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We present a rigorous study of the short maturity asymptotics for Asian options with
continuous-time averaging, under the assumption that the underlying asset follows the
constant elasticity of variance (CEV) model. The leading order short maturity limit of the
Asian option prices under the CEV model is obtained in closed form. We propose an analyt-
ical approximation for the Asian options prices which reproduces the exact short maturity
asymptotics, and demonstrate good numerical agreement of the asymptotic results with
Monte Carlo simulations and benchmark test cases for option parameters relevant for
practical applications.
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1. INTRODUCTION

Asymptotics for option prices and implied volatility of European options for the short
maturity regime have been extensively studied in the literature, see e.g. [8,16,39,40,43] for
local volatility models, [4,6,30,53] for the exponential Lévy models [2,9,28,29,31–33,45] for
stochastic volatility models, and [38,49] for model-free approaches.

Recently, this asymptotic regime was also investigated for Asian options in [50] under
the assumption that the asset price follows a local volatility model. More precisely, the paper
[50] considered arithmetic averaging Asian options in continuous time under the assumption
that the asset price follows a local volatility model

dSt = (r − q)Stdt + σ(St)StdWt, S0 > 0, (1)

where Wt is a standard Brownian motion, r ≥ 0 is the risk-free rate, q ≥ 0 is the continuous
dividend yield, and σ(·) is the local volatility function.
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It was shown by Varadhan [54] that, under certain boundedness and Lipschitz conditions
on the local volatility function σ(·), the log-stock price Xt := log St satisfies a sample path
large deviation principle on an appropriate functional space.

This result was used in [50] together with the contraction principle, to derive large
deviations for the time average of the diffusion (1/T )

∫ T

0
Stdt, and short maturity asymp-

totics for out-of-the-money (OTM) Asian options. On the other hand, the short maturity
asymptotics for at-the-money (ATM) Asian options are dominated by the fluctuations of
the time average around the mean, and have power-law form C(T ) ∼ T 1/2. The results of
[50] cover in particular the Black–Scholes model, and more explicit formulas are derived for
this case.

The boundedness and Lipschitz conditions assumed in [50] are not satisfied by some of
the models that are popular in financial practice. One important model of this type is the
constant elasticity of variance (CEV) model [17], which is defined by the diffusion

dSt = (r − q)Stdt + σSβ
t dWt, S0 > 0. (2)

This model is used for modeling the skew in equities and FX markets, and allows the
flexibility of calibrating to the ATM slope of the implied volatility by choosing appropriately
the exponent β. For β < 1, the model reproduces the leverage effect observed in many
financial markets, which is manifested as a decreasing volatility as the asset price increases.
The result of this inverse relationship between the price and volatility is the implied volatility
skew. See [47] for a survey of the mathematical properties of the CEV model and also the
pricing of vanilla options under the CEV model.

In practical applications, the exponent β is usually chosen in the range 0 < β ≤ 1. The
case β = 1/2 corresponds to the square-root model of Cox and Ross [19], and is obtained
as a particular case of the Feller process [18,27]

dxt = (bxt + c)dt +
√

2axtdWt, (3)

with a = (1/2)σ2, b = r − q, c = 0. The case of general β can also be mapped to the diffusion
process (3) by a change of variable. See [48] for a detailed study of the properties of this
process.

The model (2) is a local volatility model of type (1) with a volatility function σ(St) :=
σSβ−1

t . For 0 < β < 1 this is not a bounded function. This implies that the results of [54]
cannot be directly applied to this case.

The pricing of Asian options has been widely studied in the mathematical finance
literature. The pricing under the Black–Scholes model has been studied in [13,24,41,46],
using a relation between the distributional property of the time-integral of the geometric
Brownian motion and Bessel processes. See [26] for an overview, and [35] for a comparison
with alternative simulation methods, such as the Monte Carlo (MC) approach.

An approach based on partial differential equations (PDE) has been proposed in [51,
56,57] for pricing Asian options. This can be used either as a numerical approach [3,56,57],
or can be combined with asymptotic expansion methods to derive analytical approximation
formulae. Foschi, Pagliarani, and Pascucci [34] used heat kernel expansion methods and
developed approximate formulae expressed in terms of elementary functions for the density,
the price and the Greeks of path-dependent options of Asian style. Asymptotic expansion
leading to analytical approximation with error bounds for Asian options have been obtained
also using Malliavin calculus in [42,52]. A small-time expansion for Asian options has been
proposed in [11], and a general framework for pricing Asian options under Markov processes
was given in [12]. We also note the optimized upper and lower bounds on Asian options
given in [37].
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Asian options pricing under the CEV model with β = 1/2 has been studied in [20,25]. A
detailed study under the β = 1/2 model both with discrete and continuous time averaging
was presented in [36]. The general case of the CEV model was studied in [34] using heat
kernel expansion methods in the PDE approach [51,56,57]. The paper [34] presented detailed
numerical tests of their method under the CEV model, which show good convergence and
stability of the expansion.

The short maturity asymptotics for vanilla options under the CEV model has been
studied in the literature using several approaches; see [16,43,45]. In this paper, we study
the short maturity asymptotics for the Asian options in this model. We consider both the
fixed strike and floating strike Asian options. Our main tool is the large deviations theory
from probability theory. For the theory and applications of Large Deviations theory, we
refer to the books [21] and [55]. Some basic definitions and results needed in this paper will
be provided in Appendix A.

The case of the square-root model β = 1/2 is special as the model is affine, and the
moment generating function of the time integral

∫ T

0
Stdt can be found in closed form. Then

the application of the Gärtner–Ellis theorem gives the large deviations for the time average
of the asset price. Large deviations for the square-root process β = 1/2 were studied in [22].

For 1/2 < β < 1 we use a recent large deviations result due to Baldi and Caramelino
[7] for the CEV model to derive a variational problem for the rate function determining
the short maturity asymptotics of the Asian options. The variational problem is solved
completely. We derive large and small-strike asymptotics for the rate function.

Some of the methods proposed in the literature for pricing Asian options are less efficient
in the small maturity/volatility limit. This is a well-known problem in several of the methods
proposed for the Black–Scholes model [26], but a similar phenomenon appears also for the
method of [20] in the square-root model, where the convergence of the expansion is slower
for small maturity/volatility. The short maturity asymptotic expansion proposed in this
paper complements the use of these methods in a regime where their numerical efficiency is
less than optimal. A recent paper [5] obtains short-maturity asymptotics for Asian options
in local volatility models, using similar large deviations methods.

The paper is organized as follows. In Section 2, we present asymptotics for OTM Asian
options in the square-root model β = 1/2. Section 3 considers the case of the general CEV
model with 1/2 ≤ β < 1. The asymptotics for OTM Asian options is given by the solution
of a variational problem, which is solved in closed form. We also obtain the asymptotics
for ATM Asian options. Section 4 considers the asymptotics of Asian options with floating
strike. In Section 5, we present an analytical approximation for the Asian options prices
which has the same short maturity asymptotics as that obtained in Sections 2 and 3. This
approximation is compared against benchmark results in the literature, and good agreement
is demonstrated for model and option parameters relevant for practical applications. Finally,
the background of large deviations theory and the proofs of the main results are given in
Appendix A.

Notations and preliminaries

The price of the Asian call and put options with maturity T and strike K with continuous
time averaging are given by expectations in the risk-neutral measure

C(T ) := e−rT
E

⎡
⎣
(

1
T

∫ T

0

Stdt − K

)+
⎤
⎦ , (4)
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P (T ) := e−rT
E

⎡
⎣
(

K − 1
T

∫ T

0

Stdt

)+
⎤
⎦ , (5)

where C(T ) and P (T ) emphasize the dependence on the maturity T .
We denote the expectation of the averaged asset price in the risk-neutral measure as

A(T ) :=
1
T

∫ T

0

E[St]dt = S0
1

(r − q)T

(
e(r−q)T − 1

)
, (6)

for r − q �= 0 and A(T ) := S0 for r − q = 0. When K > A(T ), the call Asian option is OTM
and C(T ) → 0 as T → 0. When A(T ) > K, the put Asian option is OTM and P (T ) → 0 as
T → 0.

The prices of call and put Asian options are related by put–call parity as

C(K,T ) − P (K,T ) = e−rT (A(T ) − K). (7)

As T → 0, we have A(T ) = S0 + O(T ). Therefore, for the small maturity regime, the
call Asian option is OTM if and only if K > S0, etc. For the purposes of the short maturity
limit, the call Asian option is said to be OTM (resp. in-the-money) if K > S0 (resp. K < S0),
and the put Asian option is said to be OTM (resp. in-the-money) if K < S0 (resp. K > S0),
and finally they are said to be ATM if K = S0.

2. SHORT MATURITY ASIAN OPTIONS IN THE SQUARE-ROOT MODEL

We assume in this section that the asset value St follows a square-root process:

dSt = (r − q)Stdt + σ
√

StdWt, (8)

with S0 > 0 and Wt is a standard Brownian motion starting at zero at time zero W0 = 0.
r, q, σ are positive real parameters.

We have the following result.

Theorem 2.1: P((1/T )
∫ T

0
Stdt ∈ ·) satisfies a large deviation principle with rate function

I(x, S0) = sup
θ∈R

{θx − Λ(θ)} , (9)

where

Λ(θ) := lim
T→0

T log E

[
e(θ/T 2)

∫ T
0 Stdt

]
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
2θ

σ
tan

(σ

2

√
2θ
)

S0, if 0 ≤ θ <
π2

2σ2

−√−2θ

σ
tanh

(σ

2
√−2θ

)
S0, if θ ≤ 0

+∞ otherwise

.

(10)

Indeed, the rate function in Theorem 2.1 has a more explicit expression. Together with
Theorem 2.1 and Lemma 3.1 that we prove in Section 3, we have the following result.

Proposition 2.2: Assume the square-root model: β = 1/2.
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(i) For K ≤ S0, the put option is OTM, and P (T ) = e−(1/T )I(K,S0)+o(1/T ), as T → 0,
where

I(K,S0) =
S0

σ2

x2

cosh2(x)

(
sinh (2x)

2x
− 1
)

, (11)

where x is the solution of the equation

1
2cosh2(x)

(
1 +

sinh (2x)
2x

)
=

K

S0
. (12)

(ii) For K ≥ S0, the call option is OTM, and C(T ) = e−(1/T )I(K,S0)+o(1/T ), as T → 0,
where

I(K,S0) =
S0

σ2

x2

cos2(x)

(
1 − sin(2x)

2x

)
, (13)

where 0 ≤ x ≤ π/2 is given by the solution of the equation

1
2 cos2(x)

(
1 +

sin(2x)
2x

)
=

K

S0
. (14)

We can study also the small/large strike asymptotics of the rate function.

Proposition 2.3:

(i) The large strike asymptotics for the rate function of OTM Asian call options K > S0

in the square-root model β = 1/2 is

lim
K→∞

I(K,S0)
K

=
π2

2σ2
. (15)

(ii) The small strike K → 0 asymptotics of the rate function for OTM Asian put options
K < S0 in the square-root model β = 1/2 is

I(K,S0) ∼ S2
0

2σ2K
, as K → 0. (16)

2.1. Expansion of the Rate Function around the ATM Point

We give also the expansion of the rate function for Asian options in the square-root model
(β = 1/2) in power series of x = log(K/S0). The first few terms are

I(K,S0) =
S0

σ2

{
3
2
x2 +

3
5
x3 +

271
1400

x4 + O(x5)
}

. (17)

The rate function I(K,S0) in the square-root model was evaluated numerically using
Proposition 2.2. Figure 1 shows the plot of this function vs. K/S0 (left) and vs. x =
log(K/S0) (right). The right plot shows also the approximation of the rate function obtained
by keeping the first three terms in the series expansion (17).
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Figure 1. The rate function I(K,S0) for β = 1/2 in units of S0/σ2 vs. K (left) and vs.
log(K/S0) (right) (solid black curve) and the Taylor expansion (39) keeping the first three
terms (dashed blue).

3. ASIAN OPTIONS IN THE CEV MODEL

The CEV model is defined by the one-dimensional diffusion under the risk-neutral measure

dSt = (r − q)Stdt + σSβ
t dWt, (18)

with S0 > 0. r, q, σ are real positive parameters.
It is easy to check that the following Lemma holds.

Lemma 3.1: For an Asian OTM call option, that is, K > S0, we have for 1/2 ≤ β < 1

lim
T→0

T log C(T ) = lim
T→0

T log P

(
1
T

∫ T

0

Stdt ≥ K

)
. (19)

For an Asian OTM put option, that is, K ≤ S0, we have for 1/2 ≤ β < 1

lim
T→0

T log P (T ) = lim
T→0

T log P

(
1
T

∫ T

0

Stdt ≤ K

)
. (20)

Using this result we can prove the short maturity asymptotics for OTM Asian options
in the CEV model (2).

Theorem 3.2: The short maturity asymptotics for OTM Asian options in the CEV model
(2) with 1/2 ≤ β < 1 is given by

lim
T→0

T log C(T ) = −I(K,S0), (21)

where the rate function is given by the solution of a variational problem specified as follows.

(i) For OTM Asian call options K > S0 we have

I(K,S0) = inf∫ 1
0 g(t)dt≥K,g(0)=S0,g(t)≥0,0≤t≤1

1
2

∫ 1

0

(g′(t))2

σ2g(t)2β
dt, K > S0. (22)

(ii) For OTM Asian put options K < S0 we have

I(K,S0) = inf∫ 1
0 g(t)dt≤K,g(0)=S0,g(t)≥0,0≤t≤1

1
2

∫ 1

0

(g′(t))2

σ2g(t)2β
dt, K < S0. (23)
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3.1. ATM Asian Options

For the ATM case, that is, K = S0 > 0, we have the following short maturity asymptotics.

Theorem 3.3: As T → 0, we have in the CEV model with 1/2 ≤ β < 1

C(T ) = σSβ
0

√
T√
6π

+ O(T ), P (T ) = σSβ
0

√
T√
6π

+ O(T ). (24)

3.2. Variational Problem for Short-Maturity Asymptotics for Asian Options in the
CEV Model

Theorem 3.2 gives the rate function I(K,S0) of an Asian option in the CEV model as a
variational problem. For OTM Asian call option K > S0 this variational problem reads

I(K,S0) = infg
1

2σ2

∫ 1

0

(g′(t))2

g(t)2β
dt, (25)

where the function g(t) is differentiable and satisfies g(0) = S0, g(t) > 0, 0 ≤ t ≤ 1 and the
infimum is taken under the constraint

∫ 1

0

g(t)dt ≥ K. (26)

Similarly, for OTM Asian put option with K < S0, the rate function I(K,S0) is given by
the variational problem (25) with inequality constraint

∫ 1

0
g(t)dt ≤ K.

Define IK(K,S0) as the solution of the variational problem (25), obtained by replacing
the inequality (26) with equality. The strategy of the proof will be to show that IK(K,S0)
is an increasing function for K > S0 and thus the solution of the variational inequality
is given by I(K,S0) = IK(K,S0). For K < S0 we will show that IK(K,S0) is a decreas-
ing function for K < S0, and thus the solution of the variational inequality is given by
I(K,S0) = IK(K,S0).

We give next the solution of the variational problem (25) with the equality constraint∫ 1

0
g(t)dt = K. This is given by the following result.

Proposition 3.4: The solution of the variational problem (25) with the equality constraint∫ 1

0
g(t)dt = K is given by

IK(K,S0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S
2(1−β)
0

2σ2
a(+)(x)b(+)(x) K ≤ S0,

S
2(1−β)
0

2σ2
a(−)(x)b(−)(x) K ≥ S0.

(27)

The two cases are as follows:
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(i) K ≤ S0. 0 < x ≤ 1 is the solution of the equation

K

S0
= x +

b(+)(x)
a(+)(x)

, (28)

with

a(+)(x) = 2x−β(1 − x)1/2
2F1

(
β,

1
2
;
3
2
; 1 − 1

x

)
, (29)

b(+)(x) =
2
3
x−β(1 − x)3/2

2F1

(
β,

3
2
;
5
2
; 1 − 1

x

)
. (30)

The argument z = 1 − (1/x) of the hypergeometric function 2F1(a, b; c; z) is negative.
(ii) K ≥ S0. x ≥ 1 is the solution of the equation

K

S0
= x − b(−)(x)

a(−)(x)
, (31)

with

a(−)(x) = 2x−β(x − 1)1/2
2F1

(
β,

1
2
;
3
2
; 1 − 1

x

)
, (32)

b(−)(x) =
2
3
x−β(x − 1)3/2

2F1

(
β,

3
2
;
5
2
; 1 − 1

x

)
. (33)

The argument z = 1 − (1/x) of the hypergeometric function 2F1(a, b; c; z) is positive.

An alternative form of the solution for IK(K,S0) which gives additional information on
the continuity and monotonicity properties of this function in K is given by the following
result.

Proposition 3.5:

(i) The function IK(K,S0) is given for K > S0 by

IK(K,S0) = inf
ϕ>K/S0

1
2

[G(−)(ϕ)]2

ϕ − (K/S0)
, (34)

with

G(−)(ϕ) =
S1−β

0

σ

∫ ϕ

1

z−β√ϕ − zdz

=
S1−β

0

σ

2
3
ϕ−β(ϕ − 1)3/2

2F1

(
3
2
, β;

5
2
; 1 − 1

ϕ

)
. (35)

(ii) The function IK(K,S0) is given for K < S0 by

IK(K,S0) = inf
0<χ<K/S0

1
2

[G(+)(χ)]2

(K/S0) − χ
, (36)
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with

G(+)(χ) =
S1−β

0

σ

∫ 1

χ

z−β√z − χdz

=
S1−β

0

σ

2
3
χ−β(1 − χ)3/2

2F1

(
3
2
, β;

5
2
; 1 − 1

χ

)
. (37)

From the representation of Proposition 3.5 it follows that IK(K,S0) is a continuous
function of K. We also obtain the monotonicity properties of this function, which imply the
relation to the rate function I(K,S0) given by Theorem 3.2.

Corollary 3.6: We have the following monotonicity properties of the function IK(K,S0)
with respect to strike K:

(i) For K > S0 the function IK(K,S0) is an increasing function of K.
(ii) For K < S0 the function IK(K,S0) is a decreasing function of K.
(iii) The rate function I(K,S0) is given by

I(K,S0) = IK(K,S0). (38)

Remark 3.7: It is easy to check that the results of Proposition 3.4 recover the result of
Proposition 2.2 for β = 1/2. For this case, the hypergeometric functions can be expressed in
terms of elementary functions. The rate function I(K,S0) in the CEV model was evaluated
numerically using Proposition 3.4 and Corollary 3.6. Figure 2 shows the result for β =
1/2, 2/3, 5/6.

Remark 3.8: For β → 1, the results of Proposition 3.4 recover the rate function for the
Black–Scholes model in Proposition 12 of [50].

3.3. Expansion of the Rate Function Around the ATM Point

Using the same approach as in the proof of Proposition 14 in [50] one can expand the rate
function in power series of x = log(K/S0) for arbitrary β. The first few terms are

I(K,S0) =
S

2(1−β)
0

σ2

{
3
2
x2 +

(
− 3

10
+

9
5
(1 − β)

)
x3

+
(

109
1400

− 117
350

(1 − β) +
198
175

(1 − β)2
)

x4 + O(x5)
}

. (39)

For β = 1/2 this reduces to the expansion of the rate function in the square-root model
given in Eq. (17).

3.4. Asymptotics of the Rate Function

We discuss next the asymptotics of the rate function I(K,S0) in the CEV model for very
small/large strike K. This is given by the following result, which generalizes the results of
Proposition 2.3 to general 1/2 ≤ β < 1.
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Figure 2. The rate function I(K,S0)/(S2(1−β)
0 /σ2) vs. K/S0 for Asian options in the

CEV model with β = 1/2 (black), β = 2/3 (blue) and β = 5/6 (red).

Proposition 3.9 Large strike asymptotics: We have, for β ∈ [1/2, 1),

I(K,S0) ∼ S
2(1−β)
0

2σ2

πΓ2(1 − β)
(3 − 2β)Γ2(3/2 − β)

(
3 − 2β

2(1 − β)
K

S0

)2(1−β)

, as K → ∞, (40)

where Γ(·) is the Gamma function.
For β = 1/2 this reproduces the result (i) of Proposition 2.3.

I(K,S0) ∼ π2K

2σ2
, as K → ∞. (41)

Proposition 3.10 Small strike asymptotics: The K → 0 asymptotics of the rate function
for β ∈ 1/2, 1 is given by

lim
K→0

K

S0
I(K,S0) =

2S
2(1−β)
0

σ2(3 − 2β)2
. (42)

For β → 1/2, this reproduces the result (ii) of Proposition 2.3

lim
K→0

K

S0
I(K,S0) =

2S
2(1−β)
0

σ2(3 − 2β)2
→ S0

2σ2
, (43)

4. FLOATING STRIKE ASIAN OPTIONS

We consider in this section the short maturity asymptotics for floating strike Asian options.
The prices of the floating strike Asian call/put options are given by risk-neutral expectations

Cf (T ) := e−rT
E

⎡
⎣
(

κST − 1
T

∫ T

0

Stdt

)+
⎤
⎦ , (44)

Pf (T ) := e−rT
E

⎡
⎣
(

1
T

∫ T

0

Stdt − κST

)+
⎤
⎦ . (45)

First of all, similar to Lemma 3.1, we have:
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(i) For an Asian OTM call option, that is, κ < 1, we have for 1/2 ≤ β < 1

lim
T→0

T log Cf (T ) = lim
T→0

T log P

(
1
T

∫ T

0

Stdt ≤ κST

)
. (46)

(ii) For an Asian OTM put option, that is, κ > 1, we have for 1/2 ≤ β < 1

lim
T→0

T log Pf (T ) = lim
T→0

T log P

(
1
T

∫ T

0

Stdt ≥ κST

)
. (47)

We start by considering the square-root model:

dSt = (r − q)Stdt + σ
√

StdWt, (48)

with S0 > 0 and Wt is a standard Brownian motion starting at zero at time zero.

Theorem 4.1: For β = 1/2, P((1/T )
∫ T

0
Stdt − κST ∈ ·) satisfies a large deviation principle

with the rate function

If (x) := sup
θ∈R

{θx − Λf (θ)}, (49)

where Λf (θ) is given by

Λf (θ) := lim
T→0

T log E

[
e(θ/T 2)

∫ T
0 Stdt

]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
2θ

σ
tan

(
σ

2

√
2θ + tan−1

(
−σκ

√
θ

2

))
S0, if 0 ≤ θ < θc

−
√−2θ

σ
tanh

(
σ

2
√−2θ + tanh−1

(
−σκ

√
−θ

2

))
S0, if θ ≤ 0

+∞, otherwise

. (50)

where θc is the unique positive solution of the equation√
σ2θc

2
+ tan−1

(
−σκ

√
θc

2

)
=

π

2
. (51)

It follows from (46) and (47) that for κ < 1, the call option is OTM and Cf (T ) =
e−(1/T )If (κ,S0)+o(1/T ), as T → 0, and for κ > 1, the put option is OTM and Pf (T ) =
e−(1/T )If (κ,S0)+o(1/T ), as T → 0, where

If (κ, S0) = If (0) = sup
θ∈R

{−Λf (θ)}. (52)

The result of Theorem 4.1 for If (κ, S0) for the square-root model can be put into a
more explicit form, as

If (κ, S0) =
S0

σ2
Jf (κ), (53)

where Jf (κ) is given by:
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Figure 3. The rate function Jf (κ) vs. κ for floating strike Asian options in the square-root
model with β = 1/2 (black solid curve). The solid blue curve shows the approximation of this
function obtained by keeping the first three terms in the expansion (58). This is compared
against the fixed strike rate function I(S0κ, S0) (in units of S0/σ2) for the same model
(dashed curve), given by Proposition 2.2.

(i) For κ ≥ 1,

Jf (κ) = 2z
κz − tan z

1 + κz tan z
, (54)

where z is the solution of the equation

1 + κ2z2 + (1 − κ2z2)
sin 2z

2z
= 2κ cos2 z. (55)

The solution is defined up to a sign, but this ambiguity is not relevant for computing
Jf (κ).

(ii) For κ ≤ 1,

Jf (κ) = 2z
κz − tanh z

1 − κztanh z
, (56)

where z is the solution of the equation

1 − κ2z2 + (1 + κ2z2)
sinh 2z

2z
= 2κcosh2z. (57)

The rate function Jf (κ, S0) for the square-root model β = 1/2 is shown in Figure 3
(solid black curve). This is compared against the rate function I(κ) for fixed strike Asian
options given by Proposition 2.2 (dashed curve). In the Black–Scholes model they are equal
[50], which follows from the equivalence relations for fixed/floating strike Asian options
[44]. These relations do not hold beyond the Black–Scholes model, and as a consequence
the corresponding rate functions are different.

The floating strike rate function has the expansion around the ATM point κ = 1

Jf (κ) =
3
2

log2 κ − 33
20

log3 κ +
5809
5600

log4 κ + O(log5 κ). (58)

This is obtained by expanding the solution of Eqs. (55) and (57) in powers of z, and inserting
the result into (54) and (56). The approximation for the rate function Jf (κ) obtained by
keeping the first three terms in this expansion is shown in Figure 3 as the solid blue curve.
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For the general CEV model with 1/2 ≤ β < 1, following the proof of Theorem 3.2, we
get the following result:

Theorem 4.2: The short maturity asymptotics for OTM floating strike Asian options in
the CEV model (2) with 1/2 ≤ β < 1 is given by

(i) For κ < 1, corresponding to an OTM floating strike Asian call option,

lim
T→0

T log Cf (T ) = −If (κ, S0), (59)

where

If (κ, S0) = inf∫ 1
0 g(t)dt≤κg(1),g(0)=S0,g(t)≥0,0≤t≤1

1
2

∫ 1

0

(g′(t))2

σ2g(t)2β
dt. (60)

(ii) For κ > 1, corresponding to a OTM floating strike Asian put option,

lim
T→0

T log Pf (T ) = −If (κ, S0), (61)

where

If (κ, S0) = inf∫ 1
0 g(t)dt≥κg(1),g(0)=S0,g(t)≥0,0≤t≤1

1
2

∫ 1

0

(g′(t))2

σ2g(t)2β
dt. (62)

Let us consider the ATM case, that is, κ = 1. For this case, we have the following result.
The proof is very similar to the proof of Theorem 3.3, and is hence omitted here.

Theorem 4.3: As T → 0, we have in the CEV model with 1/2 ≤ β < 1,

Cf (T ) = σSβ
0

√
T√
6π

+ O(T ), Pf (T ) = σSβ
0

√
T√
6π

+ O(T ). (63)

5. NUMERICAL TESTS

We present in this section a few numerical tests of the short-maturity asymptotic results
for Asian options in the CEV model obtained in this paper. Following [50] we will use the
Asian option pricing formulas

Casympt(K,T ) = e−rT (A(T )N(d1) − KN(d2)), (64)

Pasympt(K,T ) = e−rT (KN(−d2) − A(T )N(−d1)), (65)

where A(T ) is the expectation of the averaged asset price,

A(T ) = S0
1

(r − q)T
(e(r−q)T − 1), (66)

and

d1,2 =
1

ΣLN

√
T

(
log

A(T )
K

± 1
2
Σ2

LNT

)
. (67)

The equivalent log-normal volatility of the Asian option is defined by

Σ2
LN (K,S0) =

log2(K/S0)
2I(K,S0)

, (68)

where I(K,S0) is the rate function, given for the general CEV model in (27), and for
the square-root model β = 1/2 in Proposition 2.2. As shown in Proposition 18 of [50],
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Figure 4. Small-maturity equivalent log-normal volatility ΣLN(K,S0)/(σSβ−1
0 ) vs.

x = log(K/S0) for an Asian option in the CEV model with β = 1/2 (blue), β = 2/3 (black)
and β = 5/6 (red).

the approximation (64),(65) has the same short maturity asymptotics as that given by
Proposition 2.2 for the square-root model β = 1/2, and by Theorem 3.2 for the general
CEV model.

5.1. Equivalent Log-normal Volatility of Asian Options in the CEV Model

The series expansion of the equivalent log-normal volatility ΣLN(K,S0) in powers of log-
strike x = log(K/S0) can be obtained by substituting (39) into the definition (68). This is

ΣLN (K,S0) = σ
1√
3
Sβ−1

0

{
1 +

(
1
10

+
3
5
(β − 1)

)
x

+
(
− 23

2100
+

12
175

(β − 1) +
57
350

(β − 1)2
)

x2 + O(x3)
}

. (69)

For ATM Asian options K = S0 the equivalent log-normal volatility is

ΣLN (S0, S0) = σ
1√
3
Sβ−1

0 . (70)

For the square-root model β = 1/2 the ATM skew and convexity of the equivalent log-
normal volatility are −1/5 and −19/4200 of the ATM equivalent volatility, respectively.
We show in Figure 4 the plot of ΣLN/σ vs x = log(K/S0) obtained using Eq. (68) for the
square-root model β = 1/2.

The plot in Figure 4 is in general qualitative agreement with the shape of the implied
volatility for options on realized variance in the Heston model, which are mathematically
equivalent to Asian options in the square-root model. See Figure 5 (right) in [23]. As noted
in the literature [23], the down-sloping shape of the implied volatility is a deficiency of the
Heston model, as the observed smile for variance options in equity markets is up-sloping.
The reference [23] proposes as an alternative model which has up-sloping smiles for variance
options, the 3/2 stochastic volatility model [14,15].

From the expansion (69) one can obtain the dependence of the ATM skew and convexity
on the β parameter. For β = 1/2 the ATM skew is negative; as β is increased, the ATM
skew increases, crosses zero at β = 5/6 and becomes positive. The ATM convexity is always
negative for 1/2 ≤ β < 1, so the equivalent log-normal volatility smile is slightly concave.
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Table 1. Comparison of the short-maturity asymptotic formulas for Asian options in the
square-root model β = 1/2 for the seven scenarios considered by Dassios and Nagardjasarma
[20]. The results are compared against those of [20] (DN) and those of Foschi et al. [34]
(denoted as FPP3)

Case S0 K r σ T Casympt(K, T ) DN FPP3

1 2 2 0.02 0.14 1 0.055474 0.0197 0.055562
2 2 2 0.18 0.42 1 0.216013 0.2189 0.217874
3 2 2 0.0125 0.35 2 0.170568 0.1725 0.170926
4 1.9 2 0.05 0.69 1 0.189863 0.1902 0.190834
5 2 2 0.05 0.72 1 0.250113 NA 0.251121
6 2.1 2 0.05 0.72 1 0.307731 0.3098 0.308715
7 2 2 0.05 0.71 2 0.350516 0.3339 0.353197

Table 2. Numerical tests for the scenarios proposed in [20] and [34]

Case σ T Casympt(K, T ) DN FPP3

1 0.71 0.1 0.075354 0.0751 0.075387
2 0.71 0.5 0.172813 0.1725 0.173175
3 0.71 1.0 0.247020 0.2468 0.248016
4 0.71 2.0 0.350516 0.3339 0.353197
5 0.71 5.0 0.536611 0.3733 0.545714
6 0.1 1.0 0.061310 0.0484 0.061439
7 0.3 1.0 0.120226 0.1207 0.120680
8 0.5 1.0 0.181983 0.1827 0.182723
9 0.7 1.0 0.243926 0.2446 0.244913

5.2. Numerical Scenarios

We present next numerical tests for Asian option pricing in the square-root model β = 1/2,
for the seven scenarios proposed in Dassios and Nagardjasarma [20]. We also compare with
the third-order approximation of Foschi et al. [34] (denoted as FPP3), listed in Table 5 of
[34]. The results are shown in Table 1.

We note that the agreement of the asymptotic result with FPP3 is always better than
1% in relative value. The differences becomes larger for cases where rT is larger, since the
asymptotic result for ΣLN(K,S0) does not take into account dependence on this parameter,
and for larger maturity.

A second set of scenarios proposed by DN [20] is shown in Table 2. There are nine
scenarios with S0 = K = 2, r = 0.05, q = 0, β = 1/2. The asymptotic results are shown in
Table 2, comparing with the results of [20,34] (Table 6 in this reference). Since they are all
ATM scenarios, the use of the asymptotic formulas is very simple, and reduces to the use
of Eq. (70).

The agreement of the asymptotic result with FPP3 is again very good, except for the
T = 5Y case. In all these cases (except T = 5Y ) the difference between them is <1% in
relative value. The deviations from the short maturity asymptotic results are expected to
increase with the maturity, as the expectations giving the Asian option prices receive also
contributions from typical paths, in addition to the rare events paths which dominate in the
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Table 3. Tests of the short maturity asymptotic formulas for Asian options for β ∈ [0.5, 1].
The model parameters correspond to cases 1,2,3 in Table 1, except for σ which is scaled as
shown such that the ATM value is independent of β. The benchmark evaluation is obtained
using MC simulation as discussed in text (the MC error corresponding to one standard
deviation is shown in brackets)

Case 1 Case 2 Case 3

β Casympt CMC Casympt CMC Casympt CMC

0.5 0.055474 0.055401(0.000074) 0.216013 0.217260(0.000244) 0.170568 0.170386(0.000257)
0.6 0.058651 0.058568(0.000079) 0.223504 0.224746(0.000262) 0.181843 0.181561(0.000280)
0.7 0.062063 0.061967(0.000085) 0.231666 0.232881(0.000282) 0.193920 0.193516(0.000307)
0.8 0.065724 0.065614(0.000091) 0.240540 0.241704(0.000307) 0.206855 0.206301(0.000337)
0.9 0.069654 0.069528(0.000098) 0.250167 0.251253(0.000334) 0.220705 0.219973(0.000372)
1.0 0.073871 0.073726(0.000105) 0.260594 0.261570(0.000365) 0.235534 0.234589(0.000414)

large deviations limit. For maturities <1Y, the difference is always below 0.5% in relative
value.

We present in Table 3 also numerical tests of β dependence of the short maturity
asymptotic results for several values of β ∈ [0.5, 1.0]. The model parameters correspond to
Cases 1,2, and 3 in Table 1. The results are compared against those obtained from a MC
simulation using Euler discretization with n = 103 time steps and NMC = 106 MC paths.
We observe the same pattern as for the β = 1/2 results in Table 1. The agreement is best
for case 1 and the differences with the MC simulation are larger for case 2 (due to larger
value of rT = 0.18) and case 3 (due to larger maturity).

5.3. Floating-strike Asian Options

We discuss in this section the pricing of floating-strike Asian options. They can be considered
as call and put options on the underlying BT := κST − AT . The forward price of this asset is

Ff (T ) := E[BT ] = S0

(
κe(r−q)T − e(r−q)T − 1

(r − q)T

)
. (71)

For κ ≥ 0, the underlying BT takes values on the entire real axis. For this reason a Black–
Scholes representation of this asset is not appropriate.

We propose to approximate the prices of floating-strike Asian options using a Bachelier
(normal) approximation. These options are approximated as zero strike put and call options
on the asset BT , and their prices are

Cf (κ, T ) = e−rT

[
Ff (T )Φ(d) +

1√
2π

ΣN

√
Te−(1/2)d2

]
,

Pf (κ, T ) = e−rT

[
−Ff (T )Φ(−d) +

1√
2π

ΣN

√
Te−(1/2)d2

]
, (72)

with d = (Ff (T )/ΣN

√
T ).

The equivalent normal volatility ΣN (κ, T ) is specified by requiring that the small-
maturity asymptotics of the floating-strike Asian options matches that of the Bachelier
expression. This is given by the following result.
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Proposition 5.1: The short-maturity limit of the equivalent normal volatility in the square-
root model β = 1/2 is given by:

(i) for OTM floating strike Asian options κ �= 1

lim
T→0

ΣN (κ, T ) =
σ2

2S0

(κ − 1)2

Jf (κ)
, (73)

where Jf (κ) is given by (53).
(ii) for ATM floating strike Asian options κ = 1

lim
T→0

ΣN (κ, T ) = σ

√
S0

3
. (74)

Proof: The proof is similar to that of Proposition 18 in [50] and will be omitted. �

The pricing of floating-strike Asian options in the square-root model has been considered
in [36]. This paper studied the pricing of options with payoff (−ST + AT − K)+ with K
both positive and negative, using both discrete and continuous time monitoring. We will
compare the result for K = 0 with continuous time averaging, which corresponds in our
notations to a floating strike Asian put option with κ = 1.

The model parameters used in [36] are S0 = 1, r = 0.04, σ = 0.7, and the option matu-
rity is T = 1. The price quoted in Table 3 of this paper with K = 0 is Cf (1, T ) =
0.14376. The asymptotic formula (72) gives Cf (1, T ) = 0.14524, which is in reasonably good
agreement with the result of [36] (1% relative difference).
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APPENDIX A. PROOFS

Appendix A.1. Background of Large Deviations Theory

We start by giving a formal definition of the large deviation principle. We refer to Dembo
and Zeitouni [21] and Varadhan [55] for general background of large deviations theory and its
applications.

Definition A.1 (Large Deviation Principle): A sequence (Pε)ε∈R+ of probability measures on a
topological space X satisfies the large deviation principle with rate function I : X → R if I is non-
negative, lower semicontinuous and for any measurable set A, we have

− inf
x∈Ao

I(x) ≤ lim inf
ε→0

ε log Pε(A) ≤ lim sup
ε→0

ε log Pε(A) ≤ − inf
x∈A

I(x). (A.1)

Here, Ao is the interior of A and A is its closure.

The contraction principle plays a key role in our proofs. For the convenience of the readers,
we state the result as follows:

Theorem A.2 (Contraction Principle, e.g. Theorem 4.2.1. [21]): If Pε satisfies a large deviation
principle on X with rate function I(x) and F : X → Y is a continuous map, then the probability
measures Qε := PεF

−1 satisfies a large deviation principle on Y with rate function

J(y) = inf
x:F (x)=y

I(x). (A.2)
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We will use the following version of the Gärtner–Ellis Theorem in the proofs in this paper.

Theorem A.3 (Gärtner–Ellis Theorem, e.g. Theorem 2.3.6 in [21]): Let Zε be a sequence of ran-

dom variables on R. Assume the limit Λ(θ) := limε ε log E[e(θ/ε)Zε ] exists on the extended real line
and the interior of the set D := {θ : Λ(θ) < ∞} contains 0, and Λ(θ) is differentiable for any θ in
the interior of D and |Λ′(θ)| → ∞ as θ approaches to the boundary of D. Then P(Zε ∈ ·) satisfies
a large deviation principle with the rate function I(x) := supθ∈R{θx − Λ(θ)}.

Appendix A.2. Proofs of the Results in Section 2

Proof of Theorem 2.1: For any θ ∈ R, u(t, x) = E[eθ
∫ t
0 Ssds|S0 = x] satisfies the PDE:

∂u

∂t
= (r − q)x

∂u

∂x
+

1

2
σ2x

∂2u

∂x2
+ θxu(t, x), (A.3)

with u(0, x) ≡ 1. This affine PDE has the solution u(t, x) = eA(t)x+B(t), where

A′(t) = (r − q)A(t) +
1

2
σ2A(t)2 + θ, (A.4)

B′(t) = 0, (A.5)

with A(0) = B(0) = 0 and hence B(t) = 0 and for θ > 0 sufficiently large,

2√
2σ2θ − (r − q)2

tan−1

(
r − q + σ2A√
2σ2θ − (r − q)2

) ∣∣∣∣
A=A(t)

A=0

= t, (A.6)

and thus

A(t; θ) =

√
2σ2θ − (r − q)2

σ2
tan

[√
2σ2θ − (r − q)2

2
t + tan−1

(
r − q√

2σ2θ − (r − q)2

)]
− r − q

σ2
.

(A.7)

We denoted A(t; θ) = A(t) by making explicit the dependence on θ.
For θ < 0 sufficiently negative,

2

σ2

1

2
√

((r − q)2/σ4) − (2θ/σ2)
log

(
(r − q/σ2) −

√
((r − q)2/σ4) − (2θ/σ2) + A

(r − q/σ2) +
√

((r − q)2/σ4) − (2θ/σ2) + A

) ∣∣∣∣
A=A(t)

A=0

= t,

(A.8)

and thus

A(t; θ) =
etδ − 1

σ2

r−q−δ − σ2etδ

r−q+δ

=
2θ(etδ − 1)

(r − q)(1 − etδ) + δ(etδ + 1)
(A.9)

with δ :=
√

(r − q)2 − 2θσ2.
Let us study now the T → 0 limit. We note that for any T > 0 sufficiently small, we have

E

[
e(θ/T 2)

∫ T
0 Stdt

]
= eA(T ;(θ/T 2))S0 . (A.10)

For 0 ≤ θ < π2/(2σ2),

lim
T→0

TA

(
T ;

θ

T 2

)
=

√
2θ

σ2
tan

√
σ2θ

2
, (A.11)

and this limit is ∞ if θ ≥ π2/(2σ2).
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For θ < 0,

lim
T→0

TA

(
T ;

θ

T 2

)
=

−√−2θ

σ

eσ
√−2θ − 1

eσ
√−2θ + 1

=
−√−2θ

σ
tanh

(σ

2

√−2θ
)

. (A.12)

Therefore,

Λ(θ) := lim
T→0

T log E

[
e

θ
T2

∫ T
0 Stdt

]
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
2θ

σ
tan

(σ

2

√
2θ
)

S0 if 0 ≤ θ <
π2

2σ2

−√−2θ

σ
tanh

(σ

2

√−2θ
)

S0 if θ ≤ 0

+∞ otherwise

. (A.13)

For 0 < θ < π2/(2σ2) and θ < 0, Λ(θ) is differentiable and it is also easy to check that Λ(θ) is
differentiable at θ = 0. Finally, for 0 < θ < π2/(2σ2), we can compute that

∂Λ(θ)

∂θ
=

√
2

σ2
√

θ
tan

(σ

2

√
2θ
)

S0 +

√
2θ

σ

σ
√

2

4
√

θ
sec2

(σ

2

√
2θ
)

S0 → +∞, (A.14)

as θ ↑ π2/(2σ2). Hence, we proved the essential smoothness condition. The conclusion follows from
the Gärtner–Ellis theorem, see Theorem A.3 in Appendix A. �

Proof for Proposition 2.2: The result follows from Lemma 3.1, Theorem 2.1 and the Gärtner–Ellis
theorem. According to this result the rate function is given by the Legendre transform of the
cumulant function

I(K, S0) = supθ∈R{θK − Λ(θ)}, (A.15)

where the cumulant function Λ(θ) is given by Theorem 2.1.

(i) K ≥ S0. This case corresponds to 0 ≤ θ ≤ (π2/2σ2). The cumulant function Λ(θ) is given by

Λ(θ) =
S0

σ2

√
2θσ2 tan

√
1

2
σ2θ =

S0

σ2
F+(θσ2). (A.16)

where we defined F+(y) :=
√

2y tan
√

(1/2)y.
The optimal value of θ in (A.15) is given by the solution of the equation

K = S0F ′
+(θ∗σ2), F ′

+(y) =
1

2 cos2
√

y/2

(
1 +

sin
√

2y√
2y

)
. (A.17)

Numerical evaluation shows that F ′
+(y) : [0,∞) → [1,∞) is a bijective map, such that this

equation will have a solution for K > S0. Identifying x =
√

(1/2)θ∗σ2, it is easy to see that
the equation for θ∗ is the same as (14). The result for the rate function is

I(K, S0) = θ∗K − Λ(θ∗) =
S0

σ2

(
θ∗σ2 K

S0
− F+(θ∗σ2)

)

=
S0

σ2

(
2x2 1

2 cos2 x

(
1 +

sin 2x

2x

)
− 2x tan x

)

=
S0

σ2

x2

cos2 x

(
1 − sin(2x)

2x

)
, (A.18)

which yields Eq. (13).
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(ii) K ≤ S0. This case corresponds to θ ≤ 0. The cumulant function Λ(θ) is

Λ(θ) = −S0

σ2

√
−2θσ2tanh

√
−1

2
θσ2 =

S0

σ2
F−(θσ2), (A.19)

where we introduced F−(y) := −√−2ytanh
√−(1/2)y. This is related to the function

appearing for the previous case as F−(iy) = F+(y).

The optimal θ is given by the solution of the equation

K

S0
= F ′−(θ∗σ2), F ′−(y) =

1

2cosh2
√−(1/2)y

(
1 +

sinh
√−2y√−2y

)
. (A.20)

Numerical evaluation gives that F ′−(y) : (−∞, 0] → (0, 1] is a bijective function, so this equation

will have a solution for K < S0. Identifying x =
√

−(1/2)θ∗σ2 we see that Eq. (A.20) reproduces
(12). The result for the rate function is

I(K, S0) = θ∗K − Λ(θ∗) =
S0

σ2

(
θ∗σ2 K

S0
− F−(θ∗σ2)

)

=
S0

σ2

(
−2x2 1

2cosh2x

(
1 +

sinh 2x

2x

)
+ 2xtanh x

)

= −S0

σ2

x2

cosh2x

(
1 − sinh (2x)

2x

)
, (A.21)

which gives the result of Eq. (11). �

Proof of Proposition 2.3:

(i) This is obtained starting with the relation

I(K, S0) = sup
0≤θ<(π2/2σ2)

{
θK −

√
2θ

σ
tan

(σ

2

√
2θ
)

S0

}
. (A.22)

On the one hand, I(K, S0) ≤ sup0≤θ<(π2/2σ2) θK = (π2/2σ2)K. On the other hand, for
any ε > 0, for sufficiently large K,

I(K, S0) = sup
(π2/2σ2)−ε≤θ<(π2/2σ2)

{
θK −

√
2θ

σ
tan

(σ

2

√
2θ
)

S0

}

≥
(

π2

2σ2
− ε

)
K − Λ

(
π2

2σ2
− ε

)
. (A.23)

Thus, lim infK→∞(I(K, S0)/K) ≥ ((π2/2σ2) − ε). Since it holds for any ε > 0, we conclude
that the relation (15) holds.

(ii) This is obtained starting from the relation

I(K, S0) = sup
θ≤0

{
Kθ +

√−2θ

σ
tanh

(σ

2

√−2θ
)

S0

}
. (A.24)

At optimality we have

K =

√
2

2σ
√−θ

tanh
(σ

2

√−2θ
)

S0 +
1

2

[
1 − tanh2

(σ

2

√−2θ
)]

S0. (A.25)

Note that the function tanh x approaches 1 exponentially fast as x → ∞. Therefore,
θ ∼ −(S2

0/2σ2K2) as K → 0 and the result (16) follows. �
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Appendix A.3. Proofs of the Results in Section 3

Proof of Lemma 3.1: We will prove the result for the case of the Asian call option. The case of the
Asian put option is very similar.

Note that by Hölder’s inequality, for any (1/p) + (1/p′) = 1, p, p′ > 1 and p ≥ 2,

C(T ) = e−rT
E

[∣∣∣∣∣ 1T
∫ T

0
Stdt − K

∣∣∣∣∣ 1(1/T )
∫ T
0 Stdt≥K

]

≤ e−rT

(
E

[∣∣∣∣∣ 1T
∫ T

0
Stdt − K

∣∣∣∣∣
p])1/p

P

(
1

T

∫ T

0
Stdt ≥ K

)1/p′

≤ e−rT 2
p−1

p

(
Kp +

(
E

[
1

T

∫ T

0
Sp

t dt

]))1/p

P

(
1

T

∫ T

0
Stdt ≥ K

)1/p′

, (A.26)

where in the last step we used Jensen’s inequality to write

E

[∣∣∣∣∣ 1T
∫ T

0
Stdt − K

∣∣∣∣∣
p]

≤ E

[(
1

T

∫ T

0
Stdt + K

)p]

≤ 2p−1
E

[(
1

T

∫ T

0
Stdt

)p

+ Kp

]
≤ 2p−1

E

[(
1

T

∫ T

0
Sp

t dt

)
+ Kp

]
. (A.27)

The second inequality follows by noting that for p ≥ 2, x → xp is a convex function for x ≥ 0,
which gives by Jensen’s inequality ((x + y/2))p ≤ (xp + yp/2) for any x, y ≥ 0. This gives

E

[∣∣∣∣∣ 1T
∫ T

0
Stdt − K

∣∣∣∣∣
p]

≤ E

[(
1

T

∫ T

0
Stdt + K

)p]

≤ 2p−1

[
E

[(
1

T

∫ T

0
Stdt

)p]
+ Kp

]
. (A.28)

The last inequality follows again from the Jensen’s inequality which gives for p ≥ 2

E[((1/T )
∫ T
0 Stdt)p] ≤ E[(1/T )

∫ T
0 Sp

t dt].
For any p ≥ 2,

1

T

∫ T

0
E[Sp

t ]dt = O(1), (A.29)

since for the CEV process, all these moments are finite and well-behaved as T → 0. The marginal
distribution of St in this model is known [47] and the above expression can be computed explicitly.

Therefore, we have

lim sup
T→0

T log C(T ) ≤ lim sup
T→0

1

p′
T log P

(
1

T

∫ T

0
Stdt ≥ K

)
. (A.30)

Since it holds for any 2 > p′ > 1, we have the upper bound.
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Next we derive a matching lower bound on C(T ). For any ε > 0,

C(T ) ≥ e−rT
E

[(
1

T

∫ T

0
Stdt − K

)
1(1/T )

∫ T
0 Stdt≥K+ε

]

≥ e−rT εP

(
1

T

∫ T

0
Stdt ≥ K + ε

)
, (A.31)

which implies that

lim inf
T→0

T log C(T ) ≥ lim inf
T→0

T log P

(
1

T

∫ T

0
Stdt ≥ K + ε

)
. (A.32)

Since it holds for any ε > 0, we get the lower bound by letting ε → 0, provided that the limit

I(K, S0) := − limT→0 T log P((1/T )
∫ T
0 Stdt ≥ K) exists and is continuous in K. The continuity in

K can be seen from the expression in Proposition 3.5. �

Proof of Theorem 3.2: We split the proof into several steps.
Step 1. We need to prove that

lim
T→0

T log P

(
1

T

∫ T

0
Stdt ≥ K

)
= lim

T→0
T log P

(
1

T

∫ T

0
Ŝtdt ≥ K

)
, (A.33)

where

dŜt = σŜβ
t dWt, (A.34)

with Ŝ0 = S0. That is, the drift term is negligible for small time large deviations. Let us now prove
(A.33). Note that

St = S0e(r−q)t+
∫ t
0 σSβ

s dWs−(1/2)σ2 ∫ t
0 S2β

s ds = e(r−q)tS̃t, (A.35)

where

dS̃t = σS̃β
t e−(r−q)βtdWt, S̃0 = S0 > 0. (A.36)

By the time change dτ(t) = e−2(r−q)βtdt, τ(0) = 0, S̃t = Ŝτ(t), where Ŝ is defined in (A.34).
Hence,

lim
T→0

T log P

(
1

T

∫ T

0
Stdt ≥ K

)

= lim
T→0

T log P

(
1

T

∫ T

0
e(r−q)tŜτ(t)dt ≥ K

)

= lim
T→0

T log P

(
1

T

∫ τ(T )

0
e(r−q)(1−2β)τ−1(t)Ŝtdt ≥ K

)
. (A.37)

It is easy to check that (τ(T )/T ) → 1 as T → 0 and limT→0 inf0≤t≤T e(r−q)(1−2β)τ−1(t) =

limT→0 sup0≤t≤T e(r−q)(1−2β)τ−1(t) = 1. Hence, (A.33) follows.
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Step 2. Now assume that r = q = 0 so that

dSt = σSβ
t dWt, (A.38)

with S0 > 0. Therefore, for 0 ≤ t ≤ 1,

dStT = σSβ
tT dWtT =

√
TσSβ

tT d(WtT /
√

T ) =
√

TσSβ
tT dBt, (A.39)

where Bt := WtT /
√

T is a standard Brownian motion by the scaling property of the Brownian
motion. Therefore, by letting T = ε,

lim
T→0

T log P

(∫ 1

0
StT dt ≥ K

)
= lim

ε→0
ε log P

(∫ 1

0
Sε

tdt ≥ K

)
, (A.40)

where

dSε
t =

√
εσ(Sε

t )
βdBt, (A.41)

with Sε
0 = S0 > 0.

Step 3. We need to show that

lim
ε→0

ε log P

(∫ 1

0
Sε

tdt ≥ K

)
= lim

δ→0
lim
ε→0

ε log P

(∫ 1

0
Sε

tdt ≥ K, Sε
t ≥ δ, 0 ≤ t ≤ 1

)
. (A.42)

Note that conditional of
∫ 1
0 Sε

tdt ≥ K, the event that Sε
t ≥ δ, 0 ≤ t ≤ 1 is a typical event, while the

event that Sε
t ≤ δ for some 0 ≤ t ≤ 1 is a rare event. Therefore, for sufficiently small δ > 0,

P

(∫ 1

0
Sε

tdt ≥ K

)
≤ 2P

(∫ 1

0
Sε

tdt ≥ K, Sε
t ≥ δ, 0 ≤ t ≤ 1

)
. (A.43)

On the other hand, for any δ > 0,

P

(∫ 1

0
Sε

tdt ≥ K

)
≥ P

(∫ 1

0
Sε

tdt ≥ K, Sε
t ≥ δ, 0 ≤ t ≤ 1

)
, (A.44)

which implies that, for any δ > 0.

lim
ε→0

ε log P

(∫ 1

0
Sε

tdt ≥ K

)
≥ lim

ε→0
ε log P

(∫ 1

0
Sε

tdt ≥ K, Sε
t ≥ δ, 0 ≤ t ≤ 1

)
. (A.45)

Hence, (A.42) follows from (A.43) and (A.45).
Step 4. Define

dSε,δ
t = bδ(Sε,δ

t )dt +
√

εσ(Sε,δ
t )βdBt, Sε,δ

0 = S0, (A.46)

where bδ(x) = 0 for any x > δ and also is locally Lipschitz continuous and bδ(0) > 0. Morever,
S �→ Sβ is Hölder continuous with exponent ≥ 1/2 and for β < 1, it has sublinear growth at ∞.
The dynamics (A.46) satisfies the assumption A1.1. in Baldi and Caramellino [7]. It is easy to see
that

P

(∫ 1

0
Sε

tdt ≥ K, Sε
t ≥ δ, 0 ≤ t ≤ 1

)
= P

(∫ 1

0
Sε,δ

t dt ≥ K, Sε,δ
t ≥ δ, 0 ≤ t ≤ 1

)
. (A.47)

By Theorem 1.2 in Baldi and Caramellino [7] it follows that P(Sε,δ ∈ ·) satisfies a large deviation
principle on CS0([0, 1]), the space of continuous functions starting at S0 equipped with uniform

topology, with the rate function (1/2)
∫ 1
0 ((g′(t) − bδ(g(t)))2/σ2g(t)2β)dt, with the understanding
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that the rate function is +∞ if g is not differentiable. Moreover, the map g �→ (
∫ 1
0 g(t)dt, g) is

continuous from CS0 [0, 1] to R+ × CS0 [0, 1].
By the contraction principle, see Theorem A.2 in Appendix A, we have

lim
ε→0

ε log P

(∫ 1

0
Sε

tdt ≥ K, Sε,δ
t ≥ δ, 0 ≤ t ≤ 1

)

= − inf∫ 1
0 g(t)dt≥K,g(0)=S0,g(t)≥δ,0≤t≤1

1

2

∫ 1

0

(g′(t) − bδ(g(t)))2

σ2g(t)2β
dt

= − inf∫ 1
0 g(t)dt≥K,g(0)=S0,g(t)≥δ,0≤t≤1

1

2

∫ 1

0

(g′(t))2

σ2g(t)2β
dt. (A.48)

Thus,

lim
ε→0

ε log P

(∫ 1

0
Sε

tdt ≥ K

)

= lim
δ→0

lim
ε→0

ε log P

(∫ 1

0
Sε

tdt ≥ K, Sε
t ≥ δ, 0 ≤ t ≤ 1

)

= − inf∫ 1
0 g(t)dt≥K,g(0)=S0,g(t)≥0,0≤t≤1

1

2

∫ 1

0

(g′(t))2

σ2g(t)2β
dt. (A.49)

�

Proof of Theorem 3.3: We consider only the Asian call option case. The proof for the put option
is very similar and is omitted. As T → 0,

C(T ) = e−rT
E

⎡
⎣
(

1

T

∫ T

0
Stdt − K

)+
⎤
⎦ = E

⎡
⎣
(

1

T

∫ T

0
Stdt − K

)+
⎤
⎦ + O(T ), (A.50)

and we showed that

E

⎡
⎣
(

1

T

∫ T

0
Stdt − K

)+
⎤
⎦ = E

⎡
⎣
(

1

T

∫ τ(T )

0
e(r−q)(1−2β)τ−1(t)Ŝtdt − K

)+
⎤
⎦ , (A.51)

where dŜt = σŜβ
t dWt and Ŝ0 = S0.

It is easy to show that

∣∣∣∣∣∣E
⎡
⎣
(

1

T

∫ τ(T )

0
e(r−q)(1−2β)τ−1(t)Ŝtdt − K

)+
⎤
⎦ − E

⎡
⎣
(

1

T

∫ τ(T )

0
Ŝtdt − K

)+
⎤
⎦
∣∣∣∣∣∣

≤ E

[
1

T

∫ τ(T )

0
|e(r−q)(1−2β)τ−1(t) − 1|Ŝtdt

]

= S0
1

T

∫ τ(T )

0
|e(r−q)(1−2β)τ−1(t) − 1|dt = O(T ). (A.52)
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Moreover, we can show that∣∣∣∣∣∣E
⎡
⎣
(

1

T

∫ T

0
Ŝtdt − K

)+
⎤
⎦ − E

⎡
⎣
(

1

T

∫ τ(T )

0
Ŝtdt − K

)+
⎤
⎦
∣∣∣∣∣∣

≤ E

∣∣∣∣∣ 1T
∫ T

τ(T )
Ŝtdt

∣∣∣∣∣ = S0
1

T
|T − τ(T )| = O(T ). (A.53)

Next, let dXt = σSβ
0 dWt and X0 = S0, that is Xt = S0 + σSβ

0 Wt. By Itô’s formula and taking
the expectations, we get

E(Ŝt − Xt)
2 = σ2

∫ t

0
E(Ŝβ

s − Sβ
0 )2ds

≤ 2σ2
∫ t

0
E[(Ŝβ

s − Xβ
s )2]ds + 2σ2

∫ t

0
E[(Xβ

s − Sβ
0 )2]ds. (A.54)

For any x > 0, y ≥ 0 and 1/2 ≤ β < 1, we have |xβ − yβ | ≤ |x − y|xβ−1, see e.g. Lemma 2.2. in
Cai and Wang [10]. Hence,

2σ2
∫ t

0
E[(Xβ

s − Sβ
0 )2]ds ≤ 2σ2S

2(β−1)
0

∫ t

0
E[(Xs − S0)

2]ds = σ2S
2(β−1)
0 σ2S2β

0 t2. (A.55)

Moreover, for S0 > δ > 0,

2σ2
∫ t

0
E[(Ŝβ

s − Xβ
s )2]ds

= 2σ2
∫ t

0
E[(Ŝβ

s − Xβ
s )21Xs≥δ]ds + 2σ2

∫ t

0
E[(Ŝβ

s − Xβ
s )21Xs<δ]ds. (A.56)

On the one hand,

2σ2
∫ t

0
E[(Ŝβ

s − Xβ
s )21Xs≥δ]ds ≤ 2σ2δ2(β−1)

∫ t

0
E[(Ŝs − Xs)

2]ds. (A.57)

On the other hand,

2σ2
∫ t

0
E[(Ŝβ

s − Xβ
s )21Xs<δ]ds

≤ 2σ2
∫ t

0

√
E[(Ŝβ

s − Xβ
s )4]

√
P(Xs < δ)ds

≤ 2σ2 max
0≤s≤t

√
P(Xs < δ)

∫ t

0

√
E[(Ŝβ

s − Xβ
s )4]ds. (A.58)

Note that ∫ t

0

√
E[(Ŝβ

s − Xβ
s )4]ds ≤

∫ t

0

√
4E[Ŝ4β

s + X4β
s ]ds, (A.59)

and we can compute E[Ŝ4β
s ] and E[X4β

s ] explicitly since Ŝt is a CEV process and Xt is a Brownian

motion. It is therefore easy to check that
∫ T
0

√
E[(Ŝβ

s − Xβ
s )4]ds = O(T ). Furthermore,

2σ2 max
0≤s≤t

√
P(Xs < δ) = 2σ2Φ

(
δ − S0

σSβ
0

√
t

)
, (A.60)
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where Φ(x) := (1/
√

2π)
∫ x
−∞ e−(y2/2)dy. Hence, by Gronwall’s inequality, we conclude that

E[(ŜT − XT )2] = O(T 2). (A.61)

Note that Ŝt − Xt is a martingale. By Doob’s martingale inequality,

E

[
max

0≤t≤T
|Ŝt − Xt|

]
≤ C

√
E[(ŜT − XT )2] = O(T ). (A.62)

Therefore, we conclude that

C(T ) = E

⎡
⎣
(

1

T

∫ T

0
Xtdt − S0

)+
⎤
⎦ + O(T )

= E

⎡
⎣
(

σSβ
0

1

T

∫ T

0
Wtdt

)+
⎤
⎦ + O(T )

= σSβ
0

√
T√
3

E[Z1Z>0] + O(T ), (A.63)

where Z ∼ N(0, 1). Finally, we can compute that

E[Z1Z>0] =
1√
2π

∫ ∞

0
xe−(x2/2)dx =

1√
2π

. (A.64)

Hence, we proved the desired result. �

Proof of Proposition 3.4: We will define IK(K, S0) as the solution of the variational problem (25),

obtained by replacing the inequality (26) with the equality constraint
∫ 1
0 g(t)dt = K. This is solved

by considering the variational problem for the auxiliary functional

Λ[g] :=
1

2σ2

∫ 1

0

(g′(t))2

g(t)2β
dt − λ

(∫ 1

0
g(t)dt − K

)
, (A.65)

where λ is a Lagrange multiplier.
The solution of this variational problem satisfies the Euler-Lagrange equation

g′′(t) = β
[g′(t)]2

g(t)
− λσ2(g(t))2β , (A.66)

with initial condition g(0) = S0 and transversality condition g′(1) = 0.
This equation can be simplified by the change of variable

g(t) = S0(y(t))1/(1−β). (A.67)

Expressed in terms of y(t), the Euler–Lagrange Eq. (A.66) becomes

y′′(t) = C(y(t))β/(1−β), (A.68)

with C := −λσ2(1 − β)S2β−1
0 . The solution y(t) satisfies the initial condition y(0) = 1 and

transversality condition y′(1) = 0. The rate function and the constraint
∫ 1
0 g(t)dt = K take the
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form

IK(K, S0) =
S2−2β

0

2σ2(1 − β)2

∫ 1

0
[y′(t)]2dt,

∫ 1

0
(y(t))1/(1−β)dt =

K

S0
. (A.69)

The differential Eq. (A.68) is known as the Emden–Fowler equation. The exponent γ :=
β/(1 − β) satisfies γ ≥ 1 for the cases considered here β ∈ [1/2, 1). This equation can be reduced
to a first order ordinary differential equation (ODE) by noting the conservation of the quantity

E :=
1

2
[y′(t)]2 − C(1 − β)(y(t))γ+1. (A.70)

Taking into account the boundary condition y′(1) = 0 this allows us to express the first
derivative as

[y′(t)]2 = 2C(1 − β)
(
[y(t)]γ+1 − yγ+1

1

)
, (A.71)

where we denoted y1 := y(1).
We distinguish the two cases:

1. C > 0. This case has y′(t) < 0 and y(1) < y(0) = 1, and corresponds to K < S0.

2. C < 0. This case has y′(t) > 0 and y(1) > y(0) = 1, and corresponds to K > S0.

We consider the two cases separately.
Case 1. C > 0. One first relation between y1 and C follows from

1 =

∫ 1

0
dt =

∫ y(0)

y1

dy

y′
=

1√
2C(1 − β)

∫ 1

y1

dy√
yγ+1 − yγ+1

1

. (A.72)

This relation can be used to eliminate C in terms of y1 as C = (1/2(1 − β))[A(+)(y1)]
2, where we

defined the function

A(+)(x) :=

∫ 1

x

dy√
yγ+1 − xγ+1

=
2x

γ + 1

√
1 − xγ+1

xγ+1 2F1

(
γ

γ + 1
,
1

2
;
3

2
; 1 − 1

xγ+1

)
, 0 < x ≤ 1. (A.73)

The integral constraint on y(t) can be written equivalently using (A.71) as

K

S0
=

∫ 1

0
[y(t)]γ+1dt = yγ+1

1 +
1

2C(1 − β)

∫ 1

0
[y′(t)]2dy. (A.74)

The integral can be expressed by a change of variable as

∫ 1

0
dy[y′(t)]2 =

∫ y1

y(0)
y′dy =

√
2C(1 − β)

∫ 1

y1

√
yγ+1 − yγ+1

1 dy (A.75)

= A(+)(y1)B
(+)(y1),

where we defined

B(+)(x) :=

∫ 1

x

√
yγ+1 − xγ+1dy

=
2x

3(γ + 1)

(1 − xγ+1)3/2

xγ+1 2F1

(
γ

γ + 1
,
3

2
;
5

2
; 1 − 1

xγ+1

)
, 0 < x ≤ 1. (A.76)

The integral (A.75) is the same as the integral appearing in the expression for the rate function
(A.69).
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In conclusion, the rate function IK(K, S0) for K < S0 is given by

IK(K, S0) =
S

2(1−β)
0

2σ2(1 − β)2
A(+)(y1)B

(+)(y1), (A.77)

where y1 < 1 is the solution of the equation

K

S0
= yγ+1

1 +
B(+)(y1)

A(+)(y1)
. (A.78)

These expressions can be simplified by defining a(+)(x), b(+)(x) as a(+)(x) = (1/1 − β)A(+)(x1−β)

and b(+)(x) = (1/1 − β)B(+)(x1−β).
Case 2. C < 0. It is similar to the C > 0 case and the proof is omitted here. �

Proof of Proposition 3.5: The proof is similar to that of Proposition 9 in [50]. �

Proof of Corollary 3.6:

(i) follows from Lemma 29 in [50]. The technical conditions of this Lemma require that G(−)(ϕ)

is an increasing function and that [G(−)(ϕ)]2 has superlinear growth as ϕ → ∞. The first

condition is satisfied as the derivative of G(−)(ϕ) is given in the equation:

F(−)(ϕ) = 2
d

dϕ
G(−)(ϕ) =

S1−β
0

σ

∫ ϕ

1

dz

zβ
√

ϕ − z
(A.79)

which is a positive function.
The second technical condition is also satisfied, as follows. Using the asymptotics of the
hypergeometric function

2F1

(
3

2
, β;

5

2
; 1 − 1

ϕ

)
=

Γ(5/2)Γ(1 − β)

Γ((5/2) − β)
+ O(ϕ−1), as ϕ → ∞ (A.80)

we get that

[G(−)(ϕ)]2 ∼ (ϕ − 1)3

ϕ2β
, as ϕ → ∞. (A.81)

This has indeed superlinear growth provided that β < 1.

(ii) follows from Lemma 30 in [50]. This requires the following two technical conditions: G(+)(χ)
is a decreasing function, and the infimum in (36) is not reached at the lower boundary χ = 0.
The first condition follows indeed from

F(+)(χ) = −2
d

dχ
G(+)(χ) =

S1−β
0

σ

∫ 1

χ

dz

zβ
√

z − χ
(A.82)

as the integral in this expression is positive.
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The second condition follows by noting that we have, for β ≥ 1/2

lim
χ→0

d

dχ

(
(1/2)[G(+)(χ)]2

(K/S0) − χ

)
= −∞. (A.83)

This is obtained by writing the derivative explicitly

d

dχ

(
(1/2)[G(+)(χ)]2

(K/S0) − χ

)
=

G(+)(χ)(d/χ)G(+)(χ)

(K/S0) − χ
+

1

2

[G(+)(χ)]2

((K/S0) − χ)2
. (A.84)

Furthermore, the functions appearing here have the χ → 0 limits, for β ≥ 1/2,

G(+)(χ) = 1 + O
(
χ(3/2)−β

)
,

d

dχ
G(+)(χ) = −∞ as χ → 0. (A.85)

The first relation (A.85) follows from the χ → 0 asymptotics of the hypergeometric function,
which can be extracted from Eq. (A.93)

2F1

(
3

2
, β;

5

2
; 1 − 1

χ

)
=

3

3 − 2β
χβ +

Γ(5/2)Γ(β − (3/2))

Γ(β)
χ3/2. (A.86)

The second relation (A.85) is obtained from (A.82) by noting that the integral on the RHS
is bounded from below as∫ 1

χ

dz

zβ
√

z − χ
≥
∫ 1

χ
dzz−(1/2)−β =

1

(1/2) − β
(1 − χ(1/2)−β) → +∞, χ → 0+. (A.87)

In the last step, we used β > 1/2. The conclusion holds also for β = 1/2, using the relation∫ 1

χ

dz√
z(z − χ)

= 2 log(
√

1 − χ + 1) − log χ → ∞, χ → 0+. (A.88)

This shows that the infimum in (36) is not reached at the lower boundary χ = 0. This
justifies the application of Lemma 30 in [50].

(iii) The conclusion follows immediately from the result for the rate function I(K, S0) given by
Theorem 3.2 and the monotonicity properties of IK(K, S0) proven above in (i) and (ii).

�

Proof of Proposition 3.9 (Large strike asymptotics): For this case we are interested in the x → ∞
asymptotics of the functions a(−)(x), b(−)(x). For this purpose it is useful to transform the argument
z = 1 − (1/x) of the hypergeometric functions appearing in the expressions of these functions as
z → 1 − z = (1/x) using the identity 15.3.6 in Abramowitz and Stegun [1].

We get, for β ∈ [1/2, 1),

2F1

(
β,

1

2
;
3

2
; 1 − 1

x

)
=

Γ(3/2)Γ(1 − β)

Γ((3/2) − β)
+ O(xβ−1), (A.89)

2F1

(
β,

3

2
;
5

2
; 1 − 1

x

)
=

Γ(5/2)Γ(1 − β)

Γ((5/2) − β)
+ O(xβ−1), (A.90)

as x → ∞.
The solution of Eq. (31) for x for K/S0 � 1 is

x =
3 − 2β

2(1 − β)

(
K

S0

)
+ O(K/S0). (A.91)

Substituting x into the expression for the rate function of Proposition 3.4 we obtain the large-strike
asymptotics of I(K, S0) given in Proposition 3.9. �
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Proof of Proposition 3.10 (Small strike asymptotics): We require the x → 0+ asymptotics for

a(+)(x), b(+)(x). This is obtained by changing the z = 1 − (1/x) argument of the hypergeomet-
ric functions appearing in the expressions for these functions as z → (1/z − 1) = −x, using the
identity 15.3.8 in Abramowitz and Stegun [1].

We get

2F1

(
β,

1

2
;
3

2
; 1 − 1

x

)
= xβ Γ(3/2)Γ(1/2 − β)

Γ(1/2)Γ(3/2 − β)
(1 + O(x)) + x1/2 Γ(3/2)Γ(β − 1/2)

Γ(β)
(1 + O(x))

= xβ 1

1 − 2β
(1 + O(x)) + x1/2 Γ(3/2)Γ(β − 1/2)

Γ(β)
(1 + O(x)), (A.92)

and

2F1

(
β,

3

2
;
5

2
; 1 − 1

x

)
= xβ Γ(5/2)Γ(3/2 − β)

Γ(3/2)Γ(5/2 − β)
(1 + O(x)) + x3/2 Γ(5/2)Γ(β − 3/2)

Γ(β)
(1 + O(x))

= xβ 3

3 − 2β
(1 + O(x)) + x3/2 Γ(5/2)Γ(β − 3/2)

Γ(β)
(1 + O(x)). (A.93)

For 1/2 < β < 1, the dominant term in these expansions as x → 0+ is the second term in (A.92),
and the first term in (A.93).

The equation for x as K → 0 becomes approximatively

K

S0
= xβ−(1/2) Γ(β)√

π((3/2) − β)Γ(β − (1/2))
+ O(x). (A.94)

Substituting x into the expression for the rate function of Proposition 3.4 we obtain the small-strike
asymptotics of I(K, S0) given in Proposition 3.10. �

Appendix A.4. Proof of the Results in Section 4

Proof of Theorem 4.1: For any θ ∈ R, E[e(θ/T 2)
∫ t
0 Ssds−(θκ/T )ST |S0] = eA(T ;(θ/T 2),−(θκ/T ))S0 ,

where A(t; θ; φ) satisfies the ODE:

A′(t; θ, φ) = (r − q)A(t; θ, φ) +
1

2
σ2A(t; θ, φ)2 + θ, (A.95)

with A(0; θ, φ) = φ.
For θ > 0,

A(t; θ, φ) =

√
2σ2θ − (r − q)2

σ2
tan

[√
2σ2θ − (r − q)2

2
t + tan−1

(
r − q + σ2φ√
2σ2θ − (r − q)2

)]

− r − q

σ2
, (A.96)

and for θ < 0,

A(t; θ, φ) =
( r−q

σ2 −
√

(r−q)2

σ4 − 2θ
σ2 + φ)( r−q

σ2 +

√
(r−q)2

σ4 − 2θ
σ2 )et

√
(r−q)2−2θσ2

( r−q
σ2 +

√
(r−q)2

σ4 − 2θ
σ2 + φ) − et

√
(r−q)2−2θσ2

( r−q
σ2 −

√
(r−q)2

σ4 − 2θ
σ2 + φ)

−
( r−q

σ2 −
√

(r−q)2

σ4 − 2θ
σ2 )( r−q

σ2 +

√
(r−q)2

σ4 − 2θ
σ2 + φ)

( r−q
σ2 +

√
(r−q)2

σ4 − 2θ
σ2 + φ) − et

√
(r−q)2−2θσ2

( r−q
σ2 −

√
(r−q)2

σ4 − 2θ
σ2 + φ)

. (A.97)
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For 0 ≤ θ < θc,

lim
T→0

TA

(
T ;

θ

T 2
,
−κθ

T

)
=

√
2θ

σ2
tan

(√
σ2θ

2
+ tan−1

(
−σκ

√
θ

2

))
, (A.98)

and this limit is ∞ if θ ≥ θc, where θc is the unique positive solution to the equation:

√
σ2θc

2
+ tan−1

(
−σκ

√
θc

2

)
=

π

2
. (A.99)

To see that (A.99) has a unique positive solution, let us define:

F (x) :=

√
σ2

2
x + tan−1

(
−σκ

1√
2
x

)
− π

2
. (A.100)

Then, F (0) = −π/2 and F (∞) = ∞. On the other hand, we can compute that

F ′(x) =

√
σ2

2
− σκ√

2

1

(1/2)σ2κ2x2 + 1
, F ′′(x) =

σκ√
2

σ2κ2x

((1/2)σ2κ2x2 + 1)2
. (A.101)

Since F ′′(x) > 0 for any x > 0, and F (0) = −π/2 < 0 and F (∞) = ∞, it follows that F (x) = 0 has
a unique positive solution.

For θ < 0,

lim
T→0

TA

(
T ;

θ

T 2
,
−κθ

T

)
= −

√−2θ

σ

(
√−2θ/σ)(eσ

√−2θ − 1) + θκ(1 + eσ
√−2θ)

(
√−2θ/σ)(1 + eσ

√−2θ) − θκ(1 − eσ
√−2θ)

= −
√−2θ

σ

((
√−2θ/σ) + θκ/(

√−2θ/σ) − θκeσ
√−2θ − 1

((
√−2θ/σ) + θκ/(

√−2θ/σ) − θκ)eσ
√−2θ + 1

= −
√−2θ

σ
tanh

(
σ

2

√−2θ + tan h−1

(
−σκ

√
−θ

2

))
. (A.102)

Therefore,

Λ(θ) := lim
T→0

T log E

[
e(θ/T 2)

∫ T
0 Stdt−(θ/T )κST

]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
2θ

σ
tan

(
σ

2

√
2θ + tan−1

(
−σκ

√
θ

2

))
S0, if 0 ≤ θ < θc

−
√−2θ

σ
tanh

(
σ

2

√−2θ + tan h−1

(
−σκ

√
−θ

2

))
S0, if θ ≤ 0

+∞, otherwise

. (A.103)

It is easy to show that Λf (θ) is differentiable for any θ < θc and Λ′
f (θ) → ∞ as θ ↑ θc. Hence,

P( 1
T

∫ T
0 Stdt − κST ∈ ·) satisfies a large deviation principle with the rate function If (κ, S0) given

in (49) by applying the Gärtner–Ellis theorem, see Theorem A.3 in Appendix A. �
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