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Generation mechanism of a hierarchy of vortices
in a turbulent boundary layer
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To understand the generation mechanism of a hierarchy of multiscale vortices in
a high-Reynolds-number turbulent boundary layer, we conduct direct numerical
simulations and educe the hierarchy of vortices by applying a coarse-graining method
to the simulated turbulent velocity field. When the Reynolds number is high enough
for the premultiplied energy spectrum of the streamwise velocity component to
show the second peak and for the energy spectrum to obey the −5/3 power law,
small-scale vortices, that is, vortices sufficiently smaller than the height from the wall,
in the log layer are generated predominantly by the stretching in strain-rate fields at
larger scales rather than by the mean-flow stretching. In such a case, the twice-larger
scale contributes most to the stretching of smaller-scale vortices. This generation
mechanism of small-scale vortices is similar to the one observed in fully developed
turbulence in a periodic cube and consistent with the picture of the energy cascade.
On the other hand, large-scale vortices, that is, vortices as large as the height, are
stretched and amplified directly by the mean flow. We show quantitative evidence of
these scale-dependent generation mechanisms of vortices on the basis of numerical
analyses of the scale-dependent enstrophy production rate. We also demonstrate
concrete examples of the generation process of the hierarchy of multiscale vortices.

Key words: boundary layer structure, turbulent boundary layers, vortex dynamics

1. Introduction

Turbulence at a high Reynolds number consists of innumerable vortices with various
scales. Although the characteristics of large-scale vortices depend on the driving force
and/or the boundary conditions of the flow, the statistics of smaller-scale vortices are
independent of them. This small-scale universality was predicted by the similarity
hypothesis of Kolmogorov (1941) and it has been supported by many experiments
and direct numerical simulations (DNS) of statistically stationary turbulence. The
similarity hypothesis therefore gives the basis for the theories of turbulence. In
textbooks on turbulence (Tennekes & Lumley 1972; Frisch 1995; Davidson 2004),
the origin of the hypothesis is explained in terms of the energy cascade. Namely,
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through the scale-by-scale energy transfer from larger to smaller vortices, small-scale
vortices become independent of the characteristics of the large-scale vortices.

Although the energy cascade is essential in the dynamics of turbulence, its physical
mechanism is not fully understood. This is because we need to investigate the
dynamics of three-dimensional structures in turbulence at high Reynolds numbers
with a sufficiently large scale separation. For the turbulence in a periodic cube, which
is a model of turbulence away from solid walls, many authors (Kerr 1985; Hussain
1986; Melander & Hussain 1993; Goto 2008, 2012; Cardesa, Vela-Martin & Jiménez
2017; Goto, Saito & Kawahara 2017) investigated the physical mechanism of the
energy cascade. In a periodic cube, smaller-scale turbulent vortices are created by
vortex stretching in larger-scale strain-rate fields. However, in a periodic cube, we
need an external body force to sustain the hierarchy of vortices. On the other hand, in
a more realistic situation, where an external body force is absent (or rotation-free), it
is a solid wall that generates vorticity. The main aim of the present study is to reveal
the sustaining mechanism of a hierarchy of multiscale vortices in a fully developed
zero-pressure-gradient turbulent boundary layer over a flat plate, which is the most
fundamental turbulent flow near a wall.

Although DNS of the wall-bounded turbulence have revealed quite a few pieces of
important knowledge of its dynamics and statistics (see the review by Jiménez (2018)
and references therein), there are only a few studies that focus on the small-scale
universality. Jiménez (2012) reviewed studies at that time on the self-similarity of
the flow structures and cascades in wall-bounded turbulence. Recently, Cimarelli
et al. (2016) examined energy cascade in turbulent channel flows to show that
the anisotropic production and inhomogeneous flux lead to complex dynamics
of the cascades. We emphasize that current supercomputers are powerful enough
to investigate the physics behind the small-scale universality of the wall-bounded
turbulence. In fact, the DNS (e.g. Schlatter et al. 2014), as well as the experiments
(e.g. Hutchins & Marusic 2007), of high-Reynolds-number turbulent boundary layers
show the so-called second peak (see figure 2c, below) of the premultiplied spanwise
energy spectrum. As will be discussed below (see § 2.1), the appearance of the second
peak is evidence of the scale separation, because it is associated with the existence
of large-scale structures (Tomkins & Adrian 2003; Hambleton, Hutchins & Marusic
2006; Hutchins & Marusic 2007; Dennis & Nickels 2011b; Schlatter et al. 2014;
Lee, Sung & Zaki 2017). Incidentally, the second peak was observed not only in
turbulent boundary layers but also in turbulence in a pipe (Kim & Adrian 1999) and
in a channel (Abe, Kawamura & Choi 2004; Toh & Itano 2005; Hwang 2015). Some
of the studies demonstrated that it is associated with large-scale counter-rotating roll
modes (del Álamo et al. 2006; Marusic & Hutchins 2008; Hutchins et al. 2012). We
therefore conduct DNS of a turbulent boundary layer with the second peak of the
premultiplied spanwise energy spectrum to investigate the generation mechanism of
multiscale vortices in the turbulence. Though the Reynolds number examined in the
present study is not higher than the recent DNS by other authors (e.g. Borrell, Sillero
& Jiménez 2013; Schlatter et al. 2014), we use a simple coarse-graining method
and detailed statistical analysis to reveal the multiscale nature of turbulent boundary
layers.

The scope of the present study is in revealing the real-space image and sustaining
mechanism of the hierarchical structure of multiscale vortices in a high-Reynolds-
number turbulent boundary layer. These lay the foundation for future studies on
the energy cascade and small-scale universality of wall-bounded turbulence. More
concretely, in the present paper, we propose the scenario of the generation mechanism
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of the hierarchy of vortices in a high-Reynolds-number turbulent boundary layer.
(i) In the log layer of high-Reynolds-number turbulent boundary layers, large- and
small-scale vortices coexist. Large-scale vortices with the size of the order of the
distance from the wall are stretched and amplified by the mean flow, whereas
smaller-scale vortices are generated predominantly by stretching in strain-rate fields
induced by the large-scale vortices. In other words, small-scale vortices are created
by an energy cascade process. (ii) In the buffer layer, in contrast, since there is no
scale separation, vortices are stretched directly by the mean flow. (iii) Similarly, in
low-Reynolds-number turbulent boundary layers, there are only vortices with the size
of the order of the boundary layer thickness, and they are stretched and amplified
directly by the mean shear. The crossover of the dominance of the stretching from
mean flow to larger-scale vortices occurs at a Reynolds number at which the energy
spectrum shows the inertial-range scaling.

In the rest of the present paper, we quantitatively verify the proposed scenario of
the generation mechanism of the hierarchy of vortices. For this purpose, we identify
the hierarchy of multiscale vortices by applying a Gaussian filter to the DNS velocity
field. Numerical schemes of the DNS and the coarse-graining method are described
in § 2. By analysing the coarse-grained velocity field, we numerically examine, in § 3,
how vortices at a given scale are created. These statistical analyses allow us to verify
the proposed scenario. Furthermore, we demonstrate, in § 4, concrete examples of the
generation process of the hierarchy of vortices in the log layer, which also support
the scenario.

2. Numerical methods
2.1. Direct numerical simulation

We numerically simulate a zero-pressure-gradient turbulent boundary layer over a flat
plate by solving the Navier–Stokes equations of an incompressible fluid by a standard
finite difference scheme. The streamwise, wall-normal and spanwise directions are
denoted by x, y and z, and the velocity components in these directions are by u, v
and w, respectively. The terms in the governing equations are spatially discretized by
using a fully conservative second-order central difference scheme on a staggered grid
(Kajishima & Taira 2017, pp. 73–146). A non-uniform grid is set in the wall-normal
direction so that small-scale structures in the near-wall region are well resolved (the
grid width in the wall-normal direction is always finer than 1.5η in terms of the
Kolmogorov length η). The viscous terms are integrated in time implicitly by using the
second-order Crank–Nicolson method and the convective terms are treated explicitly
by using the second-order Adams–Bashforth method. Applying the simplified marker
and cell (SMAC) method (Amsden & Harlow 1970) to the governing equations, we
solve the four-step time-advancement equations.

Since the difficulty of the DNS of high-Reynolds-number turbulent boundary layers
stems from the inflow turbulence generation, several techniques have been proposed
(see the review by Wu (2017) for methods about how to impose an inlet condition).
In the present study, we use the time-series data of the fully developed turbulent
velocity field at Reθ = U∞θ/ν = 1200 (Reτ = uτδ99/ν = 452) provided by Lee et al.
(2013, 2017) for the inflow condition, where U∞ is the free-stream velocity, θ is the
momentum thickness, ν is the kinematic viscosity, and uτ is the skin-friction velocity.
For the top boundary conditions (y = Ly), we impose ∂u/∂y = ∂w/∂y = 0 and the
suction velocity v, which is determined (in the same way as in Lee et al. (2017))
by the experimental data (Monkewitz, Chauhan & Nagib 2008), to maintain a zero
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FIGURE 1. (Colour online) Wall-normal profiles of (a) the mean streamwise velocity and
(b) the root-mean-square values of the fluctuation velocity components and the turbulent
stress. Red line, the present DNS at Reθ = 1410; blue line, the present DNS at Reθ = 3030;
open circles, Schlatter & Örlü (2010) at Reθ =1410; open squares, Schlatter & Örlü (2010)
at Reθ = 3030. In (a) the grey dashed lines indicate the law of the wall: U+ = y+ and
U+ = (1/κ) ln(y+)+ B, with κ = 0.384 and B= 4.1.

Reθ (Lx, Ly, Lz) (Nx,Ny,Nz) (1x+, 1y+min, 1z+)

1200–3620 (1200, 80, 80)θin (6112, 616, 768) (9.2, 0.28, 4.9)

TABLE 1. Numerical parameters of the DNS. Here, Lx, Ly and Lz are the sides of the
computational domain (where θin is the momentum thickness at the inlet), Nx, Ny and
Nz are the numbers of grid points, and 1x+, 1y+min and 1z+ are the resolutions at the
downstream exit.

streamwise pressure gradient on average. The non-slip boundary condition is imposed
at the wall (y= 0). The boundary condition at the exit (x= Lx) of the computational
domain is ∂ui/∂t + Uc∂ui/∂x = 0, where Uc is the bulk velocity at the exit, with a
small correction to enforce the global mass conservation (see Simens et al. 2009). The
periodic boundary condition is imposed in the spanwise direction.

The numerical parameters of this DNS are given in table 1. The domain size is the
same as the DNS of Lee et al. (2017) and the number of grid points is also almost
the same. To validate this simulation, figure 1 shows the wall-normal profiles of the
mean streamwise velocity U and root-mean-square values u′rms, v

′

rms and w′rms of the
velocity components and the turbulent stress u′v′ at two different Reynolds numbers,
which are in good agreement with the results of Schlatter & Örlü (2010) as well as
Lee et al. (2017). Here, the superscript plus sign ·+ denotes the wall units defined in
terms of uτ and ν; and the overbar · denotes the average in the spanwise direction
and time.

Before verifying the scenario of the sustaining mechanism of a hierarchy of
multiscale vortices, it is important to show that the simulated turbulence is fully
developed to have a hierarchy. Figure 2(a) shows the spanwise energy spectrum
Euu(kz) (non-dimensionalized by the mean energy dissipation rate ε and by ν) of the
streamwise velocity component at the three heights (y+ = 10, 70 and 200) for the
Reynolds number Reθ = 3170 (x= 980θin). We can see that the turbulence at y+= 200
has a broad energy spectrum, which approximately obeys the −5/3 power law. We
therefore expect that the turbulence is composed of a hierarchy of multiscale vortices.
The scaling range disappears in the near-wall region.
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FIGURE 2. (Colour online) (a) Spanwise energy spectrum E+uu (non-dimensionalized by the
mean energy dissipation rate ε and by ν) of the streamwise velocity component at three
heights, y+ = 10 (red), 70 (green) and 200 (blue), at a streamwise location corresponding
to Reθ = 3170. The grey dashed line indicates the −5/3 power law, Euu ∝ k−5/3

z . (b) The
same as in (a) but in wall units. The arrows indicate the spanwise wavenumber (k+z =
1/σ+) corresponding to the three filter scales in figure 4. (c) Premultiplied spanwise energy
spectrum k+z E+uu of the streamwise velocity component at Reθ = 3170 as a function of the
height y+ and the spanwise wavelength λ+z . The coloured lines indicate the heights for
which Euu is shown in (a) and (b).

We also plot the premultiplied energy spectrum k+z E+uu as a function of the
wavelength λ+z and the height y+ in figure 2(c). We observe not only the first peak at
y+ ≈ 10 and λ+z ≈ 102 but also the second one at y+ ≈ 102 and λ+z ≈ 103. It is often
explained that the former peak indicates the near-wall streak structure and the latter
large-scale motion. It is evident in figure 2 that when the −5/3 power law of Euu

is established (the blue curves in figure 2a,b), the second peak of the premultiplied
energy spectrum also appears (figure 2c). As will be shown below (see figure 9 in
§ 3.2), the Taylor-length-based Reynolds number Reλ is approximately 90 at y+= 300
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and Reθ = 3170, where the second peak is observed. This is consistent with the
appearance of the inertial range, which requires Reλ & 50. We will show in the
following that the generation mechanisms of vortices are essentially different in low-
and high-Reynolds-number turbulent boundary layers. Here, high-Reynolds-number
turbulence denotes the flow with a hierarchy of vortices in real space and with the
statistics such as the −5/3 power law of Euu and the second peak of kzEuu.

2.2. Coarse-graining method
Several methods have been proposed to identify the hierarchy of vortices at different
scales. For example, a band-pass filter (Leung, Swaminathan & Davidson 2012;
Goto et al. 2017) or a low-pass filter (Goto 2008, 2012) of the Fourier modes were
used for turbulence in a periodic cube. However, we cannot educe the structures
at an arbitrary scale using these methods in a turbulent boundary layer, since the
flow is inhomogeneous in the streamwise and wall-normal directions. For turbulent
boundary layers, to separate the near-wall streak structures from the larger-scale flow,
Tomkins & Adrian (2003) used low-pass filtering only in the spanwise direction.
Lee & Sung (2011) and Lee et al. (2017) applied Gaussian filters to the velocity to
highlight large-scale motions in turbulent boundary layers, and many other authors
(Lee et al. 2014; Hwang et al. 2016; Lozano-Durán, Holzner & Jiménez 2016, e.g.)
used Gaussian filters to identify arbitrary-scale motions in turbulent channel flows.
Incidentally, del Álamo et al. (2006) extracted large-scale vortical structures by
conditionally averaging velocity fields.

In this study, we also identify quantities at a given scale by applying the three-
dimensional Gaussian filter to the velocity field,

ũi(x, y, z; σ) =
∑

zp

∑
yp

∑
xp

ui(xp, yp, zp)

×C(y) exp
(
−

2
σ 2
((xp − x)2 + (yp − y)2 + (zp − z)2)

)
1x1y1z︸ ︷︷ ︸

K(xp,yp,zp;x,y,z)

.

(2.1)

Here, xp, yp and zp are located at grid points, and C is a coefficient to ensure that the
summation of the Gaussian kernel, K, is unity, i.e.∑

zp

∑
yp

∑
xp

K(xp, yp, zp; x, y, z)= 1. (2.2)

Note that the filter scale σ is twice as large as that defined in Lee et al. (2017).
The Gaussian filter corresponds to the low-pass filter of the Fourier mode, and the
coarse-grained velocity ũi defined by (2.1) contains the information larger than σ . We
evaluate the coarse-grained quantity q(σ ) from the coarse-grained velocity ũi.

3. Results
3.1. Hierarchy of vortices

To capture vortical structures in turbulent shear flows, the second invariant
Q (= 1/2ΩijΩij − 1/2SijSij) of the velocity gradient tensor is widely used, where
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u = U∞

Reœ = 3170

Reœ = 2940 u = 0

FIGURE 3. (Colour online) Isosurfaces of the second invariant Q+ (= 1.6× 10−3) of the
velocity gradient tensor. The threshold is set as mQ + 0.4sQ. The colour indicates the
streamwise velocity u, ranging from u= 0 (blue) to u= U∞ (red). Half of the spanwise
direction of the computational domain is visualized. The Reynolds number Reθ changes
from 2940 to 3170 in the streamwise direction. The flow is from lower left to upper right.
The black grid width is 200 wall units evaluated at the plane corresponding to Reθ = 2860,
and the blue solid line indicates the 99 % boundary layer thickness δ99.

Ωij and Sij are the rate-of-rotation and rate-of-strain tensors. Setting the criterion
as Q > Q0, with Q0 being a positive threshold, we can identify vortical regions.
Let us start by observing vortical structures identified by the Q criterion without
the coarse-graining. Previous DNS of turbulent boundary layers at high Reynolds
numbers showed that hairpin vortices disappear in downstream regions (Jiménez et al.
2010; Schlatter et al. 2014). Our DNS also shows similar results. Figure 3 illustrates
the vortical structures obtained by our DNS with a choice of Q0 = mQ + 0.4sQ, so
that those in the log layer are visualized. Here, mQ and sQ are, respectively, the
mean and standard deviation of Q at y+ = 200 and Reθ = 3170. Some of the vortices
visualized in the region apart from the wall are arch-like, but they are not connected
to streamwise vortices. Schlatter et al. (2014) also showed similar results by using
the λ2 criterion (Jeong & Hussain 1995). Here, λ2 is the second eigenvalue of
SikSkj +ΩikΩkj. These DNS results imply that it is hard to identify hairpin vortices
by using the Q or λ2 criteria in a turbulent boundary layer at high Reynolds numbers.
We must, however, emphasize that the velocity gradient tensor, and therefore Ωij,
Sij, Q and λ2, are associated with the smallest-scale vortices. Therefore, the Q or λ2
criterion identifies only the smallest-scale vortices. Multiscale vortices ranging from
the length of the order of the boundary layer thickness to the Kolmogorov length
coexist in the turbulence at high Reynolds numbers. Therefore, until we identify each
scale of the vortices, we cannot approach the intrinsic vortex dynamics in a turbulent
boundary layer.

Next, to identify such multiscale coherent structures, and to quantitatively verify
the scenario proposed in § 1, we apply the Gaussian filter (2.1) to the velocity
field. We show the isosurfaces of the second invariant Q(σ ) of the velocity gradient
tensor coarse-grained at three length scales in figure 4, to see if a hierarchy of
vortices can be captured by this coarse-graining method. The three filter scales are
set as σ⊕ = 10 (figure 4a), 40 (figure 4b) and 160 (figure 4c), where ·⊕ denotes
non-dimensionalization in wall units at Reθ = 2860. The arrows in figure 2(b) indicate
the spanwise wavenumbers corresponding to these filter scales. We choose the
thresholds of the isosurfaces as Q0 = mQ + 0.5sQ so that the vortices in the log
layer are visualized. Figure 4 shows that a hierarchy of vortices indeed exists in the
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(a) (b)

(c) (d)

Reœ = 3170

Reœ = 2940

FIGURE 4. (Colour online) Isosurfaces of the second invariant of the velocity gradient
tensor coarse-grained at (a) σ⊕=10, (b) 40 and (c) 160 at the same instant and location as
in figure 3. Thresholds are set as Q=mQ+0.5sQ, namely, (a) Q(σ )+

=1.6×10−3, (b) 3.8×
10−4 and (c) 2.9 × 10−5. The black grid width is 200 wall units evaluated at the plane
corresponding to Reθ = 2860, and the blue solid line indicates the 99 % boundary layer
thickness δ99. (d) All structures in (a–c) are simultaneously visualized.

turbulent boundary layer. Noting that 200 wall units are indicated by the grid width,
we may see that the length scales of the vortices approximately correspond to the
filter scales. In particular, we notice that at σ⊕ = 160 (figure 4c) the larger-scale
vortices have spatially organized structures and some of them are arch-like (see
§ 4.1 for more detailed discussions). We emphasize that these structures are invisible
without the coarse-graining, even if we use lower thresholds of the isosurfaces. On the
other hand, the small-scale vortices (σ⊕ = 10, figure 4a) are similar to the structures
(figure 3) without the coarse-graining.

3.2. Scale-dependent contributions to the stretching

The transport equation of the enstrophy 1/2|ωi|
2 is expressed by

1
2

D|ωi|
2

Dt
=ωiSijωj + νωi∇

2ωi, (3.1)

where ωi is the vorticity. The enstrophy is amplified only when the enstrophy
production term ωiSijωj is positively large, because the viscous term νωi∇

2ωi weakens
the enstrophy. We can therefore see how the vortices are amplified by investigating
the magnitude of the enstrophy production term.

For a turbulent boundary layer,

ω1 =ω2 = 0, (3.2)
S13 = S31 = S23 = S32 = S33 = 0, (3.3)

where
ωi =ωi +ω

′

i, Sij = Sij + S′ij. (3.4a,b)
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FIGURE 5. (Colour online) Wall-normal distribution of each term of (3.5) at the stream-
wise location corresponding to Reθ = 3170. Red, 2ωiS

′

ijω
′
j
+

; green, ω′iSijω
′
j

+

; blue, ω′iS
′

ijω
′
j
+

.
The inset shows the close-up for the range 102 6 y+ 6 103.

Here, the overbar · denotes the average in the spanwise direction and time, the prime
·
′ denotes the deviation from the mean, and the subscripts 1, 2 and 3 denote the x, y

and z directions, respectively. Substituting (3.4) into the production term on the right-
hand side of (3.1) and taking the average, we can rewrite it as

ωiSijωj = 2ωiS
′

ijω
′
j +ω

′
iSijω

′
j +ω

′
iS
′

ijω
′
j. (3.5)

Here, we have used (3.2) and (3.3).
In figure 5, we show the wall-normal distribution of each term of (3.5) at the

streamwise location corresponding to Reθ = 3170. The first term 2ωiS
′

ijω
′
j (red line) is

important only in the viscous sublayer, and it has a positive peak at y+ ≈ 3.
The second and third terms are more important for the generation mechanism of

vortices in the buffer and log layers. The second term ω′iSijω
′
j has a peak at y+ ≈ 10,

and it decreases away from the wall. This trend means that the enstrophy produced
by the strain-rate fields induced by the mean velocity is dominant in the buffer layer.
As will be shown below, this corresponds to the event that the mean flow stretches
the vortices in the buffer layer. However, this effect becomes less important in the
log layer (y+ & 102), where the third term ω′iS

′

ijω
′
j is the largest. In other words,

the enstrophy in the log layer, where a hierarchy of vortices exists, is generated
predominantly by the stretching by the turbulent fluctuation rather than the mean
flow.

Next, we investigate the scale dependence of the contribution of the rate-of-strain
tensor to the enstrophy production. For this purpose, we introduce a quantity

GS(σS→ σω)=

(
ω
′(σω)
i S′(σS)

ij ω
′(σω)
j

|ω
′(σω)
i |2

)∣∣∣∣∣
Q(σω)>0

, (3.6)

where ω
′(σω)
i is the fluctuation vorticity coarse-grained at the scale σω, and S′(σS)

ij is
the fluctuation rate-of-strain tensor coarse-grained at the scale σS, both of which are
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FIGURE 6. (Colour online) Contribution (3.6) of the strain rate coarse-grained at σS to the
stretching of vortices at σ+ω = 10 (◦), 20 (�), 40 (4), 80 (•) and 160 (�) for Reθ = 3170
at (a) y+= 300, (b) 100 and (c) 40. The larger symbols correspond to the self-contribution
(σ+s = σ

+

ω ). Blue symbols indicate the contributions (3.7) from the mean stretching.

calculated from the coarse-grained fluctuation velocity ũ′i at σ . Since GS(σS → σω)

indicates the contribution of the strain rates coarse-grained at σS to the stretching of
the vortices coarse-grained at σω, if GS(σS → σω) is positive (negative), it indicates
the stretch (contraction) of the vortices. A similar quantity was defined by Goto et al.
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FIGURE 7. (Colour online) Same as in figure 6 at (a) y+ = 160 and (b) y+ = 60 (i.e.
y/δ99 ≈ 0.3) for lower Reynolds numbers (a) Reθ = 1640 and (b) 440.

(2017) for turbulence in a periodic cube. Here, in order to evaluate the stretching of
the vortices identified by the Q criterion, we use the average conditioned by Q(σω)> 0.
In addition, we also define contributions from the mean flow stretching as

GM(σω)=

(
ω
′(σω)
i Sijω

′(σω)
j

|ω
′(σω)
i |2

)∣∣∣∣∣
Q(σω)>0

. (3.7)

We evaluate these quantities defined by (3.6) and (3.7) at a streamwise location
corresponding to Reθ = 3170. Results are plotted in figure 6 for three heights from the
wall, (a) y+= 300, (b) 100 and (c) 40. Looking at the open symbols in figure 6(a), we
can see that for smaller scales (i.e. σ+ω =10, 20 and 40) the contribution GS(2σω→σω)
from the strain-rate fields of twice-larger scales is the most significant. It is also seen
that the contribution GM(σω) from the mean shear (blue symbols) is less important
than GS(2σω→ σω). In contrast, for larger scales (i.e. σ+ω = 80 and 160), denoted by
closed symbols in figure 6(a), the contribution GM(σω) from the mean shear is larger
than GS(σS→ σω). These trends observed for the height y+= 300 (figure 6a) are valid
also for the height y+ = 100 (figure 6b). Therefore, an important conclusion drawn
from figure 6(a,b) is that, in the log layer, the strain rates at the scale that is twice
as large as the stretched vortices, rather than the mean flow, contribute most to the
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stretching of the small-scale vortices (say, σ+ω . y+/5; see figure 10 and the discussion
of the figure). In the buffer layer, on the other hand, the mean-flow stretching is
more important than the contribution from the strain-rate fields induced by the other
scales. The evidence is given in figure 6(c), where the results for y+ = 40 are shown.
Among the contributions from the fluctuating strain-rate fields, the twice-larger scale
contributes the most, but GS(2σω→ σω) is smaller than the contribution GM(σω) from
the mean shear. In summary, the mean flow contributes most to the stretching of large-
scale vortices, i.e. the vortices whose size is of the order of the distance from the wall.

For comparison, we show in figure 7 results for relatively low Reynolds numbers
Reθ = 1640 (figure 7a) and Reθ = 440 (figure 7b). Both results are for a height
y/δ99 ≈ 0.3. The result for Reθ = 440 is obtained by another DNS (see appendix A).
Similarly to the higher-Reynolds-number cases, among the contributions from
fluctuating strain-rate fields, those twice as large as the stretched vortices contribute
most significantly. However, the lower the Reynolds number is, the larger the
contribution to the vortex stretching from the mean flow becomes.

We have shown that small-scale vortices are stretched predominantly either by the
mean flow or by the strain-rate fields at the scale twice as large as themselves. The
dominance depends on the distance from the wall, the size of the vortices and the
Reynolds number. To quantitatively evaluate the dominance, we define the ratio

Γ (σω)=
GS(2σω→ σω)

GM(σω)
(3.8)

of the contribution GS(2σω→ σω) of the coarse-grained strain rates to the stretching
of the vortices coarse-grained at their half-scale and the contribution GM(σω) of the
mean flow. Here, we note that Γ as well as GS and GM are functions not only of σω
but also of y+ and Reθ . For brevity, however, we omit the arguments y+ and Reθ of
Γ . When Γ (σω)> 1, the vortices at σω are stretched predominantly by the strain rates
twice as large as themselves; otherwise, they are stretched mainly by the mean flow.

Let us first investigate Γ for the smallest-scale vortices. Figure 8 shows the results
for Γ (σ+ω = 10) as a function of Reθ and height y+. The ratio Γ is less than 1 for
y+.40 for any Reynolds numbers, which means that the contribution to the stretching
from the mean flow is larger for y+ . 40, that is, even the very small vortices
(σ+ω = 10) in the buffer layer are stretched directly by the mean flow (see also figure
6c). In contrast, in the log layer (y+ & 100), Γ is greater than 1, which means that
the contribution from the strain-rate fields induced by the twice-larger scale is more
significant than from the mean shear.

To explain these observation, we plot the Taylor-length-based Reynolds number
Reλ = u′rmsλ/ν as a function of Reθ and y+ in figure 9. Here, the Taylor length is
defined by

λ=

√
u′rms

2

(∂u′/∂z)2
. (3.9)

Comparing figures 8 and 9, we see that, in the buffer and log layers, Γ is larger when
Reλ is larger. More precisely, in the buffer layer (say, y+. 40), Reλ is always smaller
than 50, which means that there is no scale separation, and Γ is always smaller than
1, which means that all vortices in the buffer layer are directly stretched by mean
shear (figures 6c, 7b and 8). Figure 8 also shows that the crossover Γ (σ+ω = 10)≷ 1
(the blue line in figure 8) occurs at y+ between 40 and 60. According to figure 9,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

76
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.76


Generation of vortices in a turbulent boundary layer 1097

1500
100

101

102

103

2000 2500 3000

Reœ

y+

3500
0

0.5

1.0

1.5

2.0

2.5
˝

3.0

3.5

4.0

4.5

FIGURE 8. (Colour online) The ratio (3.8) between the contribution of strain rate
coarse-grained at σ+S = 20 to the stretching of vortices coarse-grained at σ+ω = 10 and
the contribution of the mean flow as a function of Reθ and the height y+. The blue line
indicates the crossover (Γ = 1) of the dominance of the stretching from the mean flow to
large-scale vortices. Only the region y+ < δ+99 is plotted.
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FIGURE 9. Taylor-length-based Reynolds number Reλ as a function of Reθ and y+. Only
the region y+ < δ+99 is plotted.

this corresponds to Reλ ≈ 50. This value of Reλ is reasonable, since it is known that
the inertial range starts to appear for Reλ& 50. Furthermore, we can confirm that, for
the locations with Reλ & 50 (figure 9), Γ (σ+ω = 10) is always larger than 1 (figure 8).
Note that such points are located only in the log layer for Reθ & 1000. We emphasize
that Γ is always smaller than 1 for any heights (except for the outer layer) when
Reθ . 500 (figure 7b).

In figure 8, we have examined the contribution ratio Γ (3.8) between the vortex
stretching by twice-larger-scale vortices and the mean-flow stretching for the smallest
scale (σ+ω = 10) in the flow. However, although the scale (σ+ω = 10) is smallest in
the buffer layer, it is not necessarily smallest in the log layer. Therefore in figure 10
we show Γ as a function of the filter scale σ+ω (namely, the size of vortices) and
y+ for a given Reynolds number (Reθ = 3170). The red line indicates σω = 5η as a
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FIGURE 10. (Colour online) The ratio (3.8) between the contribution of strain rates coarse-
grained at 2σ+ω to the stretching of vortices coarse-grained at σ+ω and the contribution of
the mean flow as a function of σ+ω and y+ for Reθ = 3170. Blue line, the crossover (Γ = 1)
of the dominance of the stretching from the mean flow to large-scale vortices; red line,
σω = 5η; green dotted line, σω = 0.7Lc; black dashed line, σω = y/5. The contours are
plotted by the interpolation of Γ evaluated for the four cases (σ+ω = 10, 20, 40 and 80).

function of y+. Since 5η is approximately the radius of the Kolmogorov-scale vortex
tubes, we should look at Γ in the region σω & 5η. For example, Γ on the red line
shows the dominance of the contribution to the stretching of the smallest vortices at
each height. Looking at the value of Γ on the red line, we see that the crossover
(Γ ≷ 1) occurs at y+ ≈ 50, which is approximately the lower boundary of the log
layer. It is also interesting to observe that the crossover (blue line) occurs at the height
y+≈ 5σ+ω (black dashed line) for y+. 200 (within the log layer), but this scaling does
not hold in the outer layer (y+ & 200 for this Reθ ). It is important to show that the
height y where Γ = 1 is proportional to the Corrsin scale Lc (Corrsin 1958; Jiménez
2013), which is defined by Lc= ε

1/2S−3/2 with S being the shear rate of the mean flow.
In figure 10, the green dotted line indicates 0.7Lc, which is in good agreement with
the blue line (Γ = 1). This observation is reasonable because the shearing time scale
S−1 and the cascade time scale (i.e. the eddy turnover time) `2/3 ε−1/3 are balanced at
`≈ Lc. Incidentally, Jiménez (2013) concluded that Lc ≈ 0.3y in the log layer, which
is consistent with the above observation that the size σω of vortices for Γ = 1 is
approximately y/5 (≈ (2/3)Lc ≈ 0.7Lc). In summary, figure 10 shows that Γ < 1 in
the buffer layer even for higher Reθ (see also figures 6c, 7b and 8), whereas, in the
log layer, Γ > 1 in the scales between the red (5η) and blue (y/5≈ 0.7Lc) lines.

3.3. Alignment of vorticity and eigenvectors of rate-of-strain tensor
We rewrite the production term of the fluctuation enstrophy as

ω′iS
′

ijω
′

j

|ω′i|
2
= s′i(ê

′

i · ω̂′)2, (3.10)

where s′i (s′1 > s′2 > s′3) are the eigenvalues of the fluctuation rate-of-strain tensor S′ij,
ê′i are the corresponding eigenvectors, and ω̂′ is the normalized vorticity ω̂′ = ω′/ω′.
Since s′1 + s′2 + s′3 = 0 for incompressible fluids, ê′1 corresponds to the direction with
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FIGURE 11. (Colour online) Conditional p.d.f. of the alignment between the vorticity
coarse-grained at (a) σ+ω =20 (σω≈6η) and (b) σ+ω =10 (σω≈4η) and the first eigenvector
of the rate-of-strain tensor coarse-grained at σS= 1/2σω (grey solid line), σS= σω (dashed
line), σS = 2σω (dot-dashed line), σS = 4σω (double dot-dashed line, blue) and σS = 8σω
(triple dot-dashed line) at two different positions: (a) y+ = 300 for Reθ = 3170; and
(b) y+ = 60 for Reθ = 440. The black solid line denotes the conditional p.d.f. of |cos θM|.

maximum stretching. In this section, we investigate the alignment between the vorticity
and the stretching direction so that we can further clarify the picture of the vortex
stretching in a turbulent boundary layer. For this purpose, we evaluate the probability
density function (p.d.f.) of

cos θS = ê ′(σS)

1 · ω̂′(σω), (3.11)

where ê ′(σS)

1 is the stretching direction of the fluctuation rate-of-strain tensor coarse-
grained at scale σS and ω̂′(σω) is the normalized fluctuation vorticity coarse-grained at
scale σω. We investigate the tendency of the alignment between the vortices at σω and
the stretching direction at σS by calculating the p.d.f. of (3.11) using the conditional
average for Q(σω)> 0 in the same way as in § 3.2. We also investigate the conditional
p.d.f. of

cos θM = ē1 · ω̂′(σω), (3.12)

where ē1 denotes the stretching direction of the mean flow.
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FIGURE 12. Conditional p.d.f. of the alignment between the vorticity coarse-grained at
σ+ω = 10 (very light grey), σ+ω = 20 (light grey), σ+ω = 40 (grey), σ+ω = 80 (dark grey) and
σ+ω =160 (black) and the stretching direction of the mean flow at y+=300 for Reθ =3170.

Fixing the filter scale σω of the vorticity, we evaluate the conditional p.d.f. of
|cos θS| for various σS for two different Reynolds numbers (figure 11a, Reθ = 3170;
figure 11b, Reθ = 440). Figure 11(a) shows the result for the small scale (σ+ω = 20)
at y+ = 300 (same as in figure 6a) and figure 11(b) is for σ+ω = 10 at y+ = 60 (same
as in figure 7b). In both cases, among different σS, the tendency that ê ′(σS)

1 ‖ ω̂′(σω) is
the strongest for σ+S = 4σ+ω (double dot-dashed blue lines in figure 11). Namely, the
trend of parallel alignment between the vorticity at a small scale and the stretching
direction at a scale four times as large is the strongest. This result is similar to the
observation in decaying homogeneous isotropic turbulence that vortices at a given
scale tend to align with the stretching direction at the scale 3–5 times as large as the
given scale (Leung et al. 2012). Despite this result, it is the strain-rate scale twice as
large as the vortices that are dominant (figures 6 and 7) because the stretching rate
is larger for smaller scales.

However, looking at the black solid curves in figure 11, we notice that the tendency
that the coarse-grained fluctuation vorticity is parallel to the stretching direction of
the mean flow is also relatively strong even for the higher-Reynolds-number case
(Reθ =3170, figure 11a). To investigate the scale dependence of the alignment between
the coarse-grained fluctuation vorticity and the stretching direction of the mean flow,
we plot the conditional p.d.f. of |cos θM| for five different scales in figure 12. The
Reynolds number and height are the same as in figure 11(a). Figure 12 shows that
larger-scale vortices are more likely to align with the stretching direction of the mean
flow. We confirm that this is the case also in the buffer layer (figures are omitted).
This result is consistent with the fact that the contribution to the enstrophy production
from the mean flow is larger for larger scales (figures 6 and 7). Note again that the
enstrophy production depends not only on the alignment between the vorticity and the
eigenvectors but also on the magnitude of the eigenvalues, and that the stretching rate
is larger for smaller scales. Comparing the results for the two Reynolds numbers in
figure 11, we also see that the parallel alignment of the vorticity with the stretching
direction by the mean flow becomes more likely for lower Reynolds numbers. This
is also consistent with the observation that the contribution to the stretching from the
mean shear increases as the Reynolds number decreases (figure 7).
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Reœ = 3170

Reœ = 2670

FIGURE 13. (Colour online) Isosurfaces of the second invariant of the coarse-grained
velocity gradient tensor. The coarse-graining scale is σ⊕ = 80, the threshold is chosen as
mQ + 0.5sQ (= 1.2× 10−4), and the Reynolds number changes as Reθ = 2670–3170. The
flow is from lower left to upper right. The black grid width is 200 wall units evaluated at
the plane corresponding to Reθ =2860, and the blue solid line indicates the 99 % boundary
layer thickness δ99.

In summary, for larger scales at a given Reθ , and for lower Reθ at a given scale,
vortices are more likely to align in the stretching direction of the mean shear. In other
words, small-scale vortices become less aligned (i.e. more isotropic) as the Reynolds
number increases, which is consistent with the visualization (figure 3). These are also
consistent with the conclusions of the review by Jiménez (2013) that shear interacts
with large-scale ‘eddies’, whereas small-scale vortices away from the wall decouple
from the shear and become isotropic.

4. Discussion
4.1. Generation events of the hierarchy of multiscale vortices

In the previous section, we have quantitatively verified the scenario of the generation
mechanism of the hierarchy of vortices. Namely, large-scale structures are stretched
and created by mean velocity, whereas small-scale vortices in the log layer are
generated and created by the large-scale vortices. It is therefore not difficult to find
many concrete events in the physical space which are consistent with the quantitative
results in §§ 3.2 and 3.3. Among them, we show the clearest examples in the following
(figures 14 and 15).

First, we show in figure 13 a snapshot of isosurfaces of the second invariant Q(σ ) of
the velocity gradient tensor coarse-grained at σ⊕ = 80 to identify large-scale vortices.
We see that the large-scale vortices tend to align with the stretching direction of the
mean flow, which is inclined at approximately π/4 from the streamwise direction.
We also notice that the downstream part of the vortices is lifted up to the boundary
layer thickness and some of them orient into the spanwise direction to form a hairpin-
like structure. This observation is consistent with the alignment between large-scale
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(a) (b)

(c) (d)
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FIGURE 14. (Colour online) An example of the generation process of small-scale vortices
(v1, v2 and v3) around a large-scale hairpin-like vortex. Only a small domain in figure 13
is shown. The flow is from lower left to upper right. The two different colours correspond
to the isosurfaces of the second invariant of the velocity gradient tensor coarse-grained at
two different scales: yellow, σ⊕=80; and blue, 40. Thresholds are set as mQ+0.5sQ. Time
elapses as (a) t⊕= 0, (b) 30 and (c) 74. (d) The isosurfaces of S′(σ )ij S′(σ )ij coarse-grained at
σ⊕=80 with the threshold 3.8×10−4 are also shown at the same time as in (c). The black
grid width on the wall is the same as in figure 13. Small-scale vortices are visualized in
the region 200. y+ . 670.

vortices and the stretching direction induced by the mean flow (figure 12). Incidentally,
as was shown in figure 3, the orientation of the smallest-scale vortices apart from the
wall is random, which is also consistent with the p.d.f. shown in figure 11(a).

Next, let us look at generation events of small-scale vortices in the log layer.
For this purpose, we educe a large-scale hairpin-like vortex and the surrounding
small-scale vortices in figure 14. Here, we visualize the vortices only in a rectangular
box whose faces are parallel to those of the computational domain to track the
generation process of small-scale vortices around the large-scale vortex. The height
of the visualization box for the large-scale vortex is 100. y+ . δ+99 and that for the
small-scale vortices is 200 . y+ . 670. The large-scale hairpin-like vortex (yellow)
consists of two legs in the mean-flow-stretching direction and a spanwise head.
The part of the spanwise head is approximately at the boundary layer thickness.
By tracking this large-scale hairpin-like vortex in figure 14(a–c), we can see the
generation process of small-scale vortices (v1, v2 and v3). Figure 14(d) shows the
(green) isosurfaces of S′(σ )ij S′(σ )ij coarse-grained at σ⊕ = 80 around the large-scale
vortex. Noting that the legs of the large-scale hairpin-like vortex are a pair of
counter-rotating vortices, we can see the reason why the strong strain-rate fields are
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created in the region, where the small-scale vortices (blue) are indeed stretched and
amplified in the direction perpendicular to the legs. This is a typical example of
small-scale vortex generation due to stretching by larger-scale vortices.

Other examples of the generation of small-scale structures in the log layer are
shown in figure 15. The observed small-scale vortices (blue) are not the streamwise
vortices stretched by the mean flow, but they are likely to be stretched by larger-scale
strain rates in the same way as in figure 14. In particular, figure 15(a–c) shows
the example for the one-legged hairpin-like vortex, and the small-scale vortex
(v4) is generated by the nearby larger-scale vortex. Figure 15(d–f ) shows that
a quasi-streamwise (or one-legged hairpin-like) large-scale vortex stretches two
small-scale vortices (v5 and v6) which never align to the stretching direction of
the mean shear.

These concrete examples are consistent with the quantitative results that large-scale
vortices are stretched and created by the mean flow and they tend to align with
the mean shear (figure 13), whereas small-scale vortices apart from the wall are
mainly stretched by the strain-rate field induced by large-scale vortices (figures 14
and 15). Here, it is worth mentioning that the shown small-scale vortex generation
events in the log layer of the high-Reynolds-number turbulent boundary layer are
qualitatively similar to those observed in turbulence in a periodic cube. We recall
that the energy spectrum in the log layer approximately obeys the −5/3 power law
(figure 2a). In turbulence without a wall at sufficiently high Reynolds numbers, on
each level of the hierarchy of vortices, vortex tubes tend to align with each other
in an antiparallel manner (Goto et al. 2017). Since a pair of counter-rotating vortex
tubes induces strongly shearing flows around it, such a pair of vortices effectively
stretches and amplifies smaller-scale vortices. These events are similar to the vortex
generation events around the legs of a hairpin-like vortex (figure 14). Furthermore,
not only vortex pairs but also single vortex tubes can induce shear flow and create
smaller-scale vortices (Hussain 1986; Melander & Hussain 1993). Such events are also
similarly observed in the turbulent boundary layer (figure 15). These observations
imply the similarity in the generation mechanism of small-scale vortices in these
different turbulent flows, which might be an indication of small-scale universality.
It is also worth mentioning that such generation events of small-scale vortices in a
periodic cube are relevant to an energy cascading process (Goto 2008). The observed
events in figures 14 and 15 are therefore likely to correspond to the energy cascade
process. However, more detailed investigations in terms of energy transfer in physical
space are required to draw a solid conclusion on the energy cascade in a turbulent
boundary layer. This is a near-future target of our studies.

4.2. Hairpin vortices
Although there is no objective definition of a hairpin vortex (Eitel-Amor et al. 2015),
we frequently observe hairpin-like vortices in turbulent boundary layers (see figure 16
in appendix A, for example). In fact, since the hairpin vortices were proposed as
coherent structures in turbulent boundary layers by Theodorsen (1952), evidence has
been presented by many numerical simulations (Robinson 1991; Chong et al. 1998;
Wu & Moin 2009) and experiments (Head & Bandyopadhyay 1981; Perry & Chong
1982; Christensen & Adrian 2001; Ganapathisubramani, Longmire & Marusic 2003;
Adrian 2007; Dennis & Nickels 2011a; Jodai & Elsinga 2016). Moreover, Adrian
(2007) reported that the hairpin packet model is consistent with the attached eddy
hypothesis proposed by Townsend (1976), in which the size of the eddies increases
linearly with the distance from the wall.
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(a) (b) (c)

(d) (e) (f)

v4
v4

v4

v6
v5

v6
v5

v6
v5

FIGURE 15. (Colour online) Other examples of the generation process of small-scale
vortices (v4, v5 and v6) around a large-scale (a–c) one-legged hairpin-like vortex and
(d–f ) stretching-direction vortex in figure 13. The flow is from lower left to upper right.
The two different colours correspond to the isosurfaces of the second invariant of the
velocity gradient tensor coarse-grained at two different scales: yellow, σ⊕ = 80; blue, 40.
Thresholds are set as mQ+ 0.5sQ. Time elapses as (a) t⊕= 0, (b) 22, (c) 45, (d) 0, (e) 15
and ( f ) 30. The black grid width on the wall is the same as in figure 13. Small-scale
vortices are visualized in the region 450. y+ . 750.

However, some DNS studies have reached the controversial conclusion that hairpin
vortices are absent in developed turbulent boundary layers. Schlatter et al. (2014)
showed that the hairpin vortices disappear by visualizing vortices and identifying
the averaged structure with an objective vortex-eduction method when the Reynolds
number increases. Jiménez et al. (2010) investigated the geometry of the vortical
structures at moderate Reynolds numbers and concluded that it is hard to describe
them as forests of hairpins (Wu & Moin 2009). Eitel-Amor et al. (2015) also
conducted the DNS of a turbulent boundary layer at relatively low Reynolds numbers,
and reported that the flow is not dominated by hairpin vortices in a downstream
region where turbulence is well developed. Our DNS also show similar results (see
hairpin vortices for low Reynolds numbers in figure 16 and randomly oriented vortices
for high Reynolds numbers in figure 3). Although quite a few hairpin vortex models
were proposed to describe a turbulent boundary layer (Theodorsen 1952; Townsend
1976; Perry & Chong 1982; Perry & Marusic 1995; Adrian, Meinhart & Tomkins
2000), it is unclear even whether the hairpin vortices exist.

The results shown in the present paper, however, imply that these previous
observations are not necessarily conflicting. As shown in §§ 3.2 and 3.3, vortices with
a size of the order of the height are directly stretched and amplified by the mean
shear and form vortices in the direction of the mean-flow stretching. When such a pair
of vortices is lifted up to the boundary layer thickness (i.e. turbulent/non-turbulent
interface), the vortices are connected to the spanwise direction to form a hairpin-like
vortex. In other words, only vortices with the size of the order of the boundary layer
thickness can be hairpin-like vortices. In fact, this explains the observations. First, it
is consistent with the disappearance of hairpin vortices in the buffer layer for higher
Reynolds numbers. Although vortices in the buffer layer are directly stretched by the
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FIGURE 16. (Colour online) Isosurfaces of the second invariant Q+ (= 4.0 × 10−2) of
the velocity gradient tensor. The colour indicates the streamwise velocity u, ranging from
u= 0 (blue) to u=U∞ (red). Half of the spanwise direction of the computational domain
is visualized. The Reynolds number Reθ changes from 180 to 370. The flow is from lower
left to upper right.

mean shear (figures 6c, 7b and 8), they cannot be lifted up to the boundary layer
thickness. This is the reason why streamwise vortices, rather than hairpin vortices,
are observed in the buffer layer at high Reynolds numbers (Jiménez 2013). Second,
small-scale vortices in the log layer are stretched and amplified by larger-scale
fluctuating strain-rate fields (figures 6a,b, 7a and 8), and therefore their orientations
are random (figures 3 and 11a), and they cannot be hairpin vortices. Third, the
largest-scale vortices (red ones in figure 4 and yellow ones in figures 13 and 14) in
the log layer can be hairpin-shaped because they are directly stretched and amplified
by the mean shear (figures 6a,b and 7a) and because they are as large as the boundary
layer thickness. Indeed, some of the large-scale structures are hairpin-like (figures 4c,
13 and 14). These observations are similar to those found by del Álamo et al.
(2006) and Dennis & Nickels (2011a). They identify large-scale hairpin vortices
in the conditionally averaged fields. We emphasize that such large-scale vortices,
identified in terms of velocity gradients, are not educed without coarse-graining. This
is because the velocity gradients (and therefore their second invariant) take larger
values for smaller scales. On the other hand, since velocity magnitudes take larger
values for larger scale, the large-scale motions may be visible in terms of the velocity
without coarse-graining and they are further clarified by (conditional) averaging to
smooth out small-scale motions.

5. Conclusions
To understand the generation mechanism of multiscale vortical structures, we have

conducted DNS of a turbulent boundary layer at high Reynolds numbers. Using the
inlet flow condition provided by Lee et al. (2013, 2017), we simulate turbulence at
a Reynolds number high enough for the energy spectrum to show the Kolmogorov
−5/3 power law and for the premultiplied energy spectrum to have the second
peak (figure 2). We decompose the velocity field into the mean and fluctuations,
and we further decompose the fluctuation fields into different scales by using the
three-dimensional Gaussian filter (2.1). We then examine the contributions, defined by
(3.6) and (3.7), to the enstrophy production term from the mean and scale-dependent
fluctuation strain-rate fields to show the following. (i) In the log layer, vortices smaller
than approximately one-fifth of the height are predominantly stretched and amplified
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Reθ (Lx, Ly, Lz) (Nx,Ny,Nz) (1x+, 1y+min, 1z+)

170–570 (500, 40, 80)δ∗in (1024, 256, 384) (10, 0.23, 4.5)

TABLE 2. Parameters of the DNS of the laminar–turbulent transition. Here, Lx, Ly and Lz
are the sides of the computational domain, Nx, Ny and Nz are the numbers of grid points,
and 1x+, 1y+min and 1z+ are the resolutions at the exit.

by strain-rate fields at a scale twice as large as themselves, whereas larger vortices
are directly stretched and amplified by the mean shear (figures 6a,b and 7a). (ii) In
the buffer layer, all vortices are ‘large’ in the sense that they are as large as the
height, and therefore they are stretched and amplified by the mean shear (figure 6c).
(iii) This is also the case for low Reynolds numbers (figure 7b). The crossover of the
dominance of the contributions from the mean to the turbulent fluctuations (figure 8)
is explained in terms of the Taylor-length-based Reynolds number Reλ (figure 9).
More precisely, Reλ must be larger than, at least, 50 for even the smallest-scale
vortices to be stretched and amplified by larger-scale strain-rate fields (rather than
by the mean shear). This is consistent with the knowledge of homogeneous isotropic
turbulence that the inertial range starts to appear for Reλ& 50. On the other hand, the
upper bound of the size for vortices to be stretched by twice-larger strain-rate fields
(rather than the mean shear) is approximately y/5 ≈ 0.7Lc, where Lc is the Corrsin
scale, in the log layer (figure 10). The alignments between the vortices and stretching
direction (figures 11 and 12) are also consistent with these pictures. That is, in the
log layer of high-Reynolds-number turbulence, larger-scale vortices tend to align
in the direction of the mean shear and smaller-scale vortices tend to align with the
stretching direction in the scale four times as large as themselves. These results imply
that the direct creation due to the mean shear is less important for smaller scales in
the log layer. As a consequence, larger-scale structures (which are identified in terms
of the second invariant of the coarse-grained velocity gradient tensor, figure 13) rather
than the smallest-scale structures (which are identified in terms of the raw velocity
gradient tensor, figure 3) have hairpin-like shapes. Furthermore, the counter-rotating
legs of such large-scale hairpin-like vortices induce shear flow around them and
effectively stretch and amplify smaller-scale vortices (figure 14).
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Appendix A. Low-Reynolds-number direct numerical simulation

In order to understand the Reynolds-number dependence of the generation
mechanism of small-scale vortices, we conduct the DNS of laminar-to-turbulent
transition in a turbulent boundary layer. The Blasius solution (Reδ∗in = 450, where
δ∗in is the displacement thickness at the inlet) is used for the inlet condition and to
determine the suction velocity at y= Ly. The boundary conditions ∂u/∂y= ∂w/∂y= 0
are imposed at y=Ly. We employ a simulation set-up similar to the one by Eitel-Amor
et al. (2015) to obtain a turbulent state triggered by the trip force representing an
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ejection event as

Fi = Ci

[
1−
(

z− z0

lz

)2
]

× exp

[
−

(
x− x0

lx

)2

−

(
y− y0

ly

)4

−

(
z− z0

lz

)2

−

(
t− t0

T

)2
]
, (A 1)

where C = (−0.19, 0.96, 0)T(ρU∞/δ∗in), lx = 1.80δ∗in, ly = 3.78δ∗in, lz = 2.70δ∗in, T =
1.56δ∗in/U∞ and y0= z0= 0 (Eitel-Amor et al. 2015). The volumetric force is imposed
to generate eight hairpin vortices in the spanwise direction. The numerical parameters
of this simulation are given in table 2. We show in figure 16 a snapshot of the vortical
structures obtained by this DNS. Hairpin vortices are observed in this transitional
region.
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