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Minimum redundancy MIMO array
synthesis with a hybrid method based
on cyclic difference sets and ACO

jian dong, ronghua shi and ying guo

As a recently proposed concept, multiple-input multiple-output (MIMO) radars exhibit much higher spatial resolution than
traditional transmitter based radars because of the synthesized virtual array. In this paper, the problem of minimum redun-
dancy (MR)-MIMO array synthesis is addressed, which seeks to maximize the virtual array aperture of MIMO radars for a
given number of transmitting and receiving elements. A hybrid method combining autocorrelation property of cyclic differ-
ence sets (CDSs) and global search characteristics of ant colony optimization (ACO) is proposed for a rapid and
numerically-effective exploration of MR-MIMO array configurations. Numerical experiments validate the proposed
method, showing improvements in convergence rate and computational cost with respect to bare ACO-based search as
well as improvements in the generality and configuration variety with respect to the CDS-based method.
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I . I N T R O D U C T I O N

Recently, the concept of multiple-input multiple-output
(MIMO) radars has drawn remarkable attention [1, 2].
Different from traditional transmitter based radars which
emit coherent waveforms, MIMO radars emit orthogonal
waveforms or non-coherent waveforms at transmitting ends
and extract the waveforms at receiving ends with a set of
matched filters. A significant advantage of MIMO radars is
the highly improved spatial resolution [1–4]. The phase differ-
ences caused by different transmitting antennas along with the
phase differences caused by different receiving antennas can
form a new virtual array [4, 5] steering vector. With judicious-
ly designed antenna positions, one can synthesize a very long
virtual array with a small number of antennas. Therefore, the
spatial resolution can be dramatically increased at a small cost.

The problem of how to properly arrange the transmitting
and receiving (Tx/Rx) antenna elements in order to achieve
the optimally sampled virtual array has received interests.
Compared with uniform Tx/Rx arrays, thinned Tx/Rx arrays
[1, 2] can form a larger virtual array aperture and lead to
better spatial resolution performance. In [6], Wang et al. pro-
posed a polynomial factorization (PF) method for thinned
MIMO antenna array design. In this method, the locations
of Tx/Rx elements are analytically determined based on PF

to synthesize a uniform virtual array. However, there are
still a large number of redundant spacings in the resulting
virtual array. To further improve spatial resolution perform-
ance, Chen and Vaidyanathan [7] extended the minimum
redundancy (MR) idea [8, 9] originally used in the field of
radio astronomy and spectrum estimation to MIMO radars
and formulated the array design as a problem of
MR-MIMO array synthesis, which is to properly place Tx/
Rx elements to make the contiguous aperture of the virtual
array as large as possible. Similar problem was considered in
medical ultrasound imaging and direction of arrival estima-
tion from the viewpoint of difference co-array [10, 11] (i.e.
the spacing set of a given array). Although several classes of
reduced redundancy MIMO array configurations were
found in these studies, no effective methods were presented.

The difficulty in designing MR-MIMO arrays exists in the
fact that the inverse mapping from difference co-array of the
virtual array to Tx/Rx array configurations is analytically
unknown. For a very small number of Tx/Rx elements, an
exhaustive search (ES) [7] or a stochastic optimizer (e.g.
genetic algorithms (GAs) and particle swarm optimization
(PSO) [12]) can be used. However, for a slightly larger
number of Tx/Rx elements, these kinds of algorithms seem
infeasible due to the exponentially explosive search space
[12]. Recently, some classes of analytical binary sequences,
such as cyclic difference sets (CDSs) [13–15] and almost dif-
ference sets (ADSs) [16–18], have been applied to antenna
array pattern synthesis. These kinds of analytical methodolo-
gies present several potentials over other state-of-art
approaches such as computation efficiency and predictable
array performances (e.g. peak sidelobe levels (PSL)). In [19],
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we introduced CDSs into MIMO radar array designs firstly
and established the CDS-based methodology for MR-MIMO
array synthesis. In the framework of the CDS-based method-
ology, we derived the analytical locations of Tx/Rx elements
and demonstrated that the completeness of the co-array of
the virtual array can be guaranteed by CDSs’ autocorrelation
property. Also, we developed an enumerative shifting proced-
ure for identifying the optimal CDS-based MR-MIMO layout
[20]. Although the CDS-based methodology is analytical and
fast, the solutions provided are limited due to the finiteness of
obtainable CDSs [21–23]. To the best of our knowledge, few
other studies on MR-MIMO array designs have been found
up to date. In [6], the PF-based method can analytically syn-
thesize a uniform virtual array but the array aperture is much
smaller compared with MR-MIMO array designs. In [24],
ADSs were exploited to design MIMO array configurations
but the design objective is to maximize channel capacity in
MIMO communication systems.

In this paper, we propose a hybrid method based on CDSs
and ant colony optimization (ACO) for MR-MIMO array syn-
thesis to achieve the optimal spatial sampling. This method
can provide a large set of solutions at very small computation-
al costs which may greatly enrich the choice of the proper
array configurations in radar antenna applications. The rest
of this paper is organized as follows. In Section II, the
problem of MR-MIMO array synthesis is mathematically for-
mulated from the viewpoint of co-array. In Section III, the key
features of the CDS-based method and of the ACO-based
technique are firstly discussed. Then, the integrated procedure
is carefully described. In Section IV, selected numerical exam-
ples are provided to illustrate the effectiveness of the proposed
method. Finally, Section V sums up the paper and presents
conclusions.

I I . P R O B L E M F O R M U L A T I O N O F
M R - M I M O A R R A Y S Y N T H E S I S

Consider a collocated MIMO radar with an M-element linear
transmitting antenna array and an N-element linear receiving
antenna array. Let xTi and xRj denote the position of the ith
transmitting and the jth receiving antenna normalized by
unit spacing (usually half-wavelength), respectively, where
i ¼ 1, 2,. . ., M; j ¼ 1, 2,. . ., N. By transmitting orthogonal
waveforms and extracting the waveforms in each receiving
element with a set of matched filters, a virtual receiving
array with MN antenna elements located at [1, 2]

VA = xTi + xRj i = 1, 2, . . . ,M; j = 1, 2, . . . ,N
∣∣{ }

, (1)

can be synthesized. Thus, we can create an MN-element
virtual array with a large aperture by using only M + N phys-
ical antenna elements. Figure 1 shows an example of MIMO
radar antenna arrays with M ¼ 4 and N ¼ 3.

Correspondingly, the difference co-array (i.e. the spacing
set) of the virtual array can be expressed as

DVA ={xTi + xRj − (xTi′ + xRj′ )
∣∣

i, i′ =1, 2, . . . ,M; j, j′ = 1, 2, . . . ,N}.
(2)

Then, the redundancy R for MIMO arrays is defined as the
number of possible Tx/Rx element pairs divided by the largest

virtual array contiguous aperture L [19]

R = MN C2

L
= MN(MN − 1)

2L
, (3)

where pCq ¼ p!/q!(p 2 q)! is the number of combinations of p
items taken q at a time. In MR-MIMO array design, the idea is
to form a co-array which is minimally redundant in spacings;
that is, a co-array that captures all of the spacings with a
minimum number of Tx/Rx element pairs (ideally, each
element of a non-redundant co-array involves only a single
Tx/Rx element pair, i.e. R ¼ 1).

For a given total number of Tx/Rx elements, the
MR-MIMO array design can be generalized as a multi-
variable constraint optimization problem [19],

max
xTi{ }, xRj{ }

L; s.t. H(DVA) = 0, (4)

where the objective function L = min l � DVA| 1 ≤ l ≤ max{
(DVA)} − 1, the constraint function H(DVA) denotes the
number of holes (i.e. missing spacings) in the co-array and
can be computed by

H(DVA) =
∑L

l=1

(l [ DVA), (5)

where (l [ DVA) is equal to 0 if s belongs to DVA and 1 other-
wise. Note that, the completeness of the co-array are required
in order that a good point spread function with low sidelobe
levels for imaging applications can be obtained [1, 10] or a
covariance matrix can be estimated for direction of arrival
estimation or adaptive beamforming [9, 11].

In directly solving this optimization problem, there are
some difficulties:

– Firstly, the inverse mapping from the difference co-array of
the virtual array to Tx/Rx array configurations is analytical-
ly unknown.

– Secondly, there are only a few Tx/Rx array configurations
that satisfy constraint H(DVA) ¼ 0. Furthermore, to find
such an array configuration, a huge calculation burden is

Fig. 1. Illustration of a MIMO radar system: (a) transmitting array, (b)
receiving array, and (c) virtual array, with M ¼ 4 and N ¼ 3.
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required even for a small number of Tx/Rx antennas
because of the large synthesized virtual array aperture.

Usually, a numerical implementation described as follows
for this problem is preferable: Given transmitting element
number M and receiving element number N, an initial
maximum aperture L of the synthesized virtual array is
chosen to determine whether the Tx/Rx elements can be
placed at the proper locations so that all the required spacings
of the co-array are present, i.e. H(DVA) ¼ 0. If such Tx/Rx
configurations are found, L can be increased and the proced-
ure repeats until L grows too large. For such a numerical
implementation, stochastic optimization techniques (e.g.
PSO in [12]) seem good candidates because of their flexibility
and generality. Theoretically, they allow to effectively explore
the whole solution space and to figure out optimal MIMO
array layout. However, it is very difficult to find a satisfactory
solution after a number of iterations due to the exponentially
explosive solution space (e.g. when large MIMO array designs
are at hand). Fortunately, the introduction of analytical binary
sequences known as CDSs [19, 20] presents a deterministic
thinning methodology for MR-MIMO array synthesis. This
CDS-based methodology can analytically determine the loca-
tions of Tx/Rx elements and therefore is not affected by con-
vergence problems whatever the array size. However, the
provided solutions of MR-MIMO array are limited due to
the finiteness of obtainable CDSs [21–23]. In this paper, we
resort to the combination of an ACO-based stochastic opti-
mizer with a CDS-based method for a rapid and
numerically-effective exploration of the search space.

I I I . H Y B R I D S Y N T H E S I S M E T H O D

The objective of the synthesis is to find in a computationally
efficient way the optimum Tx/Rx array configurations in
terms of the contiguous virtual array aperture. Towards this
end, we propose a hybrid optimization method. In order to
point out the arguments that justify an integrated strategy,
the key features of the CDS-based method and of the
ACO-based synthesis technique are firstly discussed. Then,
the integrated procedure is carefully described.

A) CDS-based method
CDSs are combinatorial methods initially investigated in com-
binatorial mathematics and information theory [21–23] and
later applied to antenna array optimization [13–15, 19, 20].

A CDS D(V, K, L) is a set of K integers {dj} [21, 22]

0 ≤ d1 , d2 , · · · , dK , V, (6)

such that any integer v (0 , v , V ) can be represented
exactly L times in the form v ; dj − di (mod V), where
“mod V” means the difference is to be taken modulo V. The
parameters (V, K, L) of any CDS are connected by

K(K − 1) = L(V − 1), (7)

and so there are only two independent parameters among V,
K, and L. Given a CDS D(V, K, L), the set

D′ = {d1 + s, d2 + s, · · · , dK + s} ; D + s, (8)

where each element is taken modulo V, will also be a (V, K, L)
difference set. In this case, D’ is called a cyclic shift of D. If Dp

and Dq are two difference sets with the same parameters (V, K,
L) and Dp ¼ tDq + s for any integers t and s with t prime to V,
then Dp and Dq are called equivalent difference sets. For any
particular (V, K, L) satisfying (7) there may be no difference
sets, one difference set (disregarding equivalent sets), or
several nonequivalent difference sets.

The most attractive feature of a CDS originates from its
autocorrelation function expressed as [13]

C(t) =
∑V−1

k=0

akak+t =
K, if t(mod V) = 0
L, otherwise

{
, (9)

where

ak =
1, if k(mod V) [ D
0, otherwise

{
. (10)

It can be seen from (9) that the autocorrelation function of
a CDS is “two-valued”. Ultimately, it is this property that
makes CDSs an effective prescription for the design of
MR-MIMO arrays. In [19, 20], we demonstrated that by
placing Tx/Rx elements at the CDS-derived locations, a very
large virtual array aperture can be synthesized and the uni-
formity of its difference co-array is guaranteed by CDSs’ auto-
correlation property.

The M × N CDS-based MR-MIMO arrays are constructed
as follows,

{xTm} = {bm · V}
{xRn} = {dn},

(11)

where {dn} is a CDS with the parameters (V, N, 1), n ¼ 1,. . .,N,
d1 ¼ 0 is specified; L ¼ 1 is specified to ensure the synthesized
contiguous aperture L as large as possible; {bm|0 ≤ bm ≤ P,
m ¼ 1, 2, . . ., M} is a difference basis [25] for a (0, P)
segment such that any integer from this segment can be
expressed as a difference bm–bm’. In fact, an M-element differ-
ence basis corresponds to an M-element MR linear array in
the transmitting only or receiving only scenario [26].

The CDS-based method is a powerful analytical technique
for the MR-MIMO array synthesis. However, such efficiency
depends on the availability of a CDS for whatever size of the
array [13–15]. Although several families of CDSs have been
determined and extensive collections are also available [23],
it is well known that there is no corresponding CDS for
several K values [21, 22] (i.e. it is not possible to define a
binary sequence with a two-level periodic autocorrelation of
length K).

B) ACO-based method
ACOs are stochastic multiple-agents optimization algorithms
recently applied in the framework of antenna array optimiza-
tion [27–31]. The underlying concept of ACOs was originated
by imitating the collective behavior of ants choosing an
optimal path between the nest and the food source. In a
colony, each ant affects the path choice of the others by
marking the path it follows with a chemical called pheromone,
producing a positive feedback for the shortest path. The
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application of ACOs in the MR-MIMO array design could
come from the agent-based technique and also from its sim-
plicity in optimization procedure. The former means that
ACOs produce many optimized configurations simultaneous-
ly and allow for potential parallel implementation in modern
computers. The latter means ACOs are most effective for the
discrete nature of the problem at hand and do not need encod-
ing or decoding operations on chromosomes as in GAs or
PSO [12].

In each iteration, each ant constructs an (M + N)-node
path representing a candidate solution by applying the
random proportional rule

Pk
m(t) =

tm(t)[ ]a hm(t)
[ ]b

∑
s[Jk ts(t)[ ]a hs(t)

[ ]b m [ Jk

0 otherwise

⎧⎪⎨
⎪⎩ , (12)

where Pk
m(t) is the probability of a given node m to be chosen

for a path by ant k at iteration t, tm is the pheromone level of
node m, hm is the heuristic information of node m, and Jk is
the tabu list of nodes still to be visited by ant k. The parameters
a and b are weights balancing the relative influence of the
pheromone trail and the heuristic information. In particular,
the heuristic information in this problem is related to
number of holes in the difference co-array of virtual array, i.e.

h(X) = 1/H(DVA), (13)

where X ¼ [XT; XR] ¼ [{xTi};{xRj}] denotes the candidate
solution constructed by an ant. The inclusion of this heuristic
information will guide the ant-based solution construction
and obviously improve solution quality but at the cost of
much added computational expense.

In principle, ACO-based strategies allow to effectively
explore the whole solution space and to figure out the
optimal MR-MIMO layout with any given number of anten-
nas. However, if a-priori information is not available and/or
exploited, a satisfactory solution can be found only after a
non-negligible number of iterations. Clearly, the computa-
tional burden grows with the dimension of the solution
space (e.g. when large arrays are at hand).

C) Hybrid optimization strategy
The considerations outlined in the previous subsections
suggest that an improvement could be achieved by integrat-
ing the CDS-based method into the ACO optimization
process. More specifically, the limited quantity of
MR-MIMO array configurations in the CDS-based method
could be enriched by ACO global search capability, while
the uniform difference co-array of CDS-derived schemata
could be helpful to speed up the convergence of the ACO
procedure.

One possible way is to consider CDS-derived schemata as
a-priori knowledge to be inserted in the ACO search process
in order to improve its efficiency. Like CDS-based method
expressed in (11), we fix the receiving array by a CDS. Then
the reference transmitting array in the CDS-based method is
used as the local heuristic information to guide the ant-based
solution construction while maintaining global search capabil-
ity by pheromone level updating. The hybrid optimization
strategy is described as follows:

1) cds selection and initialization

At the initialization step, the element locations of the receiving
array (or the transmitting array, usually the array with a rela-
tively larger number of elements) are fixed as a CDS, i.e.

XR = XCDS
R = D(s)(V,K,L) K=N,L=1

∣∣ = D(s)(V,N, 1), (14)

where L ¼ 1 is specified to ensure the synthesized contiguous
aperture L as large as possible; D(s) = {d(s)

j [ ZV , j =
1, . . . ,N; s = 0, . . . ,V − 1 : d(s)

j = (dj + s) mod V| } is the
s-th cyclic shift difference set. With an enumerative shifting
procedure developed in [20], we can quickly find out the
optimal CDS with respect to L for given parameters (V, K,
L). Note that, CDSs with L ¼ 1 only exist for K ¼ q + 1
[21, 22], where q is a prime or a power of a prime. When
there are no such CDSs D(V, N, 1), in order to make our
method applicable for any given number of elements, a CDS
with the parameters (VCDS, KCDS, 1) (where KCDS is smaller
than N but very close to N) can be assumed as the starting
point of the receiving array for the optimization process.
Then, the remaining N-KCDS receiving elements can be ran-
domly inserted at any vacant position between 0 and V.

With this initialization, a significant advantage is the highly
reduced dimension of the search space because only the trans-
mitting array needs to be constructed by the ACO process.
Consider an M × N MIMO radar with the largest virtual
array aperture L. The total number Nt of possible configura-
tions (i.e. the dimension of the solution space) can be com-
puted as

Nt = LCM−1 · LCN−1, (15)

where pCq ¼ p!/q!(p 2 q)! is the number of combinations of p
items taken q at a time; In particular, xT1 ¼ 0 and xR1 ¼ 0
is specified. Let us define Nc

t as the total number of possible
configurations with the constraint of (14) and it can be
evaluated as

Nc
t = LCM−1. (16)

For example, assuming a MIMO radar with M ¼ 3, N ¼ 5,
and L ¼ 63 [7], we have Nt ≈ 1.16 × 109 and
Nc

t ≈ 1.95 × 103. It is clear that the total number of tries is
drastically reduced by introducing the constraint of (14).

2) aco-optimization

At each iteration, the ant-based optimization for the transmit-
ting array takes place through path construction and phero-
mone update taking into account the following simplified
heuristic information

h = 1/ XT − Xref
T

∣∣∣ ∣∣∣, (17)

where XT − Xref
T

∣∣∣ ∣∣∣ denotes the distance of the currently con-
structing transmitting array XT away from the reference trans-
mitting array Xref

T in the CDS-based method. By applying (17)
as the heuristic information, it can be expected that the
ant-based solution construction would be greatly speeded up
because of the use of a-priori geometrical information and
the reduced neighborhood for the current solution
component.
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3) termination

Given transmitting element number M, receiving element
number N, and the initial maximum virtual array aperture
L, the iterative optimization terminates when the constraint
H(DVA) ¼ 0 is satisfied.

Both mechanisms in (14) and (17) are aimed at constrain-
ing ACO to search Tx/Rx array configurations similar to
CDS-based ones, but with richer configuration choices due
to swarm-based optimization strategies. Therefore, with our
hybrid optimization strategy, the convergence of the ACO
procedures will be greatly speeded up because of the highly
reduced dimension of the search space and the CDS-guided
local information. On the other hand, the global search cap-
ability of this hybrid method is maintained thanks to the
ACO-based optimization. Moreover, the computational cost
is greatly reduced because of the fixed receiving (or transmit-
ting) array and the simplified heuristic information.

I V . N U M E R I C A L V A L I D A T I O N

In the following, numerical results will be presented and
compared with those obtained by the previous methods
[6, 7, 19] and the basic ACO, pointing out the advantages
of our hybrid optimization strategy. The assumed para-
meters for the ACO-based procedures are a ¼ 1 (weight
of pheromone level), b ¼ 5 � 10 (weight of heuristic infor-
mation), r ¼ 0.02 (pheromone decay rate), and Nant =

L/(MN)
⌊ ⌋

(number of ants). These algorithm parameters
have been chosen on the ground of several preliminary
simulations [30]. In fact, the inclusion of CDSs knowledge
makes an accurate tuning of ACO parameters not necessary.
Since the CDS-based planar MR-MIMO array can be easily
generated by “multiplying” two orthogonal CDS-based
linear MR-MIMO arrays [19], the following numerical
studies will be focused on the linear MR-MIMO array
synthesis.

Experiment #1: The first experiment deals with MR-MIMO
array synthesis with a small number of Tx/Rx antennas (M ¼
3, N ¼ 5). As a matter of fact, the design of a 3 × 5
MR-MIMO array is equal to the synthesis of a 15-element
MR virtual array for a given maximum contiguous aperture
L. In this case, an ES seems feasible for finding a
MR-MIMO array due to the not very high size of search
space. In [7], a solution was given by an exhaustive search:
{xTi} ¼ {0, 1, 3}, {xRj} ¼ {0, 6, 13, 40, 60}, and the resulting
virtual array with L ¼ 63 is VA ¼ {0, 1, 3; 6, 7, 9; 13, 14, 16;
40, 41, 43; 60, 61, 63}. Also, an optimal CDS-based solution
can be obtained from [19, 20]: {xTi} ¼ {0, 21, 63}, {xRj} ¼
{0, 3, 4, 9, 11}, and the resulting virtual array with L ¼ 72 is
VA ¼ {0, 3, 4; 9, 11, 21; 24, 25, 30; 32, 63, 66; 67, 72, 74}.
This solution is the best solution found up to date. Note
that, the spacing of 73 is missing in this virtual array.

In the framework of our hybrid strategy, given the receiv-
ing array as {xRj} ¼ {0, 3, 4, 9, 11}, which is an optimal CDS
with the parameters (21, 5, 1) obtained from [20], Table 1 pre-
sents several solutions obtained by the proposed method. All
these solutions are superior to that obtained by the ES [7] in
terms of the maximum contiguous aperture L and the redun-
dancy R of the virtual array, meaning higher spatial resolution
and a larger number of available degrees of freedom. Figure 2
shows the comparison of beampattern characteristics (e.g. half
power beamwidth (HPBW) and PSL) for four selected

MR-MIMO array configurations. These MR-MIMO arrays
with similar HPBWs have significantly different sidelobe per-
formances, which would be helpful to the selection of proper
configurations in antenna engineering applications. Basically,
MR-MIMO arrays exhibit higher sidelobe levels compared
with uniform MIMO arrays because of heavily thinning and
an optimized weighting of array elements is often required
in order to obtain a virtual array response with low sidelobes.
Figure 3 shows the convergence of the basic ACO and our
hybrid optimization method, respectively. Obviously, the con-
vergence rate of the optimization process improves when
using the hybrid strategy as compared with the bare ACO
approach. Moreover, the blindness of the start of the bare
ACO search is significantly reduced with the guide of the
quasi-CDSs-based structure.

Experiment #2: Dealing with the application of the hybrid
method to a higher complexity problem with a larger solution
space, let us consider the MR-MIMO array synthesis with
M ¼ 8 and N ¼ 18. As a matter of fact, the design of an 8 ×
18 MR-MIMO array is equal to the synthesis of a
144-element MR virtual array for a given maximum contigu-
ous aperture L. In this case, an ES or a bare stochastic opti-
mizer seems powerless for finding MR-MIMO arrays due to
the extremely large search space (e.g. being of the order of
1074 according to (15) when L ¼ 7000) and the rigid con-
straint function (i.e. H(DVA ¼ 0) in (4)). Given {xRj} ¼ {0,
12, 14, 34, 43, 59, 67, 80, 97, 103, 107, 108, 159, 178, 185,
217, 220, 235}, which is an optimal CDS with the parameters
(307, 18, 1) obtained from [20], Table 2 presents a small
portion of solutions as well as their performances obtained
by the proposed method. It can be seen that these
MR-MIMO array configurations with a modest number of
physical antennas can produce huge virtual array apertures,
meaning very few redundant spacings and very high spatial
resolutions.

Experiment #3: To further confirm the effectiveness of our
hybrid method, a representative example is performed by
choosing M ¼ 4 and N ¼ 7. In this case, no CDS sequence
with the parameters (43, 7, 1) is known or available
(because 7 cannot be expressed as the sum of 1 and a prime
or a power of a prime [21–23]) and therefore the
CDS-based method seems not workable. On the other hand,
a satisfactory solution of a 4 × 7 MR-MIMO array can only
be found by a “bare” ACO search after a huge number of itera-
tions considering the exponentially explosive computational
burden (e.g. being of the order of 1017 according to (15)
when L ¼ 200) and the rigid constraint function in (4).

Table 1. Solutions of MR-MIMO linear arrays obtained by the proposed
method (M ¼ 3, N ¼ 5, {xRj} ¼ {0, 3, 4, 9, 11}).

{xTi} L R

{0, 34, 55}∗;{0, 38, 55} 64 1.64
{0, 35, 56};{0, 37, 56} 65 1.62
{0, 21, 57};{0, 38, 57} 66 1.59
{0, 21, 58} 67 1.57
{0, 19, 59};{0, 21, 59} 68 1.54
{0, 21, 60} 69 1.52
{0, 40, 61}; 70 1.50
{0, 21, 63} 72 1.46

∗Mirror image arrays are considered equivalent, e.g. {0, 34, 55} and {0, 21,
55} are the same transmitting array.
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In the framework of our hybrid strategy, a CDS with the
parameters (31, 6, 1), e.g. D(31, 6, 1) ¼ {0, 1, 4, 10, 12, 17},
can be assumed as the starting point of the receiving array
for the optimization process. Then, the remaining one receiv-
ing element can be inserted at any vacant position between 0
and 43. By choosing {xRj} ¼ {0, 1, 4, 10, 12, 17, 32}, Table 3
presents a small portion of solutions obtained by the hybrid
optimization procedure. It can be observed that our hybrid
method greatly enriches actually obtainable MR-MIMO
array configurations despite no availability of CDS sequence
for some particular parameters (V, K, L) and thus extends
applicability of the CDS-based method.

To summarize, Table 4 presents the comparison of MIMO
arrays in terms of L and R between our hybrid method and
other previous methods. In the PF-based method [6], a
uniform virtual array is synthesized and its maximum con-
tiguous aperture is determined by MN-1. As far as the
spatial resolution performance is concerned, the PF-based
method seems not a good candidate compared with the
other designs aiming at a maximally thinned virtual array.
Due to the exponentially explosive search space, an ES [7]
can only provide good solutions for Experiment #1 within rea-
sonable iteration time. By introducing the multiple-agents
optimization strategies, ACO shows global search capability

Fig. 2. The comparison of beampatterns for four selected MR-MIMO array configurations. MIMO Array-I: {xTi} ¼ {0, 19, 59}, {xRj} ¼ {0, 3, 4, 9, 11}, and L ¼ 68.
MIMO Array-II: {xTi} ¼ {0, 21, 59}, {xRj} ¼ {0, 3, 4, 9, 11}, and L ¼ 68. MIMO Array-III: {xTi} ¼ {0, 40, 61}, {xRj} ¼ {0, 3, 4, 9, 11}, and L ¼ 70. MIMO Array-IV:
{xTi} ¼ {0, 21, 63}, {xRj} ¼ {0, 3, 4, 9, 11}, and L ¼ 72.

Fig. 3. Minimum number of holes versus the number of iterations by using the basic ACO (a) and the hybrid optimization method (b), respectively.
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and provides good solutions for Experiment #1 and #3.
However, the computational burden strongly increases with
the rising thinning rate (see (15)), which itself becomes not
acceptable for the designs with a relatively large number of ele-
ments (e.g. Experiment #2). The CDS-based method [19, 20]
can provide satisfactory solutions for Experiment #1 and #2
at a very small computational cost because of its analytical

construction procedures. However, since no CDS sequence is
available for Experiment #3, the CDS-based method becomes
infeasible in this case. By combining the attractive features of
CDS and ACO, the hybrid method can obtain satisfactory solu-
tions in a computationally effective way for all the three cases.

Further, in order to give an idea of computational efficiency
in the above experiments, Table 5 presents the comparison of
computational cost between the basic ACO and the hybrid
method. In this table, each iteration time ti, total run time
ttotal, and iteration number I are listed. All the reported
values have been obtained by averaging over 20 trials. We per-
formed the simulations in the following experimental
environment:

– —CPU: 3.2 GHz IntelwCore
TM

– —RAM: 4GB DDR
– —Language: MATLAB 2012

In conclusion, all these experimental results have demon-
strated that the proposed method outperforms the
CDS-based method [19, 20] in terms of the generality and
configuration variety, and outperforms the stochastic opti-
mization methods (e.g. ACO and PSO [12]) in terms of con-
vergence rate and computational cost.

V . C O N C L U S I O N

In this paper, a hybrid optimization method devoted to the
MR-MIMO array synthesis has been presented. The proposed
method exploits and combines the positive features of the
combinatorial techniques and of the stochastic optimization
techniques to obtain in a computationally effective way the
best solution in terms of MIMO virtual array aperture.
Numerical tests have been performed showing that the
hybrid method outperforms the CDS-based method in
terms of the generality and configuration variety, and outper-
forms the stochastic optimization methods in terms of conver-
gence rate and computational cost.

Table 2. Solutions of MR-MIMO linear arrays obtained by the proposed
method (M ¼ 8, N ¼ 18, {xRj} ¼ {0, 12, 14, 34, 43, 59, 67, 80, 97, 103, 107,

108, 159, 178, 185, 217, 220, 235}).

{xTi} L R

{0, 307, 614, 921, 2456, 3831, 5366, 6594} 6665 1.54
{0, 1228, 2763, 4138, 5673, 5980, 6287, 6594}
{0, 307, 614, 921, 2456, 3851, 5386, 6614} 6685 1.54
{0, 1228, 2763, 4158, 5693, 6000, 6307, 6614}
{0, 1228, 2763, 4165, 5700, 6007, 6314, 6621} 6692 1.54
{0, 1228, 2763, 4175, 5710, 6017, 6324, 6631} 6702 1.54
{0, 307, 1535, 2763, 4912, 5833, 6447, 6754}
{0, 307, 1228, 2149, 3684, 6140, 6447, 6754} 6825 1.51
{0, 307, 2149, 2456, 5219, 5833, 6447, 6754}
{0, 307, 614, 3377, 4605, 5526, 6447, 7061} 7132 1.44
{0, 307, 1228, 3070, 4912, 5526, 6447, 7061}

Table 3. Solutions of MR-MIMO linear arrays obtained by the proposed
method (M ¼ 4, N ¼ 7, {xRj} ¼ {0, 1, 4, 10, 12, 17, 32}).

{xTi} L R

{0, 31, 124, 186} 199∗ 1.90
{0, 34, 125, 190};{0, 61, 156, 190};{0, 63, 158, 190} 203 1.86
{0, 30, 128, 192};{0, 34, 128, 192};{0, 31, 127, 192} 205 1.84
{0, 34, 127, 195};{0, 34, 130, 195} 208 1.82
{0, 34, 129, 197} 210 1.80
{0, 34, 131, 199} 212 1.78
{0, 34, 133, 201} 214 1.77
{0, 34, 136, 204} 217 1.74

∗The best solution obtained by CDS-based method [19] in 4 × 6
MR-MIMO array synthesis also has L ¼ 199.

Table 4. Comparison of MIMO arrays between the hybrid method and other previous methods.

Experiment #1
(M 5 3, N 5 5)

Experiment #2
(M 5 8, N 5 18)

Experiment #3
(M 5 4, N 5 7)

Method L R L R L R

PF [6] 14 7.5 143 72 27 14
ES [7] 63 1.67 / / / /
ACO 70 1.50 / / 200 1.89
CDS [19, 20] 72 1.46 6825 1.51 / /
Hybrid 72 1.46 7132 1.44 217 1.74

Table 5. Comparison of computational cost between basic ACO and the hybrid method.

Experiment #1
(M 5 3, N 5 5, L 5 70)

Experiment #2
(M 5 8, N 5 18, L 5 7132)

Experiment #3
(M 5 4, N 5 7, L 5 200)

Method ti (s) ttotal (s) I ti (s) ttotal (s) I ti (s) ttotal (s) I

ACO 0.6 × 1023 3.5 5.8 × 103 0.64 / / 4.4 × 1023 189 4.3 × 104

Hybrid 1.6 × 1024 2.4 × 1022 148 0.7 × 1022 59 8.2 × 103 0.5 × 1023 0.27 518
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Future works will be aimed at extending the proposed
method to MIMO array synthesis with more complex and
realistic scenarios. Moreover, other analytical sequences with
good autocorrelation properties (e.g. ADSs, Hadamard differ-
ence sets [32], and McFarland difference sets [33] which
greatly extend the range of applicability of combinatorial
methods) will be investigated to verify their advantages and
potentialities for MIMO radar array designs.
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