for every 1 € I'y ', where
|

l, =
VL
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and
lim sup |r'(¢, hy)| =0.

s
tel“hmh0

Since m(I”fl’hO) > 1 —y, we can apply Lemma 5.3 (remember that N4(¢, h) = N3(¢, h) for
te Fﬁy ho) to conclude that the sequence

Re(t+h,) —Re(t
m (1 eo.1: ot +hy) o (1) <
Si01l; Jihy\/—log |hy|

eventually belong to the interval O(y, 13y). O

Lemma 5.7. Let [¢;,d;] Cla,b], i € A CN, be intervals with pairwise disjoint interior

and such that
m ([a, b]\ e, d,-]) =0.
ieA

If t = f;, with t € [c;, d;], are good transversal families such that for alli € A and y € R
we have

t € e, dil:

1 " 1 <R¢(t+h)—7€¢(t)><
m(lci, di1) 014, S, J;\/—Tog ] h s

eventually belongs to O(y, y), then

te€la,bl:t+he€la,b] and ! <R¢(t+h)_R¢(t))<y}

1
—_—m
m([a, b]) { 014,81 Ji/—log |l h

eventually belongs to O(y,y +¢€), for every € > 0.

Proof. Define

Q(h,y):{te[a,b]:t+he[a,b] and ! (R"’(Hh)_R"’(”)gy}

ol S Jiy/—log |h| h
and
1 Ro(t+h)—Re(t
Qi(h,y) =1t €lci,di]l: t+h € [a, b] and ( ot +h) ¢())<y .
(TtEtStJh/—log|h| h

Of course Q;(h, y) are pairwise disjoint up to a countable set, ;(h, y) C 2(h, y) and
m(Q(h, y)\U;Q;(h, y)) = 0.

Then
m(Q(h, y) = Y m(Qi(h, y)).

ieA
Given € € (0, 1), choose iy such that

m(U;sjylci, di]) < em([a, b]).
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For every i < ig there exists h; > 0 such that for every |h| < h; we have

m(82;(h, y))
m([ci, d;i])

belongs to O(y, y +¢€). Let h= min; g, h;. Let
Uip(h, y) = UigiyQi(h, y),

and

Wiy (h, y) = Uigiglei, dil.

Then for |h] < h we have

m(Uiy (h, y)) ZZ m([ci, di]) m(Li(h, y))
m(Wi,(h,y)) = m(Wiy(h,y)) m(lci,di])

i<ig

is a convex combination of elements of O(y,y +¢€), then it belongs to O(y, y +¢€). We
conclude that

(Dn(y) —y —2e)m(la, b)) < (Dn(y) —y —€)(m(la, b)) —em([a, b]))
< (D) —y —e)m(Wiy(h, y))

< m(Uiy(h, y))

< m(Q(h, y))

< m(Uiy(h, y)) +em(la, b])

< (Dn(y) +y +e)m(Wiy(h, y)) +em([a, b])
<

(Dn(y) +v +2e)m(la, b)). (30)

O

Proof of Theorem 1.1. Remember that
t— L;

is a continuous and positive function on [a,b]. Given y >0, let Q1 >0 be as in
Proposition 5.6. Then there are kK > 0 and intervals [c;, d;], i < k = k(y), which forms
a partition F of [a, b] and

L,
1— =22

t

sup
t,t'€lci.di]

< 01

for every i < k. Then the restrictions of the family f; to each one of the intervals [c;, d;]
satisfy the assumptions of Proposition 5.6. Now it remains to apply Lemma 5.7 to the
full family and the partition F. Since y > 0 is arbitrary we completed the proof of
Theorem 1.1. O
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6. Controlling how the orbit of the critical point moves

The aim of this section is to prove Proposition 4.5. Let us denote by I = [0, 1] the interval
of parameters.

Remark 6.1. In Schnellmann [19, Lemma 4.4], it is proven that there is C; > 0 such that
ifN>1,|t1 —t] < 1/N and if w; € Py(t1) and wy € Py (r2) have the same combinatorics
up to the (N — 1)-th iteration then

DfN (x1)
Df, év (x2)

~X 15

for all x| € w; and x; € ws.
We also observe that if x, y € w € Py (t), then by the bounded distortion lemma, there
is Cp > 0 such that

Df (x)

- <Cy
thj(Y)

s

for every j < N. Let

M= sup sup |3 f (o),
0<j<jo tela,b]

and let us define
C3 = max{C, M}, (31)

where C is the constant given by the transversality condition (see equations (6) and (7))
and

Cqy = sup sup |0 f;(x)].
1€[0,1] x€[0,1]

To prove Proposition 4.5 we will need

Lemma 6.2. Let N3 € N and w € Py, be such that

1
lo] < —.
N3
Ift € w and
dist(t, dw) > (M + D)|h], (32)
where
M > max{C|C3Cs, C3C2C3). (33)
Then
c §é I,',j(l‘,h) (34)

for all 0< j < N3 and 0<i < N3—j, where 1; j(t,h) is the smallest interval that
contains the set

U O, £ 0 floo 7@, o £ (o).
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Proof. Let jy be as defined in condition (I) (see Definition 3.3). If j > jo define i; =0
and if 0 < j < jo define i1 = jo. First of all, we observe that if 0 < j < jo and 0 <i < jo
then equation (34) follows from condition (VI). In particular,

c ¢l j(t, h) for every i <ij. (35)
Hence, it is left to consider the cases when
jo<j<N3 and O0<i<N3—j
and
O<j<jo and jo<i<N3—]j.
We claim that
C 9_5 I,'l j* (36)
Indeed, if 0 < j < ](), it follows from condition (VI). Now, if jo < j < N3, due to condition
(I), equations (6) and (7) the maps
0cw— fie)elo, 1]

are diffeomorphisms on their images for every jo < k < N3 and they do not contain the
critical point in its image, for all jo < k < N3, 6 € w. In particular, if w = (s1, s2) then

c ¢ {f§(0): 0 €w) = (fi(0). fL(e)) (37)

for every jo < k < N3. Therefore,

c ¢ [fF©), fhno1

By the mean value theorem and Remark 6.1, for every j < N3

1 @ = £ ©1 = 180 £ ©lo=o, 18] < C3IDF, (fo, ()Ih] < C3C1IDS (fi(e))]Ihl.

Moreover, ' ‘
| fren (7 (©0) = fi(f ()] < 18 fo (f/ (©))lo=,]1h] < Calhl. (38)
By assumption, d([t, t 4+ h], dw) > M|h|. Thus,
ol > M + D]hl. (39)

If 0w = {s1, 52} and s € [t, t + h] then
L ) = 5N )1 = 100 £ (©)lo=es lIsi — s

C—3|Df9’§(fe3 (©)|M]h|

WV

WV

: Dfk M|h 40
C—C3| fi (fi(©)|M]h] (40)

for every k < N3. Taking k = j we obtain
j j M
[ feen (fi (©)) = fi(fi ()] < C4lh| < —Ihl

<TC3|Df/(fz(6))llhl < o-F oL @
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Hence,
fisn (s £ 1 € (B @, £ ). (42)
In particular,
c¢ Ioj(t,h) =1, j(t,h).

We concluded the proof of our claim. Now fix 0 < j < N3. We are going to prove by
induction on i that, for every i; <i < N3 — j,

c¢ Iiﬁj(l‘,h). (43)

The case i = i; follows from equation (36). Now suppose that equation (43) holds up
to i. Provided that i >i;, we have i + j+ 1 > jy. Therefore, by equation (37), with
k =i+ j+2, we obtain

LD frn(e) € ATV, 5 o).

And as in equation (40)

1 1 1
LA ) = £ Frnen) = |fo’+ " fran(@)IMIB. (44)
Moreover, by induction assumption and equation (35)7 we have for every 0 < k < i

c &Iyt h).

Thus the points
fj+1(c) and fj+1

have the same combinatorics up to i iterations of the map f;+,. Then by Remark 6.1

NG @) = Gl el < capfE G e A o - 115 ©)

oD I N80 ] (@ loayl 1R
C3CaDFE LIS ONNDF, (fou@)11h]

< CLCGIDFHN LA DLy frsn()ln]

< C1CGIDE T fien(@)) 1] (45)

N

N

and ' '
fl) and [, ()
have the same combinatorics up to i + 1 iterations of the map f;4;. Then by Remark 6.1
LD @) = £ L@ < DSV (©) = f, )]
< DL (L @)180 £ (© lo=es 1R
< CGIDEST VT L DL (fas ()11l
CLCC3IDES I (FL DS fren (@)1

<
< C1OGIDLSE T (fran(e)IA. (46)
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Since
C1CC3 < i
1€2L3 C1C3’
equations (44)—(46) imply that

T o £V ey € P o, £ ).
In particular, ¢ ¢ I; j(t,h) for all0 < j < N3 and i; <i < N3 —j. O

To prove Proposition 4.5 we need to show that, for each given h # 0, for most of the
parameters ¢ € [0, 1] we can find a cylinder @ € P, 5 where [¢, t 4+ h] is deep inside w
(see equation (32)) and moreover, N3(t, h) satisfies equation (15). To this end, for most
t we will find w, with ¢t € w, in such way that |w| is quite large with respect to |k| and
N3(t, h) satisfies equation (15), but not necessarily the whole interval [¢, t + k] is deep
inside w. Then we will use a simple argument to conclude that for most of the parameters
t this indeed occurs.

Let P; be the partition of level j > jo. Observe that for each cylinder w € P;

1\/
<C N )
o] 3 <A)

where C3 is the constant given by equation (31).
Let N > 1 and define j = j(N) as

log(C3N
jzlog( 3 )J—H'
log A

Note that the cylinders of P; divide the interval of parameters I in subintervals of length
shorter than 1/N. Let J be one of these intervals in P;. And we will denote by tg the
right boundary point of J.

Observe that, by definition, there is an integer i, 0 < i < j such that

xi(tr) = fi () =c.

Fix an integer 7 such that 217 </

Definition 6.3 (The sets En ). Let J € P;, j = j(N). Let Ey ; be the family of all
intervals w € Py such that for every k satisfying

Klog N
T

0<k<{

and for o satisfying
C?)Z(a,b)GIPN,UClOgNJ+q, with w C® C J,

where
g = min{(k+ )7, [KlogN]},

one of the following statements holds:
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(A) For every i satisfying
N—|KlogN]+kt <i<N—|KlogN]+gq
we have

xi(a) # c.
(B) For every i satisfying

N—|KlogN]+kt <i<N—|KlogN]+gq

we have

xi(b) # c.

Define
Ev= | Evn..
JEPJ'

Let us denote by |Ex| the sum of the lengths of the intervals in this family.
Given n € N and @ € P, define

8 1= min{| £} (¢) — f/ ©)I: fi(c) # f/ (@i, j < 7.}
min,eg S
Sy = —t;w !
Notice that if @ D w then §; < 8.
Let Cr be such that ' _
[fi (©) = fi(e)] < CL|t — 5]

foralli <t,s,te€[0,]1].

Lemma 6.4. There is C > 0 such that the following holds. If ® € P;, i > jo, with |®| < 1/i

and t € & then _ ~
L @ _ o @)

Z WO _ gy < o @ (47)
CIDf{ (fi (o))l IDf{ (fi(e)]
Moreover, if w € Py \ Ex then there exists i satisfying
N—|KlogN| <i<N
such that w C @ € P; and if
CL|(Z)| < 35,
then
[xi (@) = 85
and | s |
Z <@l < (48)

CIDfi (fi(e)l |Df/ (fi ()]

for every t € @.
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Proof. If t € ® € Py then by the mean value theorem for some 0; € @

(@) = 189 £ T (©)lo=0, 1@,
then
DA (fienlldl _ IDfy (fo, ()@
C1C3 = C3

< x (@)

and
X (@)] < C3|Df (fo, (DN|@] < CLC3IDFF(fi ()|,

therefore, equation (47) holds. Now assume w € Py \ Ey. Then there exists k satisfying

0<k< {KlogNJ

T
and
® = (a,b) € PN_|KlogN|+q>
where ¢ = min{(k + 1)7, [KClog N |}, such that x;, (a) = ¢ = x;,(b), where
N —|KlogN|+kt <ig,ip < N—|KlogN]+gq,

in particular,
XN—(Klog NJ+¢ (@) = (f7(c), £, (c)),

where
0< ng,np <t, withng #np.
Thus,
XN~ Klog N j+q (@) = 17 (c) — f" ()
= | fle) = [Pl =1 i () — f," (o)l
2 285 —Crla—0b| = 85. (49)

O

Since §; > 0 depends only on a fixed finite number of iterations of the family f;, it will

be easy to give positive lower bounds to it that hold for most of the intervals @. Indeed
define

A‘IS\,0 ={t €0, 1]: for every N > Ny if t € w € Pn_2|K10gn) then &, > 8}.
Note that A‘ISVO C A‘IS\,OH. Moreover, § < § implies A%O D A‘ISVO.
Lemma 6.5. Given y > 0 there exists § > 0 such that

lim |AS |[>1—y.
N()1—>OO| N0|/ y
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Proof. Since f; is a transversal family, the set of parameters ¢ such that f/ (c) = ftj (c) for
some [ # j, with i, j < t+1 is finite. Let 1, ..., t,, be those parameters. The function
t — &, is positive and continuous on

O =10, 1]1\{r1, ..., tm}
Choose Ny large enough such that
#w € Pyy—2KlogNoj - @ N {11, ..., t} # B} < 2m.

Thus,
2Cm

{w € Pny—21KlogNg) - @ C O} 21— TNo2IKIogNo] 11—y,

provided Ny is large enough. Let
§ == 1 min{d,: w € Py_a|Klogn). @ C O}.

Note that § > 0 and
A?V D U{a) S PN—2UC10gNJ tw C 0}
for every N > Ny, provided that Ny is large. O

Proposition 6.6. There exist Ci,Cr > 0, that do not depend on K, such that for every
K' < K there exists K = K(K') > 0 such that

|Ey| < KNOOK (50)

The proof of this proposition follows from
Lemma 6.7. There exists C1 > 0, that does not depend on K, such that for every K' < K
there exists K = K(K') > 0 such that if J € Pj, j =j(N), and En. j is as defined before,

then .
|Ey.g| < KN"OX. (51)

We will prove Lemma 6.7 later in this section.

Proof of Proposition 6.6. We have

Ey = U En.j.
Jer

Since there are at most 2/ cylinders of level j, we have by Lemma 6.7 that there exist
Cy > 0 and K = K(K') such that

log(C: ~ log2 o S ,
|En| < 2(751(023*N))KN_C"C/ = 1<c3“’f>"zv%*cl’C . (52)
O
Define
Qn, ={t€[0,1]: VN 2 NpJw € PN—I_IClogNj\EN—LIClogNJ and t € w}. (53)

Note that Qy, C Qnp+1-
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Corollary 6.8. If Cr— C1K < —1 we have

lim Q| = 1. (54)
No— 00

Proof. Notice that

Qy, = ﬂ U .

NZ2No wePn_|Kc10g N)\EN- K log N]

If we choose K’ < K such that C» — C;K’ < —1 we have

_ 6 k! No—oo
Cc1K" Vo

%= U U o< > kW -1Klogn)© 0. O

NZ2No we€EN_|KlogN| NZ>=Ny

From now on we choose and fix K > 0 satisfying C,—CiK < —1.

Corollary 6.9. For every y > 0 there exists § > 0 such that

lim m(Ay, NQy,) > 1—y.

No—00
Definition 6.10. Given § > 0 and hg > 0, define
Ty,
as the set of all parameters ¢ € [0, 1] such that for every h, 0 < |h| < ho, there exists k

satisfying
N(t,h)—2lelogN(t,h)] <k < N(t,h)— lelog N(t, h)]

such that if t € ® € Py then |xi(®)| > 6.
Given t € Fio and h # 0, let Na(z, h) be the largest k with this property.

Definition 6.11. Given i and ¢t € [0, 1], define
Ni(t,h) :=N(t,h) — |[Clog N(¢t, h)], (55)

and for hg > 0 define
Ni(hg) := min Ni(¢, h).
t 0

el |h|<h
Since
lim max ; =0
N—oorel0.1] [DfN(f;(c))|
we have

lim Nj(hg) = +o0.
ho—)O

Lemma 6.12. For every y > 0 there exists § > 0 such that

lim m (¢ 1—y.
h0—>0m( hO) = 4
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Proof. By Corollary 6.9 there exist § > 0 and Ny such that
m(Ay, N2xy) > 1—y.
Choose hg such
Ni(hg) > Np.

Let |h| < hg. Then
N, h)— [KlogN(t,h)| > No.

Ift e A§Vo NQyp,, choosing @ such that t € @ € Py n)—|KClog N,hy) then
@ & EN@.hy—Klog N(t.h)) -
Hence, by Lemma 6.4 there exists k satisfying (here N = N (¢, h))
N —[KlogN]| — | Klog(N — |[KlogN])] <k < N—[KlogN|
such that if r € @ C @ € Py then
Xk (@) > 8 > 8

since t € A‘;\,O, so that Cp|@| < 8 < 8;. Therefore, Fgo D A?\fo N Q- O

Definition 6.13. Given hy > 0 and & > 0, for every h such that |h| < hg let Afuho be a
covering of I" 20 by intervals w with the following properties

(P1) There exists t € 1"20 such that t € w € P,.n)-

(Py) If ¢’ € Fgo and t’ € w then o' C w, where ' € @' € Py, n).

(P3) There does not exist t” € szo such that t” € " € Py, p) and o ;Cé .

One can check that one such collection A;i ho does exist. Indeed, consider the covering of
Fgo given by
{w: there exists t € Ffto such that t € w € Py, ,n)}-

Of course, this covering satisfies property P;. Remove from this covering all intervals
o that do not satisfy property P3. Then the remaining collection is a covering of on
satisfying properties P;—P3. Note also that the distinct intervals in .A;i ho AT€ pairwise
disjoint. Indeed, if w, o’ € Ai’h(ﬂ with @ # @ and @ N’ # @ then either v G o' or 0’ G o,
which is in contradiction with property P3.

We note that |A2,h0| > m(f‘ﬁo)7 since Ag,ho covers 1"20. Here |A2,h0| denotes the
Lebesgue measure of the union of the intervals in the family A‘,Sl ho-

Lemma 6.14. If hg is small enough there are C5 > 0 and C¢ > 0 such that the following
holds. Given t' € 1"20, let w be the unique interval in Ai,ho such that t' € w. Let t € on
be such thatt € w € Pn,¢,ny- Then

E log N(', h)J < N(, h) — Na(t, h) < CsKlog N(t', h) (56)

and
log

o] > CeSN (', )5 |h). (57)
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Proof. Consider o’ such that
t'ew e PNz(t/,h)-
Then by property P we have ' C w. Since

4 No(t',h
8 < xnyr (@) = 13 FY2 P (0)||o'] < CLC3IDEN M (),

it follows that
k) 1 CiC3

; < o' < |o| < . (58)
C1C3 |DF M (fr (o)) IDFVEP (£ (o)
Since t,t € w, there is C; > 1 such that
1 1 1 1
— . < . <G .
CrIDf(fr(enl — IDff(fi(e)] IDf)(fir (o))
for every i < Na(t, h). Choose C such that
) 1
o e (59)
301
Then )
otherwise
é 1 < C1C3
CiCs DD (foenl 1D (e
< Ci1C3 1
T DN =N (NI Gy p NI (o)
< C1C3 Cy

A DS (fuenl
which contradicts equation (59). In particular,
N(t',h) = Na(t,h) = N(t',h) — N2(t',h) — C
> lelogN(t',h)] —C
> E log N(7', h)J .
Note that the lower bound holds if 4¢ is small enough. Thus,
N(', h) > Na(t, h).

Moreover,
Ih] < 1
~ /’h
DL (S ()]
< 1 1
DN DT ) DN (f(0)))
1 Cq

<
= '\ h)— N/ Jh)+1 No(t,h '
|Df NI (N2 () p N (1 ()
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On the other hand,

1 1 1 1
|hl > —. (60)
DT an] (DN NG g [ R o)
Then
log| Df" "M RER (FRED T )] —log €4
< log |thN(t,h)—Nz(t,h)(f[Nz(t,h)+l(C))l +log A
and consequently
N(t', h) — Na(t, h) < C3(N(t, h) — Na(t, h)) + Ca.
In a similar way, we can obtain
N, 1) = Na(t, h) < C3(N (&', h) = Na(t, b)) + Ca,
where
A log A
Cz=——
log A
and loa C
Cy= BT
log A
N(t,h) = N(z, h) — Na(t, h) + Na(t, h)
<2elogN({Et, h)+ N, h)
N(t, h
< (. 1) N(t', h)
N(t, h) — 2€log N(t, h)
<2N(, by,
provided that kg is small. Consequently
N(t', h) = Na(t, h) < 3(N(t h) — Na(t, ) + C4
<C 2LIC10g N(t, h)] + G4
< C32K10g[2N (1, h)] + C4
< CsKlog N(t', h). (61)

Here the last inequality holds if kg is small enough. Moreover, by equation (58)

N 1 s B s |thN(t Jh)—No (', h)(ftl,vza ‘h)+l(c))|
] > CiC N2 h) T CC N
13 1Df, (frr ()] 1+3 IDf, (frr ()]
5 )\N(t/,h)sz(l/,h) S KlogN('.hy
> e wah >eah = NS L (62)
1C3 DS, (frr(0)] 1+3 1

Hence, we obtain equation (57). O
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Choose € > 0 such that

1
— < 1l—e.
N

Lemma 6.15. Given M > 0, define

M+1
Bg,ho,M = {t tewe Az,ho and dist(t, dw) > 1;: |h|},

Let hj = (1 —€)'hg. Given h satisfying 0 < |h| < hg, let
i(h) = max{i e N: |h| < (1 —e) " hg).
For every h > 0 define

AS s 5
Dy =T 0 m By, no.m

i>i(h)
Then
(A) If0 <h <h then ﬁft,ho C fg,ho’
(B) We have

li 08, )y =mT).
hl_)f%m( h,ho) m( ho)

Proof. Note that

logh i log(1 —
1€[0,1] log A log A
where toe h Tos(1
log A log A

Therefore, if h¢ is small enough, there are Ky, K > 0, such that

min N(t,h;) > K; +iK>.
t€[0,1]

Define

Ah= U w.

s
weAh_hO

Ifwe Ai,ho then there is t € Fgo such that t € w € Pn,(,n). By Lemma 6.14

M+1
m(wnN (B,‘z ho ) =m {t/ € w: dist(t', dw) < 1 + Ihl}
10, —€

M+1
1 A
—€
2(M +1)|h
o 2MAD) Iw|
(1-e)|w|
2C6(M +1)

5(1 — )N (1, hK™5

<2

o). (63)
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Choose K large enough such that KlogA > 2. Then

o o
2C6(M + 1)/
Y mAn VB ) <Y T (64)
i=0 i—0 (K1 +iK)™ 2
In particular,
c
§ $ 1) § 1)
m Fhoﬂ m Bh,‘,h(),M =m(rh0)—m Fhoﬂ ﬂ Bhi,h(),M
izi(h) i>i(h)
>m@Th)— Y m@Th N (B o))
i2i(h)
>m@Th)— > m(Ay N (B o a))- (65)
i2i(h)
Equation (64) implies that
li Ap N (B} ) =0. O
lim > m(Ap V(B gy 1))

i>i(h)

Proof of Proposition 4.5. By Lemma 6.12 for every y > 0 there exists § > 0 such that
for every small hg we have
m@Tp)>1-y.

Choose M satistying equation (33). Define
8 é
Fh,ho = Fh,ho\Q’

where f‘ﬁ ho is the set defined in Lemma 6.15 and Q is the countable set of parameters

where f; has a periodic critical point. By Lemma 6.15 Property A holds. Let ¢’ € F,‘i,ho,
with |h| < hg. There exists i > i(h) such that

hiv1 < |h| < by,

where h; = (1 —€)'hg. Thus, N(t', h) = N(¢/, hj), for some j € {i, i + 1}, and consequently
Na(t', h) = Na(t', hj). Then there exists a unique w € Az,«,ho and t € Ffm such that t,t" €

® € Pp,.n)- Moreover, since t’ € ng,ho,M we have

M+1
dist(t', dw) > 1:: hj > (M~+1)]h.

Define N3(#', h) = Na(t,h). By Lemma 6.14 equation (15) holds. By Lemma 6.2,
equation (16) holds. O

6.1. Proof of Lemma 6.7

Let J be the interval as in the statement of Lemma 6.7. The sets Ey, ; ‘live’ in the
parameter space. To estimate its measures we will compare them, following [18], with the
measures of similarly defined sets in the phase space of the map f;,.
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Definition 6.16 (The sets EANJR). Let J = [z, tr]- Denote by ENJR the set of all

n € Pyn(tr)
such that for all k satisfying

0<k< {KlogNJ

T
there is not
€ Pn_|KlogN)+jtrR), 1 CH,
where
j = min{(k + D7, |Klog NJ},
such that

N—|Klog N |+kt , ~
FNTRIE NI Gy e P (tR).

Using a strategy similar to the one applied in [18], we estimate the measure |Ey, s| in
terms of the measure |En ;|. To this end we need to define the map U;. Recall that if F
is a family of disjoint intervals then |F| denotes the sum of the measures of the intervals.

Definition 6.17 (The map U;). Let J = (71, tg). Consider the map Uy
Uy : Pnls — Pn(tr)

defined by Schnellmann [18, proof of Lemma 3.2] in the following way. Let w € Py|; and
choose t € w. Since w is a cylinder, it follows that x;(¢) # c for all 0 < j < N. Therefore,
there is a cylinder w(xg(¢)) in the partition Py () such that xo(t) € w(xo(1)).
Let
Uj (@) = U 15 N (0(x0(1))),
where U; 1, v : Pn(t) = Ppn(tr) is such that for all n € Py(¢), the elements n and U;(n)
have the same combinatorics.

symb, (f{ () = symby, (f};, Us,te.n ().

for 0 <i < N. Schnellmann [18] proved that U ;, n is well defined when f; is a family
of piecewise expanding unimodal maps satisfying our assumptions. In particular, if r < ¢
and a certain symbolic dynamic appears in the dynamics of f;, then it also appears in
the dynamics of f.

Therefore, the cylinder o’ = Uj(w) = Uy 15, N (@ (x0(#))) has the same combinatorics as
w, that is, ‘

symb(x;j(w)) = symb,, (f, (@),

when 0 < j < N. Since there are not two cylinders in Py (tg) with the same combinatorics,
the element o’ does not depend on the choice of t € w. Therefore, U, is well defined.

Lemma 6.18. If w € En j, then U;(w) € BA”N‘,R. Moreover, there exists C' > 1 such that
lw| < C'|Uy ()] (66)

In particular,
|En.s| < C'|EN gl (67)
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Proof. Note that U, (w) € E N,z follows from the fact that w and U;(w) have the same
combinatorics [18]. By [18, Lemma 3.2], there exists a constant C’ > 1 such that

lo] < C'Uy(@)].

Thus,
Exgl< Y lol < Y ClUs@)] < C'|EN.g). (68)

(UEEN._/ CUEEN’_/

Definition 6.19. For each n" € Py_ k10 n)(tr), define the set
En gy =1{n€Pn@r):n€Eyyy and nCn').

Lemma 6.20. Let n' € Py_|ciogn|(tr). Then

A Klog N
BEN 1o < ol = o, (69)
Proof. Define
{Klog NJ
ko = . .

Notice that
N>N-—|KlogN]+kyt > N—r.

If N=N-—|KlogN]|+kot define k; = kyg. Otherwise define k| = ko+ 1. For every k
satisfying
0<k<k,
define families of intervals F; in the following way. If k < ko define
Fi={hcn:ne Prn—|Klog N|+kz (tr) and there is 1 € ENJR,,]/ with n C 7} (70)

otherwise k = k; = ko + 1 and

Fio = Enigon- (71)
Note that if k1 = ko then we also have Fy, = EN’,R’,//. We claim that
#F, < 2%, (72)

We observe that, taking k = k; in equation (72) we obtain equation (69). Note that
either Fy is the empty set or Fo = {n'}. Then #Fy < 1. Moreover, it is easy to see that if
Nk+1 € Fk, with k < ki, then there exists a unique 1 € Fi such that 7z C 7. Therefore,
it is enough to show that for each 7y € F, with k < ki, there are at most two intervals
Nk+1 € Frt1 such that gy C M. Indeed, given k < ky, for every 0y € Fr we have n; €
Pn—Clog N |+kz (tR). Moreover, there is j such that for every 41 € Fiq1 we have flgq €
Pn—K1ogN|+j(tR), with kT < j < [KlogN|, and j < kt + 7. Note that if the closure of
Nk+1 = (a, b) is contained in the interior of 7, then for every x € ﬁk_+1 we have ffZ (x) #c,
for every p < N — |[Klog N] + kt. Furthermore, there are ng, np such that

fhaa) =c= f"®),
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where
N—|KlogN]|+kt <ng, np<N-—|KlogN]+j.
We conclude that . .
N—|Klog N4kt ,
fig RN Gy € Py tm)

where j—kt < 1. Therefore, if n C fixy1, with n € Py(tg), then n ¢ Ey g,y and
consequently fx41 & Fr+1. Since there are at most two intervals Py _|xc10g N)+ (fr) Whose
closure is not contained in the interior of 7y, we conclude that there are at most two
intervals in Fi4+; that are contained in 7. O

Lemma 6.21. Let n',n" € Py_|ic1og n)(tr) such that

N—|Klog N N—|Klog N
FNRIOEN gy pN=Klog NS iy
Then . .
N—|KlogN]|, 2 N— N] 7
ftR [Clog J(EN,tR,r;/) — ftR [ Clog J(EN,Z‘RJ]”)'

Proof. Let o' = (y, y5) € Pn(tr), with o C 1/’, be a cylinder in E‘N,,R,,]r. Then

~1K1 —LKl -k
S N @ € = g . (73)

Remember that since o’ € Py (tg), it follows that for all x € o’
flx)#c forall0<i <N, (74)
and if y € da’, then there exists j, 0 < j < N such that f,{e (y) = c. Define
N—|KlogN
ai = fiy MM G,

Then ftj,:l_wmgm (@) = (a1, az) is an open interval and, by equation (73), we have
(ar,ar) C f,]:_uc log V] (n”). Therefore, there is an open interval »” = (y{, y3) C n” such
that £Y "R1EN () = (a1, a) with

N—|Klog N
ai = f N gy,

We claim that o’ is also a cylinder. Indeed, let x € @”. Then, since »” C n” and " is a
cylinder of level N — |[Klog N, it follows that

[l #e,
forall 1 <i < N—|KlogN]. On the other hand,

N—|Klog N N—|Klog N
Sy RIoEN oty = VRN 1,

and by equation (74), we can conclude that ft"R (x) # c for all i satisfying N — [Clog N| <
i < N. Therefore, for all x € 0", we have ft’;q (x) #cforall0 <i < N.Now, let y/" € dws.
Since w” C 1", we have two cases.
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Cqse 1.y € dn”. In this case, there is an integer j, 0 < j < N — [Klog N], such that
fl‘{q (y,{/) =C.

Case 2: y! ¢ 9n”. In this case, f,{e(y;’) #c¢ for all 0<j < N—|KlogN]. Then
fNTIRIeNT iy — g = fNTURIEN () belongs to the interior of £ BN gy =

ftllj_UCIOgNJ(n/ ). Thus, y! belongs to the interior of 7, which implies that there exists

J such that N — [Klog N] < j < N such that f,JR; ) = f/I; o =c.
Therefore, 0" € Py (tg).

By assumption, o’ € ENJR,"/. Then for all 0 < k < LIClOgNL if

T

Wk € PN—|KlogN]+jk) (IR,

where o' C & C 1’ and
j (k) = min{(k+ D)z, [Klog N},

then there is z; € 9 satisfying

fi%(z) = ¢, for some g}, 0 < g; < N — [KlogN] +kr. (75)
In the same manner as for ', there exists a unique cylinder @ € Py_|Clog N+ k) @k C
n”, such ﬁ]:_L’CIOgNJ (o) = f,i:/_mlog N (@x). Note that " C @. Let zj/ € d@y such that

N—|Klog N N—[Klog N
A A A0

If z; € 3n” then there exists i < N —[Klog N] such that f/ (z) = c. Define g =i.
If z} & on” then z, & on'. Thus, f;!(z}) # c for every ¢ < N — [Klog N, which implies
that
N —[KlogN] < g, <N—|KlogN]+kr.
Then f,ik (z0) = ft[,]-\,k (z}) = c. Define g = q;..
In both cases we have 0 < g/ < N — [Klog N] +kt, then o € EN,tR,n’“

N—|KlogN] , A N—|KlogN] , A
i TN Ey e € fin PN By ).
A similar argument shows that
N—|KlogN], 2 N—|KlogN] , 2
Fin PENEN ) € fy N BN ) O
Proof of Lemma 6.7. Due to Lemma 6.18 it is enough to show that for every K' < K
there exists C > 0 and K = K(K') > 0 such that if J € P, j = j(N) then
|En x| < KNTEK (76)

By Lemma 6.20 we have
A Klog N
$EN . < zLirg 1+

Let us define the set
N—[KlogN]|, A
Sa= U Jir Lt J(ENJR»T)/)‘

" €PN-|KlogN](tR)
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Note that

i —(N—|Klog N
EN,IR C ‘ftR( [Klog J)(Q)

Therefore, if 14, is the absolutely continuous invariant probability for f;, we have
P (En,ip) < Bag (). (77)
In [18, §6.2], it is shown that there is C| > 1 such that for every density p; of the unique

absolutely continuous invariant probability of f;

1
— < pr(x) < C,
C
for us-almost every x € [0, 1], then
A 2
|En,ixl < C171€2.

Since J € Pj, j = j(N), there exists an integer p, 0 < p < j such that x,(tg) =
[ (fig(©)) = c. In particular,

#HfL(©)izo=p+1.
Thus,
#UNTREN Gy e Py iogn (00} < (p+ D,
Therefore, by Lemma 6.21,

A 2 2 N—|KlogN]|, 7
|EN, | gCi 12| =Ci |U’7/E'PN7UClogNJ(fR) ftR oe J(En’)”

2 N—|KlogN] , £
<CP(p+1)? max | RE NI ()
" €PN_|KlogN|(tR)
) 1 [KlogN]
<Cl(p+1)? <X> #{n e PN(IR)IEU,}
[KClogN|
1 [KClog N Cloa N 1\ =2~
<CPp+1)? (X) AT e+ 1)? (X)
1 log(CsN) [\2 (1) 2
<Cizjz L <Ciz g2(L3 1
A log A A
<KN™H
where K = K (¢). O

7. Estimates for the Wild part

We start this section with a technical lemma.

Lemma 7.1. Given a good transversal family f; there are constants L1 and Ly such that
the following holds. Let ¢ : [0, 11 — R, |@| 14, > 0, be a function of bounded variation

such that
/(pdm =0.
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Then

- [
=Ly~ | < (Lllog ‘;BV +L2> gl

Proof. Let j > 0 such that
LB’ lplgy = Il -

And let jp the smallest integer such that jo—1 < J < jo. Hence, we have

Jo o i
(I —L)7@) =D Lil@)+ Y LIL (o).

i=0 =1

Observing Assumption (V)Aj, the fact that |Llp|py < L8!|¢|gy, when [ ¢dm =0 with
constants L and 6 uniform in 7, as well as the elementary facts that |£;|;1 =1 and
[- 11 < |-|Bv, we see that

. : L '
(I = L)~ @) < Go+ Dlelp + mlﬁfofﬂlzav

| P .
< Go+ Dlglr + 17— (CeB oIy + Cslgl L)

lelsy :
< (61,3’0 + Go+c2) ) el
lolp

By the choice of jo, we have the desired estimate. O

The following proposition will be quite important to study the Wild part of the
decomposition. Denote

supp(¥) = {x € [0, 1]: ¥ (x) # O}.

Proposition 7.2. There exist K, K/, Ké > 0 such that the following holds. For alli,k > 0,
te[0,1] and h #0, let

1
Prih = 7Ly (Hft+h(frk(C)) - Hfr(f,k(c))) :
Then
lo,inlpt < K, (78)
and
K
lok,inlBy < —. (79)
A
Furthermore,
|(I = Logn)  Tign(prin)l < K| max{0, log lge.inlpv )+ K. (80)
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Proof. Note that
i
1Litn (Hmh(ﬁk(c» - Hﬁ(f,%))) L

SUHg L ken — Hypken e
< (sup [v;])|Al, (81)
t

and, by Assumption (V) in Definition 3.3

+h (Hfr+h(f1k(0)) - Hﬁ(f,k(c))) ‘BV < 2Cep" + Cs(sup fuiDIhl < €. (82)

Thus, we have equations (78) and (79). In Particular,
T (ki L1y < 210k,00 1 L1 oy < 2K,

and if A is small

[T n(@r,in) BV < |@kinlBV + l@kinlay sup oy < Clekinlsy,
tel0,1]

where C > 1.
Now we can easily obtain equation (80) applying Lemma 7.1. O

Proposition 7.3. Let ¢ be a Lipchitz function. There exists K > 0 such that the following
holds. Let t € FZ/ o and 0 < |h| < K. Then

I ( > K
var | — H ke — H oo ckp ) < - s 83
(h t+h ft+h(ft (L)) ft(ft (C)) |h||tht( tk"l‘l(c))' ( )

and

h

= ¢ (fIT v (FR @) + 0D (FFF D, (84)
where 0 < k < N3(t,h) and i < N3(t,h) —k.

) H koo — H k.
/ 6@ ﬁ§+h< fn (@) T 2] “”)(x) dx

Proof. By equation (16), the points ft]:;ll (c), f,+h(ftk(c)), f,(ftk(c)) belong to the same
interval of monotonicity of fti - Let

¢: Dom(¢) — Im(¢)

be an inverse branch associated to such interval of monotonicity, that is, ¢ is a
diffeomorphism such that f ,(¢(y)) =y for every y € Dom(¢) and

U@, fran(fE ), fi(fF ) € Im(@).

Hence,
i
a (Hf,+h<f,k(c>) - Hﬁ(ﬂ(c))) (x)

1
= mll)m(s’)(") (H oo €D = Hpy g €00 (85)
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There is a constant K > 1 such that for all ¢t € [0, 1], &, and i, and every interval of
monotonicity Q of f/ , we have

1 _|Dff

— < fli+h ()’1) <K
K Df[.i,.h ()72)

for all y;, y2 € Q. Now we can estimate the variation of the function in equation (83)

using familiar properties of the variation of functions (see Viana [21, Chapter 3], for
instance).

i
varo,1 <£t+h (Hmh(f,"(c)) - Hﬁ(ﬁ"(C))))

1
= vario, 1) | —————Loome ) (H ., 7200y €00 = Hy 50y € 00))
(thl+h(§(x)) om(Z Jan (f7 () Ji(fi ()
1 (1 i)
= var — | Su ) T .
Pom @O\ ppi (o) o U ©) T A e
1
+2sup | ————Lpom()(x) sup(H fey — Hop (gt )
(0, 1 ( Dfl. (¢ (x)) om(¢) )[0,1] frn(f @) ™ ()

1
+s —1p ( )(x) varjo, 1] (H k —H,, .« )
[0 1] <th+h(§( )) om(g Sr+n(f7 () Ji(fi ()

1 6K
<2 om i + J .
Hpom© (thl+h ({(x))) |thl+h (ft]:?l] @)

Now, note that since ¢ is a diffeomorphism, it follows that
1 1
varpom) \ —— - < =varyme) | ——
I\ DAL, () "\ DAL

[ b (_) ay
Im() Df{ ()

B / l’ D2 fn (£ )

o | S DA G oD )2
|Dom ()]

IDfL, (FEE )]

N

KilIm($)| < Ky

CK»
S ]
|DfE, (f )l

Here we use that

i ~ D2 frpn (£ )

C
T ODF DD (f )2 /A

[ M-

N
Ll
‘©
=
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and that
|Dom({)] 1
[Im(0)] < K i k+1 <K i k+1 :
IDf (frn ()] IDffp (Frn (©)]
Therefore,

) K
varo,1] (ﬁl (H koo — H g ook )) 3 . (87)
1+h Sr+n(f7 (©) Ji(ff () |Df h(fk‘l;l(c)”
1+ t+h

Finally, by equation (16) note that the combinatorics up to i iterations of f; k+1(c) by the

map fi+p is the same as the combinatorics up to i iterations of fk+1(c) by the map f;.
By Remark 6.1 we obtain

1 1
- <Cl—————.
DL el DA e

(88)

Equations (88) and (87) give us equation (83). Since
1
supp (Hy,, st = Histon) = Uiin (). filrhen).
by equation (85) we conclude that
Zig = supp~£i, (H _H = U F @) L (FH .
ik = SUPPY S een \ B pn (@) — A UE ) i+h Ut 1+h

By equation (16), the points ftl:;ll ©), fr+n (f,k(c)), f,(f,k(c)) belong to the same interval
of monotonicity of fti ;- Hence,

. L ;
diam suppEL;Jrh (Hth(ftk(C)) - Hft(ftk(c))) = diam fl'th] (fzk (©)), ftl+h(ftk+1(C))]

= 15 (@) = FLa (e

< KIDSL (Y fran (FE @) = £i(fF )
< KIDfL (el sup vr|
< clK|Df;'(ﬁk+1(c>)||sgp vellhl. (89)

Therefore,

—H,
1 (FR(©)) i (fF©)
/d)(x)ﬁH_h( Jrenfite : fildi )(x)dx

H ke — H g ook
_ ¢(fl+k+l(c)) / £t+h ( fl-%—h(fz (c) ft(f/ (C))) ()C) dx

h

. ) H coy — H .
+/ (¢(x) _¢(ftl+k+1(c))) ﬁ;_t,_h ( ft+h(ft]‘(c))h ft(ftk(‘f))) ()C) dx. (90)
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Note that

. H koo — H ok
/ E§+h< fran(f; <c>)h fi(f; “”)(x) dx

(x) dx = v, (f¥(c)) + O(|h)). (91)

B /‘ Hy ko)~ Hyken
B h

Due to equation (89) and the fact that ¢ is a lipschitzian function with Lipschitz constant
L, and that f,l+k+l(c) €Zik

. ) H - H .
‘/ <¢(x)_¢(ftl+k+l(c))) ;+h( ft+h(f/<(C)) fr(f/‘(O)) (x) dx

h
H k —H,, .«
. 4 - H;
< / | (x) —¢(f;l+k+l(C))| ;+h ( Si+n(fi (t)h Si(ff (C))) (x)| dx
Zik
. . H koo — H k.

< LCIKIDF (S @) supuil ] £, ( faaldien I “”)

t

LI

< LC1K|DF (fF ()1 sup vy 2|l (92)

t

Proof of Proposition 4.6. Let ®; be as in Proposition 4.3, that is

1 o
O =g D Ser1 (O (Hfr+h(f}"(c)) - Hﬁ(f,k(c))) :
k=0

Given t € Fz’ho. Let N3(¢, h) be as in Proposition 4.5. Since ¢ and & are fixed throughout
this proof, we will write N3 instead of N3(t,h) and N instead of N(¢, k). Let us divide
@y, as follows

®p =81+ 5,
where
N3
_ 1 M, (H H
Si=+ > Skt (O ( Fon(fien) ft(f,"(r:)))
k=0
and
1 o0
=, D SOy, (H.f}+h(f}k(c)) - Hft(ff(c») :
k=N3+1
Let us first estimate S;.
1 o0
I =Ly~ 82 = 7 D s U = Lon) Ty, (Hfz+h(/}k(0)) - ﬁ(f/‘(c)))'
k=N3+1
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Thus,
(= Lin's2) |

o0

1 —1
< D el ‘g(’ —Lien)” Min (Hth(f,k(c)) - Hﬁ(f,"(c»)
k=N3+1

L!

By Proposition 7.2 and Lemma 7.1, taking

|
¢ =it (H.m;l(f,k(c» - Hf%(f/‘(c))) ;

we have,
1
-1
‘(1 —Liyn) —Hz+h (Hth(frk(C)) - Hﬁ(ffk(c))>‘u
< K log ﬂ + Ky < Kylog AN 4 K,
<Ki(N+1DlogA+ Ky < K3N + Ky.
Therefore,
o0
_ KsN
(I —Liyn) 152’L| < Z I (K3N+K4) —+K6
k=N3+1
KsN

1 >]+C5’C10gk

+ Ko < K7hKslogr <log—

= AN-CsKlogN A

It is left to analyze S;. Applying the operator I = L),

(I = L)~ (S) = Zﬁwh Zskﬂ(’)““rh (Hmh(ff @)~ Hﬁ(f/‘(C))) :

=0
Then
(I = L)~ (S) = Z Sk+1(8) Z LoonTin (Hft+h(frk(0)) - Hﬁ(f/‘(c)))
i=0
= 511 + S12,
where
N3 N3—k
St=) st () Z LT (Hmh(f,"(c» - Hf,(f,’%c)))
k=0 i=0
and
N3 [ee) 1.
VIEDIHIONDY 3 Lo leen (HJ}+h(f/‘(C)) - H/;(f/‘(c»)
k=0 i=N3—k+1

N3

—Zsk+1(r) Lisno(I—Lisn) oMo Ll (Hf[+h(ftk(c))—Hﬁ(ﬁk@)).

k=0
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We observe that

N3
: 1
_ N3z—k
ISi2lpr S C Y lser1 ONU = Loy ™ o Tegn 0 £57 5 (Hth(f/‘(c» - Hﬁ(ﬂ"(c») L
k=0

Let
1 N3—k
P = zﬁwh (Hft+h(ftk(c)) - Hﬁ(ﬁ(c))) :

By Proposition 7.3 it follows that

lokl By = var(er) + ekl (93)
C

< + K (94)

DA R )
IDEN D f o)
DR R (o)
< CpfNEPHINED (ENSEDEL Gy D ERCf ()] + Ko
< CAN(l,h)+17N3(l,h)+k +K1 (95)

By Lemma 7.1 we have

|(I = Lysn) " o Ty (@i0)
Na—k 1

—1 3
=1 = L) o Mmoo L))" (HfH—h (e ™ Hﬁ(ff(c))) I

< K| log(Ky AN@MHI=Nsh+ky 4 g
< K3(N—=N3+k+1).

Therefore,
N3
IS12l11 < K3 ) Isks 1 (OI(N = N3 +k+ 1)
k=0
N3 1 N3 k N3 1
< K3(N_N3)ZF+K3 ZF-I-ZF
k=0 k=0 k=0

1
< K4KlogN+Ks < K (loglogm—i-l).

We proceed to examine ;.

N3 N3z—k ' H oo —H -
S = ZSk+1(l) Z Lin ( frasth (c))h Sl (L))>
k=0 i=0

Sin
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N3 N3—k H koo — H ook
; TAG)) THO))
=D st () Y Ly, (Pt+h / JatJeien, IS dm)-
k=0 i=0

Stz

Note that

4 = Hy kon — Hyken
e c
5112=—E Sk41(1) E ,01+h/< e h L )dm
k=0 i=0

N3 N3—k
==Y 510 Y (w (@) +0m) pron
k=0 i=0

Adding and subtracting the sum

N3 N3—k
D s D vl )
k=0 i=0
we obtain
St12 = Sii21 + S22,
where
N3 N3—k
Stat ==Y _sir1(®) Y v (fEe)pr
k=0 i=0
and
N3 N3
Si122 = =(prrn — 1) ) sk 1 (D (N3 = k)ui (f£(€)) = O(h) Y st 1 (N3 — k) i
k=0 k=0
By equation (5)
1) &
IS1122171 < K sup |vf|[R] log <m> > sk (OI(N3 — k)
! k=0
N3
+1pr4nlpr [0(h)] Z Isk+1()[(N3 — k)
k=0
1 AN
< | Kzlh|log — + K3|O(h)| | N, —
( 2lhllog 7o+ K31 O( )|> 3];0”{

1 1 1
< K4N <|h|1ogm + |0(h)|> < Klogm (|h|10g (W) + |0(h)|> .

Therefore, taking ¢ : [0, 1] — R a lipschitzian observable,
/ P (x)W(x)dx

_ / S — Lovn) ™ D (x) dx
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1
= /¢(X)(S111 + S12)(x)dx+ O <loglog m)

N3 N3—k H koo — H ook
[ h > t )
=ZSk+1(t) Z /¢(x)£;+h< foen(f] <c)>h fi(f] (‘))(x)dx
k=0 =0

N3 N3—k

- . 1
=Y s Y v / ¢ (X)py () dx + O (log log —) :

k=0 i=0 |h|

By equation (84) we have

. H., k —H,.,
/ 5 £§+h< Fesn(fE @) fi(f] <c>>> () dx

h
= ¢ (fIT v (FF @)+ OUDL (T ()R

IDfi( /‘“(cm) |

_ i+k+1 ken+o0
o (f (v (f7 () ( |thN(f[(C))|

Since
N3 N3—k i rk+1 N3 k N N—i
IDff (f; T (©))] (1) (1)
> nYy ol—L—=) <K ) (- - K, 96
2 st ® ( DAY (fi ()] )‘ ‘i) =\i) T (56)

i=0 k=0 i

it follows that

/ d(xXI)W(x)dx

N3 N3—k
. 1
= sk Ovi(f ) ) (¢>(f;+k“<c>> —~ / ¢dut) +0 (log log W)
k=0 i=0

N3+1

N3
; ; 1
=Y s O (fie) Y <¢(f,’ () — / ¢dut> +0 <log log W)
k=0

j=k+1
N3+1

j—1
j 1
=2 <¢<f/ () - f ¢dﬂt> S s v () + 0 (loglog W) .
j=1

k=0
Adding and subtracting the series

N3+1

> (cb(f/ (©) — / ¢dﬂt> 3 st O (@),

j=1 k=j
we obtain

N3+1

[owwmar =3 («p(f/’ - [ ¢duz> 3 %vt(ﬁ’%c»
t t

j=1 k=0
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N3+1

B J(0)) - d 3 ok
; <¢(ft (©) /tb Mt) Z Df,k(ft(c))v'(f’ (©))

k=j

I

1
+ 0 (log log —) .
Al

Note that |I1] < co. Indeed,

N3+1
LI <Ky Y.
J=1
N3+1

1\/
<Ky ) <X> <K.
j=1

> ()

k=j

b(f () - / M

Therefore,

N3+1

; 1
[owwmar=sioscho Y- (¢(f,’ - [ ¢duz> +0 (log log W)
j=1

N3
3 . 1
=s1(J(fr,v) ) ((b(f/(c)) - f ¢’dl/«z> +0 (log log W) . (97)
j=0
8. Estimates for the Tame part

Let v be a signed, finite and borelian measure on [0, 1]. Denote by |v| the variation
measure of v and by ||v|| the total variation of v. Define the push forward of v by f; as
the borelian measure

(fFv)(A) = v(f; (A)).
Note that for every bounded borelian function g: [0, 1] - R

/gd(f,*v) _ /goftdv.

|ffvl < fFIvl

It is also easy to see that

Suppose that v has the form
UZT”’”"’ZQXSX’ (98)

xeA

where m € L°°(m) with support on [0, 1], m is the Lebesgue measure, AcClo,1]is a
countable subset, ¢, € R, with

> laxl < oo,

xeA
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and §y is the Dirac measure supported on {x}. Then

vl = |rlm+ > qxlss.

XeA

VI = 171y + ) sl
xeA

Furthermore, fv has the form

frv=Liem+ Y 8.

xeA

Proposition 8.1. Let f; be a C! family of C' piecewise expanding unimodal maps. Let
v be a signed, finite and borelian measure. Let v, : [0, 1] — R, t € [0, 1] be such that
Yy € L) and t — Yy is a lipschitzian function with respect to the L*°(|v|) norm, that
18, there exists L such that for all t, h we have

[Wepn — Yelpeey < LRI
Define
X X
Bea) = [ antyan = [ dsrep).
0 0
Then there exist positive constants K1, Ky such that
At nlpimy < (L+ K1 K2)||v]l|A]
for allt € [0, 1], h, where
Ki =sup|¥|row) and Ky =sup|o; fi(x)].
t t,x

Proof. Observe that

At,h(x):/o df,lh(lﬁﬁhV)—/o df} (v)

:/0 df,’;h(1//t+hv)—/(‘) df,;;,(‘ﬁtv)

A
+ /0 At ) — /0 dFF ().

A

Therefore,
[Arn()] < [A1O)]+ [A2(x)].
We first estimate Aj.

A1) < / Loy 1 £ Wy — Yov)] < / Loy d oy (Wesn — vellvD)

< /1[0,x]°ft+h|‘/ft+h — Vel dv| < [Yien — YilLowl vl < Ll |vll|A].
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In particular,
A1l L1 gmy < LIVIIAL

‘We now estimate Aj.

A (x) =/1[0,x] dft:_h(WIV)_/l[O,x] af; (Yv)
_ f Loayo S d(Yrv) — / Lo fi d(Yrv)

- / Ayt qon ~ Ly qoa) dW),

Therefore,

A2 < / L0 = L tqom lIVeldVE S K / L0 = o 41V
where
Ky = sup [Y¢] L (v)-
t

By the Fubini’s Theorem
Bl < Kt [ [ 1000 = 110, OV dmx)

<K [ 1000 -1 g Oldn@dbi;). (99)
Note that
L0 =110 W= 1o, ),

where
Uy, = {x €[0,1]: fixn(y) <x < fi(y) or fi(y) <x < firn (W}
Observe that
m(Uy) = | fi+n(y) — 1 (V)] < Ka|hl.
Thus,

Aol gty < K1//1Uy<x)dm(x>d|v|<y>
< KiKal[vl[|hl. (100)
O

Remark 8.2. To avoid a cumbersome notation, in the Proof of Proposition 4.3 we will use
the following notation. Whenever we take the supremum over all ¢ € [0, 1] we actually
take the supremum over all ¢ € [0, 1] such that f; do not have a periodic critical point.
And whenever we take the supremum over all & # 0 we indeed mean taking the supremum
over all i # 0 such that 0 < || < §, where § > 0 is given by Definition 3.3.

Proof of Proposition 4.3. We first examine

1
E(£t+hpt —Lpr).
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As we have seen, the density p, can be decomposed as

0t = (Pr)abs + (1) sal-

We also have L;1,0; € BV and

Livnpr = (Leynp)abs + Livnor)sal-

Therefore,
(Linpr — Lip) = (Livno)abs — (Lepr)avs) + (Livno)sar — (L1 o1)sar)-
Let us examine the absolutely continuous term
1
Z((£t+hpt)abs — (L1 pt)abs)-

Observe that for every ¢

(Lip)(x) = (L1 p)abs (X) + (Ls pr)sal (X).

Differentiating with respect to x,

((»Ctpt)abs)/(x) = (ﬁtpt)/(x)
= ((L1p1)abs (X) + (L1 0) )sar ().

Then
&) = [ Lipy .
Similarly
Lopranranet) = [ Lonp ).

Therefore,

(LsnPr)abs (x) = (Lt p)abs(x) = /Ox(ﬁwrhpz)/ — (Lypr) dm

= /Ox((ﬂz+h,0z)/)abs — ((L1p0) abs dm
+ /(;X((['t+h:0t)/)sal — ((L1p1))sar dm.
We define
App(x) = /Ox((ﬁt+hpt)/)abs — ((L1p1) )abs dm,

and

B p(x) = /0 ((£t+h,0t)/)sal - ((ﬁtpt),)sal dm.
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Our goal is to prove that

s Bz,h

<oo and  sup sup

—_— < Q.
BV rel0,11h£0|

BV

sup sup
1€[0,1] h£0

Since A; j is absolutely continuous, it follows that

var(A,,h):/|A;,h|dm.

Hence, to prove that
At h

B

h

sup sup
1€[0,1] h£0

< 00,
BV

it is enough to prove that

/
A,h

L dm <oo and sup sup
Lim) 1€[0,11 h#£0

A
foh < 0. (103)
h Ll(m)

sup sup
1€[0,11 h#0

According to equation (101),

A;’h(x) = (£z+hpt);bs (x) — (ﬁzpt);hs ().

Differentiating (L;150:)", we have, for every h,

((Le4npt)avs) (xX) = (Lenpr)” (x).

for m-almost every x. In particular,

AR = Losnp)" () = (Lepd)" (),
for m-almost every y and

) = /O (Crsnpr)' — Lap) dm. (104)

As we have seen the Ruelle-Perron—Frobenius operator for f;4, is given by

e (y)
L = E _ 105
(Litnp)(x) , B IDfin )] ( )
1+h (¥)=x

Differentiating the equation (105) with respect to x we obtain

3 i) _POD? fren ()

106
Dfisn DD fign ()] IDfisn(y)? (106)

(Levn Pt)/(x) =
ft+/1 (y)=x

Now, differentiating the equation (106) with respect to x we obtain

" ol () P,/(y)D2fz+h(y)
L = -3
(e ) m%_x <|th+h(y)||th+h(y)|2 |th+h()’)|th+h()’)3)

0t D? fin(y) ot (D? fran()?
+ - +3 .
2 ( |Dfin DD frsn(y)? |sz+h(y>||Df,+h(y>|4>

Ji4n(y)=x
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Observe that we can rewrite (L;150;)" as follows

o/ 0, D frn
(Lisnp)" =L <—>—3£ Lo Jith
R N\ IDfinl? N\ (Dfiin)

PiD? frin pi(D? frn)*
—Livh | ——= | +3Lin | ———7) - 107
o ((th+h)3> ’“( Dfrial? Hon

We obtain a similar expression for (£;p;)”.
Substituting equation (107) into equation (104) we obtain

/ Yo (ol a2
A = D)
() /0 df’+h(|th+h|2m> /0 o <IDfr|2 >

Ay

Y e [ 30D fran _/)‘ . (30D f:
) df”h( (Dfren)? ’") A dff( o "

A

Y (PP fen N T =D
+, df’”'( (Df o)’ ’") [, @ ( (Dfi)? ’")

A3

300(D? fi4n) 3p(D* f1)?
/ f’*’“( Dl ’") / f’( D[ ’")

Ay

Observe that A;, 1 <i <4, satisfy the assumptions of Proposition 8.1 and the total
variation of each one of the measures that appears above has an upper bound that
depends on the constants in Assumption (V) of Definition 3.3. Therefore,

ALy
sup sup |—— < 00
1€[0,1] h£0 Li(m)
and, consequently
A A;
sup sup var <;h) = sup sup —Lh dm < oo. (108)
1€[0,1] h0 h 1€[0,1] h0 Ligm)

It remains to verify the second part of equation (103). Note that

x AL (y)
-/ dm://ﬂdy‘dmg
L! 0 /’l

Hence, by equation (108), equation (103) holds. Hence, we need to show that

/
At,h At,h

h

At,h
h

L (m)

Bt,h

h

< OQ.
BV

sup sup
1€[0,1] h£0
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By equation (106) and Property (V) in Definition 3.3 we have

(£t+h,0t)§a1(x)
— stOH ey @) SkOH, ey ) '
e - ! — e LIt D
Py <th+h(ﬁk(c))|th+h(frk(C))| I AGACHIE Tl (D
p(c) p;(c) ) =
(th+h(0—)|sz+h(C—)| D fiaen Dfinteny] ) @™

_(Pt(C)D2ft+h(C—) pr(©) D2 fi(c+)

He  (o(x).
|Dfn(c—)]3 |Dfipn(cH)? ) ran(e) (X)

Since for every a € [0, 1] we have

H,(x) = /O d(—8,).

we can write
x 4
B = [ 3 B dm(y)
i=1

with functions B; given by

B(x)—fxdf* (—1 v>—/xdf*<—1 v)
BT Y\ ppanfeal ) T Je Y \bripal

where
o0
vi= DS (D(=8 k),
k=1
x D? fiin X D*f,
Bz(x)=—/d* ——w —i—/d* wl,
, e |Dfrinl? o " \IDAP
where

vy = Zsk(z)(—aftk(c)).

k=1
Let ¥ be the constant borelian function ¥ : [0, 1] — R given by

1 1
D, (cIDfie)] | DfienIDfenl’

1/A/t(y)z
Then
By(x) = /0 Aty s — /O df* (Pivs)

where
v3 = — 0] ()3
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Let ¢ be the constant Borelian function v : [0, 1] — R given by

D?fi(c=)  D?fi(c+)
IDfi(c—)1? " IDfi(cH)?

&t ) =
then
By(x) = —/0 df;ﬁrh(ll}whw)-#/o df (Yiva).

Here
vy = —p;(€)de.
We can apply Proposition 8.1 on each one of the pairs (B;, v;). Moreover, by property

(V) of Definition 3.3 there is an upper bound for the total variation of the measures v;,
i =1,2,3,4, that holds for every ¢ € [0, 1]. Hence,

sup sup |[—
1€[0,11 h£0

< 00,
L' (m)

and consequently

(%)
sup sup var o < 00.

1€[0,1]1 h#0
Since
‘Bth B 1 * &L Biy) | B
— = — dm:/ / ——dy| dm < —
h Ll / h 0 ; h ; h Ll(m)
we obtain
Bth
sup sup |[—— < 00.
rel0,11h£0 1 h |y
Therefore,
(Litnpt)abs — (L o) abs
sup sup < 0.
1€[0,1] h£0 h BV

It remains to examine the saltus.

(£l+h o1)sal — (LtPr)sal
h

M:g

( w0 sy )
h & \Dfyrn(ff(e) Juan(AH@) Dfi(fr(c) N1

S

I pr(©) P (©) pi(©) p(©)
_ H ) — Hpfo |-
T ((|sz+h<c—)| * |Df,+h<c+>|> fian©@ (|sz(c—>| * Isz(c+)I> i ))
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Let us analyze 5'1. Notice that
< e s
S1 = — ( —H, )
;; Dfy(fF ey \ "t AU )

1“’( k(@ s
Dfisn(fF@©)  Dfi(fFe)

) Hp ko -

gll

Note that

. 1 & 1
Sulyy < Zls ‘Df,+h<f,"<c>> ) sz(f,k(c))‘ sty

|Dfisn(fF©)) — Df(fEe)
IDfrn (KD (fF )]

Z

1

kS |

LSl

S11 ‘ < 00. Therefore,
BV

Hence, sup,,

(Lernpe)sat — (L pr)sal
h

1 & Sk (1) ( ~

=S (H, uo—H, )—i—Sn

h kgl th(ftk(c)) .fr+h(fz (c)) ft(f[ (©))

1 ()]
<k i |3 Dfs (FF D=6, , o |1B] < K
|h| Pt |Df sHJsJt 5=01,hk S

+ l ( pi(c) + pi(c) ) H . ( pi(c) pi(c)
1’ \\IDfn(e] " Dfntedl) O \IDfie)] " IDfi (e
1 & .
= DSk (D) (Hft+h(ﬁk(c)) - Hﬁ(ff(c))) +Su
=0
S
1
L1 ( pe(©)  pile) ) Hio
h \IDfisn(c=)| |Dfi(co)) -
5
1
+2 ( pe(c) _ p:(c) ) Hft+h(C)'
IDfivn(c+H)|  |Dfi(c+)]
S
We will analyze only S,, the term S3 is analogous.
1 K2| hl <

S < K| — -
‘Z)BV 1IhI IDfi4n(c—)  |Dfi(c—)| |
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Hence,

sup 52‘ <oo and sup|S3 < 00.

h#0 h#£0 )B v
We can write

Livn(pr) = Li(pr) -1 Lin(pr) = Li(pr)
h = +h h

5 A B . - .
=44 (S) + ygn <— +—+ 51 +Sz+S3) .
_ h

h
D
Th
Therefore,
/rh dm =0 and sup sup|ry|py < oo.
1€[0,1] h0
This finishes the proof. O

9. The function R, is not Lipschitz on any subset of positive measure

We give two interesting and simple consequences of our main result. They tell us that,
under the assumptions of our main result, the function Ry is not very regular in any
subset of the parameter space with positive Lebesgue measure. This show that there is
not way to make Ry more regular using some ‘parameter exclusion’ strategy.

Corollary 9.1. Under the same assumptions of our main result, for every set Q C |a, b],
with m(2) > 0, we have for almost every t € Q

Re(t+h)—Re(t)

lim su 1ot +h) =400 109
eor hy—loglhl © .
and
Rt +h) — Ryt
Jim inf 2T ¢()1Q(t+h)=—oo, (110)

h—0+ h,/—log |h|

where 1o denotes the indicator function of 2.

Proof. Due Proposition 3.6, it is enough to prove Corollary 9.1 for good transversal
families. We are going to prove that equation (109) holds for almost every ¢ € Q. The
proof that equation (110) holds for almost every ¢ € Q is similar.

If equation (109) fails for ¢ in a subset of € with positive Lebesgue measure, then there
exist  C Q, with m(fZ) > 0 and K| > 0 such that for every ¢ € &2 we have

h) —
lim sup Rolt+h) = Re ()

h—0+ h,/—log|h|

Since f; is a good transversal family, by Lemma 3.7 we have that inf; |V ()| > 0 and that
W(r) does not changes signs on t € [a, b], so without loss of generality we can assume

lo(+h) < K.
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W(t) > 0 for every ¢ € [a, b] and inf; W(z) > 0 (otherwise replace the family f; by f—;).
So there exists K, > 0 such that

Re(t+h)—TR
lim sup ot +h) st )

no0r W(t)h/—log k|

for every t € 2. Then there exists ho > 0 and a set S C Q with m(S) > 0 such that for
every t € S we have

lot+h) < K>

Re(t+h) — R¢(t)

W (t)h/—log|h|

for every h satisfying 0 < h < hg. Let 1y € (a, b) be a Lebesgue density point of S. Choose
8 > 0 such that

lo(t+h) < K2+1

Dy (Ko+1)+6 < 1.
Then for every € > 0 small enough,

m(SNIe)
m(le)

where I = [tg — ¢, t9+€]. Let S¢ = SN .. It is a well-known fact that if

> Dy(Ka+ 1)+,

—h={t—h:teS}

then
}}in%)m(Se N(Se —h)) =m(Se) > 0.

Note that for every t € Sc N (Sc —h), we have t,t+h € S¢c C S C 2, then
Rp(t+h) —R¢(t)

2+1
W (t)h/—log|h|
for every 0 < h < hg. In particular,
1 1 Rpt +h) —Re(t)
limsup———m (|t € I;: <Kp+1
n—o+ mle) ( " W(t)h/~log |h] h
S,
> M) S b Ky 1) 46, (111)
m(Ie)

On the other hand the restriction of f; to the interval I, is a transversal family, then by
Theorem 1.1 we obtain

o 1 Ryt +h) — Ry (t)
lim ——m |t € I.: <Ky+1
p=0smo) ( Ceoh/loghl i
=Dn(K2+ 1),
which contradicts equation (111). O
Proof of Corollary 1.2. It follows from Corollary 9.1. O
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Remark 9.2. In Baladi and Smania [2, 5] it is proven that for almost every ¢ € [a, b] there
exists a sequence h,, — 0 such that

Ryt +hy) —Rep(t)
Iy

is not bounded. In particular, R4 is not a lipschitzian function on the whole interval [a, b].
Naturally Corollaries 9.1 and 1.2 do not follow from this when 2 is not an interval.

Remark 9.3. Two weeks before this work be completed, Fabidn Contreras sent us his
Ph. D. Thesis [7] where he proves a result sharper than Corollary 9.1 when Q = [a, b]
and ¢ is a C! generic observable. He proves that for almost every ¢ € [a, b] the limit
i Re(t+h)—Ry(t)
h—0t h\/| log hloglog | log hl|

(112)

exists and it is non zero. Note again that Corollaries 9.1 and 1.2 do not seem to follow
from his result when  is not an interval. As in our case, the main difficult is to reduce
the problem to Schnellmann’s main result in [19]. We are not completely familiar with
his methods, but they seem to be quite different from our approach.
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