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Abstract

The main result of this note implies that any function from the product of several vector spaces to a vector
space can be uniquely decomposed into the sum of mutually orthogonal functions that are odd in some of
the arguments and even in the other arguments. Probabilistic notions and facts are employed to simplify
statements and proofs.
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For any function f : R→ R, we have the known unique decomposition

f = f1 + f−1,

where the functions f1 and f−1 are even and odd, respectively, and they are given by
the formulas

f1(x) :=
f (x) + f (−x)

2
= E f (εx) and f−1(x) :=

f (x) − f (−x)
2

= E ε f (εx)

for real x, where ε is a Rademacher random variable, uniformly distributed on the set
{−1, 1}. Moreover, if f ∈ L2(R), then∫

R

f1(x) f−1(x) dx =
1
4

∫
R

f (x)2 dx −
1
4

∫
R

f (−x)2 dx = 0; (1)

that is, the even and odd parts of f are mutually orthogonal.
In this note, we shall extend these observations in several ways. First of all, we

shall allow f to take several arguments and also vector values. Moreover, we shall
use general involutions instead of the particular map x 7→ −x. Finally, instead of the
Lebesgue measure in the integrals in (1), we shall consider a general class of measures.

Let X be a set. Recall that an involution of X is a bijection ι : X→ X which coincides
with its inverse ι−1. For instance, the product (12)(34)(56)(78) of transpositions is an
involution of the set {1, . . . , 9}. Another example of an involution is the inversion
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C 3 z 7→ 1/z̄ ∈ C of the extended complex plane C = C ∪{∞}, with 1/0 := ∞ and
1/∞ := 0.

Take now any natural number n. Suppose that we have mutually commuting
involutions ι1, . . . , ιn of the set X, so that ι jιk = ιkι j for all j and k in the set
[n] := {1, . . . , n}. We write the composition of involutions, as well as their action,
simply as the corresponding concatenation: for any involutions ι and ι̃ of X and any
x ∈ X, ιι̃ := ι ◦ ι̃ and ιx := ι(x).

Example 1. Suppose that X = X1 × · · · × Xn, where X1, . . . , Xn are any sets with
involutions ι̃ j : X j → X j for j ∈ [n]. For each j ∈ [n], let ι j be the map

X 3 x = (x1, . . . , xn) 7→ ι jx := (x1, . . . , x j−1, ι̃ jx j, x j+1, . . . , xn).

Then ι1, . . . , ιn are mutually commuting involutions of the product set X.

For any x ∈ X and any ω = (ω1, . . . , ωn) ∈ {−1, 1}n, let

ωx :=
( ∏

j∈[n] : ω j=−1

ι j

)
x;

in particular, if ω = (1, . . . , 1) ∈ {−1, 1}n (so that the set { j ∈ [n] : ω j = −1} is empty),
then the above definition is understood as ωx := x, in accordance with the convention
that the product (that is, composition) of an empty family of transformations of a set
X is the identity map of X.

For j ∈ [n], let us say that a function g : X → V is j-odd if g(ι jx) = −g(x) for all
x ∈ X. Replacing here −g(x) by g(x), we get the definition of a j-even function. For
any J ⊆ [n], we say that g is J-odd-even if g is j-odd for each j ∈ J and j-even for each
j ∈ Jc := [n] \ J. Let us say that g is even if it is ∅-odd-even.

Let us say that a σ-algebra Σ over the set X is even if for any A ∈ Σ and any j ∈ [n]
the set ι jA := {ι jx : x ∈ A} is in Σ. A measure µ will be called even if it is defined on an
even σ-algebra Σ over X and µ(ι jA) = µ(A) for all A ∈ Σ and j ∈ [n].

Theorem 2. Take any function f : X → V. Then we have a decomposition of the form

f =
∑
J⊆[n]

fJ , (2)

where the function fJ : X → V is J-odd-even for each J ⊆ [n].
This decomposition is uniquely determined by the function f . More specifically,

necessarily
fJ(x) = gJ(x) := E εJ f (εx) (3)

for all J ⊆ [n] and x ∈ X, where ε = (ε1, . . . , εn) is a uniformly distributed random
element of the set {−1, 1}n and

εJ :=
∏
j∈J

ε j.

Moreover, the decomposition (2) is orthogonal in the following sense: if the vector
space V is endowed with an inner product 〈·, ·〉 and f ∈ L2(X, µ, V) for some even
measure µ, then for any distinct subsets J and K of the set [n] the orthogonality
condition

∫
X〈 fJ(x), fK(x)〉 µ(dx) = 0 holds.
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Proof. Note that ∑
J⊆[n]

E εJ f (εx) = E f (εx)
∑
J⊆[n]

εJ

= E f (εx)
∏
j∈[n]

(1 + ε j)

= E f (εx)2n I{ε1 = · · · = εn = 1}
= E f (x)2n I{ε1 = · · · = εn = 1}
= f (x)2n P(ε1 = · · · = εn = 1) = f (x)

for all x ∈ X, where I{·} denotes the indicator function. So, (2) holds with fJ as in (3).
Next, take any J ⊆ [n] and any j ∈ [n], and let

ε( j) := (ε1, . . . , ε j−1,−ε j, ε j+1, . . . , εn).

Then ε( j) is uniformly distributed on the set {−1, 1}n, so that, for each x ∈ X,

E εJ f (ει jx) = E(ε( j))J f (ε( j)ι jx) = E(ε( j))J f (εx) =

−E εJ f (εx) if j ∈ J,
E εJ f (εx) if j ∈ Jc;

the second of the equalities in the line above holds because ε( j)ι jx = εx, which in turn
is true because the involutions ι1, . . . , ιn are mutually commuting (it is only here that
this commutativity condition is used). This shows that the function fJ in (3) is indeed
J-odd-even.

Further, take any distinct subsets J and K of the set [n]. Take any j that belongs to
exactly one of the sets J and K. Then one of the functions fJ and fK defined according
to (3) is j-odd and the other one is j-even. So, the function X 3 x 7→ 〈 fJ(x), fK(x)〉 ∈ R
is odd. Since the measure µ is even, it follows that indeed

∫
X〈 fJ(x), fK(x)〉 µ(dx) = 0.

Finally, take any x ∈ X and suppose that (2) holds with some J-odd-even functions
fJ : X → V . Then, for any J ⊆ [n],

fJ(εx) = εJ fJ(x)

and hence, for any K ⊆ [n],

E εK fJ(εx) = E εKεJ fJ(x) = I{J = K} fJ(x),

because the ε j are independent zero-mean random variables. So, by the definition of
gJ(x) in (3) and the assumed decomposition (2),

gK(x) = E εK f (εx) =
∑
J⊆[n]

E εK fJ(εx) =
∑
J⊆[n]

I{J = K} fJ(x) = fK(x),

which proves the uniqueness of the decomposition (2), that is, the first equality in (3).
This concludes the proof of the theorem. �
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Remark 3. Another way to prove the uniqueness statement in Theorem 2 is to use
the orthogonality statement. Indeed, without loss of generality we may assume that
V = R; otherwise, replace f by ` ◦ f , where ` is an arbitrary linear functional on
the vector space V . Therefore, and because R is naturally endowed with an inner
product, we may indeed use the orthogonality statement in Theorem 2 for any even
measure µ. To choose such a measure most conveniently, fix any x ∈ X and let µ be
the uniform probability distribution on the set Ωx := {ωx : ω ∈ {−1, 1}n}. The mutual
orthogonality in L2(X, µ) of the summands fJ in the decomposition (2) implies that
the fJ are uniquely determined (by f ) µ-almost everywhere. Since µ is the uniform
probability distribution on the finite set Ωx and Ωx 3 x, we conclude that the values of
fJ(x) are uniquely determined by f for all J ⊆ [n] and for each x ∈ X.

To illustrate Theorem 2, consider Example 1 with n = 2, X1 = X2 = R and ι̃ ju := −u
for j = 1, 2 and u ∈ R. Then, for any function f from X = R2 to any vector space V , we
have the decomposition (2) with

f∅(u, v) = 1
4 ( f (−u,−v) + f (−u, v) + f (u,−v) + f (u, v)),

f{1}(u, v) = 1
4 (− f (−u,−v) − f (−u, v) + f (u,−v) + f (u, v)),

f{2}(u, v) = 1
4 (− f (−u,−v) + f (−u, v) − f (u,−v) + f (u, v)),

f{1,2}(u, v) = 1
4 ( f (−u,−v) − f (−u, v) − f (u,−v) + f (u, v))

for all (u, v) ∈ X = R2. Here, f∅(u, v) is even in u and in v; f{1}(u, v) is odd in u and even
in v; f{2}(u, v) is even in u and odd in v; and f{1,2}(u, v) is odd in u and in v.

The orthogonality statement in Theorem 2 means that, for any even measure µ and
any J ⊆ [n], the summand fJ in the decomposition (2) equals PJ f , where PJ is the
orthogonal projector of Hµ := L2(X, µ, V) onto the linear subspace (say Hµ;J) of Hµ

consisting of all J-odd-even functions in Hµ. This fact can be naturally used to study
the distance from a given function f ∈ Hµ to any such subspace Hµ;J , or to the direct
sum of some of these mutually orthogonal subspaces, possibly in contexts with the
presence of stochastic noise.

In fact, this note was sparked by the paper [1], which is devoted to extraction of
signals from noisy data. Of particular interest to us is decomposition (14) in [1],
for X = R2, with involutions ρ, ρ1, ρ2 of R2 given by the formulas ρ(u, v) := (v, u),
ρ1(u, v) := (−u, v) and ρ2(u, v) := (u,−v) = −ρ1(u, v) for (u, v) ∈ R2. More specifically,
formula (14) in [1] provides a decomposition of an arbitrary function q : R2 → R into
the sum of five functions, denoted by q(D4), q(D2), q(C1)

x , q(C1)
y , q(R2) in [1], where:

q(D4) is even with respect to ρ, ρ1 and ρ2;
q(D2) is odd with respect to ρ, and even with respect to ρ1 and ρ2;
q(C1)

x is odd with respect to ρ1 and even with respect to ρ2;
q(C1)

y is even with respect to ρ1 and odd with respect to ρ2;
q(R2) is odd with respect to ρ1 and ρ2.

One may note that here the role of the involution ρ differs from the roles of each of the
involutions ρ1 and ρ2.
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The set {ρ, ρ1, ρ2} of involutions generates the dihedral group D4 (of order eight)
of all symmetries of a square [3]; in fact, each of the sets {ρ, ρ1} and {ρ, ρ2} already
generates D4. However, the group-generating involutions ρ and ρ1 do not commute
with each other. Moreover, since the dihedral group D4 is not commutative, it cannot
be generated by any set of mutually commuting involutions. On the other hand, the
commutativity of the involutions ι1, . . . , ιn was needed in the proof of Theorem 2 to
show that the summands fJ in the decomposition (2) are J-odd-even. So, it is unclear
whether analogues of the decomposition (2) can exist for nonabelian groups.

In [2], a decomposition of functions f of several variables x1, . . . , xn into the sum
of functions f (J) with J ⊆ [n] was presented, where each function f (J) depends only on
the subset {x j : j ∈ J} of variables. Certain sufficient conditions were given in [2] for
the f (J) to be mutually orthogonal.
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