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Abstract Consider a C2 family of mixing C4 piecewise expanding unimodal maps t ∈ [a, b] 7→ ft , with

a critical point c, that is transversal to the topological classes of such maps. Given a Lipchitz observable
φ consider the function

Rφ(t) =
∫
φ dµt ,

where µt is the unique absolutely continuous invariant probability of ft . Suppose that σt > 0 for every

t ∈ [a, b], where

σ 2
t = σ

2
t (φ) = lim

n→∞

∫ ∑n−1
j=0

(
φ ◦ f j

t −
∫
φ dµt

)
√

n

2

dµt .

We show that

m

{
t ∈ [a, b] : t + h ∈ [a, b] and

1

9(t)
√
− log |h|

(Rφ(t + h)−Rφ(t)
h

)
6 y

}
converges to

1
√

2π

∫ y

−∞

e−
s2
2 ds,

where 9(t) is a dynamically defined function and m is the Lebesgue measure on [a, b], normalized in such
way that m([a, b]) = 1. As a consequence, we show that Rφ is not a Lipchitz function on any subset of
[a, b] with positive Lebesgue measure.

Keywords: linear response; dynamical systems; unimodal maps; expanding maps; ergodic theory; Central

Limit Theorem
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1. Introduction and statement of the main results

Let ft be a smooth family of (piecewise) smooth maps on a manifold M , and let us

suppose that for each ft there is a physical (or SBR) probability µt on M . Given an

observable φ : M → R, we can ask if the function

Rφ : [0, 1] −→ R

t 7−→

∫
φ dµt

is differentiable and if we can find an explicit formula for its derivative. The study of this

question is the so called linear response problem.

Ruelle showed that Rφ is differentiable and also gave the formula for R′φ , in the case of

smooth uniformly hyperbolic dynamical systems (see Ruelle in [16, 17], and Baladi and

Smania in [4] for more details).

In the setting of smooth families of piecewise expanding unimodal maps, Baladi and

Smania (see [2]) proved that if we have a C2 family of piecewise expanding unimodal

maps of class C3, then Rφ is differentiable in t0, with φ ∈ C1+Lip, provided that the

family ft is tangent to the topological class of ft0 at t = t0. It turns out that the family

s 7→ fs is tangent to the topological class of ft at the parameter t if and only if

J ( ft , vt ) =

Mt−1∑
k=0

vt ( f k
t (c))

D f k
t ( ft (c))

= 0,

where vt = ∂s fs |s=t and Mt is either the period of the critical point c if c is periodic, or

∞, otherwise (see [3]). Now, let us consider a C2 family of piecewise expanding unimodal

maps of class C4 that is transversal to the topological classes of piecewise unimodal maps,

that is

J ( ft , vt ) =

Mt−1∑
k=0

vt ( f k
t (c))

D f k
t ( ft (c))

6= 0 (1)

for every t .
Baladi and Smania, [2, 5], proved that Rφ is not differentiable, for most of the

parameters t , even if φ is quite regular. One can ask what is the regularity of the function
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Rφ in this case. We know from Keller [9] (see also Mazzolena [14] and Keller et al. [11])

that Rφ has modulus of continuity |h|(log(1/|h|)+ 1).
We will show the Central Limit Theorem for the modulus of continuity of the function

Rφ where φ is a lipschitzian observable. Let

σ 2
t = σ

2
t (φ) = lim

n→∞

∫ ∑n−1
j=0

(
φ ◦ f j

t −
∫
φ dµt

)
√

n

2

dµt 6= 0.

Let t 7→ ft be a C2 family of C4 piecewise expanding unimodal maps. Note that each

ft has a unique absolutely continuous invariant probability µt = ρt m, where its density

ρt has bounded variation. Let

L t =

∫
log |D ft | dµt > 0, `t =

1
√

L t
. (2)

Indeed ρt is continuous except on the forward orbit f j
t (c) of the critical point (see

Baladi [1]). Let St be the jump of ρt at the critical value, that is

St = lim
x→ ft (c)−

ρt (x)− lim
x→ ft (c)+

ρt (x) = lim
x→ ft (c)−

ρt (x) > 0. (3)

Theorem 1.1. Let

t ∈ [a, b] 7→ ft ,

be a transversal C2 family of mixing C4 piecewise expanding unimodal maps

ft : [0, 1] → [0, 1].

If φ is a lipschitzian observable satisfying σt 6= 0 for every t ∈ [a, b], then for every y ∈ R

lim
h→0

m

{
t ∈ [a, b] : t + h ∈ [a, b] and

1

9(t)
√
− log |h|

(
Rφ(t + h)−Rφ(t)

h

)
6 y

}
(4)

converges to
1
√

2π

∫ y

−∞

e−
s2
2 ds,

where

9(t) = σt St Jt`t .

and m is the Lebesgue measure normalized in such way that m([a, b]) = 1.

Corollary 1.2. Under the same assumptions above, the function Rφ is not a lipschitzian

function on any subset of [a, b] with positive Lebesgue measure.

The proof of Corollary 1.2 will be given in the last section as a consequence of a stronger

result (Corollary 9.1).
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2. Families of piecewise expanding unimodal maps

We begin this section by setting the one-parameter family of piecewise expanding

unimodal maps.

Definition 2.1. A piecewise expanding Cr unimodal map f : [0, 1] → [0, 1] is a continuous

map with a critical point c ∈ (0, 1), f (0) = f (1) = 0 and such that f |[0,c] and f |[c,1] are

Cr and ∣∣∣∣ 1
D f

∣∣∣∣
∞

< 1.

We say that f is mixing if f is topologically mixing on the interval [ f 2(c), f (c)]. For

instance, if

inf
x
|D f (x)| >

√
2

then f is not renormalizable. In particular, f is topologically mixing on [ f 2(c), f (c)].
We can see the set of all Cr piecewise expanding unimodal maps that share the same

critical point c ∈ (0, 1) as a convex subset of the affine subspace { f ∈ Br
: f (0) = f (1)}

of the Banach space Br of all continuous functions f : [0, 1] → R that are Cr on the

intervals [0, c] and [c, 1], with the norm

| f |r = | f |∞+ | f |[0,c]|Cr + | f |[c,1]|Cr .

Let ft : [0, 1] → [0, 1], t ∈ [a, b] be a one-parameter family of piecewise expanding C4

unimodal maps. We assume

(1) For all t ∈ [a, b] the critical point of ft is c.

(2) The maps ft are uniformly expanding, that is, there exist constants 1 < λ 6 3 <∞

such that for all t ∈ [a, b],∣∣∣∣ 1
D ft

∣∣∣∣
∞

<
1
λ

and |D ft |∞ < 3.

(3) The map

t ∈ [a, b] 7→ ft ∈ B4

is of class C2.

Each ft admits a unique absolutely continuous invariant probability measure µt and

its density ρt has bounded variation (see [12]). By Keller (see [9]),

|ρt+h − ρt |L1 6 C |h|
(

log
1
|h|
+ 1

)
. (5)

3. Good transversal families

It turns out that we can cut the parameter interval of a transversal family ft in smaller

intervals in such way that the family, when restricted to each one of those intervals

satisfies stronger assumptions. Here, we introduce the notation of partitions following

Schnellmann in [19]. Let us denote by K (t) = [ f 2
t (c), ft (c)] the support of ρt .
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Let P j (t), j > 1 be the partition on the dynamical interval composed by the maximal

open intervals of smooth monotonicity for the map f j
t : K (t)→ K (t), where t is a fixed

parameter value. Therefore, P j (t) is the set of open intervals ω ⊂ K (t) such that f j
t :

ω→ K (t) is C4 and ω is maximal.

We can also define analogous partitions on the parameter interval [a, b]. Let

x0 : [a, b] −→ [0, 1]
t 7−→ ft (c)

be a C2 map from the parameter interval into the dynamical interval. We will denote by

x j (t) := f j
t (x0(t)),

j > 0, the orbit of the point x0(t) under the map ft .

Consider a interval J ⊂ [a, b]. Let us denote by P j |J , j > 1, the partition on the

parameter interval composed by all open intervals ω in J such that xi (t) 6= c, for all i
satisfying 0 6 i < j , that is

f i
t (x0(t)) = f i+1

t (c) 6= c,

for all t ∈ ω, and such that ω is maximal, that is, if s ∈ ∂ω, then there exists 0 6 i < j
such that xi (s) = c.

The intervals ω ∈ P j are also called cylinders.

We quote almost verbatim the definition of the Banach spaces Vα given in [19]. The

spaces Vα were introduced by Keller [10]. Let m be the Lebesgue measure on the interval

[0, 1].

Definition 3.1 (Banach space Vα). For every ψ : [0, 1] → R be a function in L1(m) and

γ > 0, we can define

osc (ψ, γ, x) = ess sup ψ |(x−γ,x+γ )− ess inf ψ |(x−γ,x+γ ).

Given A > 0 and 0 < α 6 1 denote

|ψ |α = sup
0<γ6A

1
γ α

∫ 1

0
osc (ψ, γ, x) dx .

The Banach space Vα is the set of all ψ ∈ L1(m) such that |ψ |α <∞, endowed with the

norm

||ψ ||α = |ψ |α + |ψ |L1 .

We quote almost verbatim the definition of the almost sure invariant principle given

in [19].

Definition 3.2. Given a sequence of functions ξi on a probability space, we say that

it satisfies the almost sure invariance principle (ASIP), with exponent κ < 1/2 if one

can construct a new probability space that has a sequence of functions σi , i > 1 and a

representation of the Weiner process W satisfying
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•We have ∣∣∣∣∣W (n)−
n∑

i=1

σi

∣∣∣∣∣ = O(nκ),

almost surely as n→∞.

• The sequences {σi }i>1 and {ξi }i>1 have identical distributions.

A piecewise expanding Cr unimodal map f is good if either c is not a periodic point

of f or

lim inf
x→c

|D f p(x)| > 2

where p > 2 is the prime period of c (see [2, 3] for more details).

Definition 3.3. A C2 transversal (see equation (1)) family of good mixing C4 piecewise

expanding unimodal maps ft , t ∈ [c, d] is a good transversal family if we can extend this

family to a C2 transversal family of good mixing C4 piecewise expanding unimodal maps

ft , t ∈ [c− δ, d + δ], for some δ > 0, with the following properties

(I) There exists j0 > 0 with the following property. For every t ∈ [c, d] and for each

j > j0 there exists a neighborhood V of t such that for all t ′ ∈ V \{t} and all 0 <
i < j , we have f i

t ′(c) 6= c. In particular, the one-sided limits

lim
t ′→t+

∂t ′ f j
t ′ (c)

D f j−1
t ′ ( ft ′(c))

and lim
t ′→t−

∂t ′ f j
t ′ (c)

D f j−1
t ′ ( ft ′(c))

exist for every j > j0, and there is C > 1 so that

1
C

6

∣∣∣∣∣ lim
t ′→t+

∂t ′ f j
t ′ (c)

D f j−1
t ′ ( ft ′(c))

∣∣∣∣∣ 6 C, (6)

and
1
C

6

∣∣∣∣∣ lim
t ′→t−

∂t ′ f j
t ′ (c)

D f j−1
t ′ ( ft ′(c))

∣∣∣∣∣ 6 C, (7)

for all j > j0 and t ∈ [c− δ, d + δ].

(II) The map ft is mixing and there are constants δ > 0, L > 1 and 0 < β̃ < 1 such that

for all ψ ∈ Vα
||Ln

t ψ ||α 6 Lβ̃n
|ψ |α + L |ψ |L1 , (8)

for all t ∈ [c− δ, d + δ]. Here Lt is the Ruelle–Perron–Frobenius operator of ft given

by

(Ltψ)(x) =
∑

ft (y)=x

1
|D ft (y)|

ψ(y).

(III) There is δ > 0 such that for every ζ > 0 there is a constant C̃ satisfying∑
ω∈Pn |[a−δ,b+δ]

1∣∣x ′n|ω∣∣∞ 6 C̃enζ

for all n > 1.
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(IV) For all ϕ ∈ Vα such that σt (ϕ) > 0 the functions ξi : [c− δ, d + δ] → R i > 1, defined

by

ξi (t) =
1

σt (ϕ)

(
ϕ( f i+1

t (c))−
∫
ϕ dµt

)
satisfy the ASIP for every exponent γ > 2/5.

(V) There are positive constants C̃1, C̃2, C̃3, C̃4, C̃5, C̃6 and β ∈ (0, 1) such that for every

t ∈ [c− δ, d + δ] and its respective density ρt of the unique absolutely continuous

invariant probability of ft

(A1) The Perron–Frobenius operator Lt satisfies the Lasota–Yorke inequality in the

space of bounded variation functions

|Lk
t φ|BV 6 C̃6β

k
|φ|BV + C̃5|φ|L1(m).

(A2) We have ρt ∈ BV and |ρt |BV < C̃1.

(A3) We have ρ′t ∈ BV and |ρ′t |BV < C̃2. Moreover,

ρt (x) =
∫ x

0
ρ′t (u) du+

Mt−1∑
k=1

sk(t)H f k
t (c)

(x),

where Ha(x) = 0 if x < a and Ha(x) = −1 if x > a,

s1(t) =
ρt (c)
|D ft (c−)|

+
ρt (c)
|D ft (c+)|

(9)

and

sk(t) =
s1(t)

D f k−1
t ( ft (c))

.

Note that St = s1(t).

(A4) We have ρ′′t ∈ BV and |ρ′′t |BV < C̃3. Moreover,

ρ′t (x) =
∫ x

0
ρ′′t (u) du+

Mt−1∑
k=1

s′k(t)H f k
t (c)

(x),

where

|s′k(t)| 6
C̃4

|D f k−1
t ( ft (c))|

.

(VI) Let j0 > 0 be the constant given by condition (I). For all i, j satisfying 0 6 i, j 6 j0
and t ∈ [c, d], such that t + h ∈ [c− δ, d + δ] we have

c /∈ Ii, j (t, h),

where Ii, j (t, h) is the smallest interval that contains the set

{ f i+ j+1
t+h (c), f i+ j+1

t (c), f i
t+h ◦ f j+1

t (c), f i+1
t+h ◦ f j

t (c)}.

Remark 3.4. Conditions (I)–(III) are exactly those that appears in Schnellmann [19],

with obvious cosmetic modifications.
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Remark 3.5. If ft is a good transversal family then of course equation (4) converges to

1
√

2π

∫ y

−∞

e−
s2
2 ds

if and only if

lim
h→0

m

{
t ∈ [a, b] :

1

9(t)
√
− log |h|

(
Rφ(t + h)−Rφ(t)

h

)
6 y

}
(10)

converges to it as well.

Proposition 3.6. Let ft , t ∈ [a, b], be a transversal C2 family of mixing C4 piecewise

expanding unimodal maps. Then there is a countable family of intervals [ci , di ] ⊂ [a, b],
i ∈ 1 ⊂ N, with pairwise disjoint interior and

m

(
[a, b]

∖⋃
i∈1

[ci , di ]

)
= 0,

such that ft is a good transversal family on each [ci , di ], i ∈ 1.

Proof. Since ft is transversal, there is just a countable subset Q of parameters where

ft has a periodic critical point. It is easy to see that the subset Q′ ⊂ Q of parameters t
such that ft is not good and it has a periodic critical point is finite, so without loss of

generality we can assume that all maps ft are good. Consider � = [a, b] \ (Q ∪ {a, b}). It

follows from the analysis in the proof of [4, Theorem 4.1] and [1, Proposition 3.3] that for

every t ′ ∈ � there exists ε1 = ε1(t ′) such that if [c, d] ⊂ (t ′− ε1, t ′+ ε1) then the family

ft restricted to [c, d] satisfies condition (V ). By Schnellmann [19], for every t ′ ∈ � there

exists ε2 = ε2(t ′) such that if [c, d] ⊂ (t ′− ε2, t ′+ ε2) then the family ft restricted to [c, d]
satisfies conditions (I)–(IV).

We claim that for every t ′ ∈ � there is ε3 = ε3(t ′) such that if [c, d] ⊂ (t ′− ε3, t ′+ ε3)

and δ > 0 is small enough then the family ft , with t ∈ [c, d], satisfies condition (VI).

Indeed, since c is not a periodic point of ft ′ , there is ε3(t ′) > 0 such that

η := min{| f i+ j+1
t (c)− c| : 0 6 j 6 j0 and 0 < i 6 j0, t ∈ (t ′− ε3, t ′+ ε3)} > 0. (11)

Since t ∈ [t ′− ε3/2, t ′+ ε3/2] 7→ ft is a C2 family the map

(t, h) 7→ f i
t+h( f j

t (c))

is continuous for every 0 < i 6 j0 and every j satisfying 0 6 j 6 j0. Therefore, there is

γ1 := γ1(i, j) < ε3/2 such that, if |h| 6 γ1 and t ∈ [t ′− ε3/2, t ′+ ε3/2], then

| f i+1
t+h ( f j

t (c))− f i+1
t ( f j

t (c))| 6 η,

and

| f i
t+h( f j+1

t (c))− f i
t ( f j+1

t (c))| 6 η,

for all 0 6 j 6 j0 and 0 < i 6 j0. Let γ := min{γ1(i, j) : 0 6 j 6 j0 and 0 < i 6 j0}.
In particular, if |h| 6 γ1 and t ∈ [t ′− ε3/2, t ′+ ε3/2] then c /∈ Ii, j (t, h) for all 0 6 j 6 j0,

0 < i 6 j0.
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Let ε4(t ′) = min{ε1(t ′), ε2(t ′), γ }. Consider the family F of intervals [c, d] ⊂ [a, b] such

that [c, d] ⊂ (t ′− ε4(t ′), t ′+ ε4(t ′)) for some t ′ ∈ �. By the Vitali’s covering theorem there

exists a countable family of intervals [ci , di ] ⊂ [a, b], [ci , di ] ∈ F , i ∈ 1 ⊂ N, with pairwise

disjoint interior and

m

(
[a, b]

∖⋃
i∈1

[ci , di ]

)
= m

(
�

∖⋃
i∈1

[ci , di ]

)
= 0.

We will also need

Lemma 3.7. Let

t ∈ [a, b] 7→ ft

be a good transversal C2 family of good and mixing C4 piecewise expanding unimodal

maps

ft : [0, 1] → [0, 1].

If φ is a lipschitzian observable satisfying σt 6= 0 for every t ∈ [a, b] then

J = inf
t∈[a,b]

|J ( ft , vt )|, σ = inf
t∈[a,b]

σt (φ), s = inf
t∈[a,b]

St , ` = inf
t∈[a,b]

`t ,

are positive, where St and `t are as defined in equations (3) and (2), respectively.

Moreover, J ( ft , vt ) does not changes signs for t ∈ [a, b]. In particular, the function

t → 9(t) = σt St Jt`t

does not change signs for t ∈ [a, b] and satisfies

inf
t
|9(t)| > 0.

Proof. The function

t 7→ J ( ft , vt )

is not continuous in a transversal family (see [3]). Indeed, its points of discontinuity lie

on the parameters t where the critical point c is periodic for ft , where this function

has one-sided limits. However, in [3], Baladi and Smania showed that if vn converges

to v and fn converges to f , then if J ( fn, vn)→ 0 when n→∞ we have J ( f, v) = 0
and if J ( f, v) 6= 0 then J ( fn, vn) has the same sign that J ( f, v) for n large. From this

it follows that J > 0 and that J ( ft , vt ) does not changes signs for t ∈ [a, b]. In [19],

Schnellmann proved that t 7→ σt is Hölder continuous. Therefore, σ > 0. Note that St =

s1(t) > 0 everywhere, where s1 is as defined in equation (9). Suppose that limn s1(tn) = 0.

Remember that (see [1, 2]),

ρtn = ρabs,tn + ρsal,tn = ρabs,tn +

Mtn−1∑
k=1

s1(tn)

D f k−1
tn ( ftn (c))

H f k
tn (c)

(12)

where ρabs,tn is absolutely continuous, (ρabs,tn )
′ has bounded variation and

|(ρabs,tn )
′
|BV 6 C. (13)
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Taking a subsequence, if necessary, we can assume that limn tn = t and that ρtn converges

in L1(m) to ρt . But if limn s1(tn) = 0 then by equations (12) and (13) we conclude that

ρt is a continuous function. But this is absurd since s1(t) 6= 0 for every t .

Remark 3.8. As an example, we have the family of tent maps defined by

ft (x) =

 t x, if x < 1/2,

t − t x, if x > 1/2,

t ∈ (1, 2). Tsujii [20] shows that the family of tent maps satisfies

J ( ft0 , ∂t ft |t=t0) 6= 0

at every parameter t0 where ft0 has a periodic turning point. So the restriction of this

family to a small neighborhood of such parameter t0 is a transversal family. We can

observe that, since ft is a piecewise linear map for all t , the density ρt is purely a saltus

function.

4. Decomposition of the Newton quotient for good families

In this section, we will assume that ft is a good family. In order to prove Theorem 1.1

we will decompose the quotient

Rφ(t + h)−Rφ(t)
h

in two parts which will be called the Wild part and the Tame part of the decomposition.

Definition 4.1. Let g : [0, 1] → R be a function of bounded variation and t ∈ [a, b]. We

define the projection
5t : BV −→ BV

g 7−→ g− ρt

∫
g dm.

Indeed 5t is also a well-defined operator in L1(m) and

sup
t
|5t |BV <∞ and sup

t
|5t |L1(m) <∞.

A function g ∈ L1(m) belongs to 5t (BV ) if and only if
∫

g dm = 0. In particular, the

operator (I −Lt )
−1 is well defined on 5t (BV ). We are going to use the following

observation quite often. If
∫

g dm = 0, and

g =
∞∑

i=0

gi ,

with gi ∈ BV and the convergence of the series is in the BV norm, then

(I −Lt )
−1g =

∞∑
i=0

(I −Lt )
−15t (gi ).
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Note also that

5t ◦Lt = Lt ◦5t .

Proposition 4.2. Assume that ft is a family of piecewise expanding unimodal maps as

defined in § 2 and let Lt be the Perron–Frobenius operator. Then

ρt+h − ρt

h
= (I −Lt+h)

−1
(
Lt+h(ρt )−Lt (ρt )

h

)
.

Proof. Note that (I −Lt )
−1 is well defined in 5t (BV ) and is given by

(I −Lt )
−1(ρ) =

∞∑
i=0

Li
t (ρ),

for every ρ ∈ 5t (BV ). Therefore, the result follows as an immediate consequence of the

identity

(I −Lt+h)(ρt+h − ρt ) = (I −Lt )(ρt )− (I −Lt+h)(ρt ).

Proposition 4.3. Let ft be a C2 family of good mixing C4 piecewise expanding unimodal

maps that satisfies property (V) in Definition 3.3. There exists C > 0 with the following

property. For every t ∈ [a, b] such that the critical point of ft is not periodic, we can

decompose
Lt+h(ρt )−Lt (ρt )

h
= 8h + rh

where

8h =
1
h

∞∑
k=0

sk+1(t)5t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)
and rh satisfies ∫

rh dm = 0 and sup
h 6=0
|rh |BV < C.

We will prove Proposition 4.3 in § 8. We will call W(t, h) = (I −Lt+h)
−18h the Wild

part and (I −Lt+h)
−1rh will be called the Tame part of the decomposition. Note that

Rφ(t + h)−Rφ(t)
h

=

∫
φW(t, h) dm+

∫
φ(I −Lt+h)

−1rh dm.

Definition 4.4. Given h 6= 0 and t ∈ [0, 1], let N := N (t, h) be the unique integer such

that
1

|D f N+1
t ( ft (c))|

6 |h| <
1

|D f N
t ( ft (c))|

. (14)

There is some ambiguity in the definition of N (t, h) when f k
t (c) = c for some k > 0. But

since the family is transversal, there exists just a countable number of such parameters

(see [3]).
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Given a ∈ R define

bac = max{k ∈ Z : a > k}.

The following proposition gives us a control on the orbit of the critical point.

Proposition 4.5. For large K > 0 and every γ > 0 there exists δ > 0 such that for every

small h0 there are sets 0δh′,h0
, 0δh0

⊂ I = [a, b], with 0δh′,h0
⊂ 0δh0

, for every h′ satisfying

0 < h′ < h0, with the following properties

(A) limh′→0 m(0δh′,h0
) = m(0δh0

) > 1− γ .

(B) If t ∈ 0δh′,h0
and |h| 6 h′ then there exists N3(t, h) such that⌊

K
2

log N (t, h)
⌋
6 N (t, h)− N3(t, h) 6 C5K log N (t, h) (15)

and

c /∈ Ii, j (16)

for all 0 6 j < N3(t, h) and 0 6 i < N3(t, h)− j , where Ii, j is the smallest interval

that contains the set

{ f i+ j+1
t+h (c), f i+ j+1

t (c), f i
t+h ◦ f j+1

t (c), f i+1
t+h ◦ f j

t (c)}.

(C) For every t ∈ 0δh′,h0
the critical point of ft is not periodic.

(D) If 0 < ĥ < h′ 6 h0 then 0δh′,h0
⊂ 0δ

ĥ,h0
,

where m is the normalized Lebesgue measure on I = [a, b].

We will prove Proposition 4.5 in § 6. The following proposition is one of the most

important results in this work. It relates the Birkhoff sum of the observable φ with the

Wild part. This fact will allow us to use the almost sure invariance principle obtained by

Schnellmann [19].

Proposition 4.6. Let ft be a good transversal family. Let φ : [0, 1] → R be a lipschitzian

observable. If t ∈ 0δh,h0
, where 0δh,h0

is the set given by Proposition 4.5, then∫
φW(t, h) dm = s1(t)J ( ft , vt )

N3(t,h)∑
j=0

(
φ( f j

t (c))−
∫
φ dµt

)
+ O

(
log log

1
|h|

)
.

We will prove Proposition 4.6 in § 7.

Proposition 4.7. Let ft be a good transversal family. Let φ : [0, 1] → R be a lipschitzian

observable. If t ∈ 0δh,h0
, where 0δh,h0

is the set given by Proposition 4.5, then

Rφ(t + hn)−Rφ(t)
s1(t)J ( ft , vt )hn

=

N3(t,hn)∑
j=0

(
φ( f j

t (c))−
∫
φ dµt

)
+ O

(
log log

1
|hn|

)

+
1

s1(t)J ( ft , vt )

∫
φ(I −Lt+h)

−1rh dm.

The proof follows directly from Propositions 4.3 and 4.6.
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5. Proof of the Central Limit Theorem for the modulus of continuity of Rφ

To simplify the notation in this section, given a transversal family t 7→ ft we will denote

S f
t = s f

1 (t), J f
t = J ( ft , ∂s fs |s=t ), σ

f
t = σ

f
t (φ). Moreover,

L f
t =

∫
log |D ft | dµ

f
t ,

where µ
f
t is the unique absolutely continuous invariant probability of ft , and

`
f
t =

1√
L f

t

.

When there is no confusion with respect to which family we are dealing with, we will

omit f in the notation.

Lemma 5.1 (Functional Central Limit Theorem). Let ft be a good transversal C2 family

of C4 unimodal maps and σt (φ) 6= 0 for every t. For each t ∈ [a, b] let us consider the

continuous function θ 7→ X N (θ, t), where

X N (θ, t) =
1

σt
√

N

bNθc−1∑
k=0

(
φ( f k

t (c))−
∫
φ dµt

)
+
(Nθ −bNθc)

σt
√

N

(
φ( f bNθct (c))−

∫
φ dµt

)
.

Considering the normalized Lebesgue measure on t ∈ [a, b], for each N the function

t 7→ X N (·, t) induces a measure on the space of continuous functions and such measures

converge in distribution to the Wiener measure. We denote X N
D
−→N W.

Proof. By Schnellmann [19], we know that the sequence of functions

ξi (t) =
1
σt

(
φ( f i+1

t (c))−
∫ 1

0
φ dµt

)
satisfies the ASIP for every exponent error larger than 2/5. By [15, Theorem E], the

ASIP implies the Functional Central Limit Theorem for X N (θ, t).

As in Leplaideur and Saussol [13] we are going to need

Proposition 5.2 [6]. If
νn

an

P
−→n L , (17)

where L is a positive constant and (an)n is a sequence such that an →∞ when n→∞,

then

X N
D
−→N W

implies

Yn
D
−→n W,

where Yn is

1
σt
√
νn(t)

bνnθc−1∑
k=0

(
φ( f k

t (c))−
∫
φ dµt

)
+
(νnθ −bνnθc)

σt
√
νn(t)

(
φ( f bνnθc

t (c))−
∫
φ dµt

)
.
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Proof. See [6, p. 152].

From now on we will denote

DN (y) =
1
√

2π

∫ y

−∞

e−
s2
2 ds.

The following lemma will be used many times

Lemma 5.3 (A variation of Slutsky’s Theorem). Let An : [0, 1] → R be functions and

�n ⊂ [0, 1] be such that

lim inf
n

m(�n) > 1− γ,

and for every y ∈ R the sequence

an(y) = m(t ∈ �n : An(t) 6 y)

eventually belongs to

O(y, ε) = (DN (y)− ε,DN (y)+ ε),

that is, there is n0 = n0(y) such that an(y) ∈ O(y, ε) for every n > n0. Then

(A) There exists δ > 0 such that if Bn : [0, 1] → R is a function such that

lim inf
n

m(t ∈ [0, 1] : |Bn(t)− 1| < δ) > 1− γ,

then the sequence

bn(y) = m(t ∈ [0, 1] : An(t)Bn(t) 6 y)

eventually belong to O(y, ε+ 3γ ).

(B) There exists δ > 0 such that if Bn : [0, 1] → R is a function such that

lim inf
n

m(t ∈ [0, 1] : |Bn(t)| < δ) > 1− γ,

then the sequence

bn(y) = m(t ∈ [0, 1] : An(t)+ Bn(t) 6 y)

eventually belong to O(y, ε+ 3γ ).

Proof of A. Define

Dn
A(y) = {t ∈ �n : An(t) 6 y}

Dn
B = {t ∈ [0, 1] : |Bn(t)− 1| < δ}

Dn
AB(y) = {t ∈ [0, 1] : An(t)Bn(t) 6 y}.

Choose δ > 0 such that

sup
y∈R

sup
|δ′|<δ

|DN (y)−DN (y(1− δ′))| < γ,

and

sup
y∈R

sup
|δ′|<δ

|DN (y)−DN (y(1− δ′)−1)| < γ.
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If y > 0

Dn
A((1− δ)y)∩ Dn

B ⊂ Dn
AB(y) and Dn

AB(y)∩ Dn
B ∩�n ⊂ Dn

A((1− δ)
−1 y).

Thus, if n is large

m(Dn
AB(y)) > m(Dn

A((1− δ)y)∩ Dn
B)

> m(Dn
A((1− δ)y))− γ > DN ((1− δ)y)− ε− γ

> DN (y)− ε− 2γ, (18)

and

m(Dn
AB(y)) 6 m(Dn

AB(y)∩ Dn
B)+ γ

6 m(Dn
AB(y)∩ Dn

B ∩�n)+ 2γ

6 m(Dn
A((1− δ)

−1 y))+ 2γ 6 DN ((1− δ)−1 y)+ ε+ 2γ

6 DN (y)+ ε+ 3γ, (19)

and if y < 0 we have

Dn
A((1− δ)

−1 y)∩ Dn
B ⊂ Dn

AB(y) and Dn
AB(y)∩ Dn

B ∩�n ⊂ Dn
A((1− δ)y),

and an analogous analysis as above gives

m(Dn
AB(y)) ∈ O(y, ε+ 3γ ).

Proof of B. Since the proof is quite similar to the proof of A, we will skip it.

Lemma 5.4. Let t 7→ ft , t ∈ [a, b] be a good transversal C2 family of C4 unimodal maps.

Let ψ : [c, d] → [a, b] be an affine map, ψ(c) = a and ψ(d) = b and gθ = fψ(θ). For every

small enough h 6= 0 we can define

�g(h, y) =

{
θ ∈ [c, d] :

1

σ
g
θ `

g
θ Sg
θ J g
θ

√
− log |h|

(Rφg (θ + h)−Rφg (θ)

h

)
6 y

}
and

� f (w, y) =

{
t ∈ [a, b] :

1

σ
f

t `
f
t S f

t J f
t
√
− log |w|

(Rφ f (t +w)−Rφ f (t)

w

)
6 y

}
.

If
m(�g(h, y))

m([c, d])
eventually belong to O(y, γ ) when h converges to 0 then

m(� f (rh, y))
m([a, b])

eventually belong to O(y, γ ′) when h converges to 0, for every γ ′ > γ . Here r = ψ ′.
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Proof. It follows easily from Lemma 5.3(A).

Remark 5.5. Lemma 5.4 implies that it is enough to show our main theorem for families

parametrized by [0, 1].

Proposition 5.6. For every γ > 0 there exists Q1 with the following property. Let ft be a

good transversal C2 family of C4 piecewise expanding unimodal maps with σt (φ) 6= 0 for

every t and

Q = sup
t,t ′∈[c,d]

∣∣∣∣1− L t ′

L t

∣∣∣∣ < Q1.

Then for every h small enough we have

1
m([c, d])

m

{
t ∈ [c, d] :

1

σt`t St Jt
√
− log |h|

(
Rφ(t + h)−Rφ(t)

h

)
6 y

}
belongs to O(y, 13γ ).

Proof. Without loss of generality we assume that [c, d] = [0, 1]. It is enough to prove the

following claim: For every sequence

hn →n 0

and every γ > 0, the sequence

sn = m

{
t ∈ [0, 1] :

1

σt`t St Jt
√
− log |hn|

(
Rφ(t + hn)−Rφ(t)

hn

)
6 y

}
eventually belong to the interval O(y, 12γ ).

Fix a large K > 0. By Proposition 4.5, for every γ > 0 there exist δ > 0, h0 > 0 and

sets 0δh,h0
, 0δh0

⊂ I , with 0δh,h0
⊂ 0δh0

, for every h 6= 0 satisfying |h| < h0, such that

(A) limh→0 m(0δh,h0
) = m(0δh0

) > 1− γ .

(B) If t ∈ 0δh,h0
then there exists N3(t, h) such that⌊ε

2
log N (t, h)

⌋
6 N (t, h)− N3(t, h) 6 C5K log N (t, h)

and

c /∈ [ f i
t+h ◦ f j+1

t (c), f i+1
t+h ◦ f j

t (c)]

for all 1 6 j < N3(t, h) and 0 6 i < N3(t, h)− j .

For all h 6= 0 and t ∈ [0, 1], define N4(t, h) = N3(t, h) if t ∈ 0δh,h0
and |h| < h0, and

N4(t, h) = N (t, h), otherwise. Therefore, for B we have

N (t, h)− N4(t, h) 6 C5K log N (t, h) (20)

for every (t, h). Since

1

|D f N (t,h)+1
t ( ft (c))|

6 |h| <
1

|D f N (t,h)
t ( ft (c))|

,
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we have

1
N (t, h)

N (t,h)∑
k=1

log |D ft ( f k
t (c))| <

− log |h|
N (t, h)

6
1

N (t, h)

N (t,h)+1∑
k=1

log |D ft ( f k
t (c))|.

By Schnellmann [18], we have for almost every t

lim
N→+∞

1
N

N∑
k=1

log |D ft ( f k
t (c))| = L t =

∫
log |D ft | dµt ,

which implies that for almost every t

lim
h→0

− log |h|
N (t, h)

=

∫
log |D ft | dµt .

And by equation (20)

− log |h|
N (t, h)

6
− log |h|
N4(t, h)

6
− log |h|

N (t, h)−C5K log N (t, h)
,

we also have

lim
h→0

L t N4(t, h)
− log |h|

= 1 (21)

for almost every t ∈ [0, 1]. Fix t0 ∈ [0, 1] such that L t0 = mint∈[0,1]L t . Then

L t/L t0 N4(t, hn)

− log |hn|

P
−→

1
L t0
. (22)

By Lemma 5.1 and Proposition 5.2,

Yn(θ, t)
D
−→n W, (23)

where Yn is given in Proposition 5.2 and W is the Wiener measure, with

νn(t) = N4(t, hn)
L t

L t0
.

Hence, taking θ = 1 we conclude that

Yn(1, t)
D
−→n N (0, 1), (24)

where N (0, 1) denotes the Normal distribution with average zero and variance one. Let

Q = sup
t∈[0,1]

∣∣∣∣1− L t0
L t

∣∣∣∣ .
Fix α ∈ (0, 1/2). The Lévy’s modulus of continuity theorem (see for instance Karatzas

and Shreve [8]) implies that for almost every function f with respect to the Wiener

measure there exists C f such that

| f (θ ′)− f (θ)| 6 C f |θ
′
− θ |α
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for all θ ′, θ ∈ [0, 1]. In particular, there exist H = H(γ ) and a set �γ of α-Hölder

continuous functions in C([0, 1],R), whose measure with respect to the Wiener measure

is larger than 1− γ , such that

| f (θ ′)− f (θ)| 6 H |θ ′− θ |α.

In particular, for f ∈ �γ we have

max
θ∈[1−Q,1]

| f (1)− f (θ)| 6 H Qα. (25)

Due to equation (23),

lim inf
n

m
{

t ∈ [0, 1] : max
θ∈[1−Q,1]

|Yn(1, t)− Yn(θ, t)| 6 H Qα

}
> 1− γ.

In particular, if

Dn =

{
t ∈ [0, 1] :

∣∣∣∣Yn(1, t)− Yn

(
L t0
L t
, t
)∣∣∣∣ 6 2H Qα

}
then lim infn m(Dn) > 1− γ. Let us apply Lemma 5.3(B) with �n = Dn , An(t) = Yn(1, t)
and Bn(t) = Yn

( L t0
L t
, t
)
− Yn(1, t). Observe that by equation (24) the sequence an(y)

defined in Lemma 5.3 eventually belongs to O(y, ε) for all ε > 0. Hence, taking ε = γ ,

there exists δ1 = δ1(γ ) > 0 such that if 2H Qα < δ we have

m
(

t ∈ [0, 1] : Yn

(
L t0
L t
, t
)
6 y

)
(26)

eventually belongs to O(y, 4γ ). Choose Q0 = Q0γ > 0 such that if Q < Q0 then 2H Qα <

δ1. Note that

Yn

(
L t0
L t
, t
)
=

√
L t0
L t

1
σt
√

N4(t, hn)

bN4(t,hn)c−1∑
k=0

(
φ( f k

t (c))−
∫
φ dµt

)
. (27)

By equation (21) and Lemma 5.3(A), the sequence

m

t ∈ [0, 1] :

√
L t0

σt
√
− log |hn|

bN4(t,hn)c−1∑
k=0

(
φ( f k

t (c))−
∫
φ dµt

)
6 y


eventually belongs to O(y, 7γ ). Applying again Lemma 5.3(A), with

An(t) =

√
L t0

σt
√
− log |hn|

bN4(t,hn)c−1∑
k=0

(
φ( f k

t (c))−
∫
φ dµt

)
,

�n = [0, 1] and

Bn(t) =

√
L t

L t0
,
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there exists δ2 = δ2(γ ) > 0 such that if∣∣∣∣∣
√

L t

L t0
− 1

∣∣∣∣∣ < δ2 (28)

for every t then

m

t ∈ [0, 1] :
√

L t

σt
√
− log |hn|

bN4(t,hn)c−1∑
k=0

(
φ( f k

t (c))−
∫
φ dµt

)
6 y


eventually belong to O(y, 10γ ). Choose Q1 = min{Q0, δ2} such that Q < Q1 implies

equation (28). Finally, by Propositions 4.6 and 4.7, if 0 < |hn| 6 h0 and t ∈ 0δhn ,h0
we

have

Rφ(t + hn)−Rφ(t)
St Jt hn

=

N3(t,hn)∑
j=0

(
φ( f j

t (c))−
∫
φ dµt

)
+ O

(
log log

1
|hn|

)

+
1

St Jt

∫
φ(I −Lt+h)

−1rh dm.

Since
log log 1

|hn |√
log 1
|hn |

→n 0

and

sup |(I −Lt+h)
−1rh |L1 <∞,

we have

Rφ(t + hn)−Rφ(t)

Stσt Jt hn
√
− log |hn|

=
1

σt
√
− log |hn|

N3(t,hn)∑
j=1

(
φ( f j

t (c))−
∫
φ dµt

)
+ r(t, hn),

where

lim
n

sup
t∈0δhn ,h0

|r(t, hn)| = 0.

Hence, it is easy to conclude that

Rφ(t + hn)−Rφ(t)

Stσt`t Jt hn
√
− log |hn|

=
1

`tσt
√
− log |hn|

N3(t,hn)∑
j=1

(
φ( f j

t (c))−
∫
φ dµt

)
+ r ′(t, hn), (29)

for every t ∈ 0δhn ,h0
, where

`t =
1
√

L t
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and

lim
n

sup
t∈0δhn ,h0

|r ′(t, hn)| = 0.

Since m(0δh,h0
) > 1− γ , we can apply Lemma 5.3 (remember that N4(t, h) = N3(t, h) for

t ∈ 0δh,h0
) to conclude that the sequence

m

(
t ∈ [0, 1] :

Rφ(t + hn)−Rφ(t)

Stσt`t Jt hn
√
− log |hn|

6 y

)
eventually belong to the interval O(y, 13γ ).

Lemma 5.7. Let [ci , di ] ⊂ [a, b], i ∈ 1 ⊂ N, be intervals with pairwise disjoint interior

and such that

m

(
[a, b]

∖⋃
i∈1

[ci , di ]

)
= 0.

If t 7→ ft , with t ∈ [ci , di ], are good transversal families such that for all i ∈ 1 and y ∈ R
we have

1
m([ci , di ])

m

{
t ∈ [ci , di ] :

1

σt`t St Jt
√
− log |h|

(
Rφ(t + h)−Rφ(t)

h

)
6 y

}
eventually belongs to O(y, γ ), then

1
m([a, b])

m

{
t ∈ [a, b] : t + h ∈ [a, b] and

1

σt`t St Jt
√
− log |h|

(
Rφ(t + h)−Rφ(t)

h

)
6 y

}
eventually belongs to O(y, γ + ε), for every ε > 0.

Proof. Define

�(h, y) =

{
t ∈ [a, b] : t + h ∈ [a, b] and

1

σt`t St Jt
√
− log |h|

(
Rφ(t + h)−Rφ(t)

h

)
6 y

}
and

�i (h, y) =

{
t ∈ [ci , di ] : t + h ∈ [a, b] and

1

σt`t St Jt
√
− log |h|

(
Rφ(t + h)−Rφ(t)

h

)
6 y

}
.

Of course �i (h, y) are pairwise disjoint up to a countable set, �i (h, y) ⊂ �(h, y) and

m(�(h, y) \∪i�i (h, y)) = 0.

Then

m(�(h, y)) =
∑
i∈1

m(�i (h, y)).

Given ε ∈ (0, 1), choose i0 such that

m(∪i>i0 [ci , di ]) < εm([a, b]).
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For every i 6 i0 there exists hi > 0 such that for every |h| < hi we have

m(�i (h, y))
m([ci , di ])

belongs to O(y, γ + ε). Let ĥ = mini6i0 hi . Let

Ui0(h, y) = ∪i6i0�i (h, y),

and

Wi0(h, y) = ∪i6i0 [ci , di ].

Then for |h| < ĥ we have

m(Ui0(h, y))
m(Wi0(h, y))

=

∑
i6i0

m([ci , di ])

m(Wi0(h, y))
m(�i (h, y))
m([ci , di ])

is a convex combination of elements of O(y, γ + ε), then it belongs to O(y, γ + ε). We

conclude that

(DN (y)− γ − 2ε)m([a, b]) 6 (DN (y)− γ − ε)(m([a, b])− ε m([a, b]))

6 (DN (y)− γ − ε)m(Wi0(h, y))

6 m(Ui0(h, y))

6 m(�(h, y))

6 m(Ui0(h, y))+ ε m([a, b])

6 (DN (y)+ γ + ε)m(Wi0(h, y))+ ε m([a, b])

6 (DN (y)+ γ + 2ε)m([a, b]). (30)

Proof of Theorem 1.1. Remember that

t 7→ L t

is a continuous and positive function on [a, b]. Given γ > 0, let Q1 > 0 be as in

Proposition 5.6. Then there are k > 0 and intervals [ci , di ], i 6 k = k(γ ), which forms

a partition F of [a, b] and

sup
t,t ′∈[ci ,di ]

∣∣∣∣1− L t ′

L t

∣∣∣∣ < Q1

for every i 6 k. Then the restrictions of the family ft to each one of the intervals [ci , di ]

satisfy the assumptions of Proposition 5.6. Now it remains to apply Lemma 5.7 to the

full family and the partition F . Since γ > 0 is arbitrary we completed the proof of

Theorem 1.1.
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6. Controlling how the orbit of the critical point moves

The aim of this section is to prove Proposition 4.5. Let us denote by I = [0, 1] the interval

of parameters.

Remark 6.1. In Schnellmann [19, Lemma 4.4], it is proven that there is C1 > 0 such that

if N > 1, |t1− t2| < 1/N and if ω1 ∈ PN (t1) and ω2 ∈ PN (t2) have the same combinatorics

up to the (N − 1)-th iteration then ∣∣∣∣∣D f N
t1 (x1)

D f N
t2 (x2)

∣∣∣∣∣ 6 C1,

for all x1 ∈ ω1 and x2 ∈ ω2.

We also observe that if x, y ∈ ω ∈ PN (t), then by the bounded distortion lemma, there

is C2 > 0 such that ∣∣∣∣∣D f j
t (x)

D f j
t (y)

∣∣∣∣∣ 6 C2,

for every j 6 N . Let

M̃ = sup
06 j6 j0

sup
t∈[a,b]

|∂t f j
t (c)|,

and let us define

C3 = max{C, M̃}, (31)

where C is the constant given by the transversality condition (see equations (6) and (7))

and

C4 = sup
t∈[0,1]

sup
x∈[0,1]

|∂t ft (x)|.

To prove Proposition 4.5 we will need

Lemma 6.2. Let N3 ∈ N and ω ∈ PN3 be such that

|ω| 6
1

N3
.

If t ∈ ω and

dist (t, ∂ω) > (M + 1)|h|, (32)

where

M > max{C1C3C4,C2
1C2C2

3}. (33)

Then

c /∈ Ii, j (t, h) (34)

for all 0 6 j < N3 and 0 6 i < N3− j , where Ii, j (t, h) is the smallest interval that

contains the set

{ f i+ j+1
t+h (c), f i+ j+1

t (c), f i
t+h ◦ f j+1

t (c), f i+1
t+h ◦ f j

t (c)}.
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Proof. Let j0 be as defined in condition (I) (see Definition 3.3). If j > j0 define i1 = 0
and if 0 6 j < j0 define i1 = j0. First of all, we observe that if 0 6 j 6 j0 and 0 6 i 6 j0
then equation (34) follows from condition (VI). In particular,

c /∈ Ii, j (t, h) for every i < i1. (35)

Hence, it is left to consider the cases when

j0 < j < N3 and 0 < i 6 N3− j

and

0 < j < j0 and j0 < i 6 N3− j.

We claim that

c /∈ Ii1, j . (36)

Indeed, if 0 6 j 6 j0, it follows from condition (VI). Now, if j0 < j < N3, due to condition

(I), equations (6) and (7) the maps

θ ∈ ω→ f k
θ (c) ∈ [0, 1]

are diffeomorphisms on their images for every j0 < k 6 N3 and they do not contain the

critical point in its image, for all j0 < k < N3, θ ∈ ω. In particular, if ω = (s1, s2) then

c /∈ { f k
θ (c) : θ ∈ ω} = ( f k

s1
(c), f k

s2
(c)) (37)

for every j0 < k < N3. Therefore,

c /∈ [ f k
t (c), f k

t+h(c)].

By the mean value theorem and Remark 6.1, for every j < N3

| f j+1
t (c)− f j+1

t+h (c)| = |∂θ f j+1
θ (c)|θ=θ1 ||h| 6 C3|D f j

θ1
( fθ1(c))||h| 6 C3C1|D f j

t ( ft (c))||h|.

Moreover,

| ft+h( f j
t (c))− ft ( f j

t (c))| 6 |∂θ fθ ( f j
t (c))|θ=θ2 ||h| 6 C4|h|. (38)

By assumption, d([t, t + h], ∂ω) > M |h|. Thus,

|ω| > (2M + 1)|h|. (39)

If ∂ω = {s1, s2} and s ∈ [t, t + h] then

| f k+1
si

(c)− f k+1
s (c)| = |∂θ f k+1

θ (c)|θ=θ3 ||si − s|

>
1

C3
|D f k

θ3
( fθ3(c))|M |h|

>
1

C1C3
|D f k

t ( ft (c))|M |h| (40)

for every k < N3. Taking k = j we obtain

| ft+h( f j
t (c))− ft ( f j

t (c))| 6 C4|h| 6
M

C1C3
|h|

6
M

C1C3
|D f j

t ( ft (c))||h| 6 | f
j+1

si (c)− f j+1
t (c)|. (41)
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Hence,

[ ft+h( f j
t (c)), ft ( f j

t (c))] ⊂ ( f j+1
s1 (c), f j+1

s2 (c)). (42)

In particular,

c /∈ I0, j (t, h) = Ii1, j (t, h).

We concluded the proof of our claim. Now fix 0 6 j < N3. We are going to prove by

induction on i that, for every i1 6 i < N3− j ,

c /∈ Ii, j (t, h). (43)

The case i = i1 follows from equation (36). Now suppose that equation (43) holds up

to i . Provided that i > i1, we have i + j + 1 > j0. Therefore, by equation (37), with

k = i + j + 2, we obtain

f (i+1)+ j
t+h ( ft+h(c)) ∈ ( f (i+1)+ j+1

s1 (c), f (i+1)+ j+1
s2 (c)).

And as in equation (40)

| f (i+1)+ j
si ( fsi (c))− f (i+1)+ j

t+h ( ft+h(c))| >
1

C3C1
|D f (i+1)+ j

t+h ( ft+h(c))|M |h|. (44)

Moreover, by induction assumption and equation (35), we have for every 0 6 k 6 i

c 6∈ Ik, j (t, h).

Thus the points

f j+1
t+h (c) and f j+1

t (c)

have the same combinatorics up to i iterations of the map ft+h . Then by Remark 6.1

| f i+1
t+h ( f j+1

t (c))− f i+1
t+h ( f j+1

t+h (c))| 6 C2|D f i+1
t+h ( f j+1

t+h (c))|| f
j+1

t (c)− f j+1
t+h (c)|

6 C2|D f i+1
t+h ( f j+1

t+h (c))||∂θ f j+1
θ (c)|θ=θ4 ||h|

6 C3C2|D f i+1
t+h ( f j+1

t+h (c))||D f j
θ4
( fθ4(c))||h|

6 C1C2C3|D f i+1
t+h ( f j+1

t+h (c))||D f j
t+h( ft+h(c))||h|

6 C1C2C3|D f (i+1)+ j
t+h ( ft+h(c))||h| (45)

and

f j
t (c) and f j

t+h(c)

have the same combinatorics up to i + 1 iterations of the map ft+h . Then by Remark 6.1

| f (i+1)+1
t+h ( f j

t (c))− f (i+1)+1
t+h ( f j

t+h(c))| 6 C2|D f (i+1)+1
t+h ( f j

t+h(c))|| f
j

t (c)− f j
t+h(c)|

6 C2|D f (i+1)+1
t+h ( f j

t+h(c))||∂θ f j
θ (c)|θ=θ5 ||h|

6 C2C3|D f (i+1)+1
t+h ( f j

t+h(c))||D f j−1
θ5

( fθ5(c))|||h|

6 C1C2C3|D f (i+1)+1
t+h ( f j

t+h(c))||D f j−1
t+h ( ft+h(c))||h|

6 C1C2C3|D f (i+1)+ j
t+h ( ft+h(c))||h|. (46)
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Since

C1C2C3 <
M

C1C3
,

equations (44)–(46) imply that

{ f (i+1)+1
t+h ( f j

t (c)), f i+1
t+h ( f j+1

t (c))} ⊂ ( f (i+1)+ j+1
s1 (c), f (i+1)+ j+1

s2 (c)).

In particular, c /∈ Ii, j (t, h) for all 0 6 j < N3 and i1 < i < N3− j .

To prove Proposition 4.5 we need to show that, for each given h 6= 0, for most of the

parameters t ∈ [0, 1] we can find a cylinder ω ∈ PN3(t,h) where [t, t + h] is deep inside ω

(see equation (32)) and moreover, N3(t, h) satisfies equation (15). To this end, for most

t we will find ω, with t ∈ ω, in such way that |ω| is quite large with respect to |h| and

N3(t, h) satisfies equation (15), but not necessarily the whole interval [t, t + h] is deep

inside ω. Then we will use a simple argument to conclude that for most of the parameters

t this indeed occurs.

Let P j be the partition of level j > j0. Observe that for each cylinder ω ∈ P j

|ω| 6 C3

(
1
λ

) j

,

where C3 is the constant given by equation (31).

Let N > 1 and define j = j (N ) as

j =
⌊

log(C3 N )
log λ

⌋
+ 1.

Note that the cylinders of P j divide the interval of parameters I in subintervals of length

shorter than 1/N . Let J be one of these intervals in P j . And we will denote by tR the

right boundary point of J .

Observe that, by definition, there is an integer i , 0 6 i < j such that

xi (tR) = f i+1
tR

(c) = c.

Fix an integer τ such that 21/τ 6
√
λ.

Definition 6.3 (The sets EN ,J ). Let J ∈ P j , j = j (N ). Let EN ,J be the family of all

intervals ω ∈ PN such that for every k satisfying

0 6 k 6

⌊
K log N
τ

⌋
and for ω̃ satisfying

ω̃ = (a, b) ∈ PN−bK log Nc+q , with ω ⊂ ω̃ ⊂ J,

where

q = min{(k+ 1)τ, bK log Nc},

one of the following statements holds:
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(A) For every i satisfying

N −bK log Nc+ kτ 6 i < N −bK log Nc+ q

we have

xi (a) 6= c.

(B) For every i satisfying

N −bK log Nc+ kτ 6 i < N −bK log Nc+ q

we have

xi (b) 6= c.

Define

EN =
⋃

J∈P j

EN ,J .

Let us denote by |EN | the sum of the lengths of the intervals in this family.

Given n ∈ N and ω̃ ∈ Pn define

δt := min{| f i
t (c)− f j

t (c)| : f i
t (c) 6= f j

t (c)i, j 6 τ.}

δω :=
mint∈ω δt

2
.

Notice that if ω̃ ⊃ ω then δω̃ 6 δω.

Let CL be such that

| f i
t (c)− f i

s (c)| 6 CL |t − s|

for all i 6 τ , s, t ∈ [0, 1].

Lemma 6.4. There is C > 0 such that the following holds. If ω̃ ∈ Pi , i > j0, with |ω̃| < 1/ i
and t ∈ ω̃ then

1
C
|xi (ω̃)|

|D f i
t ( ft (c))|

6 |ω̃| 6 C
|xi (ω̃)|

|D f i
t ( ft (c))|

. (47)

Moreover, if ω ∈ PN \ EN then there exists i satisfying

N −bK log Nc 6 i 6 N

such that ω ⊂ ω̃ ∈ Pi and if

CL |ω̃| < δω̃

then

|xi (ω̃)| > δω̃

and
1
C

δω̃

|D f i
t ( ft (c))|

6 |ω̃| 6 C
1

|D f i
t ( ft (c))|

(48)

for every t ∈ ω̃.
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Proof. If t ∈ ω̃ ∈ Pk then by the mean value theorem for some θ1 ∈ ω̃

|xk(ω̃)| = |∂θ f k+1
θ (c)|θ=θ1 ||ω̃|,

then

|D f k
t ( ft (c))||ω̃|

C1C3
6
|D f k

θ1
( fθ1(c))||ω̃|

C3
6 |xk(ω̃)|

and

|xk(ω̃)| 6 C3|D f k
θ1
( fθ1(c))||ω̃| 6 C1C3|D f k

t ( ft (c))||ω̃|,

therefore, equation (47) holds. Now assume ω ∈ PN \ EN . Then there exists k satisfying

0 6 k 6

⌊
K log N
τ

⌋
and

ω̃ = (a, b) ∈ PN−bK log Nc+q ,

where q = min{(k+ 1)τ, bK log Nc}, such that xia (a) = c = xib (b), where

N −bK log Nc+ kτ 6 ia, ib < N −bK log Nc+ q,

in particular,

xN−bK log Nc+q(ω̃) = ( f na
a (c), f nb

b (c)),

where

0 6 na, nb < τ, with na 6= nb.

Thus,

|xN−bK log Nc+q(ω̃)| = | f na
a (c)− f nb

b (c)|

> | f na
a (c)− f nb

a (c)| − | f nb
a (c)− f nb

b (c)|

> 2δω̃−CL |a− b| > δω̃. (49)

Since δω̃ > 0 depends only on a fixed finite number of iterations of the family ft , it will

be easy to give positive lower bounds to it that hold for most of the intervals ω̃. Indeed

define

3δN0
= {t ∈ [0, 1] : for every N > N0 if t ∈ ω ∈ PN−2bK log Nc then δω > δ}.

Note that 3δN0
⊂ 3δN0+1. Moreover, δ′ < δ implies 3δ

′

N0
⊃ 3δN0

.

Lemma 6.5. Given γ > 0 there exists δ > 0 such that

lim
N0→∞

|3δN0
| > 1− γ.
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Proof. Since ft is a transversal family, the set of parameters t such that f i
t (c) = f j

t (c) for

some i 6= j , with i, j 6 τ + 1 is finite. Let t1, . . . , tm be those parameters. The function

t → δt is positive and continuous on

O = [0, 1] \ {t1, . . . , tm}.

Choose N0 large enough such that

#{ω ∈ PN0−2bK log N0c : ω∩ {t1, . . . , tm} 6= ∅} 6 2m.

Thus,

|{ω ∈ PN0−2bK log N0c : ω ⊂ O}| > 1−
2Cm

λN0−2bK log N0c
> 1− γ,

provided N0 is large enough. Let

δ := 1
2 min{δω : ω ∈ PN−2bK log Nc, ω ⊂ O}.

Note that δ > 0 and

3δN ⊃
⋃
{ω ∈ PN−2bK log Nc : ω ⊂ O}

for every N > N0, provided that N0 is large.

Proposition 6.6. There exist Ĉ1, Ĉ2 > 0, that do not depend on K, such that for every

K′ < K there exists K = K (K′) > 0 such that

|EN | 6 K N Ĉ2−Ĉ1K′ . (50)

The proof of this proposition follows from

Lemma 6.7. There exists Ĉ1 > 0, that does not depend on K, such that for every K′ < K
there exists K = K (K′) > 0 such that if J ∈ P j , j =j(N), and EN ,J is as defined before,

then

|EN ,J | 6 K N−Ĉ1K′ . (51)

We will prove Lemma 6.7 later in this section.

Proof of Proposition 6.6. We have

EN =
⋃

J∈P j

EN ,J .

Since there are at most 2 j cylinders of level j , we have by Lemma 6.7 that there exist

Ĉ1 > 0 and K = K (K′) such that

|EN | 6 2
(

log(C3 N )
log λ

)
K N−Ĉ1K′ = K C

log 2
log λ
3 N

log 2
log λ−Ĉ1K′ . (52)

Define

�N0 = {t ∈ [0, 1] : ∀N > N0 ∃ω ∈ PN−bK log Nc\EN−bK log Nc and t ∈ ω}. (53)

Note that �N0 ⊂ �N0+1.
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Corollary 6.8. If Ĉ2− Ĉ1K < −1 we have

lim
N0→∞

|�N0 | = 1. (54)

Proof. Notice that

�N0 =

⋂
N>N0

⋃
ω∈PN−bK log Nc\EN−bK log Nc

ω.

If we choose K′ < K such that Ĉ2− Ĉ1K′ < −1 we have

|�c
N0
| =

∣∣∣∣∣∣
⋃

N>N0

⋃
ω∈EN−bK log Nc

ω

∣∣∣∣∣∣ 6
∑

N>N0

K (N −bK log Nc)Ĉ2−Ĉ1K′ N0→∞
−→ 0.

From now on we choose and fix K > 0 satisfying Ĉ2− Ĉ1K < −1.

Corollary 6.9. For every γ > 0 there exists δ > 0 such that

lim
N0→∞

m(3δN0
∩�N0) > 1− γ.

Definition 6.10. Given δ > 0 and h0 > 0, define

0δh0

as the set of all parameters t ∈ [0, 1] such that for every h, 0 < |h| 6 h0, there exists k
satisfying

N (t, h)− 2bε log N (t, h)c 6 k 6 N (t, h)−bε log N (t, h)c

such that if t ∈ ω̂ ∈ Pk then |xk(ω̂)| > δ.

Given t ∈ 0δh0
and h 6= 0, let N2(t, h) be the largest k with this property.

Definition 6.11. Given h and t ∈ [0, 1], define

N1(t, h) := N (t, h)−bK log N (t, h)c, (55)

and for h0 > 0 define

N̂1(h0) := min
t∈I,|h|6h0

N1(t, h).

Since

lim
N→∞

max
t∈[0,1]

1
|D f N

t ( ft (c))|
= 0,

we have

lim
h0→0

N̂1(h0) = +∞.

Lemma 6.12. For every γ > 0 there exists δ > 0 such that

lim
h0→0

m(0δh0
) > 1− γ.

https://doi.org/10.1017/S1474748016000177 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748016000177


702 A. de Lima and D. Smania

Proof. By Corollary 6.9 there exist δ > 0 and N0 such that

m(3δN0
∩�N0) > 1− γ.

Choose h0 such

N̂1(h0) > N0.

Let |h| 6 h0. Then

N (t, h)−bK log N (t, h)c > N0.

If t ∈ 3δN0
∩�N0 , choosing ω̃ such that t ∈ ω̃ ∈ PN (t,h)−bK log N (t,h)c then

ω̃ 6∈ EN (t,h)−bK log N (t,h)c.

Hence, by Lemma 6.4 there exists k satisfying (here N = N (t, h))

N −bK log Nc− bK log(N −bK log Nc)c 6 k 6 N −bK log Nc

such that if t ∈ ω̃ ⊂ ω̂ ∈ Pk then

|xk(ω̂)| > δω̂ > δ

since t ∈ 3δN0
, so that CL |ω̂| < δ < δω̃. Therefore, 0δh0

⊃ 3δN0
∩�N0 .

Definition 6.13. Given h0 > 0 and δ > 0, for every h such that |h| 6 h0 let Aδ
h,h0

be a

covering of 0δh0
by intervals ω with the following properties

(P1) There exists t ∈ 0δh0
such that t ∈ ω ∈ PN2(t,h).

(P2) If t ′ ∈ 0δh0
and t ′ ∈ ω then ω′ ⊂ ω, where t ′ ∈ ω′ ∈ PN2(t ′,h).

(P3) There does not exist t ′′ ∈ 0δh0
such that t ′′ ∈ ω′′ ∈ PN2(t ′′,h) and ω $ ω′′.

One can check that one such collection Aδ
h,h0

does exist. Indeed, consider the covering of

0δh0
given by

{ω : there exists t ∈ 0δh0
such that t ∈ ω ∈ PN2(t,h)}.

Of course, this covering satisfies property P1. Remove from this covering all intervals

ω that do not satisfy property P3. Then the remaining collection is a covering of 0δh0

satisfying properties P1–P3. Note also that the distinct intervals in Aδ
h,h0

are pairwise

disjoint. Indeed, if ω,ω′ ∈ Aδ
h,h0

, with ω 6= ω′ and ω∩ω′ 6= ∅ then either ω $ ω′ or ω′ $ ω,

which is in contradiction with property P3.

We note that |Aδ
h,h0
| > m(0δh0

), since Aδ
h,h0

covers 0δh0
. Here |Aδ

h,h0
| denotes the

Lebesgue measure of the union of the intervals in the family Aδ
h,h0

.

Lemma 6.14. If h0 is small enough there are C5 > 0 and C6 > 0 such that the following

holds. Given t ′ ∈ 0δh0
, let ω be the unique interval in Aδ

h,h0
such that t ′ ∈ ω. Let t ∈ 0δh0

be such that t ∈ ω ∈ PN2(t,h). Then⌊ε
2

log N (t ′, h)
⌋
6 N (t ′, h)− N2(t, h) 6 C5K log N (t ′, h) (56)

and

|ω| > C6δN (t ′, h)K
log λ

2 |h|. (57)
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Proof. Consider ω′ such that

t ′ ∈ ω′ ∈ PN2(t ′,h).

Then by property P2 we have ω′ ⊂ ω. Since

δ 6 |xN2(t ′,h)(ω
′)| = |∂θ f N2(t ′,h)(c)||ω′| 6 C1C3|D f N2(t ′,h)

t ′ ( ft ′(c))|,

it follows that

δ

C1C3

1

|D f N2(t ′,h)
t ′ ( ft ′(c))|

6 |ω′| 6 |ω| 6
C1C3

|D f N2(t,h)
t ( ft (c))|

. (58)

Since t, t ′ ∈ ω, there is C1 > 1 such that

1
C1

1
|D f i

t ′( ft ′(c))|
6

1
|D f i

t ( ft (c))|
6 C1

1
|D f i

t ′( ft ′(c))|

for every i 6 N2(t, h). Choose C̄ such that

δ

C2
3C3

1
>

1

λC̄
. (59)

Then

N2(t ′, h) > N2(t, h)− C̄,

otherwise

δ

C1C3

1

|D f N2(t ′,h)
t ′ ( ft ′(c))|

6
C1C3

|D f N2(t,h)
t ( ft (c))|

6
C1C3

|D f N2(t,h)−N2(t ′,h)
t ( f N2(t ′,h)+1

t (c))|

1

|D f N2(t ′,h)
t ( ft (c))|

6
C1C3

λC̄

C1

|D f N2(t ′,h)
t ′ ( ft ′(c))|

,

which contradicts equation (59). In particular,

N (t ′, h)− N2(t, h) > N (t ′, h)− N2(t ′, h)− C̄

> bε log N (t ′, h)c− C̄

>
⌊ε

2
log N (t ′, h)

⌋
.

Note that the lower bound holds if h0 is small enough. Thus,

N (t ′, h) > N2(t, h).

Moreover,

|h| 6
1

|D f N (t ′,h)
t ′ ( ft ′(c))|

6
1

|D f N (t ′,h)−N2(t,h)
t ′ ( f N2(t,h)+1

t ′ (c))|

1

|D f N2(t,h)
t ′ ( ft ′(c))|

6
1

|D f N (t ′,h)−N2(t,h)
t ′ ( f N2(t,h)+1

t ′ (c))|

C1

|D f N2(t,h)
t ( ft (c))|

.
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On the other hand,

|h| >
1

|D f N (t,h)+1
t ( ft (c))|

>
1

|D f N (t,h)−N2(t,h)
t ( f N2(t,h)+1

t (c))|

1

|D f N2(t,h)
t ( ft (c))|

1
3
. (60)

Then

log |D f N (t ′,h)−N2(t,h)
t ′ ( f N2(t,h)+1

t ′ (c))| − log C1

6 log |D f N (t,h)−N2(t,h)
t ( f N2(t,h)+1

t (c))| + log3

and consequently

N (t ′, h)− N2(t, h) 6 Ĉ3(N (t, h)− N2(t, h))+ Ĉ4.

In a similar way, we can obtain

N (t, h)− N2(t, h) 6 Ĉ3(N (t ′, h)− N2(t, h))+ Ĉ4,

where

Ĉ3 =
log3
log λ

and

Ĉ4 =
log C1

log λ
.

N (t, h) = N (t, h)− N2(t, h)+ N2(t, h)

6 2ε log N (t, h)+ N (t ′, h)

6
N (t, h)

N (t, h)− 2ε log N (t, h)
N (t ′, h)

6 2N (t ′, h),

provided that h0 is small. Consequently

N (t ′, h)− N2(t, h) 6 Ĉ3(N (t, h)− N2(t, h))+ Ĉ4

6 Ĉ32bK log N (t, h)c+ Ĉ4

6 Ĉ32K log[2N (t ′, h)] + Ĉ4

6 C5K log N (t ′, h). (61)

Here the last inequality holds if h0 is small enough. Moreover, by equation (58)

|ω| >
1

C1C3

δ

|D f N2(t ′,h)
t ′ ( ft ′(c))|

=
δ

C1C3

|D f N (t ′,h)−N2(t ′,h)
t ′ ( f N2(t ′,h)+1

t ′ (c))|

|D f N (t ′,h)
t ′ ( ft ′(c))|

>
δ

C1C3

λN (t ′,h)−N2(t ′,h)

|D f N (t ′,h)
t ′ ( ft ′(c))|

>
δ

C1C3
λ

K log N (t ′,h)
2 −1

|h| =
δ

C1C3λ
N (t ′, h)K

log λ
2 |h|. (62)

Hence, we obtain equation (57).
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Choose ε > 0 such that
1
√
λ
< 1− ε.

Lemma 6.15. Given M > 0, define

Bδh,h0,M =

{
t : t ∈ ω ∈ Aδ

h,h0
and dist(t, ∂ω) >

M + 1
1− ε

|h|
}
.

Let hi = (1− ε)i h0. Given h satisfying 0 < |h| 6 h0, let

i(h) = max{i ∈ N : |h| < (1− ε)i−1h0}.

For every h > 0 define

0̂δh,h0
= 0δh0

∩

 ⋂
i>i(h)

Bδhi ,h0,M

 .
Then

(A) If 0 < ĥ < h then 0̂δh,h0
⊂ 0̂δ

ĥ,h0
,

(B) We have

lim
h→0

m(0̂δh,h0
) = m(0δh0

).

Proof. Note that

min
t∈[0,1]

N (t, hi ) > −
log h0

log3
− 1−

i log(1− ε)
log3

,

where

−
log h0

log3
> 0 and −

i log(1− ε)
log3

> 0.

Therefore, if h0 is small enough, there are K1, K2 > 0, such that

min
t∈[0,1]

N (t, hi ) > K1+ i K2.

Define

Ah =
⋃

ω∈Aδ
h,h0

ω.

If ω ∈ Aδ
h,h0

then there is t ∈ 0δh0
such that t ∈ ω ∈ PN2(t,h). By Lemma 6.14

m(ω∩ (Bδh,h0,M )
c) = m

{
t ′ ∈ ω : dist(t ′, ∂ω) 6

M + 1
1− ε

|h|
}

6 2
M + 1
1− ε

|h|

6
2(M + 1)|h|
(1− ε)|ω|

|ω|

6
2C6(M + 1)

δ(1− ε)N (t, h)K
log λ

2

|ω|. (63)
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Choose K large enough such that K log λ > 2. Then

∞∑
i=0

m(Ahi ∩ (B
δ
hi ,h0,M )

c) 6
∞∑

i=0

2C6(M + 1)
√
λ

δ(K1+ i K2)
K log λ

2

<∞. (64)

In particular,

m

0δh0
∩

 ⋂
i>i(h)

Bδhi ,h0,M

 = m(0δh0
)−m

0δh0
∩

 ⋂
i>i(h)

Bδhi ,h0,M

c
> m(0δh0

)−
∑

i>i(h)

m(0δh0
∩ (Bδhi ,h0,M )

c)

> m(0δh0
)−

∑
i>i(h)

m(Ahi ∩ (B
δ
hi ,h0,M )

c). (65)

Equation (64) implies that

lim
h→0

∑
i>i(h)

m(Ahi ∩ (B
δ
hi ,h0,M )

c) = 0.

Proof of Proposition 4.5. By Lemma 6.12 for every γ > 0 there exists δ > 0 such that

for every small h0 we have

m(0δh0
) > 1− γ.

Choose M satisfying equation (33). Define

0δh,h0
= 0̂δh,h0

\Q,

where 0̂δh,h0
is the set defined in Lemma 6.15 and Q is the countable set of parameters

where ft has a periodic critical point. By Lemma 6.15 Property A holds. Let t ′ ∈ 0δh,h0
,

with |h| < h0. There exists i > i(h) such that

hi+1 6 |h| 6 hi ,

where hi = (1− ε)i h0. Thus, N (t ′, h) = N (t ′, h j ), for some j ∈ {i, i + 1}, and consequently

N2(t ′, h) = N2(t ′, h j ). Then there exists a unique ω ∈ Aδ
h j ,h0

and t ∈ 0δh0
such that t, t ′ ∈

ω ∈ PN2(t,h). Moreover, since t ′ ∈ Bδh j ,h0,M
we have

dist(t ′, ∂ω) >
M + 1
1− ε

h j > (M + 1)|h|.

Define N3(t ′, h) = N2(t, h). By Lemma 6.14 equation (15) holds. By Lemma 6.2,

equation (16) holds.

6.1. Proof of Lemma 6.7

Let J be the interval as in the statement of Lemma 6.7. The sets EN ,J ‘live’ in the

parameter space. To estimate its measures we will compare them, following [18], with the

measures of similarly defined sets in the phase space of the map ftR .
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Definition 6.16 (The sets ÊN ,tR ). Let J = [tL , tR]. Denote by ÊN ,tR the set of all

η ∈ PN (tR)

such that for all k satisfying

0 6 k 6

⌊
K log N
τ

⌋
there is not

η̃ ∈ PN−bK log Nc+ j (tR), η ⊂ η̃,

where

j = min{(k+ 1)τ, bK log Nc},

such that

f N−bK log Nc+kτ
tR

(η̃) ∈ P j−kτ (tR).

Using a strategy similar to the one applied in [18], we estimate the measure |EN ,J | in

terms of the measure |ÊN ,tR |. To this end we need to define the map UJ . Recall that if F
is a family of disjoint intervals then |F | denotes the sum of the measures of the intervals.

Definition 6.17 (The map UJ ). Let J = (tL , tR). Consider the map UJ

UJ : PN |J → PN (tR)

defined by Schnellmann [18, proof of Lemma 3.2] in the following way. Let ω ∈ PN |J and

choose t ∈ ω. Since ω is a cylinder, it follows that x j (t) 6= c for all 0 6 j < N . Therefore,

there is a cylinder ω(x0(t)) in the partition PN (t) such that x0(t) ∈ ω(x0(t)).
Let

UJ (ω) = Ut,tR ,N (ω(x0(t))),

where Ut,tR ,N : PN (t)→ PN (tR) is such that for all η ∈ PN (t), the elements η and UJ (η)

have the same combinatorics.

symbt ( f i
t (η)) = symbtR ( f i

tR
(Ut,tR ,N (η)),

for 0 6 i < N . Schnellmann [18] proved that Ut,tR ,N is well defined when ft is a family

of piecewise expanding unimodal maps satisfying our assumptions. In particular, if t < t ′

and a certain symbolic dynamic appears in the dynamics of ft , then it also appears in

the dynamics of f ′t .

Therefore, the cylinder ω′ = UJ (ω) = Ut,tR ,N (ω(x0(t))) has the same combinatorics as

ω, that is,

symb(x j (ω)) = symbtR ( f j
tR
(ω′)),

when 0 6 j < N . Since there are not two cylinders in PN (tR) with the same combinatorics,

the element ω′ does not depend on the choice of t ∈ ω. Therefore, UJ is well defined.

Lemma 6.18. If ω ∈ EN ,J , then UJ (ω) ∈ ÊN ,tR . Moreover, there exists C ′ > 1 such that

|ω| 6 C ′|UJ (ω)|. (66)

In particular,

|EN ,J | 6 C ′|ÊN ,tR |. (67)
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Proof. Note that UJ (ω) ∈ ÊN ,tR follows from the fact that ω and UJ (ω) have the same

combinatorics [18]. By [18, Lemma 3.2], there exists a constant C ′ > 1 such that

|ω| 6 C ′|UJ (ω)|.

Thus,

|EN ,J | 6
∑

ω∈EN ,J

|ω| 6
∑

ω∈EN ,J

C ′|UJ (ω)| 6 C ′|ÊN ,tR |. (68)

Definition 6.19. For each η′ ∈ PN−bK log Nc(tR), define the set

ÊN ,tR ,η′ = {η ∈ PN (tR) : η ∈ ÊN ,tR and η ⊂ η′}.

Lemma 6.20. Let η′ ∈ PN−bK log Nc(tR). Then

#ÊN ,tR ,η′ 6 2
⌊

K log N
τ

⌋
+1
. (69)

Proof. Define

k0 =

⌊
K log N
τ

⌋
.

Notice that

N > N −bK log Nc+ k0τ > N − τ.

If N = N −bK log Nc+ k0τ define k1 = k0. Otherwise define k1 = k0+ 1. For every k
satisfying

0 6 k 6 k1,

define families of intervals Fk in the following way. If k 6 k0 define

Fk = {η̂ ⊂ η
′
: η̂ ∈ PN−bK log Nc+kτ (tR) and there is η ∈ ÊN ,tR ,η′ with η ⊂ η̂} (70)

otherwise k = k1 = k0+ 1 and

Fk1 = ÊN ,tR ,η′ . (71)

Note that if k1 = k0 then we also have Fk1 = ÊN ,tR ,η′ . We claim that

#Fk 6 2k . (72)

We observe that, taking k = k1 in equation (72) we obtain equation (69). Note that

either F0 is the empty set or F0 = {η
′
}. Then #F0 6 1. Moreover, it is easy to see that if

η̂k+1 ∈ Fk , with k < k1, then there exists a unique η̂k ∈ Fk such that η̂k+1 ⊂ η̂k . Therefore,

it is enough to show that for each η̂k ∈ Fk , with k < k1, there are at most two intervals

η̂k+1 ∈ Fk+1 such that η̂k+1 ⊂ η̂k . Indeed, given k < k1, for every η̂k ∈ Fk we have η̂k ∈

PN−bK log Nc+kτ (tR). Moreover, there is j such that for every η̂k+1 ∈ Fk+1 we have η̂k+1 ∈

PN−bK log Nc+ j (tR), with kτ < j 6 bK log Nc, and j 6 kτ + τ . Note that if the closure of

η̂k+1 = (a, b) is contained in the interior of η̂k , then for every x ∈ η̂k+1 we have f p
tR
(x) 6= c,

for every p < N −bK log Nc+ kτ . Furthermore, there are na, nb such that

f na
tR
(a) = c = f nb

tR
(b),
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where

N −bK log Nc+ kτ 6 na, nb < N −bK log Nc+ j.

We conclude that

f N−bK log Nc+kτ
tR

(η̂k+1) ∈ P j−kτ (tR)

where j − kτ 6 τ . Therefore, if η ⊂ η̂k+1, with η ∈ PN (tR), then η 6∈ ÊN ,tR ,η′ and

consequently η̂k+1 6∈ Fk+1. Since there are at most two intervals PN−bK log Nc+ j (tR) whose

closure is not contained in the interior of η̂k , we conclude that there are at most two

intervals in Fk+1 that are contained in η̂k .

Lemma 6.21. Let η′, η′′ ∈ PN−bK log Nc(tR) such that

f N−bK log Nc
tR

(η′) = f N−bK log Nc
tR

(η′′).

Then

f N−bK log Nc
tR

(ÊN ,tR ,η′) = f N−bK log Nc
tR

(ÊN ,tR ,η′′).

Proof. Let ω′ = (y′1, y′2) ∈ PN (tR), with ω′ ⊂ η′, be a cylinder in ÊN ,tR ,η′ . Then

f N−bK log Nc
tR

(ω′) ⊂ f N−bK log Nc
tR

(η′) = f N−bK log Nc
tR

(η′′). (73)

Remember that since ω′ ∈ PN (tR), it follows that for all x ∈ ω′

f i
tR
(x) 6= c for all 0 6 i < N , (74)

and if y ∈ ∂ω′, then there exists j , 0 6 j < N such that f j
tR
(y) = c. Define

ai = f N−bK log Nc
tR

(y′i ).

Then f N−bK log Nc
tR

(ω′) = (a1, a2) is an open interval and, by equation (73), we have

(a1, a2) ⊂ f N−bK log Nc
tR

(η′′). Therefore, there is an open interval ω′′ = (y′′1 , y′′2 ) ⊂ η
′′ such

that f N−bK log Nc
tR

(ω′′) = (a1, a2) with

ai = f N−bK log Nc
tR

(y′′i ).

We claim that ω′′ is also a cylinder. Indeed, let x ∈ ω′′. Then, since ω′′ ⊂ η′′ and η′′ is a

cylinder of level N −bK log Nc, it follows that

f i
tR
(x) 6= c,

for all 1 6 i < N −bK log Nc. On the other hand,

f N−bK log Nc
tR

(ω′′) = f N−bK log Nc
tR

(ω′),

and by equation (74), we can conclude that f i
tR
(x) 6= c for all i satisfying N −bK log Nc 6

i < N . Therefore, for all x ∈ ω′′, we have f i
tR
(x) 6= c for all 0 6 i < N . Now, let y′′i ∈ ∂ω2.

Since ω′′ ⊂ η′′, we have two cases.
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Case 1: y′′i ∈ ∂η
′′. In this case, there is an integer j , 0 6 j < N −bK log Nc, such that

f j
tR
(y′′i ) = c.

Case 2: y′′i /∈ ∂η
′′. In this case, f j

tR
(y′′i ) 6= c for all 0 6 j < N −bK log Nc. Then

f N−bK log Nc
tR

(y′′i ) = ai = f N−bK log Nc
tR

(y′i ) belongs to the interior of f N−bK log Nc
tR

(η′′) =

f N−bK log Nc
tR

(η′). Thus, y′i belongs to the interior of η′, which implies that there exists

j such that N −bK log Nc 6 j < N such that f j
tR
(y′i ) = f j

tR
(y′′i ) = c.

Therefore, ω′′ ∈ PN (tR).

By assumption, ω′ ∈ ÊN ,tR ,η′ . Then for all 0 6 k 6 bK log N
τ
c, if

ω̃k ∈ PN−bK log Nc+ j (k)(tR),

where ω′ ⊂ ω̃k ⊂ η
′ and

j (k) = min{(k+ 1)τ, bK log Nc},

then there is z′k ∈ ∂ω̃ satisfying

f
q ′k
tR
(z′k) = c, for some q ′k , 0 6 q ′k < N −bK log Nc+ kτ. (75)

In the same manner as for ω′, there exists a unique cylinder ω̂k ∈ PN−bK log Nc+ j (k), ω̂k ⊂

η′′, such f N−bK log Nc
tR

(ω̃k) = f N−bK log Nc
tR

(ω̂k). Note that ω′′ ⊂ ω̂k . Let z′′k ∈ ∂ω̂k such that

f N−bK log Nc
tR

(z′k) = f N−bK log Nc
tR

(z′′k ).

If z′′k ∈ ∂η
′′ then there exists i < N −bK log Nc such that f i

tR
(z′′k ) = c. Define q ′′k = i .

If z′′k 6∈ ∂η
′′ then z′k 6∈ ∂η

′. Thus, f q
tR
(z′k) 6= c for every q < N −bK log Nc, which implies

that

N −bK log Nc 6 q ′k < N −bK log Nc+ kτ.

Then f
q ′k
tR
(z′′k ) = f

q ′k
tR
(z′′k ) = c. Define q ′′k = q ′k .

In both cases we have 0 6 q ′′k < N −bK log Nc+ kτ , then ω′′ ∈ ÊN ,tR ,η′′ .

f N−bK log Nc
tR

(ÊN ,tR ,η′′) ⊂ f N−bK log Nc
tR

(ÊN ,tR ,η′).

A similar argument shows that

f N−bK log Nc
tR

(ÊN ,tR ,η′) ⊂ f N−bK log Nc
tR

(ÊN ,tR ,η′′).

Proof of Lemma 6.7. Due to Lemma 6.18 it is enough to show that for every K′ < K
there exists C > 0 and K = K (K′) > 0 such that if J ∈ P j , j = j (N ) then

|ÊN ,tR | 6 K N−CK′ . (76)

By Lemma 6.20 we have

#ÊN ,tR ,η′ 6 2b
K log N

τ
c+1.

Let us define the set

� =
⋃

η′∈PN−bK log Nc(tR)

f N−bK log Nc
tR

(ÊN ,tR ,η′).
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Note that

ÊN ,tR ⊂ f −(N−bK log Nc)
tR

(�).

Therefore, if µtR is the absolutely continuous invariant probability for ftR we have

µtR (ÊN ,tR ) 6 µtR (�). (77)

In [18, § 6.2], it is shown that there is C ′1 > 1 such that for every density ρt of the unique

absolutely continuous invariant probability of ft

1
C ′1

6 ρt (x) 6 C ′1,

for µt -almost every x ∈ [0, 1], then

|ÊN ,tR | 6 C ′1
2
|�|.

Since J ∈ P j , j = j (N ), there exists an integer p, 0 6 p < j such that x p(tR) =

f p
tR
( ftR (c)) = c. In particular,

#{ f i
tR
(c)}i>0 = p+ 1.

Thus,

#{ f N−bK log Nc
tR

(η′), η′ ∈ PN−bK log Nc(tR)} 6 (p+ 1)2.

Therefore, by Lemma 6.21,

|ÊN ,tR | 6 C ′1
2
|�| = C ′1

2
| ∪η′∈PN−bK log Nc(tR) f N−bK log Nc

tR
(Êη′))|

6 C ′1
2
(p+ 1)2 max

η′∈PN−bK log Nc(tR)
| f N−bK log Nc

tR
(Êη′)|

6 C ′1
2
(p+ 1)2

(
1
λ

)bK log Nc

#{η ∈ PN (tR)|Êη′
}

6 C ′1
2
(p+ 1)2

(
1
λ

)bK log Nc

2b
K log N

τ
c+1 6 C ′1

2
(p+ 1)2

(
1
λ

) bK log Nc
2

6 C ′1
2 j2

(
1
λ

) bK log Nc
2

6 C ′1
2
(⌊

log(C3 N )
log λ

⌋)2 (1
λ

) bK log Nc
2

6 K N−
log λ

2 ε′

where K = K (ε′).

7. Estimates for the Wild part

We start this section with a technical lemma.

Lemma 7.1. Given a good transversal family ft there are constants L1 and L2 such that

the following holds. Let ϕ : [0, 1] → R, |ϕ|L1(m) > 0, be a function of bounded variation

such that ∫
ϕ dm = 0.
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Then ∣∣∣(I −Lt )
−1(ϕ)

∣∣∣
L1

6

(
L1 log

|ϕ|BV

|ϕ|L1
+ L2

)
|ϕ|L1 .

Proof. Let ̃ > 0 such that

Lβ̃ ̃ |ϕ|BV = |ϕ|L1 .

And let j0 the smallest integer such that j0− 1 6 ̃ 6 j0. Hence, we have

(I −Lt )
−1(ϕ) =

j0∑
i=0

Li
t (ϕ)+

∞∑
l=1

Ll
t (L

j0
t (ϕ)).

Observing Assumption (V)A1, the fact that |Ll
tϕ|BV 6 L̃θ l

|ϕ|BV , when
∫
ϕ dm = 0 with

constants L̃ and θ uniform in t , as well as the elementary facts that |Lt |L1 = 1 and

| · |L1 6 | · |BV , we see that

|(I −Lt )
−1(ϕ)|L1 6 ( j0+ 1)|ϕ|L1 +

L̃
1− θ

|L j0
t ϕ|BV

6 ( j0+ 1)|ϕ|L1 +
L̃

1− θ
(C̃6β

j0 |ϕ|BV + C̃5|ϕ|L1)

6

(
c1β

j0 |ϕ|BV

|ϕ|L1
+ ( j0+ c2)

)
|ϕ|L1 .

By the choice of j0, we have the desired estimate.

The following proposition will be quite important to study the Wild part of the

decomposition. Denote

supp(ψ) = {x ∈ [0, 1] : ψ(x) 6= 0}.

Proposition 7.2. There exist K , K ′1, K ′2 > 0 such that the following holds. For all i, k > 0,

t ∈ [0, 1] and h 6= 0, let

ϕk,i,h =
1
h
Li

t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)
.

Then

|ϕk,i,h |L1 6 K , (78)

and

|ϕk,i,h |BV 6
K
|h|
. (79)

Furthermore,

|(I −Lt+h)
−15t+h(ϕk,i,h)|L1 6 K ′1 max{0, log |ϕk,i,h |BV }+ K ′2. (80)
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Proof. Note that

|Li
t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)
|L1

6 |H ft+h( f k
t (c))
− H ft ( f k

t (c))
|L1

6
(

sup
t
|vt |

)
|h|, (81)

and, by Assumption (V) in Definition 3.3∣∣∣Li
t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)∣∣∣
BV

6 2C̃6β
i
+ C̃5(sup

t
|vt |)|h| 6 Ĉ . (82)

Thus, we have equations (78) and (79). In Particular,

|5t+h(ϕk,i,h)|L1(m) 6 2|ϕk,i,h |L1(m) 6 2K ,

and if h is small

|5t+h(ϕk,i,h)|BV 6 |ϕk,i,h |BV + |ϕk,i,h |BV sup
t∈[0,1]

|ρt |BV 6 C |ϕk,i,h |BV ,

where C > 1.

Now we can easily obtain equation (80) applying Lemma 7.1.

Proposition 7.3. Let φ be a Lipchitz function. There exists K > 0 such that the following

holds. Let t ∈ 0δh′,h0
and 0 < |h| 6 h′. Then

var

(
1
h
Li

t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

))
6

K

|h||D f i
t ( f k+1

t (c))|
, (83)

and ∫
φ(x)Li

t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

h

)
(x) dx

= φ( f i+k+1
t (c))vt ( f k

t (c))+ O(|D f i
t ( f k+1

t (c))||h|), (84)

where 0 6 k 6 N3(t, h) and i < N3(t, h)− k.

Proof. By equation (16), the points f k+1
t+h (c), ft+h( f k

t (c)), ft ( f k
t (c)) belong to the same

interval of monotonicity of f i
t+h . Let

ζ : Dom(ζ )→ I m(ζ )

be an inverse branch associated to such interval of monotonicity, that is, ζ is a

diffeomorphism such that f i
t+h(ζ(y)) = y for every y ∈ Dom(ζ ) and

{ f k+1
t+h (c), ft+h( f k

t (c)), ft ( f k
t (c))} ⊂ I m(ζ ).

Hence,

Li
t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)
(x)

=
1

D f i
t+h(ζ(x))

1Dom(ζ )(x)
(

H ft+h( f k
t (c))

(ζ(x))− H ft ( f k
t (c))

(ζ(x))
)
. (85)
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There is a constant K > 1 such that for all t ∈ [0, 1], h, and i , and every interval of

monotonicity Q of f i
t+h we have

1
K

6

∣∣∣∣∣D f i
t+h(y1)

D f i
t+h(y2)

∣∣∣∣∣ 6 K

for all y1, y2 ∈ Q. Now we can estimate the variation of the function in equation (83)

using familiar properties of the variation of functions (see Viana [21, Chapter 3], for

instance).

var[0,1]

(
Li

t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

))
= var[0,1]

(
1

D f i
t+h(ζ(x))

1Dom(ζ )(x)
(

H ft+h( f k
t (c))

(ζ(x))− H ft ( f k
t (c))

(ζ(x))
))

= varDom(ζ )

(
1

D f i
t+h(ζ(x))

)
sup
[0,1]

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)
+ 2 sup
[0,1]

(
1

D f i
t+h(ζ(x))

1Dom(ζ )(x)

)
sup
[0,1]

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)
+ sup
[0,1]

(
1

D f i
t+h(ζ(x))

1Dom(ζ )(x)

)
var[0,1]

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)
6 2varDom(ζ )

(
1

D f i
t+h(ζ(x))

)
+

6K

|D f i
t+h( f k+1

t+h (c))|
.

Now, note that since ζ is a diffeomorphism, it follows that

varDom(ζ )

(
1

D f i
t+h(ζ(x))

)
= varI m(ζ )

(
1

D f i
t+h(y)

)

=

∫
I m(ζ )

∣∣∣∣∣D
(

1
D f i

t+h(y)

)∣∣∣∣∣ dy

=

∫
I m(ζ )

∣∣∣∣∣∣
i∑

j=1

−
D2 ft+h( f j−1

t+h (y))

D f i− j
t+h ( f j

t+h(y))(D ft+h( f j−1
t+h (y)))

2

∣∣∣∣∣∣ dy

6 K1|I m(ζ )| 6 K1
|Dom(ζ )|

|D f i
t+h( f k+1

t+h (c))|

6
C K2

|D f i
t+h( f k+1

t+h (c))|
.

Here we use that ∣∣∣∣∣∣
i∑

j=1

−
D2 ft+h( f j−1

t+h (y))

D f i− j
t+h ( f j

t+h(y))(D ft+h( f j−1
t+h (y)))

2

∣∣∣∣∣∣ 6
i∑

j=1

C
λi− j

6 K1, (86)
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and that

|I m(ζ )| 6 K
|Dom(ζ )|

|D f i
t+h( f k+1

t+h (c))|
6 K

1

|D f i
t+h( f k+1

t+h (c))|
.

Therefore,

var[0,1]

(
Li

t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

))
6

K3

|D f i
t+h( f k+1

t+h (c))|
. (87)

Finally, by equation (16) note that the combinatorics up to i iterations of f k+1
t+h (c) by the

map ft+h is the same as the combinatorics up to i iterations of f k+1
t (c) by the map ft .

By Remark 6.1 we obtain

1

|D f i
t+h( f k+1

t+h (c))|
6 C1

1

|D f i
t ( f k+1

t (c))|
. (88)

Equations (88) and (87) give us equation (83). Since

supp
1
h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)
= [ ft+h( f k

t (c)), ft ( f k
t (c))],

by equation (85) we conclude that

Zi,k = supp
1
h
Li

t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)
= [ f i+1

t+h ( f k
t (c)), f i

t+h( f k+1
t (c))].

By equation (16), the points f k+1
t+h (c), ft+h( f k

t (c)), ft ( f k
t (c)) belong to the same interval

of monotonicity of f i
t+h . Hence,

diam supp
1
h
Li

t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)
= diam [ f i+1

t+h ( f k
t (c)), f i

t+h( f k+1
t (c))]

= | f i+1
t+h ( f k

t (c))− f i
t+h( f k+1

t (c))|

6 K |D f i
t+h( f k+1

t (c))|| ft+h( f k
t (c))− ft ( f k

t (c))|

6 K |D f i
t+h( f k+1

t (c))|| sup
t
vt ||h|

6 C1 K |D f i
t ( f k+1

t (c))|| sup
t
vt ||h|. (89)

Therefore,∫
φ(x)Li

t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

h

)
(x) dx

= φ( f i+k+1
t (c))

∫
Li

t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

h

)
(x) dx

+

∫ (
φ(x)−φ( f i+k+1

t (c))
)
Li

t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

h

)
(x) dx . (90)
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Note that ∫
Li

t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

h

)
(x) dx

=

∫ H ft+h( f k
t (c))
− H ft ( f k

t (c))

h
(x) dx = vt ( f k

t (c))+ O(|h|). (91)

Due to equation (89) and the fact that φ is a lipschitzian function with Lipschitz constant

L, and that f i+k+1
t (c) ∈ Zi,k∣∣∣∣∣

∫ (
φ(x)−φ( f i+k+1

t (c))
)
Li

t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

h

)
(x) dx

∣∣∣∣∣
6
∫

Zi,k

|φ(x)−φ( f i+k+1
t (c))|

∣∣∣∣∣Li
t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

h

)
(x)

∣∣∣∣∣ dx

6 LC1 K |D f i
t ( f k+1

t (c))|| sup
t
vt ||h|

∣∣∣∣∣Li
t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

h

)∣∣∣∣∣
L1

6 LC1 K |D f i
t ( f k+1

t (c))|| sup
t
vt |

2
|h|. (92)

Proof of Proposition 4.6. Let 8h be as in Proposition 4.3, that is

8h =
1
h

∞∑
k=0

sk+1(t)5t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)
.

Given t ∈ 0δh,h0
. Let N3(t, h) be as in Proposition 4.5. Since t and h are fixed throughout

this proof, we will write N3 instead of N3(t, h) and N instead of N (t, h). Let us divide

8h as follows

8h = S1+ S2,

where

S1 =
1
h

N3∑
k=0

sk+1(t)5t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)
and

S2 =
1
h

∞∑
k=N3+1

sk+1(t)5t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)
.

Let us first estimate S2.

(I −Lt+h)
−1S2 =

1
h

∞∑
k=N3+1

sk+1(t)(I −Lt+h)
−15t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)
.
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Thus, ∣∣∣(I −Lt+h)
−1S2

∣∣∣
L1

6
∞∑

k=N3+1

|sk+1(t)|
∣∣∣∣1h (I −Lt+h)

−15t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)∣∣∣∣
L1
.

By Proposition 7.2 and Lemma 7.1, taking

ϕ =
1
h
5t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)
,

we have, ∣∣∣∣(I −Lt+h)
−1 1

h
5t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)∣∣∣∣
L1

6 K1 log
1
|h|
+ K2 6 K1 log3N+1

+ K2

6 K1(N + 1) log3+ K2 6 K3 N + K4.

Therefore,∣∣∣(I −Lt+h)
−1S2

∣∣∣
L1

6
∞∑

k=N3+1

1
λk (K3 N + K4) 6

K5 N
λN3
+ K6

6
K5 N

λN−C5K log N
+ K6 6 K7hK8 log λ

(
log

1
|h|

)1+C5K log λ

+ K6.

It is left to analyze S1. Applying the operator (I −Lt+h)
−1,

(I −Lt+h)
−1(S1) =

1
h

∞∑
i=0

Li
t+h

N3∑
k=0

sk+1(t)5t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)
.

Then

(I −Lt+h)
−1(S1) =

1
h

N3∑
k=0

sk+1(t)
∞∑

i=0

Li
t+h5t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)
= S11+ S12,

where

S11 =

N3∑
k=0

sk+1(t)
N3−k∑
i=0

1
h
Li

t+h5t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)
and

S12 =

N3∑
k=0

sk+1(t)
∞∑

i=N3−k+1

1
h
Li

t+h5t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)

=

N3∑
k=0

sk+1(t)
1
h
Lt+h ◦ (I −Lt+h)

−1
◦5t+h ◦LN3−k

t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)
.
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We observe that

|S12|L1 6 C
N3∑

k=0

|sk+1(t)||(I −Lt+h)
−1
◦5t+h ◦LN3−k

t+h
1
h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)
|L1 .

Let

ϕk =
1
h
LN3−k

t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)
.

By Proposition 7.3 it follows that

|ϕk |BV = var(ϕk)+ |ϕk |L1 (93)

6
C

|h||D f N3(t,h)−k
t ( f k+1

t (c))|
+ K1 (94)

6 C
|D f N (t,h)+1

t ( ft (c))|

|D f N3(t,h)−k
t ( f k+1

t (c))|
+ K1

6 C |D f N (t,h)+1−N3(t,h)
t ( f N3(t,h)+1

t (c))||D f k
t ( ft (c)))| + K1

6 C3N (t,h)+1−N3(t,h)+k
+ K1. (95)

By Lemma 7.1 we have

|(I −Lt+h)
−1
◦5t+h(ϕk)|L1

= |(I −Lt+h)
−1
◦5t+h ◦LN3−k

t+h
1
h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)
|L1

6 K ′1 log(C3N (t,h)+1−N3(t,h)+k
+ K1)+ K ′2

6 K ′1 log(K23
N (t,h)+1−N3(t,h)+k)+ K ′2

6 K3(N − N3+ k+ 1).

Therefore,

|S12|L1 6 K3

N3∑
k=0

|sk+1(t)|(N − N3+ k+ 1)

6 K3(N − N3)

N3∑
k=0

1
λk + K3

 N3∑
k=0

k
λk +

N3∑
k=0

1
λk


6 K4K log N + K5 6 K

(
log log

1
|h|
+ 1

)
.

We proceed to examine S11.

S11 =

N3∑
k=0

sk+1(t)
N3−k∑
i=0

Li
t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

h

)
︸ ︷︷ ︸

S111
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−

N3∑
k=0

sk+1(t)
N3−k∑
i=0

Li
t+h

(
ρt+h

∫ H ft+h( f k
t (c))
− H ft ( f k

t (c))

h
dm

)
︸ ︷︷ ︸

S112

.

Note that

S112 = −

N3∑
k=0

sk+1(t)
N3−k∑
i=0

ρt+h

∫ (
H ft+h( f k

t (c))
− H ft ( f k

t (c))

h

)
dm

= −

N3∑
k=0

sk+1(t)
N3−k∑
i=0

(
vt ( f k

t (c))+ O(h)
)
ρt+h .

Adding and subtracting the sum

N3∑
k=0

sk+1(t)
N3−k∑
i=0

vt ( f k
t (c))ρt ,

we obtain

S112 = S1121+ S1122,

where

S1121 = −

N3∑
k=0

sk+1(t)
N3−k∑
i=0

vt ( f k
t (c))ρt

and

S1122 = −(ρt+h − ρt )

N3∑
k=0

sk+1(t)(N3− k)vt ( f k
t (c))− O(h)

N3∑
k=0

sk+1(t)(N3− k)ρt+h .

By equation (5)

|S1122|L1 6 K1 sup
t
|vt ||h| log

(
1
|h|

) N3∑
k=0

|sk+1(t)|(N3− k)

+ |ρt+h |L1 |O(h)|
N3∑

k=0

|sk+1(t)|(N3− k)

6

(
K2|h| log

1
|h|
+ K3|O(h)|

)
N3

N3∑
k=0

1
λk

6 K4 N
(
|h| log

1
|h|
+ |O(h)|

)
6 K log

1
|h|

(
|h| log

(
1
|h|

)
+ |O(h)|

)
.

Therefore, taking φ : [0, 1] → R a lipschitzian observable,∫
φ(x)W(x) dx

=

∫
φ(x)(I −Lt+h)

−18h(x) dx
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=

∫
φ(x)(S111+ S1121)(x) dx + O

(
log log

1
|h|

)

=

N3∑
k=0

sk+1(t)
N3−k∑
i=0

∫
φ(x)Li

t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

h

)
(x) dx

−

N3∑
k=0

sk+1(t)
N3−k∑
i=0

vt ( f k
t (c))

∫
φ(x)ρt (x) dx + O

(
log log

1
|h|

)
.

By equation (84) we have∫
φ(x)Li

t+h

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

h

)
(x) dx

= φ( f i+k+1
t (c))vt ( f k

t (c))+ O(|D f i
t ( f k+1

t (c))||h|)

= φ( f i+k+1
t (c))vt ( f k

t (c))+ O

(
|D f i

t ( f k+1
t (c))|

|D f N
t ( ft (c))|

)
.

Since ∣∣∣∣∣∣
N3∑

k=0

sk+1(t)
N3−k∑
i=0

O

(
|D f i

t ( f k+1
t (c))|

|D f N
t ( ft (c))|

)∣∣∣∣∣∣ 6 K1

N3∑
k=0

(
1
λ

)k N∑
i=0

(
1
λ

)N−i

< K , (96)

it follows that∫
φ(x)W(x) dx

=

N3∑
k=0

sk+1(t)vt ( f k
t (c))

N3−k∑
i=0

(
φ( f i+k+1

t (c))−
∫
φ dµt

)
+ O

(
log log

1
|h|

)

=

N3∑
k=0

sk+1(t)vt ( f k
t (c))

N3+1∑
j=k+1

(
φ( f j

t (c))−
∫
φ dµt

)
+ O

(
log log

1
|h|

)

=

N3+1∑
j=1

(
φ( f j

t (c))−
∫
φ dµt

) j−1∑
k=0

sk+1(t)vt ( f k
t (c))+ O

(
log log

1
|h|

)
.

Adding and subtracting the series

N3+1∑
j=1

(
φ( f j

t (c))−
∫
φ dµt

) ∞∑
k= j

sk+1(t)vt ( f k
t (c)),

we obtain∫
φ(x)W(x) dx =

N3+1∑
j=1

(
φ( f j

t (c))−
∫
φ dµt

) ∞∑
k=0

s1(t)

D f k
t ( ft (c))

vt ( f k
t (c))
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−

N3+1∑
j=1

(
φ( f j

t (c))−
∫
φ dµt

) ∞∑
k= j

s1(t)

D f k
t ( ft (c))

vt ( f k
t (c))︸ ︷︷ ︸

I1

+ O
(

log log
1
|h|

)
.

Note that |I1| <∞. Indeed,

|I1| 6 K1

N3+1∑
j=1

∣∣∣∣φ( f j
t (c))−

∫
φ dµt

∣∣∣∣ ∞∑
k= j

(
1
λ

)k

6 K2

N3+1∑
j=1

(
1
λ

) j

6 K .

Therefore,∫
φ(x)W(x) dx = s1(t)J ( ft , vt )

N3+1∑
j=1

(
φ( f j

t (c))−
∫
φ dµt

)
+ O

(
log log

1
|h|

)

= s1(t)J ( ft , vt )

N3∑
j=0

(
φ( f j

t (c))−
∫
φ dµt

)
+ O

(
log log

1
|h|

)
. (97)

8. Estimates for the Tame part

Let ν be a signed, finite and borelian measure on [0, 1]. Denote by |ν| the variation

measure of ν and by ||ν|| the total variation of ν. Define the push forward of ν by ft as

the borelian measure

( f ?t ν)(A) = ν( f −1
t (A)).

Note that for every bounded borelian function g : [0, 1] → R∫
g d( f ?t ν) =

∫
g ◦ ft dν.

It is also easy to see that

| f ?t ν| 6 f ?t |ν|.

Suppose that ν has the form

ν = πm+
∑
x∈1̂

qxδx , (98)

where π ∈ L∞(m) with support on [0, 1], m is the Lebesgue measure, 1̂ ⊂ [0, 1] is a

countable subset, qx ∈ R, with ∑
x∈1̂

|qx | <∞,
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and δx is the Dirac measure supported on {x}. Then

|ν| = |π |m+
∑
x∈1̂

|qx |δx ,

||ν|| = |π |L1(m)+
∑
x∈1̂

|qx |.

Furthermore, f ?t ν has the form

f ?t ν = Lt (π)m+
∑
x∈1̂

qxδ ft (x).

Proposition 8.1. Let ft be a C1 family of C1 piecewise expanding unimodal maps. Let

ν be a signed, finite and borelian measure. Let ψt : [0, 1] 7→ R, t ∈ [0, 1] be such that

ψt ∈ L∞(ν) and t → ψt is a lipschitzian function with respect to the L∞(|ν|) norm, that

is, there exists L such that for all t, h we have

|ψt+h −ψt |L∞(ν) 6 L|h|.

Define

1t,h(x) =
∫ x

0
d f ?t+h(ψt+hν)−

∫ x

0
d f ?t (ψtν).

Then there exist positive constants K1, K2 such that

|1t,h |L1(m) 6 (L + K1 K2)||ν|||h|

for all t ∈ [0, 1], h, where

K1 = sup
t
|ψt |L∞(ν) and K2 = sup

t,x
|∂t ft (x)|.

Proof. Observe that

1t,h(x) =
∫ x

0
d f ?t+h(ψt+hν)−

∫ x

0
d f ?t (ψtν)

=

∫ x

0
d f ?t+h(ψt+hν)−

∫ x

0
d f ?t+h(ψtν)︸ ︷︷ ︸

11

+

∫ x

0
d f ?t+h(ψtν)−

∫ x

0
d f ?t (ψtν)︸ ︷︷ ︸

12

.

Therefore,

|1t,h(x)| 6 |11(x)| + |12(x)|.

We first estimate 11.

|11(x)| 6
∫

1[0,x] d| f ?t+h(ψt+hν−ψtν)| 6
∫

1[0,x] d( f ?t+h(|ψt+h −ψt ||ν|))

6
∫

1[0,x] ◦ ft+h |ψt+h −ψt | d|ν| 6 |ψt+h −ψt |L∞(ν)||ν|| 6 L||ν|||h|.
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In particular,

|11|L1(m) 6 L||ν|||h|.

We now estimate 12.

12(x) =
∫

1[0,x] d f ?t+h(ψtν)−

∫
1[0,x] d f ?t (ψtν)

=

∫
1[0,x] ◦ ft+h d(ψtν)−

∫
1[0,x] ◦ ft d(ψtν)

=

∫
(1 f −1

t+h([0,x])
− 1 f −1

t ([0,x])) d(ψtν).

Therefore,

|12(x)| 6
∫
|1 f −1

t+h([0,x])
−1 f −1

t ([0,x])||ψt |d|ν| 6 K1

∫
|1 f −1

t+h([0,x])
− 1 f −1

t ([0,x])| d|ν|

where

K1 = sup
t
|ψt |L∞(ν).

By the Fubini’s Theorem

|12|L1(m) 6 K1

∫ ∫
|1 f −1

t+h([0,x])
(y)−1 f −1

t ([0,x])(y)| d|ν|(y) dm(x)

6 K1

∫ ∫
|1 f −1

t+h([0,x])
(y)−1 f −1

t ([0,x])(y)| dm(x) d|ν|(y). (99)

Note that

|1 f −1
t+h([0,x])

(y)−1 f −1
t ([0,x])(y)| = 1Uy (x),

where

Uy = {x ∈ [0, 1] : ft+h(y) < x 6 ft (y) or ft (y) < x 6 ft+h(y)}.

Observe that

m(Uy) = | ft+h(y)− ft (y)| 6 K2|h|.

Thus,

|12|L1(m) 6 K1

∫ ∫
1Uy (x) dm(x) d|ν|(y)

6 K1 K2||ν|||h|. (100)

Remark 8.2. To avoid a cumbersome notation, in the Proof of Proposition 4.3 we will use

the following notation. Whenever we take the supremum over all t ∈ [0, 1] we actually

take the supremum over all t ∈ [0, 1] such that ft do not have a periodic critical point.

And whenever we take the supremum over all h 6= 0 we indeed mean taking the supremum

over all h 6= 0 such that 0 < |h| < δ, where δ > 0 is given by Definition 3.3.

Proof of Proposition 4.3. We first examine

1
h
(Lt+hρt −Ltρt ).
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As we have seen, the density ρt can be decomposed as

ρt = (ρt )abs + (ρt )sal .

We also have Lt+hρt ∈ BV and

Lt+hρt = (Lt+hρt )abs + (Lt+hρt )sal .

Therefore,

(Lt+hρt −Ltρt ) = ((Lt+hρt )abs − (Ltρt )abs)+ ((Lt+hρt )sal − (Ltρt )sal).

Let us examine the absolutely continuous term

1
h
((Lt+hρt )abs − (Ltρt )abs).

Observe that for every t

(Ltρt )(x) = (Ltρt )abs(x)+ (Ltρt )sal(x).

Differentiating with respect to x ,

((Ltρt )abs)
′(x) = (Ltρt )

′(x)

= ((Ltρt )
′)abs(x)+ ((Ltρt )

′)sal(x).

Then

(Ltρt )abs(x) =
∫ x

0
(Ltρt )

′ dm.

Similarly

(Ltρt+h)abs(x) =
∫ x

0
(Lt+hρt )

′(y) dm.

Therefore,

(Lt+hρt )abs(x)− (Ltρt )abs(x) =
∫ x

0
(Lt+hρt )

′
− (Ltρt )

′ dm

=

∫ x

0
((Lt+hρt )

′)abs − ((Ltρt )
′)abs dm

+

∫ x

0
((Lt+hρt )

′)sal − ((Ltρt )
′)sal dm.

We define

At,h(x) =
∫ x

0
((Lt+hρt )

′)abs − ((Ltρt )
′)abs dm, (101)

and

Bt,h(x) =
∫ x

0
((Lt+hρt )

′)sal − ((Ltρt )
′)sal dm. (102)
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Our goal is to prove that

sup
t∈[0,1]

sup
h 6=0

∣∣∣∣ At,h

h

∣∣∣∣
BV

<∞ and sup
t∈[0,1]

sup
h 6=0

∣∣∣∣ Bt,h

h

∣∣∣∣
BV

<∞.

Since At,h is absolutely continuous, it follows that

var(At,h) =

∫
|A′t,h | dm.

Hence, to prove that

sup
t∈[0,1]

sup
h 6=0

∣∣∣∣ At,h

h

∣∣∣∣
BV

<∞,

it is enough to prove that

sup
t∈[0,1]

sup
h 6=0

∣∣∣∣∣ A′t,h
h

∣∣∣∣∣
L1(m)

dm <∞ and sup
t∈[0,1]

sup
h 6=0

∣∣∣∣ At,h

h

∣∣∣∣
L1(m)

<∞. (103)

According to equation (101),

A′t,h(x) = (Lt+hρt )
′

abs(x)− (Ltρt )
′

abs(x).

Differentiating (Lt+hρt )
′, we have, for every h,

(((Lt+hρt )
′)abs)

′(x) = (Lt+hρt )
′′(x).

for m-almost every x . In particular,

A′′t,h(y) = (Lt+hρt )
′′(y)− (Ltρt )

′′(y),

for m-almost every y and

A′t,h(x) =
∫ x

0
(Lt+hρt )

′′
− (Ltρt )

′′ dm. (104)

As we have seen the Ruelle–Perron–Frobenius operator for ft+h is given by

(Lt+hρt )(x) =
∑

ft+h(y)=x

ρt (y)
|D ft+h(y)|

. (105)

Differentiating the equation (105) with respect to x we obtain

(Lt+hρt )
′(x) =

∑
ft+h(y)=x

ρ′t (y)
D ft+h(y)|D ft+h(y)|

−
ρt (y)D2 ft+h(y)
|D ft+h(y)|3

. (106)

Now, differentiating the equation (106) with respect to x we obtain

(Lt+hρt )
′′(x) =

∑
ft+h(y)=x

(
ρ′′t (y)

|D ft+h(y)||D ft+h(y)|2
− 3

ρ′t (y)D
2 ft+h(y)

|D ft+h(y)|D ft+h(y)3

)

+

∑
ft+h(y)=x

(
−

ρt (y)D3 ft+h(y)
|D ft+h(y)|D ft+h(y)3

+ 3
ρt (y)(D2 ft+h(y))2

|D ft+h(y)||D ft+h(y)|4

)
.
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Observe that we can rewrite (Lt+hρt )
′′ as follows

(Lt+hρt )
′′
=Lt+h

(
ρ′′t

|D ft+h |2

)
− 3Lt+h

(
ρ′t D2 ft+h

(D ft+h)3

)

−Lt+h

(
ρt D3 ft+h

(D ft+h)3

)
+ 3Lt+h

(
ρt (D2 ft+h)

2

|D ft+h |4

)
. (107)

We obtain a similar expression for (Ltρt )
′′.

Substituting equation (107) into equation (104) we obtain

A′t,h(x) =
∫ x

0
d f ?t+h

(
ρ′′t

|D ft+h |2
m
)
−

∫ x

0
d f ?t

(
ρ′′t

|D ft |2
m
)

︸ ︷︷ ︸
A1

+

∫ x

0
d f ?t+h

(
−3ρ′t D2 ft+h

(D ft+h)3
m

)
−

∫ x

0
d f ?t

(
−3ρ′t D2 ft

(D ft )3
m

)
︸ ︷︷ ︸

A2

+

∫ x

0
d f ?t+h

(
−ρt D3 ft+h

(D ft+h)3
m

)
−

∫ x

0
d f ?t

(
−ρt D3 ft

(D ft )3
m

)
︸ ︷︷ ︸

A3

+

∫ x

0
d f ?t+h

(
3ρt (D2 ft+h)

2

|D ft+h |4
m

)
−

∫ x

0
d f ?t

(
3ρt (D2 ft )

2

|D ft |4
m

)
︸ ︷︷ ︸

A4

.

Observe that Ai , 1 6 i 6 4, satisfy the assumptions of Proposition 8.1 and the total

variation of each one of the measures that appears above has an upper bound that

depends on the constants in Assumption (V) of Definition 3.3. Therefore,

sup
t∈[0,1]

sup
h 6=0

∣∣∣∣∣ A′t,h
h

∣∣∣∣∣
L1(m)

<∞

and, consequently

sup
t∈[0,1]

sup
h 6=0

var

(
At,h

h

)
= sup

t∈[0,1]
sup
h 6=0

∣∣∣∣∣ A′t,h
h

∣∣∣∣∣
L1(m)

dm <∞. (108)

It remains to verify the second part of equation (103). Note that∣∣∣∣ At,h

h

∣∣∣∣
L1
=

∫ ∣∣∣∣ At,h

h

∣∣∣∣ dm =
∫ ∣∣∣∣∣

∫ x

0

A′t,h(y)

h
dy

∣∣∣∣∣ dm 6

∣∣∣∣∣ A′t,h
h

∣∣∣∣∣
L1(m)

.

Hence, by equation (108), equation (103) holds. Hence, we need to show that

sup
t∈[0,1]

sup
h 6=0

∣∣∣∣ Bt,h

h

∣∣∣∣
BV

<∞.
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By equation (106) and Property (V) in Definition 3.3 we have

(Lt+hρt )
′

sal(x)

=

∞∑
k=1

(
s′k(t)H ft+h( f k

t (c))
(x)

D ft+h( f k
t (c))|D ft+h( f k

t (c))|
−

sk(t)H ft+h( f k
t (c))

(x)

|D ft+h( f k
t (c))|3

D2 ft+h( f k
t (c))

)

+

(
ρ′t (c)

D ft+h(c−)|D ft+h(c−)|
+

ρ′t (c)
D ft+h(c+)|D ft+h(c+)|

)
H ft+h(c)(x)

−

(
ρt (c)D2 ft+h(c−)
|D ft+h(c−)|3

+
ρt (c)D2 ft+h(c+)
|D ft+h(c+)|3

)
H ft+h(c)(x).

Since for every a ∈ [0, 1] we have

Ha(x) =
∫ x

0
d(−δa),

we can write

Bt,h(x) =
∫ x

0

4∑
i=1

Bi (y) dm(y),

with functions Bi given by

B1(x) =
∫ x

0
d f ?t+h

(
1

D ft+h |D ft+h |
ν1

)
−

∫ x

0
d f ?t

(
1

D ft |D ft |
ν1

)
where

ν1 =

∞∑
k=1

s′k(t)(−δ f k
t (c)

),

B2(x) = −
∫ x

0
d f ?t+h

(
D2 ft+h

|D ft+h |3
ν2

)
+

∫ x

0
d f ?t

(
D2 ft

|D ft |3
ν2

)
,

where

ν2 =

∞∑
k=1

sk(t)(−δ f k
t (c)

).

Let ψ̂ be the constant borelian function ψ̂ : [0, 1] → R given by

ψ̂t (y) =
1

D ft (c−)|D ft (c−)|
+

1
D ft (c+)|D ft (c+)|

.

Then

B3(x) =
∫ x

0
d f ?t+h(ψ̂t+hν3)−

∫ x

0
d f ?t (ψ̂tν3)

where

ν3 = −ρ
′
t (c)δc.
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Let ψ̃ be the constant Borelian function ψ̃ : [0, 1] → R given by

ψ̃t (y) =
D2 ft (c−)
|D ft (c−)|3

+
D2 ft (c+)
|D ft (c+)|3

.

then

B4(x) = −
∫ x

0
d f ?t+h(ψ̃t+hν4)+

∫ x

0
d f ?t (ψ̃tν4).

Here

ν4 = −ρt (c)δc.

We can apply Proposition 8.1 on each one of the pairs (Bi , νi ). Moreover, by property

(V) of Definition 3.3 there is an upper bound for the total variation of the measures νi ,

i = 1, 2, 3, 4, that holds for every t ∈ [0, 1]. Hence,

sup
t∈[0,1]

sup
h 6=0

∣∣∣∣ Bi

h

∣∣∣∣
L1(m)

<∞,

and consequently

sup
t∈[0,1]

sup
h 6=0

var

(
Bt,h

h

)
<∞.

Since ∣∣∣∣ Bt,h

h

∣∣∣∣
L1
=

∫ ∣∣∣∣ Bt,h

h

∣∣∣∣ dm =
∫ ∣∣∣∣∣

∫ x

0

4∑
i=1

Bi (y)
h

dy

∣∣∣∣∣ dm 6
4∑

i=1

∣∣∣∣ Bi

h

∣∣∣∣
L1(m)

,

we obtain

sup
t∈[0,1]

sup
h 6=0

∣∣∣∣ Bt,h

h

∣∣∣∣
BV

<∞.

Therefore,

sup
t∈[0,1]

sup
h 6=0

∣∣∣∣ (Lt+hρt )abs − (Ltρt )abs

h

∣∣∣∣
BV

<∞.

It remains to examine the saltus.

(Lt+hρt )sal − (Ltρt )sal

h

=
1
h

∞∑
k=1

(
sk(t)

D ft+h( f k
t (c))

H ft+h( f k
t (c))
−

sk(t)

D ft ( f k
t (c))

H ft ( f k
t (c))

)
︸ ︷︷ ︸

S̃1

+
1
h

((
ρt (c)

|D ft+h(c−)|
+

ρt (c)
|D ft+h(c+)|

)
H ft+h(c)−

(
ρt (c)
|D ft (c−)|

+
ρt (c)
|D ft (c+)|

)
H ft (c)

)
.
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Let us analyze S̃1. Notice that

S̃1 =
1
h

∞∑
k=1

sk(t)

D ft ( f k
t (c))

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)
+

1
h

∞∑
k=1

(
sk(t)

D ft+h( f k
t (c))

−
sk(t)

D ft ( f k
t (c))

)
H ft+h( f k

t (c))︸ ︷︷ ︸
S̃11

.

Note that ∣∣∣S̃11

∣∣∣
BV

6
1
|h|

∞∑
k=1

|sk(t)|
∣∣∣∣ 1

D ft+h( f k
t (c))

−
1

D ft ( f k
t (c))

∣∣∣∣ ∣∣∣H ft+h( f k
t (c))

∣∣∣
BV

6
2
|h|

∞∑
k=1

|sk(t)|
|D ft+h( f k

t (c))− D ft ( f k
t (c))|

|D ft+h( f k
t (c))D ft ( f k

t (c))|

6
K1

|h|

∞∑
k=1

1

|D f k−1
t ( ft (c))|

|(∂s D fs( f k
t (c)))|s=θt,h,k ||h| 6 K .

Hence, suph

∣∣∣S̃11

∣∣∣
BV

<∞. Therefore,

(Lt+hρt )sal − (Ltρt )sal

h

=
1
h

∞∑
k=1

sk(t)

D ft ( f k
t (c))

(
H ft+h( f k

t (c))
− H ft ( f k

t (c))

)
+ S̃11

+
1
h

((
ρt (c)

|D ft+h(c−)|
+

ρt (c)
|D ft+h(c+)|

)
H ft+h(c)−

(
ρt (c)
|D ft (c−)|

+
ρt (c)
|D ft (c+)|

)
H ft (c)

)
=

1
h

∞∑
k=0

sk+1(t)
(

H ft+h( f k
t (c))
− H ft ( f k

t (c))

)
︸ ︷︷ ︸

S̃

+S̃11

+
1
h

(
ρt (c)

|D ft+h(c−)|
−

ρt (c)
|D ft (c−)|

)
H ft+h(c)︸ ︷︷ ︸

S̃2

+
1
h

(
ρt (c)

|D ft+h(c+)|
−

ρt (c)
|D ft (c+)|

)
H ft+h(c)︸ ︷︷ ︸

S̃3

.

We will analyze only S̃2, the term S̃3 is analogous.∣∣∣S̃2

∣∣∣
BV

6 K1
1
|h|

∣∣∣∣ 1
|D ft+h(c−)|

−
1

|D ft (c−)|

∣∣∣∣ 6 K2

|h|
|h| 6 K .
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Hence,

sup
h 6=0

∣∣∣S̃2

∣∣∣
BV

<∞ and sup
h 6=0

∣∣∣S̃3

∣∣∣
BV

<∞.

We can write

Lt+h(ρt )−Lt (ρt )

h
= 5t+h

(
Lt+h(ρt )−Lt (ρt )

h

)
= 5t+h(S̃)︸ ︷︷ ︸

8h

+5t+h

(
A
h
+

B
h
+ S̃11+ S̃2+ S̃3

)
︸ ︷︷ ︸

rh

.

Therefore, ∫
rh dm = 0 and sup

t∈[0,1]
sup
h 6=0
|rh |BV <∞.

This finishes the proof.

9. The function Rφ is not Lipschitz on any subset of positive measure

We give two interesting and simple consequences of our main result. They tell us that,

under the assumptions of our main result, the function Rφ is not very regular in any

subset of the parameter space with positive Lebesgue measure. This show that there is

not way to make Rφ more regular using some ‘parameter exclusion’ strategy.

Corollary 9.1. Under the same assumptions of our main result, for every set � ⊂ [a, b],
with m(�) > 0, we have for almost every t ∈ �

lim sup
h→0+

Rφ(t + h)−Rφ(t)

h
√
− log |h|

1�(t + h) = +∞ (109)

and

lim inf
h→0+

Rφ(t + h)−Rφ(t)

h
√
− log |h|

1�(t + h) = −∞, (110)

where 1� denotes the indicator function of �.

Proof. Due Proposition 3.6, it is enough to prove Corollary 9.1 for good transversal

families. We are going to prove that equation (109) holds for almost every t ∈ �. The

proof that equation (110) holds for almost every t ∈ � is similar.

If equation (109) fails for t in a subset of � with positive Lebesgue measure, then there

exist �̂ ⊂ �, with m(�̂) > 0 and K1 > 0 such that for every t ∈ �̂ we have

lim sup
h→0+

Rφ(t + h)−Rφ(t)

h
√
− log |h|

1�(t + h) 6 K1.

Since ft is a good transversal family, by Lemma 3.7 we have that inft |9(t)| > 0 and that

9(t) does not changes signs on t ∈ [a, b], so without loss of generality we can assume
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9(t) > 0 for every t ∈ [a, b] and inft 9(t) > 0 (otherwise replace the family ft by f−t ).

So there exists K2 > 0 such that

lim sup
h→0+

Rφ(t + h)−Rφ(t)

9(t)h
√
− log |h|

1�(t + h) 6 K2

for every t ∈ �̂. Then there exists h0 > 0 and a set S ⊂ �̂ with m(S) > 0 such that for

every t ∈ S we have
Rφ(t + h)−Rφ(t)

9(t)h
√
− log |h|

1�(t + h) 6 K2+ 1

for every h satisfying 0 < h 6 h0. Let t0 ∈ (a, b) be a Lebesgue density point of S. Choose

δ > 0 such that

DN (K2+ 1)+ δ < 1.

Then for every ε > 0 small enough,

m(S ∩ Iε)
m(Iε)

> DN (K2+ 1)+ δ,

where Iε = [t0− ε, t0+ ε]. Let Sε = S ∩ Iε . It is a well-known fact that if

Sε − h = {t − h : t ∈ Sε}

then

lim
h→0

m(Sε ∩ (Sε − h)) = m(Sε) > 0.

Note that for every t ∈ Sε ∩ (Sε − h), we have t, t + h ∈ Sε ⊂ S ⊂ �, then

Rφ(t + h)−Rφ(t)

9(t)h
√
− log |h|

6 K2+ 1

for every 0 < h 6 h0. In particular,

lim sup
h→0+

1
m(Iε)

m

(
t ∈ Iε :

1

9(t)h
√
− log |h|

Rφ(t + h)−Rφ(t)
h

6 K2+ 1

)

>
m(Sε)
m(Iε)

> DN (K2+ 1)+ δ. (111)

On the other hand the restriction of ft to the interval Iε is a transversal family, then by

Theorem 1.1 we obtain

lim
h→0+

1
m(Iε)

m

(
t ∈ Iε :

1

9(t)h
√
− log |h|

Rφ(t + h)−Rφ(t)
h

6 K2+ 1

)
= DN (K2+ 1),

which contradicts equation (111).

Proof of Corollary 1.2. It follows from Corollary 9.1.
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Remark 9.2. In Baladi and Smania [2, 5] it is proven that for almost every t ∈ [a, b] there

exists a sequence hn → 0 such that

Rφ(t + hn)−Rφ(t)
hn

is not bounded. In particular, Rφ is not a lipschitzian function on the whole interval [a, b].
Naturally Corollaries 9.1 and 1.2 do not follow from this when � is not an interval.

Remark 9.3. Two weeks before this work be completed, Fabián Contreras sent us his

Ph. D. Thesis [7] where he proves a result sharper than Corollary 9.1 when � = [a, b]
and φ is a C1 generic observable. He proves that for almost every t ∈ [a, b] the limit

lim
h→0+

Rφ(t + h)−Rφ(t)

h
√
| log h log log | log h||

(112)

exists and it is non zero. Note again that Corollaries 9.1 and 1.2 do not seem to follow

from his result when � is not an interval. As in our case, the main difficult is to reduce

the problem to Schnellmann’s main result in [19]. We are not completely familiar with

his methods, but they seem to be quite different from our approach.
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