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Let Hd(n, p) signify a random d-uniform hypergraph with n vertices in which each of the
(
n
d

)
possible edges is present with probability p = p(n) independently, and let Hd(n, m) denote a

uniformly distributed d-uniform hypergraph with n vertices and m edges. We derive local

limit theorems for the joint distribution of the number of vertices and the number of edges

in the largest component of Hd(n, p) and Hd(n, m) in the regime (d− 1)
(
n−1
d−1

)
p > 1 + ε, resp.

d(d− 1)m/n > 1 + ε, where ε > 0 is arbitrarily small but fixed as n → ∞. The proofs are

based on a purely probabilistic approach.

2010 Mathematics subject classification: Primary 05C80

Secondary 05C65

1. Introduction and results

1.1. The phase transition and the giant component

This paper deals with the connected components of random graphs and hypergraphs.

Recall that a d-uniform hypergraph H is a set V (H) of vertices together with a set E(H)

of edges e ⊂ V (H) of size |e| = d. The order of H is the number of vertices of H , and the

size of H is the number of edges. A 2-uniform hypergraph is just a graph.

† An extended abstract version of this work appeared in the proceedings of RANDOM 2007, Vol. 4627 of
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We say that a vertex v ∈ V (H) is reachable from w ∈ V (H) if there exist edges e1, . . . , ek ∈
E(H) such that v ∈ e1, w ∈ ek and ei ∩ ei+1 	= ∅ for all 1 � i < k. Reachability is an

equivalence relation, and the equivalence classes are called the components of H . If H has

only a single component, then H is connected. We let N (H) signify the maximum order

(i.e., the number of vertices) of a component of H . For all hypergraphs H that we deal

with, the vertex set V (H) will consist of integers. Therefore, the subsets of V (H) can be

ordered lexicographically, and we call the lexicographically first component of H that has

order N (H) the largest component of H . In addition, we denote by M(H) the size (i.e.,

the number of edges) of the largest component.

We will consider two models of random d-uniform hypergraphs. The random hyper-

graph Hd(n, p) has the vertex set V = {1, . . . , n}, and each of the
(
n
d

)
possible edges is

present with probability p independently. Moreover, Hd(n, m) is a uniformly distributed

d-uniform hypergraph with vertex set V = {1, . . . , n} and with exactly m edges. In the case

d = 2, the notation G(n, p) = H2(n, p), G(n, m) = H2(n, m) is common. Finally, we say that

the random hypergraph Hd(n, p) enjoys a certain property P with high probability (‘w.h.p.’)

if the probability that P holds in Hd(n, p) tends to 1 as n → ∞; a similar terminology is

used for Hd(n, m).

Since the pioneering work of Erdős and Rényi [15, 16] on the evolution of G(n, m),

the component structure of random discrete objects (e.g., graphs, hypergraphs, digraphs)

has been among the main subjects of probabilistic combinatorics. One reason for the

relevance of this subject is the connection to statistical physics and percolation (‘mean

field models’). Another reason is the impact on computer science (e.g., in the study of

complex networks or computational problems such as Max Cut or Max 2-Sat [14]).

More precisely, Erdős and Rényi [16] studied (among other things) the component

structure of sparse random graphs with O(n) edges. The main result is that the order

N (G(n, m)) of the largest component undergoes a phase transition as 2m/n ∼ 1. Let us state

a more general version from Schmidt-Pruzan and Shamir [28], which covers d-uniform

hypergraphs. Let either H = Hd(n, m) and c = dm/n, or H = Hd(n, p) and c =
(
n−1
d−1

)
p; we

refer to c as the average degree of H . Then the result is the following.

(i) If c < (d− 1)−1 − ε for an arbitrarily small but fixed ε > 0, then N (H) = O(ln n) w.h.p.

(ii) By contrast, if c > (d− 1)−1 + ε, then H features a unique component of order Ω(n)

w.h.p., which is called the giant component. More precisely, N (H) = (1 − ρ)n+ o(n)

w.h.p., where ρ is the unique solution to the transcendental equation

ρ = exp(c(ρd−1 − 1)) (1.1)

that lies strictly between 0 and 1. Furthermore, the second largest component has

order O(ln n) w.h.p.

In this paper we present a new, purely probabilistic approach for investigating the

precise limiting behaviour of the order and size of the largest component of sparse

random graphs and, more generally, hypergraphs. We obtain local limit theorems for the

joint distribution of the order and size of the largest component of H = Hd(n, p) or

H = Hd(n, m) (Theorems 1.1 and 1.3). Whereas in the case of graphs (i.e., d = 2) these

results are either known or can be derived from prior work (in particular, Bender, Canfield
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and McKay [8]), all our results are new for d-uniform hypergraphs with d > 2. Besides,

we believe that our probabilistic approach is interesting in the case of graphs as well,

because we completely avoid the use of involved enumerative methods.

1.2. Main results

Our first result provides the local limit theorem for the joint distribution of N (Hd(n, p))

and M(Hd(n, p)).

Theorem 1.1. Let d � 2 be a fixed integer. For any two compact sets I ⊂ R2, J ⊂ ((d−
1)−1,∞), and for any δ > 0, there exists n0 > 0 such that the following holds. Let p = p(n)

be a sequence such that c = c(n) =
(
n−1
d−1

)
p ∈ J for all n, and let 0 < ρ = ρ(n) < 1 be the

unique solution to (1.1). Further, let

σ2
N =

ρ(1 − ρ+ c(d− 1)(ρ− ρd−1))

(1 − c(d− 1)ρd−1)2
· n, (1.2)

σ2
M = c2ρd · 2 + c(d− 1)(ρ2d−2 − 2ρd−1 + ρd) − ρd−1 − ρd

(1 − c(d− 1)ρd−1)2
· n+ (1 − ρd)

c

d
· n,

σNM = cρ · 1 − ρd − c(d− 1)ρd−1(1 − ρ)

(1 − c(d− 1)ρd−1)2
· n.

Suppose that n � n0 and that ν, μ are integers such that

x = ν − (1 − ρ)n and y = μ− (1 − ρd)

(
n

d

)
p

satisfy n−1/2(x, y) ∈ I . Then, letting

P (x, y) =
1

2π
√
σ2
Nσ

2
M − σ2

NM

· exp

[
− σ2

Nσ
2
M

2(σ2
Nσ

2
M − σ2

NM)

(
x2

σ2
N

− 2σNMxy

σ2
Nσ

2
M

+
y2

σ2
M

)]
,

(1.3)

we have

(1 − δ)P (x, y) � P
[
N (Hd(n, p)) = ν, M(Hd(n, p)) = μ

]
� (1 + δ)P (x, y).

Theorem 1.1 characterizes the joint limiting distribution of N (Hd(n, p)) and M(Hd(n, p))

precisely, because it actually yields the asymptotic probability that N and M attain any

two values ν = (1 − ρ)n+ x, μ = (1 − ρd)
(
n
d

)
p+ y. Namely, the theorem shows that

P
[
N (Hd(n, p)) = ν, M(Hd(n, p)) = μ

]
∼ P (x, y) (1.4)

uniformly for average degrees c =
(
n−1
d−1

)
p ∈ J and deviations (x, y) such that n−1/2(x, y) ∈

I . Hence, the average degree c is assumed to be bounded and also bounded away

from (d− 1)−1. We emphasize that P (x, y) is of order n−1 as n → ∞, as σ2
N , σ

2
M, σNM

are of order n. Since P (x, y) is the density function of a bivariate normal distribution,

Theorem 1.1 readily yields the following ‘macroscopic’ central limit theorem.
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Corollary 1.2. With the notation and the assumptions of Theorem 1.1, suppose that the limit

Ξ = lim
n→∞

σNM
σNσM

exists. Then the joint distribution of

N (Hd(n, p)) − (1 − ρ)n

σN
and

M(Hd(n, p)) − (1 − ρd)
(
n
d

)
p

σM

converges in distribution to the bivariate normal distribution with mean 0 and covariance

matrix (
1 Ξ

Ξ 1

)
.

Let us stress that Theorem 1.1 is significantly stronger than Corollary 1.2, since the

latter result yields the asymptotic probability that

xσN � N (Hd(n, p)) − (1 − ρ)n � x′σN and (1.5)

yσM � M(Hd(n, p)) − (1 − ρd)

(
n

d

)
p � y′σM (1.6)

for any fixed x, x′, y, y′ ∈ R with x < x′, y < y′. Note that σM, σN = Θ(
√
n). Therefore,

for any fixed δ > 0, setting x′ = x+ δσN and y′ = y + δσM, we could use (1.5)–(1.6) to

determine the asymptotic probability that

|N (Hd(n, p)) − (1 − ρ)n− xσN | < δ
√
n and∣∣∣∣M(Hd(n, p)) − (1 − ρd)

(
n

d

)
p− yσM

∣∣∣∣ < δ
√
n.

However, (1.5)–(1.6) do not yield the probability that N (Hd(n, p)) and M(Hd(n, p)) hit

certain values ν, μ exactly, in contrast to (1.4).

The second main result is a local limit theorem for N (Hd(n, m)) and M(Hd(n, m)).

Theorem 1.3. Let d � 2 be a fixed integer. For any two compact sets I ⊂ R2, J ⊂ ((d−
1)−1,∞), and for any δ > 0, there exists n0 > 0 such that the following holds. Let m = m(n)

be a sequence of integers such that c = c(n) = dm/n ∈ J for all n, and let 0 < ρ = ρ(n) < 1

be the unique solution to (1.1). Further, let

τ2
N = ρn · 1 − (c+ 1)ρ− c(d− 1)ρd−1 + 2cdρd − cdρ2d−1

(1 − c(d− 1)ρd−1)2
,

τ2
M =

cρdn

d(1 − c(d− 1)ρd−1)2
·
[
1 − c(d− 2)ρd−1 − (c2d− cd+ 1)ρd

− c2(d− 1)ρ2d−2 + 2c(cd− 1)ρ2d−1 − c2ρ3d−2
]
,

τNM = cρdn · 1 − cρ− c(d− 1)ρd−1 + (c+ cd− 1)ρd − cρ2d−1

(1 − c(d− 1)ρd−1)2
.
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Suppose that n � n0 and that ν, μ are integers such that x = ν − (1 − ρ)n and y = μ− (1 −
ρd)m satisfy n−1/2(x, y) ∈ I . Then, letting

Q(x, y) =
1

2π
√
τ2
N τ

2
M − τ2

NM

exp

[
− τ2

N τ
2
M

2(τ2
N τ

2
M − τ2

NM)

(
x2

τ2
N

− 2τNMxy

τ2
N τ

2
M

+
y2

τ2
M

)]
,

we have

(1 − δ)Q(x, y) � P
[
N (Hd(n, m)) = ν, M(Hd(n, m)) = μ

]
� (1 + δ)Q(x, y).

Again, Q(x, y) is the density function of a bivariate normal distribution and hence

Theorem 1.3 yields the following central limit theorem.

Corollary 1.4. With the notation and the assumptions of Theorem 1.3, suppose that the limit

Ξ = lim
n→∞

τNM
τN τM

exists. Then the joint distribution of

N (Hd(n, m)) − (1 − ρ)n

τN
and

M(Hd(n, m)) − (1 − ρd)m

τM

converges in distribution to the bivariate normal distribution with mean 0 and covariance

matrix (
1 Ξ

Ξ 1

)
.

1.3. Related work

1.3.1. Graphs. Bender, Canfield and McKay [8] were the first to compute the asymptotic

probability that a random graph G(n, m) is connected for any ratio m/n. Although they

employ a probabilistic result from �Luczak [21] to simplify their arguments, their proof

is based on enumerative methods. In addition, using their formula for the probability of

G(n, m) being connected, Bender, Canfield and McKay [9] inferred the probability that

G(n, p) is connected as well as a central limit theorem for the number of edges of G(n, p)

given connectivity. Moreover, it is possible (though somewhat technical) to derive local

limit theorems for G(n, m) and G(n, p) from the main result of [8]. In fact, Pittel and

Wormald [24, 25] recently used enumerative arguments to derive an improved version of

the main result of [8] and to obtain a local limit theorem that, in addition to N and M,

also includes the order and size of the 2-core. In summary, in [8, 9, 24, 25] enumerative

results on the number of connected graphs of given order and size were used to infer

the distributions of the order and size of the largest component of G(n, m) and G(n, p).

By contrast, in the present paper we use the converse approach: employing probabilistic

methods, we first determine the joint distribution of the order and size of the largest

component. From this it is possible to derive the number of connected graphs with a

given order and size [7]. Recently, Bollobás and Riordan proved, using random walk and

martingale arguments, that the (properly rescaled and centred) number of vertices in the
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giant component in G(n, p) converges in distribution to the normal distribution in the

supercritical regime [11].

The asymptotic probability that G(n, p) is connected was first computed by Stepanov

[29] (this problem is significantly simpler than computing the probability that G(n, m)

is connected). He also obtained a local limit theorem for N (G(n, p)), but his methods

are insufficient to obtain the joint distribution of N (G(n, p)) and M(G(n, p)). Moreover,

Pittel [23] derived central limit theorems for N (G(n, p)) and N (G(n, m)) from his result on

the joint distribution of the numbers of trees of given sizes outside the giant component.

The arguments in [23, 29] are of an enumerative and analytic nature.

A few authors have applied probabilistic arguments to problems related to the present

work. For instance, O’Connell [22] employed the theory of large deviations in order

to estimate the probability that G(n, p) is connected up to a factor exp(o(n)). Whereas

this result is significantly less precise than Stepanov’s, O’Connell’s proof is simpler.

In addition, Barraez, Boucheron and Fernandez de la Vega [4] exploited the analogy

between the component structure of G(n, p) and branching processes to derive a central

limit theorem for the joint distribution of N (G(n, p)) and the total number of edges in

G(n, p). However, their techniques do not yield a local limit theorem. Finally, van der

Hofstad and Spencer [17] used a novel perspective on the branching process argument

to rederive the formula of Bender, Canfield and McKay [8] for the number of connected

graphs. Hence, it is possible to derive bivariate local limit theorems for the order and size

of the largest component of G(n, p) and G(n, m) from the results of [17].

1.3.2. Hypergraphs. By comparison with the case of graphs (d = 2), little is known about

the phase transition and the connectivity probability of random d-uniform hypergraphs

with d > 2. In fact, to our knowledge, the arguments used in most of the aforementioned

papers do not extend to the case d > 2.

Karoński and �Luczak [19] derived an asymptotic formula for the number of connected

d-uniform hypergraphs of order n and size m = n
d−1

+ o(ln n/ ln ln n) via combinatorial

techniques. Since the minimum number of edges necessary for connectivity is n−1
d−1

,

this formula addresses sparsely connected hypergraphs. Using this result, Karoński and

�Luczak [20] investigated the phase transition in Hd(n, m) and Hd(n, p). They obtained local

limit theorems for the joint distribution of the order and size of the largest component in

both Hd(n, m) and Hd(n, p) in the early supercritical phase, That is, their results apply to

the case

m =

(
n

d

)
p =

n

d(d− 1)
+ o(n2/3(ln n/ ln ln n)1/3).

Furthermore, Andriamampianina and Ravelomanana [2] extended the result from [19]

to the regime m = n
d−1

+ o(n1/3) via enumerative techniques. In addition, relying on [2],

Ravelomanana and Rijamamy [26] extended [20] to

m =

(
n

d

)
p =

n

d(d− 1)
+ o(n7/9).
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Note that all of these results either deal with very sparsely connected hypergraphs, that

is,

m =
n

d− 1
+ o(n),

or with the early supercritical phase, that is,

m =

(
n

d

)
p =

n

d(d− 1)
+ o(n).

By contrast, the results of this paper concern the component structure of random

hypergraphs Hd(n, m) or Hd(n, p) with

m =

(
n

d

)
p =

n

d(d− 1)
+ Ω(n).

Thus, our results and those from [2, 19, 20, 26] are complementary. Indeed, it would be

interesting to see if the techniques of the present work can be extended into the ‘scaling

window’ to close the gap left by [26]. Recently, Bollobás and Riordan established that

the (properly rescaled and centred) number of vertices in the giant component in Hd(n, p)

converges in distribution to the normal distribution throughout the supercritical regime,

using the same arguments as in [12].

The regime of m and p that we deal with in the present work was previously studied

by Coja-Oghlan, Moore and Sanwalani [13] via probabilistic arguments. Setting up an

analogy between a certain branching process and the component structure of Hd(n, p), they

computed the expected order and size of the largest component of Hd(n, p) along with

the variance of N (Hd(n, p)). Furthermore, they computed the probability that Hd(n, m)

or Hd(n, p) is connected up to a constant factor. Whereas the arguments of [13] by

themselves are not strong enough to yield local limit theorems, combining the branching

process arguments with further probabilistic techniques, in [6] we inferred a local limit

theorem for N (Hd(n, p)). Theorems 1.1 and 1.3 extend this result significantly by giving

local limit theorems for the joint distribution of N and M.

1.4. Techniques and outline

To prove Theorems 1.1 and 1.3, we build upon a qualitative result on the connected

components of Hd(n, p) from [13], and a local limit theorem for N (Hd(n, p)) from our

previous paper [6] (Theorems 2.2 and 2.3: see Section 2). The proofs of both of these

ingredients rely solely on probabilistic reasoning (mostly branching process arguments).

In Section 3 we show that (somewhat surprisingly) the univariate local limit theorem for

N (Hd(n, p)) from [6] can be converted into a bivariate local limit theorem for N (Hd(n, m))

and M(Hd(n, m)). To this end, we observe that the local limit theorem for N (Hd(n, p))

implies a bivariate local limit theorem for the joint distribution of N (Hd(n, p)) and the

number M̄(Hd(n, p)) of edges outside the largest component. Then, we will set up a

relationship between the joint distribution of N (Hd(n, p)) and M̄(Hd(n, p)) and the joint

distribution of N (Hd(n, m)) and M̄(Hd(n, m)). This will put us in a position to infer the

joint distribution of N (Hd(n, m)) and M̄(Hd(n, m)) via Fourier analysis. As in Hd(n, m)

the total number of edges is fixed (namely, m), we have M̄(Hd(n, m)) = m− M(Hd(n, m)).
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Hence, we obtain a local limit theorem for the joint distribution of N (Hd(n, m)) and

M(Hd(n, m)), that is, Theorem 1.3. Further, Theorem 1.3 easily implies Theorem 1.1.

We believe that this Fourier-analytic approach may have further applications to related

problems.

2. Preliminaries

Throughout the paper we let

φμ,σ2 (x) =
1√
2πσ

exp(−(x− μ)2/2σ2)

denote the density of the normal distribution. We let φ = φ0,1 denote the density of the

standard normal distribution.

We will make use of the following Chernoff bound on the tails of a binomially distributed

variable X = Bin(ν, q) (see [18, p. 26] for a proof): for any t > 0 we have

P
[
|X − E(X)| � t

]
� 2 exp

(
− t2

2(E(X) + t/3)

)
. (2.1)

Moreover, we employ the following local limit theorem for the binomial distribution (see

[10, Chapter 1]).

Proposition 2.1. Suppose that 0 � p = p(n) � 1 is a sequence such that np(1 − p) → ∞ as

n → ∞. Let X = Bin(n, p). Then for any sequence x = x(n) of integers such that |x− np| =

o(np(1 − p))2/3,

P
[
X = x

]
∼ 1√

2πnp(1 − p)
exp

(
− (x− np)2

2p(1 − p)n

)
as n → ∞.

The following theorem summarizes results from [13, Section 6] on the component

structure of Hd(n, p). (The theorem is a slight variation of [13, Theorem 5], which is

proved in [13, Section 6].)

Theorem 2.2. Let c = c(n) be a sequence of non-negative reals and let p = c
(
n−1
d−1

)−1
and

m =
(
n
d

)
p = cn/d. Then for both H = Hd(n, p) and H = Hd(n, m), the following holds.

(i) For any c0 < (d− 1)−1 there is a number n0 such that for all n > n0 for which c =

c(n) � c0 we have

P
[
N (H) � 300(d− 1)2(1 − (d− 1)c0)−2 ln n

]
� 1 − n−100.

(ii) For any c0 > (d− 1)−1 there are numbers n0 > 0, 0 < c′
0 < (d− 1)−1 such that, for all

n > n0 for which c0 � c = c(n) < ln n/ ln ln n, the following holds. The transcendental

equation (1.1) has a unique solution 0 < ρ = ρ(n) < 1, which satisfies

ρd−1c < c′
0.
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Furthermore, with probability � 1 − n−100 there exists precisely one component of order

(1 − ρ)n+ o(n) in H , while all other components have order � ln2 n. In addition,

E
[
N (H)

]
= (1 − ρ)n+ o(

√
n).

We also need the following local limit theorem for N (Hd(n, p)) from [6].

Theorem 2.3. Let d � 2 be a fixed integer. For any two compact intervals I ⊂ R, J ⊂
((d− 1)−1,∞), and for any δ > 0, there exist n0 > 0 and C0 > 0 such that the following

holds. Let p = p(n) be a sequence such that c = c(n) =
(
n−1
d−1

)
p ∈ J for all n. Then, for all

n � n0 the following two statements are true.

(i) We have P
[
N (Hd(n, p)) = ν

]
� C0/

√
n for all ν.

(ii) Let 0 < ρ = ρ(n) < 1 be the unique solution to (1.1), and let σN be as in (1.2). If ν is

an integer such that σ−1
N (ν − (1 − ρ)n) ∈ I , then

1 − δ√
2πσN

exp

[
− (ν − (1 − ρ)n)2

2σ2
N

]
� P

[
N (Hd(n, p)) = ν

]
� 1 + δ√

2πσN
exp

[
− (ν − (1 − ρ)n)2

2σ2
N

]
.

We will use some properties of the Fourier transform (see [27]). Given a measurable

function f : R → C, we define

‖f‖p =

(∫ ∞

−∞
|f(z)|p dz

)1/p

, for 1 � p < ∞.

Here and throughout the paper dz denotes Lebesgue measure. As usual, we let

‖f‖∞ = inf{C � 0 : |f(z)| � C for almost every z ∈ R}.

We let Lp(R) consist of all measurable f : R → C for which ‖f‖p < ∞ for 1 � p � ∞. For

f ∈ L1(R), its Fourier transform is defined by

f̂(ξ) =

∫ ∞

−∞
f(z) e−iξz dz√

2π
, for ξ ∈ R.

The Fourier transform translates convolution into pointwise product: given f, g ∈ L1(R),

the convolution of f and g defined by

(f ∗ g)(ζ) =

∫ ∞

−∞
f(ζ − z)g(z) dz =

∫ ∞

−∞
f(z)g(ζ − z) dz, for all ζ ∈ R

satisfies

f̂ ∗ g(ξ) =
√

2πf̂(ξ)ĝ(ξ), for all ξ ∈ R. (2.2)

We shall use the Plancherel theorem stating that, for f ∈ L1(R) ∩ L2(R),

‖f‖2 = ‖f̂‖2, (2.3)
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and the inversion theorem asserting that, for f, f̂ ∈ L1(R),

f(z) =

∫ ∞

−∞
f̂(ξ) eiξz

dξ√
2π
, for almost every z ∈ R. (2.4)

We also need (the following special case of) Young’s inequality:

‖f ∗ g‖2 � ‖f‖1‖g‖2, (2.5)

for any f ∈ L1(R) and g ∈ L2(R).

We use the ‘O-notation’ to express asymptotic estimates as n → ∞. Typically we will

apply this notation to expressions that do not only depend on n, but also on various other

parameters. Suppose that f(x1, . . . , xk, n), g(x1, . . . , xk, n) are functions of n and further

parameters xi are from domains Di ⊂ R (1 � i � k), and that g � 0. Then we say that the

estimate f(x1, . . . , xk, n) = O(g(x1, . . . , xk, n)) holds uniformly in x1, . . . , xk if the following is

true: there exist numbers C > 0 and n0 > 0 such that

|f(x1, . . . , xk, n)| � C · g(x1, . . . , xk, n) for all n � n0 and (x1, . . . , xk) ∈
k∏
j=1

Dj .

Similarly, we say that f(x1, . . . , xk, n) ∼ g(x1, . . . , xk, n)) holds uniformly in x1, . . . , xk if for

any ε > 0 there exists n0 > 0 such that, for all n > n0,

sup
(x1 ,...,xk) ∈D1×···×Dk

∣∣∣∣f(x1, . . . , xk, n)

g(x1, . . . , xk, n)
− 1

∣∣∣∣ < ε.

We define uniformity analogously for the other Landau symbols Ω, Θ, etc.

3. The local limit theorem for Hd(n, m): proof of Theorem 1.3

Throughout this section, we fix two compact sets J ⊂ ((d− 1)−1,∞) and I ⊂ R2. Let δ > 0

be arbitrarily small but fixed (i.e., independent of n). In addition, 0 < p = p(n) < 1 is a

sequence of edge probabilities such that c =
(
n−1
d−1

)
p ∈ J for all n. Then, by Theorem 2.2

there exists a unique 0 < ρ = ρ(n) < 1 such that

ρ = exp
[
c(ρd−1 − 1)

]
.

Let

σ =

√(
n

d

)
p(1 − p).

Let ν = ν(n) and μ̄ = μ̄(n) be two sequences of integers. We set

x = x(n) = ν − (1 − ρ)n and y = y(n) = ρd
(
n

d

)
p− μ̄. (3.1)

We assume that n−1/2(x, y) ∈ I .

Since Theorems 1.1 and 1.3 are statements that hold for large n, throughout this section

we will assume implicitly that n > n0 for some sufficiently large number n0 = n0(d, δ, I ,J ).

We will use asymptotic notation with respect to n → ∞, and all asymptotics are understood

to hold uniformly for c = c(n) ∈ J and x = x(n), y = y(n) such that n−1/2(x, y) ∈ I .

https://doi.org/10.1017/S0963548314000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000017


Local Limit Theorems for the Giant Component of Random Hypergraphs 341

3.1. Outline

In this section we outline the proof of Theorem 1.3. Our starting point is Theorem 2.3, that

is, the local limit theorem for the order N (Hd(n, p)) of the largest component. We shall

convert this univariate local limit theorem into a bivariate one that covers both N and

M. At first glance, this may seem implausible as the univariate local limit theorem seems

to contain ‘too little information’ to also infer the precise distribution of the number of

edges in the largest component. However, perhaps surprisingly, two simple observations

will allow us to show that the univariate local limit theorem does indeed ‘encode’ the

distribution of the size of the largest component implicitly.

The first observation is that Theorem 2.3 implies a local limit theorem for the joint

distribution of N (Hd(n, p)) and the number M̄(Hd(n, p)) of edges outside the largest

component. As we will elaborate below, the reason for this is the well-known duality

principle for the largest component (e.g., Alon and Spencer [1]). This principle states

that the hypergraph obtained from Hd(n, p) by removing the largest component is close

in distribution to a random hypergraph Hd(n− N (Hd(n, p)), p) on the remaining vertices.

In particular, given that N (Hd(n, p)) = ν, the number M̄(Hd(n, p)) of edges outside the

largest component has (approximately) a binomial distribution Bin(
(
n−ν
d

)
, p). Indeed, we

will show that for integers ν ‘close to’ E[N (Hd(n, p))] and μ̄ ‘close to’ E[M̄(Hd(n, p))] we

have

P
[
N (Hd(n, p)) = ν, M̄(Hd(n, p)) = μ̄

]
∼ P

[
N (Hd(n, p)) = ν

]
· P

[
Bin

((
n− ν

d

)
, p

)
= μ̄

]
(3.2)

(see Lemma 4.2 below for a precise statement).

The two factors on the right-hand side are known: the local limit theorem for N (Hd(n, p))

(Theorem 2.3) gives an asymptotic expression for P[N (Hd(n, p)) = ν]. Moreover, the well-

known local limit theorem for the binomial distribution (Proposition 2.1) yields an

explicit expression for P
[
Bin

((
n−ν
d

)
, p

)
= μ̄

]
. Thus, we can easily obtain a bivariate local

limit theorem for N (Hd(n, p)), M̄(Hd(n, p)) from (3.2).

However, (3.2) does not (yet) yield the joint distribution of N (Hd(n, p)) and the number

M(Hd(n, p)) of edges inside the largest component. This is because in Hd(n, p) the total

number of edges

|E(Hd(n, p))| = M(Hd(n, p)) + M̄(Hd(n, p))

is a random variable. In fact, |E(Hd(n, p))| is quite non-trivially correlated to N (Hd(n, p)).

The second key observation of our proof is that we can get around this problem by

working with the Hd(n, m) model. In Hd(n, m) the step from M to M̄ is easy because the

total number of edges is fixed to be m. Therefore,

M̄(Hd(n, m)) = m− M(Hd(n, m)). (3.3)

Furthermore, for any edge probability p′ the two random hypergraph models Hd(n, p
′)

and Hd(n, m) are closely related: given that the total number of edges in Hd(n, p
′) equals
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m, Hd(n, p
′) is distributed exactly as Hd(n, m). Consequently,

P
[
N (Hd(n, p

′)) = ν, M̄(Hd(n, p
′)) = μ̄

]
=

(nd)∑
m=0

P

[
Bin

((
n

d

)
, p′

)
= m

]
· P

[
N (Hd(n, m)) = ν, M̄(Hd(n, m)) = μ̄

]
. (3.4)

Recall that our goal is to compute P[N (Hd(n, m)) = ν, M̄(Hd(n, m)) = μ̄], that is, the last

term in (3.4). Equation (3.4) puts us in a position to do so. The reason for this is that (3.4)

holds for any p′ ∈
(
0, 1

)
, while P[N (Hd(n, m)) = ν, M̄(Hd(n, m)) = μ̄] is independent of p′.

Thus, we could view (3.4) as an infinite system of linear equations (one for each value of

p′) that we aim to ‘solve’ for P[N (Hd(n, m)) = ν, M̄(Hd(n, m)) = μ̄].

The way to solve this ‘system of equations’ is via Fourier inversion. To apply this

technique, we need to parametrize (3.4) suitably. This means that we are going to work

with certain values of the edge probability p′ that will turn out to be particularly

convenient. More precisely, given the sequence p = p(n) of edge probabilities such that

c = c(n) =
(
n−1
d−1

)
p ∈ J , we let

pz = p+ zσ

(
n

d

)−1

and mz =

⌈(
n

d

)
pz

⌉
=

⌈(
n

d

)
p+ zσ

⌉
, for z ∈ R, (3.5)

and we set z∗ = ln2 n. Then (3.4) implies that for any z ∈ [−z∗, z∗] and for n sufficiently

large to ensure that pz ∈
[
0, 1

]
for all such z, we have

P
[
N (Hd(n, pz)) = ν, M̄(Hd(n, pz)) = μ̄

]
=

(nd)∑
m=0

P

[
Bin

((
n

d

)
, pz

)
= m

]
· P

[
N (Hd(n, m)) = ν, M̄(Hd(n, m)) = μ̄

]
. (3.6)

We choose this parametrization (and this value of z∗) because it will allow us to

approximate the terms P
[
Bin

((
n
d

)
, pz

)
= m

]
by a Gaussian distribution. More precisely,

we are going to rephrase the right-hand side of (3.4) as a convolution of a Gaussian

distribution, corresponding to P
[
Bin

((
n
d

)
, pz

)
= m

]
, with a certain function g that encodes

the terms

P
[
N (Hd(n, m)) = ν, M̄(Hd(n, m)) = μ̄

]
.

Since (3.2) gives us an explicit expression for the left-hand side, this will allow us to

determine the function g and thus the ‘unknowns’ P[N (Hd(n, m)) = ν, M̄(Hd(n, m)) = μ̄].

Let us point out that, since taking the Fourier transform corresponds to a basis

transformation, this approach can be seen quite directly as solving the ‘system of linear

equations’ (3.4) via diagonalization.

To carry out this approach, we define two functions f and g, with f corresponding

to the left-hand side of (3.6) and with g encoding P[N (Hd(n, m)) = ν, M̄(Hd(n, m)) = μ̄]:

we let

f(z) =

{
n · P

[
N (Hd(n, pz)) = ν, M̄(Hd(n, pz)) = μ̄

]
if z ∈ [−z∗, z∗],

0 if z ∈ R \ [−z∗, z∗],
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g(z) =

{
n · P

[
N (Hd(n, mz)) = ν, M̄(Hd(n, mz)) = μ̄

]
if z ∈ [−z∗, z∗],

0 if z ∈ R \ [−z∗, z∗].

The scaling factor n will turn out to be appropriate to ensure that f(0), g(0) = Θ(1). In

this notation, our objective is to compute g(0) explicitly.

To this end, we are going to proceed in four steps. First, we are going to exhibit

a function F such that ‖f − F‖2 = o(1) explicitly. Second, we are going to show that

(3.6) can be restated as ‖f − g ∗ φ‖2 = o(1). Third, we are going to determine a function

h such that F = h ∗ φ. Finally, we are going to infer that |g(0) − h(0)| = o(1), thereby

obtaining the desired explicit formula for g(0). From this the proof of Theorem 1.3 will

be immediate.

Let us now carry out the details of this plan. To get the function F as above, we use

Theorem 2.3 and Proposition 2.1. More precisely, in Section 4 we will prove the following;

recall the definition of x, y from (3.1).

Proposition 3.1. The function f has the following properties.

(i) There exists γ0 = γ0(d, I ,J ) > 0 such that f(z) � γ0 for all z ∈ R and ‖f‖1, ‖f‖2 � γ0.

Moreover, |f(z)| � exp(−z2/γ0) + O(n−90) for |z| > γ0.

(ii) Let γ > 0 be arbitrarily large but fixed as n grows. Let

λ =
dσ(ρ− ρd)

σN (1 − c(d− 1)ρd−1)
. (3.7)

Then λ > 0 and the function

F(z) =
n

2πρd/2σσN
· exp

[
−1

2

(
λ2(z − xλ−1σ−1

N )2 + ρd(z + yρ−dσ−1 − cρ−1σ−1x)2
)]

is such that |f(z) − F(z)| = o(1) for all z ∈ [−γ, γ].

Thus, part (i) of Proposition 3.1 shows that ‖f‖1, ‖f‖2, ‖f‖∞ are bounded and that

f(z) → 0 rapidly as z → ∞. In addition, part (ii) provides an explicit expression F(z) that

approximates f(z) well on compact sets. (In Lemma 3.1 and throughout, the exponents

in the error terms such as O(n−90) are not best possible: they are detailed merely for the

sake of concreteness.)

In Section 5 we will prove the following.

Proposition 3.2. The function g enjoys the following properties.

(i) There is a number γ0 = γ0(d, I ,J ) > 0 such that g(z) � γ0 · exp(−z2/γ0) for all z ∈ R.

(ii) Consequently, ‖g‖1, ‖g‖2 = O(1).

(iii) For any α > 0 there are β > 0 and n1 > 0 so that for all n � n1 and any z, z′ ∈ [−β, β]

we have |g(z′) − g(z)| < α.

In Section 3.2 we will establish the following relationship between f and g.
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Lemma 3.3. For almost every z ∈ R we have

f(z) = (1 + o(1))(g ∗ φ(z)) + O(n−18).

Furthermore, ‖f − g ∗ φ‖2 = o(1).

Using Proposition 3.1 and Lemma 3.3, we find a function h such that ‖f − h ∗ φ‖2 = o(1).

More precisely, in Section 3.3 we will prove the following.

Lemma 3.4. Let λ be as in (3.7), and define

ς = λ2 + ρd, κ = −
[
λ

σN
+
cρd−1

σ

]
x+

y

σ
, θ =

x2

σ2
N

+
(cρd−1x− y)2

ρdσ2
.

Then 0 < ς � 1 − Ω(1) and the function

h(z) =
n

2πρd/2
√

1 − ςσNσ
exp

[
− (z + κς−1)2

2(ς−1 − 1)
− ςθ − κ2

2ς

]
(3.8)

satisfies ‖f − h ∗ φ‖2 = o(1).

From Lemma 3.3 and Lemma 3.4, we have the two relations

‖f − g ∗ φ‖2 = o(1) and ‖f − h ∗ φ‖2 = o(1).

In Section 3.4 we shall see that these bounds imply the following.

Lemma 3.5. We have |g(0) − h(0)| = o(1).

Proof of Theorem 1.3 (assuming Propositions 3.1 and 3.2 and Lemmas 3.3–3.5). Let

m = m(n) be a sequence of integers such that c = dm/n ∈ J . Moreover, recall that ν = ν(n),

μ = μ(n) are sequences of integers such that x = ν − (1 − ρ)n and y = μ− (1 − ρd)m

satisfy n−1/2(x, y) ∈ I . Let p = p(n) be such that
(
n−1
d−1

)
p = c. This choice of p ensures that

m0 = m (see (3.5)). In addition, let μ̄ = m0 − μ. Since M(Hd(n, m)) = m− M̄(Hd(n, m)), the

definition of g ensures that

P
[
N (Hd(n, m)) = ν, M(Hd(n, m)) = μ

]
= g(0)/n. (3.9)

By Lemma 3.5, for any δ > 0 there exists n0 > 0 such that for all n > n0 we have

|h(0) − g(0)| < δ. (3.10)

Finally, one verifies

h(0) = n · Q(ν − (1 − ρ)n, μ− (1 − ρd)cn/d) = n · Q(x, y), (3.11)

where Q is the function defined in Theorem 1.3.1 Combining (3.9)–(3.11), we see that for

any δ > 0 there exists n0 such that for all n > n0 we have

|P
[
N (Hd(n, m)) = ν, M(Hd(n, m)) = μ

]
− Q(x, y)| < δ/n.

1 Full details can be found in [5, Chapter 4].
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Note that Q(x, y) = Θ(1/n), because τ2
N , τ

2
M, τNM are of order n. This implies

Theorem 1.3.

Thus, our remaining task is to prove Propositions 3.1 and 3.2 and Lemmas 3.3–3.5. The

proofs of Lemmas 3.3 and 3.5, which largely rely on arguments from Fourier analysis,

can be found in Sections 3.2 and 3.4. Moreover, in Section 3.3 we prove Lemma 3.4.

Sections 4 and 5 contain the proofs of Propositions 3.1 and 3.2, which rely on techniques

from probabilistic combinatorics.

3.2. Proof of Lemma 3.3

Set m− = m0 − z∗σ, m+ = m0 + z∗σ, and let

P (m) = n · P
[
N (Hd(n, m)) = ν, M̄(Hd(n, m)) = μ̄

]
,

Bz(m) = P

[
Bin

((
n

d

)
, pz

)
= m

]
.

Then, by the definition of f and (3.6) for all z ∈ [−z∗/2, z∗/2], we have

f(z) =

(nd)∑
m=0

P (m)Bz(m) =
∑

m−�m�m+

P (m)Bz(m) +
∑

m	∈[m− ,m+]

P (m)Bz(m)

�
∑

m−�m�m+

P (m)Bz(m) +
∑

m	∈[m− ,m+]

Bz(m) (3.12)

�
∑

m−�m�m+

P (m)Bz(m) + P

[
Bin

((
n

d

)
, pz

)
	∈ [m−, m+]

]
. (3.13)

For z ∈ [−z∗/2, z∗/2] the mean of the binomial distribution in the last summand satisfies(
n

d

)
pz = m0 + zσ ∈

[
m0 − z∗σ

2
, m0 +

z∗σ

2

]
.

Hence, applying the Chernoff bound (2.1) and recalling that z∗ = ln2 n, for n > n0 large

enough we have

P

[
Bin

((
n

d

)
, pz

)
	∈ [m−, m+]

]
� 2 exp

(
−z∗ 2σ2

20m0

)
� n−100.

Plugging this bound back into (3.13), we see that for z ∈ [−z∗/2, z∗/2],

f(z) = O(n−100) +
∑

m−�m�m+

P (m)Bz(m). (3.14)

Furthermore, for z∗/2 � |z| � z∗, we can bound f(z) via part (i) of Proposition 3.1, which

shows that there exists γ0 = O(1) such that f(z) � exp(−z2/γ0) + O(n−90) for |z| > γ0. As

z∗ = ln2 n, we therefore obtain for n > n0 large

f(z) � exp(−Ω(z∗ 2)) + O(n−90) � O(n−90), for z∗/2 � |z| � z∗. (3.15)
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Combining (3.14) and (3.15), we obtain for |z| � |z∗|

f(z) = O(n−90) +
∑

m−�m�m+

P (m)Bz(m). (3.16)

For each integer 0 � m �
(
n
2

)
, let Jm be the set of all reals z such that mz=�m0 + zσ� = m.

Then Jm has length
∫
Jm

1dζ = 1/σ. Since g(z) = P (m) for all z ∈ Jm by the definition of g,

we get

P (m) =

∫
Jm
g(ζ)dζ∫
Jm

1dζ
= σ

∫
Jm

g(ζ)dζ, for any m− � m � m+.

Furthermore, by the local limit theorem for the binomial distribution, for each m− � m �
m+ we have

Bz(m) ∼ 1√
2πσ

exp

[
− (m− (m0 + zσ))2

2σ2

]

=
1√
2πσ

exp

[
− (mζ − (m0 + zσ))2

2σ2

]
, for all ζ ∈ Jm.

Consequently, for any m− � m � m+ and any ζ ∈ Jm we have

Bz(m) ∼ 1√
2πσ

exp

[
− (�m0 + ζσ� − (m0 + zσ))2

2σ2

]

=
1√
2πσ

exp

[
− (ζ − z)2

2

]

· exp

[
(�m0 + ζσ� − (m0 + zσ))2 − (m0 + ζσ − (m0 + zσ))2

2σ2

]
.

Since m0 + ζσ � �m0 + ζσ� � m0 + ζσ + 1, we have

|(�m0 + ζσ� − (m0 + zσ))2 − (m0 + ζσ − (m0 + zσ))2| � 2|z − ζ|σ + 1.

Therefore,

exp

[
(�m0 + ζσ� − (m0 + zσ))2 − (m0 + ζσ − (m0 + zσ))2

2σ2

]
∼ 1

and thus

Bz(m) ∼ 1√
2πσ

exp

[
− (ζ − z)2

2

]
= σ−1φ(z − ζ), for all m− � m � m+, ζ ∈ Jm.

Hence,

P (m)Bz(m) ∼
∫
Jm

g(ζ)φ(z − ζ) dζ.

Summing up, we obtain

f(z) = (1 + o(1))

∫
R

g(ζ)φ(z − ζ)dζ + O(z∗n−90) = (1 + o(1))g ∗ φ(z) + O(n−89)

for all z ∈ R. This proves the first part of Lemma 3.3. The second part follows from the

dominated convergence theorem because ‖f‖2 = O(1).
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3.3. Proof of Lemma 3.4

We start by manipulating the function F(z) a little: we have

F(z) =
n

2πρd/2σσN
exp

[
−1

2

(
λ2(z − xλ−1σ−1

N )2 + ρd(z + yρ−dσ−1 − cρ−1σ−1x)2

)]

=
n

2πρd/2σσN

· exp

[
−1

2

((
λ2 + ρd

)
z2 − 2

(
xλ

σN
+
xcρd−1

σ
− y

σ

)
z +

x2

σ2
N

+

(
xcρd−1 − y

)2

ρdσ2

)]

=
n

2πρd/2σσN
exp

[
−1

2

(
ςz2 + 2κz + θ

)]

=
n

2πρd/2σσN
exp

[
− (z + κς−1)2

2ς−1
− θς− κ2

2ς

]
. (3.17)

As a next step, we are going to infer from (3.17) that ς < 1 − Ω(1). To prove this claim

it is convenient to use Lemma 3.3. Let PF = ‖F‖−1
1 Fdz be the probability distribution on

R defined by the density function ‖F‖−1
1 F . Then (3.17) shows that Var(PF ) = ς−1. Thus,

we need to show that Var(PF ) > 1 + Ω(1). By the triangle inequality,

‖F − g ∗ φ‖1 � ‖F − f‖1 + ‖f − g ∗ φ‖1. (3.18)

As Proposition 3.1 and Lemma 3.3 show that f converges to F as well as to g ∗ φ pointwise

almost everywhere, and as f, F, g ∈ L1(R), the dominated convergence theorem implies

that f converges to both F and g ∗ φ in L1. Hence, (3.18) entails that ‖F − g ∗ φ‖1 =

o(1). As the convolution of two probability measures is a probability measure, we

thus obtain ‖g‖1 ∼ ‖F‖1. Therefore, letting P‖g‖−1
1 g∗φ = ‖g‖−1

1 g ∗ φdz and recalling from

Propositions 3.1 and 3.2 that both F(z) and g(z) decay exponentially as z → ∞, we see

that

ς−1 = Var(P‖F‖−1
1 F ) ∼ Var(P‖g‖−1

1 g∗φ). (3.19)

The probability distribution P‖g‖−1
1 g∗φ equals the distribution of the sum of two independent

random variables, one with distribution ‖g‖−1
1 g dz and the second with distribution φdz.

Since the variance of the sum of two independent random variables equals the sum of

their separate variances, we get

Var(P‖g‖−1
1 g∗φ) = Var(P‖g‖−1

1 g) + Var(Pφ) = Var(P‖g‖−1
1 g) + 1 > 1, (3.20)

where the last (strict) inequality just follows from the fact that g ∈ L1(R) (see Lemma 3.3),

as this rules out the possibility of P‖g‖−1
1 g being a point measure. Combining (3.20) and

(3.19), we see that ς < 1. Furthermore, since ρ and therefore also ς is a continuous

function of c = c(n) by the implicit function theorem, and since c ranges over the compact

set J by assumption, the strict inequality ς < 1 implies that indeed ς < 1 − Ω(1), that is,

ς remains bounded away from 1 as n → ∞.
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Knowing that ς < 1 − Ω(1), we can define

η1 =
n

2πρd/2
√

1 − ςσNσ
exp

(
−ςθ − κ2

2ς

)
,

η2 = −κς−1,

η3 = ς−1 − 1,

η4 = η1

√
2πη3,

so that h(z) = η4φη2 ,η3
. Hence, it is clear that h ∗ φ = η4φη2 ,η3+1. Finally, a straight

computation shows that F = η4φη2 ,η3+1. As f, F ∈ L2(R) and f(z) → F(z) pointwise almost

everywhere by Proposition 3.1, the dominated convergence theorem yields ‖f − h ∗ φ‖2 =

o(1), as desired.

3.4. Proof of Lemma 3.5

If it were true that f = g ∗ φ and f = h ∗ φ, then we could immediately infer that g = h.

Indeed, if f = g ∗ φ = h ∗ φ, then taking the Fourier transform yields ĝφ̂ = ĥφ̂ (using

(2.2)). Dividing by φ̂ gives ĝ = ĥ, whence Fourier transforming once more shows g = h.

However, knowing only ‖f − g ∗ φ‖2, ‖f − h ∗ φ‖2 = o(1) (by Lemmas 3.3 and 3.4), we

have to work a little harder. Since ‖f − g ∗ φ‖2, ‖f − h ∗ φ‖2 = o(1), there is a function

ω = ω(n) such that limn→∞ ω(n) = ∞ and

‖f − g ∗ φ‖2, ‖f − h ∗ φ‖2 <
1

2
exp(−2ω2).

By the triangle inequality,

‖(g − h) ∗ φ‖2 < exp(−2ω2) = o(1). (3.21)

To compare g and h, the crucial step is to establish that ‖(g − h) ∗ φ0,τ2 ‖2 = o(1) for ‘small’

τ � 1.

Lemma 3.6. Suppose that ω−1/8 � τ � 1. Then ‖(g − h) ∗ φ0,τ2 ‖2 � exp(−ω/3) for n suf-

ficiently large.

Proof of Lemma 3.6. By Proposition 3.1(i) and Lemma 3.3, f, g ∈ L1(R) ∩ L2(R) and

thus we can apply the Plancherel theorem (2.3). Let ψ = φ̂0,τ2 = φ0,τ−2 . Then

‖(g − h) ∗ φ0,τ2 ‖2
2

(2.3)
= ‖ ̂(g − h) ∗ φ0,τ2 ‖2

2

(2.2)
= 2π‖(ĝ − ĥ)ψ‖2

2

= 2π

∫ ω

−ω
|(ĝ − ĥ)ψ|2 + 2π

∫
R\[−ω,ω]

|(ĝ − ĥ)ψ|2. (3.22)

Since φ̂ = φ = φ0,1, we obtain∫ ω

−ω
|(ĝ − ĥ)ψ|2 � ‖ψ‖2

∞

inf−ω�t�ω |φ̂(t)|2

∫ ω

−ω
|(ĝ − ĥ)φ̂|2

� exp(ω2)‖(ĝ − ĥ)φ̂‖2
2
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= exp(ω2)‖(g − h) ∗ φ‖2
2 (by (2.2) and Plancherel (2.3))

(3.21)

� exp(−ω2). (3.23)

In addition, by the Cauchy–Schwarz inequality,∫
R\[−ω,ω]

|(ĝ − ĥ)ψ|2 �
[∫

R

|(ĝ − ĥ)2|2
]1/2

·
[∫

R\[−ω,ω]

|ψ|4
]1/2

. (3.24)

As τ−2 � ω1/4, we have∫
R\[−ω,ω]

|ψ|4 � τ−4

∫ ∞

ω

exp(−2τ2ζ2) dζ � exp(−ω). (3.25)

Moreover,

2π

∫
R

|(ĝ − ĥ)2|2 = 2π‖(ĝ − ĥ)2‖2
2

= ‖(g − h) ∗ (g − h)‖2
2 (by (2.2) and (2.3))

= ‖g ∗ g − 2g ∗ h+ h ∗ h‖2
2

�
[
‖g ∗ g‖2 + 2‖g ∗ h‖2 + ‖h ∗ h‖2

]2
. (3.26)

Lemma 3.3 shows that ‖g‖1, ‖g‖2 = O(1) and Lemma 3.4 implies ‖h‖1, ‖h‖2 = O(1).

Therefore, invoking Young’s inequality (2.5), we obtain

‖g ∗ g‖2 � ‖g‖1‖g‖2 = O(1),

‖g ∗ h‖2 � ‖g‖1‖h‖2 = O(1),

‖h ∗ h‖2 � ‖h‖1‖h‖2 = O(1).

Plugging these estimates into (3.26), we see that
∫

R
|(ĝ − ĥ)2|2 = O(1). Hence, (3.24) and

(3.25) yield ∫
R\[−ω,ω]

|(ĝ − ĥ)ψ|2 � O(exp(−ω/2)). (3.27)

Finally, combining (3.22), (3.23), and (3.27), we obtain the desired bound on ‖(g − h) ∗
φ0,τ2 ‖2.

Proof of Lemma 3.5. We are going to use Lemma 3.6 to show that g(0) must be close to

h(0). The basic idea is as follows. For small τ the function φ0,τ2 is just a narrow peak above

the origin. Therefore, the continuity property of g established in Proposition 3.2 implies

that the convolution g ∗ φ0,τ2 (0) is close to g(0). Similarly, h ∗ φ0,τ2 (0) is approximately the

same as h(0). As g ∗ φ0,τ2 (0) and h ∗ φ0,τ2 (0) are close by Lemma 3.6, we will be able to

conclude that |h(0) − g(0)| = o(1). Let us carry out the details.

Assume for contradiction that there is a positive α = Ω(1) such that g(0) > h(0) + α

for arbitrarily large n (an analogous argument applies in the case g(0) < h(0) − α). Let

τ = ω−1/8. Our goal is to show

‖(h− g) ∗ φ0,τ2 ‖2 > exp(−ω/3), (3.28)

in contradiction to Lemma 3.6.
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To show (3.28), note that Proposition 3.2 and Lemma 3.4 imply ‖g‖∞ = O(1) and

‖h‖∞ = O(1). Hence, there is a number 1 < Γ = O(1) such that g(ζ), h(ζ) � Γ, for almost

all ζ ∈ R. Further, again by Proposition 3.2 and Lemma 3.4 and because h is uniformly

continuous on all of R, there is a number β = β(α) > 0 (independent of n) such that

|g(0) − g(z)| � 0.01α, |h(0) − h(z)| � 0.01α, for all z such that |z| < 2β. (3.29)

Let γ =
∫

R\[−β/2,β/2]
φ0,τ2 . Then, for sufficiently large n we have γ < 0.01αΓ−1, because

τ = ω−1/8 → 0 as n → ∞. (Intuitively, the narrow ‘spike’ that φ0,τ2 represents falls into

the interval [−β/2, β/2] around the origin.) Therefore, for any z such that |z| < β/2, we

have

g ∗ φ0,τ2 (z) =

∫
R

g(z − ζ)φ0,τ2 (ζ)dζ �
∫ β

−β
g(z − ζ)φ0,τ2 (ζ)dζ

(3.29)

� (g(0) − 0.01α)(1 − γ) � g(0) − 0.03α, (3.30)

and similarly

h ∗ φ0,τ2 (z) =

∫
R

h(z − ζ)φ0,τ2 (ζ)dζ

�
∫ β

−β
h(z − ζ)φ0,τ2 (ζ)dζ + Γ

∫
R\(−β,β)

φ0,τ2 (ζ)dζ

� h(0) + 0.01α+ Γγ
(3.29)

� h(0) + 0.03α. (3.31)

Since (3.30) and (3.31) are true for all z such that |z| < β/2, our assumption g(0) > h(0) + α

yields

‖(g − h) ∗ φ0,τ2 ‖2
2 �

∫ β/2

−β/2
|g ∗ φ0,τ2 (z) − h ∗ φ0,τ2 (z)|2dz � 0.5α2β. (3.32)

As α, β remain bounded away from 0 while ω(n) → ∞ as n → ∞, for sufficiently large n

we have 0.5α2β > 2π exp(−ω/6), and thus (3.32) implies (3.28).

4. Analysis of f: proof of Proposition 3.1

Throughout this section, we keep the notation and the assumptions from Section 3.

Recall the definition of the function f: for |z| � z∗ = ln2 n we have

f(z) = n · P
[
N (Hd(n, pz)) = ν, M̄(Hd(n, pz)) = μ̄

]
,

while f(z) = 0 for z 	∈ [−z∗, z∗]. Thus, to understand f we need to study the joint

distribution of the order N (Hd(n, pz)) of the largest component and of the number

M̄(Hd(n, pz)) of edges outside this component. What we are going to show is that the

two events {N (Hd(n, pz)) = ν}, {M̄(Hd(n, pz)) = μ̄} are almost independent. From this

Proposition 3.1 follows rather immediately, as we already have a local limit theorem for

N (Hd(n, pz)) (Theorem 2.3), and as M̄(Hd(n, pz)) will turn out to be a binomial random

variable.
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The intuitive reason why N (Hd(n, pz)) = ν, M̄(Hd(n, pz)) = μ̄ are essentially independent

is that for ν ‘close’ to the expected order (1 − ρ)n of the largest component, the number

n− ν of remaining vertices is sufficiently small that the average degree
(
n−ν−1
d−1

)
pz of a

random hypergraph Hd(n− ν, pz) on n− ν vertices is strictly smaller than 1/(d− 1). In

effect, such a random hypergraph does not typically have a component of order greater

than ln2 n.

As a first step, we study how the expected order of the largest component of Hd(n, pz)

depends on z. Recall that pz = p+ zσ/
(
n
d

)
and let cz =

(
n−1
d−1

)
pz . As cz ∼ c > (d− 1)−1,

there is a unique ρz ∈
(
0, 1

)
such that

ρz = exp(cz(ρ
d−1
z − 1)).

As in (3.7) we let

λ =
dσ(ρ− ρd)

σN (1 − c(d− 1)ρd−1)
.

(We know that 1 − c(d− 1)ρd−1 	= 0 because this term occurs in the denominator of the

variance of N (Hd(n, p)): see Theorem 2.3.)

Lemma 4.1. Let z ∈ [−z∗, z∗]. Then

E
[
N (Hd(n, pz))

]
= (1 − ρz)n+ o(

√
n) = (1 − ρ)n+ λσN z + o(

√
n)

and

max{P
[
N (Hd(n− ν, pz)) > ln2 n

]
,P

[
N (Hd(n− ν, μ̄)) > ln2 n

]
} = O(n−100).

Proof of Lemma 4.1. By Theorem 2.2 we have

E
[
N (Hd(n, pz))

]
= (1 − ρz)n+ o(

√
n). (4.1)

Furthermore, the function z �→ ρz has two continuous derivatives by the implicit function

theorem. Consequently, we can Taylor-expand ρz at z = 0 by differentiating both sides of

the transcendental equation ρz = exp(cz(ρ
d−1
z − 1)). By the chain rule,

dρz

dz
= exp(cz(ρ

d−1
z − 1)) · d

dz

[
cz(ρ

d−1
z − 1)

]
= ρz · d

dz

[
cz(ρ

d−1
z − 1)

]
= dσ(ρdz − ρz) + cz(d− 1)ρd−1

z · d
dz
ρz.

Hence,

ρz = ρ− λσN n
−1z + o(n−1/2). (4.2)

Thus, the first assertion follows from (4.1).

For the second part, we observe that by (4.2) we have ν ∼ (1 − ρz)n ∼ (1 − ρ)n for all

z ∈ [−z∗, z∗]. Therefore the average degree c′ of Hd(n− ν, pz) satisfies

c′ =

(
n− ν − 1

d− 1

)
pz ∼ ρd−1c0 < (d− 1)−1,
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and the average degree c′′ in Hd(n− ν, μ̄) satisfies

c′′ =
dμ̄

n− ν
∼ ρd−1c0 < (d− 1)−1.

By part (i) of Theorem 2.2, the probability that a random hypergraph of average degree

smaller than and bounded away from (d− 1)−1 has a component of order greater than

ln2 n is bounded by (n− ν)−100 = O(n−100), and hence the second assertion follows.

Let G ⊂ V = {1, . . . , n} be a subset of size ν. We would like to condition on the event

that G is the largest component of Hd(n, pz) and study the conditional distribution of the

number of edges in the hypergraph Hd(n, pz) − G obtained by removing the vertices in

G. The problem with this is that once we condition on G being the largest component,

the edges of Hd(n, pz) − G may no longer occur independently, because the conditioning

implies that Hd(n, pz) − G has no component of order greater than ν. By contrast, if we

just condition on the event that G is a component (but not necessarily the largest one),

then the conditioning does not affect the edges in Hd(n, pz) − G at all. Thus, given that

G is a component, Hd(n, pz) − G is identical to a random hypergraph Hd(n− ν, pz), and

therefore the number of edges in Hd(n, pz) − G has a binomial distribution Bin(N, pz),

where

N =

(
n− ν

d

)
.

The proof of the following lemma, which is reminiscent of arguments used in [22], is based

on the observation that conditioning on G being a component is essentially equivalent to

conditioning on G being the largest component.

Lemma 4.2. For all z ∈ [−z∗, z∗] we have

f(z)

n · P
[
Bin(N, pz) = μ̄

]
P
[
N (Hd(n, pz)) = ν

] = 1 + O(n−100).

Proof of Lemma 4.2. Let G = {G ⊂ V : |G| = ν}. For G ∈ G we let CG denote the event

that G is a component in Hd(n, pz). Then, by the union bound,

f(z)

n
= P

[
N (Hd(n, pz)) = ν, M̄(Hd(n, pz)) = μ̄

]
�

∑
G∈G

P
[
CG, |E(Hd(n, pz) − G)| = μ̄

]
. (4.3)

The event CG merely imposes a condition on the hypergraph spanned by G (it must be

connected), and imposes the absence of edges between G and V \ G. But CG imposes no

conditioning on the hypergraph Hd(n, pz) − G spanned by the remaining n− ν vertices. In

particular, |E(Hd(n, pz) − G)| is binomially distributed with parameters N and pz . Hence,
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(4.3) yields

f(z)

n
�

∑
G∈G

P
[
CG

]
P
[
|E(Hd(n, pz) − G)| = μ̄

]
= P

[
Bin(N, pz) = μ̄

] ∑
G∈G

P
[
CG

]
. (4.4)

Furthermore, by the same token, given that G is a component in Hd(n, pz), Hd(n, pz) − G

is identical to the random hypergraph Hd(n− ν, pz) on n− ν vertices. As a consequence,

P
[
CG, N (Hd(n, pz) − G) < ν

]
= P

[
CG

]
P
[
N (Hd(n, pz) − G) < ν

]
.

Therefore, (4.4) yields

f(z)

n
� P

[
Bin(N, pz) = μ̄

] ∑
G∈G

P
[
CG, N (Hd(n, pz) − G) < ν

]
P
[
N (Hd(n, pz) − G) < ν

] . (4.5)

Furthermore, P[N (Hd(n, pz) − G) < ν] � 1 − O(n−100) by the second part of Lemma 4.1.

Thus, (4.5) entails

f(z)

n
�

P
[
Bin(N, pz) = μ̄

]
1 − O(n−100)

∑
G∈G

P
[
CG, N (Hd(n, pz) − G) < ν

]

=
P
[
Bin(N, pz) = μ̄

]
1 − O(n−100)

· P
[
∃G ∈ G : CG, N (Hd(n, pz) − G) < ν

]
�

P
[
Bin(N, pz) = μ̄

]
P
[
N (Hd(n, pz)) = ν

]
1 − O(n−100)

. (4.6)

Conversely, if G ∈ G is a component of Hd(n, pz) and N (Hd(n, pz) − G) < ν, then G is

the unique largest component of Hd(n, pz). Therefore,

f(z)

n
�

∑
G∈G

P
[
CG, N (Hd(n, pz) − G) < ν, |E(Hd(n, pz) − G)| = μ̄

]
=

∑
G∈G

P
[
CG

]
P
[
(N (Hd(n, pz) − G) < ν), |E(Hd(n, pz) − G)| = μ̄

]
. (4.7)

Further, given that

|E(Hd(n, pz) − G)| = μ̄,

Hd(n, pz) − G is just a random hypergraph Hd(n− ν, μ̄). Hence, (4.7) yields

f(z)

n
� P

[
N (Hd(n− ν, μ̄)) < ν

]
P
[
Bin(N, pz) = μ̄

] ∑
G∈G

P
[
CG

]
� P

[
N (Hd(n− ν, μ̄)) < ν

]
P
[
Bin(N, pz) = μ̄

]
P
[
N (Hd(n, pz)) = ν

]
, (4.8)

where the last estimate follows from the union bound. Now,

P
[
N (Hd(n− ν, μ̄)) � ν

]
� O(n−100)
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by the second part of Lemma 4.1. Plugging this into (4.8), we get

f(z)

n
� (1 − O(n−100))P

[
Bin(N, pz) = μ̄

]
P
[
N (Hd(n, pz)) = ν

]
. (4.9)

Combining (4.6) and (4.9) completes the proof.

Proof of Proposition 3.1. Since f(z) = 0 if |z| > z∗, we only need to consider z ∈ [−z∗, z∗].

By Theorem 2.3 (the local limit theorem for N (Hd(n, p))) and Proposition 2.1 (the local

limit theorem for the binomial distribution) there is a number γ1 = γ1(d,J ) > 0 such that,

for all z ∈ [−z∗, z∗],

P
[
N (Hd(n, pz)) = ν

]
� γ1n

−1/2 and P
[
Bin(N, pz) = μ̄

]
� γ1n

−1/2. (4.10)

Therefore, Lemma 4.2 implies

f(z)/n = (1 + O(n−100))P
[
N (Hd(n, pz)) = ν

]
P
[
Bin(N, pz) = μ̄

]
, (4.11)

whence

sup
z∈R

f(z) � 2γ2
1

for large enough n. More precisely, (4.10), (4.11) and Proposition 2.1 imply that for n

large,

f(z) � γ1 ·
√
n P

[
Bin(N, pz) = μ̄

]
+ O(n−100)

� 2γ1

√
n

2πNpz(1 − pz)
· exp

[
− (Npz − μ̄)2

2Npz(1 − pz)

]
+ O(n−100)

� 2γ1

√
n

2πNpz(1 − pz)
· exp

[
−

(
Np0 − μ̄+ zσ ·N/

(
n
d

))2

2Npz(1 − pz)

]
+ O(n−100).

As μ̄, ν are such that n−1/2(x, y) ∈ I for a compact set I , the first summand decays

exponentially as z grows. Indeed, there is a number γ2 = γ2(d, I ,J ) such that

f(z) � γ2 exp(−z2/γ2) + O(n−100), for all z.

Hence, there exists γ3 = γ3(d, I ,J ) such that ‖f‖1, ‖f‖2 � γ3. Setting γ0 = γ1 + γ2 + γ3

completes the proof of assertion (i).

Let γ > 0 be arbitrarily large but fixed as n grows, and consider z ∈ [−γ, γ]. We are left

to prove that |f(z) − F(z)| = o(1). To this end, all we need to do is to plug in the explicit

expressions for the two factors on the right-hand side of (4.11) and simplify. Let

μN ,z = (1 − ρz)n, σN ,z =

√
ρz

(
1 − ρz + cz(d− 1)(ρz − ρd−1

z )
)
n

1 − cz(d− 1)ρd−1
z

,

so that σN = σN ,0. Then Theorem 2.3 implies that

P
[
N (Hd(n, pz)) = ν

]
∼ 1√

2πσN ,z

exp

(
− (ν − μN ,z)

2

2σ2
N ,z

)
. (4.12)
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Since we know from Lemma 4.1 that

1 − ρz = 1 − ρ+ z · λσN
n

+ o(n−1/2),

(4.12) yields

P
[
N (Hd(n, pz)) = ν

]
∼ 1√

2πσN
exp

(
− (ν − (1 − ρ)n− zλσN )2

2σ2
N

)
. (4.13)

Further, since ν = (1 − ρ)n+ x by (3.1) and as x = O(
√
n), we have

Npz(1 − pz) = Npz + O(1) =

(
n− ν

d

)[
p+ zσ

(
n

d

)−1]

=
(n− ν)d

d!

[
p+ zσ

(
n

d

)−1]
+ O(1)

= (ρ− x/n)d
(
n

d

)[
p+ zσ

(
n

d

)−1]
+ O(1)

= (ρ− x/n)d
[
m0 + zσ

]
+ O(1) =

(
ρd − dρd−1x

n

)[
m0 + zσ

]
+ O(1)

= ρd(m0 + zσ − cρ−1x) + O(1).

Hence, Proposition 2.1 entails

P
[
Bin(N, pz) = μ̄

]
=

1√
2πNpz(1 − pz)

exp

[
− μ̄−Npz

2Npz(1 − pz)

]

∼ 1√
2πρdm0

exp

(
− (μ̄− ρd(m0 + zσ − cρ−1x))2

2ρdm0

)
. (4.14)

Plugging (4.13) and (4.14) into (4.11), we obtain

f(z)

n
∼ P

[
N (Hd(n, pz)) = ν

]
P
[
Bin(N, pz) = μ̄

]
∼ 1

2π
√
ρdm0σN

exp

(
− (ν − (1 − ρ)n− zλσN )2

2σ2
N

− (μ̄− ρd(m0 + zσ − cρ−1x))2

2ρdm0

)

∼ 1

2πρd/2σσN
exp

(
− (x− zλσN )2

2σ2
N

− (−y − ρdσz + cρd−1x)2

2ρdσ2

)

=
F(z)

n
,

thereby completing the proof.

5. Analysis of g: proof of Proposition 3.2

Throughout this section, we keep the notation and the assumptions from Section 3. Let

0 < α < 0.1 be given. We will always assume that n > n1 for some large enough n1 = n1(α).

The function g is a bit ‘unwieldy’ because it is defined in terms of the random

hypergraph Hd(n, mz) with a fixed number of edges. To prove Proposition 3.2, we are

going to represent g in terms of Hd(n, pz) instead. As a first step, we are going to express
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g(z) in terms of the number Cd(ν, mz − μ̄) of connected d-uniform hypergraphs of order ν

and size mz − μ̄ for z ∈ [−z∗, z∗]. To this end, we use a similar argument as in [22].

Lemma 5.1. Uniformly for z ∈ [−z∗, z∗], we have

g(z) = (1 + O(n−100))n

(
n

ν

)((
n−ν
d

)
μ̄

)
Cd(ν, mz − μ̄)/

((
n
d

)
mz

)
.

Proof of Lemma 5.1. We claim that

g(z)

n
�

(
n

ν

)
Cd(ν, mz − μ̄)

((
n−ν
d

)
μ̄

)((
n
d

)
mz

)−1

. (5.1)

The reason is that g(z)/n is the probability that the largest component of Hd(n, mz) has

order ν and size mz − μ̄, while the right-hand side equals the expected number of such

components. There are
(
n
ν

)
ways to choose ν vertices on which to place such a component.

Then, there are Cd(ν, mz − μ̄) ways to choose the component itself. Moreover, there are((n−ν
d )
μ̄

)
ways to choose the hypergraph induced on the remaining n− ν vertices, while the

total number of d-uniform hypergraphs of order n and size mz is
((nd)
mz

)
. Conversely,

g(z)

n
�

(
n

ν

)
Cd(ν, mz − μ̄)

((
n−ν
d

)
μ̄

)
P
[
N (Hd(n− ν, μ̄)) < ν

]((
n
d

)
mz

)−1

, (5.2)

since the right-hand side equals the probability that Hd(n, mz) has one component of order

ν and size mz − μ̄, while all other components have order < ν. Since

P
[
N (Hd(n− ν, μ̄)) < ν

]
= 1 − O(n−100)

by Lemma 4.1, the assertion follows from (5.1) and (5.2).

To perform the transition from Hd(n, mz) to Hd(n, pz), we will now express Cd(ν, mz − μ̄)

in terms of the probability of a certain event in Hd(n, pz).

Lemma 5.2. Let z, z′ ∈ [−z∗, z∗] and set

P(z, z′) = P
[
N (Hd(n, pz′ )) = ν, M(Hd(n, pz′ )) = mz − μ̄

]
.

Then

P(z, z′) = (1 − O(n−100))

(
n

ν

)
p
mz−μ̄
z′ (1 − pz′ )(

n
d)−(n−ν

d )−(mz−μ̄) · Cd(ν, mz − μ̄).

Proof. We observe that

P(z, z′) �
(
n

ν

)
Cd(ν, mz − μ̄)pmz−μ̄z′ (1 − pz′ )(

n
d)−(n−ν

d )−(mz−μ̄), (5.3)

because the right-hand side equals the expected number of components of order ν and

size mz − μ̄ in Hd(n, pz′ ). (There are
(
n
ν

)
ways to choose the ν vertices on which to place the

component and Cd(ν, mz − μ̄) ways to choose the component itself. Furthermore, edges

https://doi.org/10.1017/S0963548314000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000017


Local Limit Theorems for the Giant Component of Random Hypergraphs 357

are present with probability pz′ independently, and thus the p
mz−μ̄
z′ factor accounts for

the presence of the mz − μ̄ desired edges among the selected ν vertices. Moreover, the

(1 − pz′ )-factor rules out further edges among the ν chosen vertices and between the ν

chosen and the n− ν remaining vertices.) Conversely,

P(z, z′) �
(
n

ν

)
Cd(ν, mz − μ̄)pmz−μ̄z′ (1 − pz′ )(

n
d)−(n−ν

d )−(mz−μ̄) · P
[
N (Hd(n− ν, pz′ )) < ν

]
, (5.4)

since the right-hand side is the probability that there occurs exactly one component of

order ν and size mz − μ̄, while all other components have order < ν. As Lemma 4.1 entails

that

P
[
N (Hd(n− ν, pz′ ) < ν)

]
= 1 − O(n−100),

(5.3) and (5.4) yield

P(z, z′) = (1 − O(n−100))

(
n

ν

)
Cd(ν, mz − μ̄)pmz−μ̄z′ (1 − pz′ )(

n
d)−(n−ν

d )−(mz−μ̄),

as claimed.

Combining Lemmas 5.1 and 5.2, we obtain the following representation of g(z) in terms

of Hd(n, pz).

Corollary 5.3. Let z, z′ ∈ [−z∗, z∗]. Then

g(z) = (1 + O(n−100)) · nP(z, z′) ·
P
[
Bin

((
n−ν
d

)
, pz′

)
= μ̄

]
P
[
Bin

((
n
d

)
, pz′

)
= mz

] .

Lemma 5.4. We have supz∈[−z∗ ,z∗] P(z, z) = O(1/n).

We defer the proof of Lemma 5.4 to Section 5.1. From Corollary 5.3 it is relatively

straightforward to obtain the following bound on g.

Corollary 5.5. There is a number γ0 = γ0(d, I ,J ) such that

g(z) � γ0 · exp(−z2/γ0), for all z ∈ R.

Proof. With z = z′, Corollary 5.3 and Proposition 2.1 yield

g(z) = (1 + O(n−100)) · nP(z, z) ·
P
[
Bin

((
n−ν
d

)
, pz

)
= μ̄

]
P
[
Bin

((
n
d

)
, pz

)
= mz

]
� O(n) · P(z, z) · exp

[
−

(μ̄−
(
n−ν
d

)
pz)

2

2
(
n−ν
d

)
pz(1 − pz)

]

� O(1) · exp

[
−

(μ̄−
(
n−ν
d

)
pz)

2

2
(
n−ν
d

)
pz(1 − pz)

]
(by Lemma 5.4).
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Since (μ̄−
(
n−ν
d

)
p)/n1/2 = O(1) by our assumption on μ̄ and because(

n− ν

d

)
pz −

(
n− ν

d

)
p ∼ zρdσ,

we obtain

g(z) � O(1) exp

[
− (1 + o(1))z2σ2ρ2d

2
(
n−ν
d

)
pz(1 − pz)

]
� O(1) · exp

[
−(1 + o(1))z2ρ2d/2

]
,

as desired.

To establish the asymptotic continuity of g at 0 (part (iii) of Proposition 3.2), we prove

the following continuity statement for P in Section 5.1.

Lemma 5.6. For any α > 0, there exists β > 0 such that for all z, z′ ∈ [−β, β] we have

n · |P(z, z′) − P(z′, z′)| � α+ o(1).

Proof of Proposition 3.2. Statements (i) and (ii) follow immediately from Corollary 5.5.

With respect to claim (iii), Corollary 5.3 yields

g(z) − g(z′) =
√
nP

[
Bin

((
n− ν

d

)
, pz′

)
= μ̄

]

·
[

nP(z, z′)√
nP

[
Bin

((
n
d

)
, pz′

)
= mz

] − nP(z′, z′)√
nP

[
Bin

((
n
d

)
, pz′

)
= mz′

]]
+ o(1).

Thus, by Proposition 2.1,

g(z) − g(z′) =
√

2πσ · P

[
Bin

((
n− ν

d

)
, pz′

)
= μ̄

]

·
[
nP(z, z′) exp

(
(z − z′)2

2

)
− nP(z′, z′)

]
+ o(1)

� C ·
[
nP(z, z′) exp

(
(z − z′)2

2

)
− nP(z′, z′)

]
+ o(1).

for a certain number C = C(d, I ,J ) > 0. Hence, the assertion follows from Lemma 5.6.

5.1. Sprinkling: proof of Lemmas 5.4 and 5.6

Let z, z′ ∈ [−z∗, z∗]. Let ε > 0 be a small enough number that remains fixed as n → ∞.

Moreover, set q1 = (1 − ε)pz′ , and let q2 ∼ εpz′ be such that q1 + q2 − q1q2 = pz′ . Choosing

ε > 0 sufficiently small, we can ensure that
(
n−1
d−1

)
q1 > (d− 1)−1 + ε. Now, we construct

Hd(n, pz′ ) in three rounds, as follows.

(R1) Construct a random hypergraph H1 with vertex set V = {1, . . . , n} by including each

of the
(
n
d

)
possible edges with probability q1 independently. Let G1 be the largest

component of H1.

(R2) Let H2 ⊃ H1 be the hypergraph obtained by adding with probability q2 independ-

ently each possible edge e 	∈ H1 that is not entirely contained in G1 (i.e., e 	⊂ G1) to

H1. Let G2 signify the largest component of H2.
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(R3) Finally, obtain H3 ⊃ H2 by adding each edge e 	∈ H1 such that e ⊂ G1 with probab-

ility q2 independently. Let F denote the set of edges added in this way.

Since for each of the
(
n
d

)
possible edges the overall probability of being contained in H3 is

q1 + (1 − q1)q2 = pz′ , H3 is just a random hypergraph Hd(n, pz′ ). Moreover, since in (R3)

we only add edges that fall completely into the component of H2 that contains G1, we

have

N (Hd(n, pz′ )) = N (H3) = N (H2).

Furthermore, |F | has a binomial distribution

|F | = Bin

((
|G1|
d

)
− M(H1), q2

)
. (5.5)

We are going to apply the local limit theorem for the binomially distributed |F |
(Proposition 2.1). Loosely speaking, we shall observe that most likely G1 is contained in

the largest component of H3. If this is indeed the case, then M(H3) = |F | + M(H2), and

therefore

M(H3) = mz − μ ⇔ |F | = mz − μ− M(H2). (5.6)

Finally, since

P
[
|F | = mz′ − μ− M(H2)

]
and P

[
|F | = mz − μ− M(H2)

]
will turn out to be ‘close’ for |z − z′| small (by the local limit theorem for the binomial

distribution), we will find that the same is true of P(z, z′) and P(z′, z′).

To implement this sketch, let Q(α′, z, z′) be the set of all pairs (H1,H2) of hypergraphs

that satisfy the following three conditions.

(Q1) N (H2) = ν.

(Q2) P
[
M(H3) = mz − μ|H1 = H1, H2 = H2

]
� α′n−1/2.

(Q3) The largest component of H2 contains the largest component of H1.

The next lemma shows that the processes (R1)–(R3) such that (H1, H2) ∈ Q(α′, z, z′)

dominate.

Lemma 5.7. For any α > 0, there exists α′ > 0 such that for all z, z′ ∈ [−z∗, z∗] the follow-

ing is true. Let

Π(α′, z, z′) = P
[
M(H3) = mz − μ, (H1, H2) ∈ Q(α′, z, z′)

]
.

Then

Π(α′, z, z′) � P(z, z′) � Π(α′, z, z′) + α/n+ o(1/n).

Proof of Lemma 5.7. The inequality Π(α′, z, z′) � P(z, z′) is immediate from the defini-

tions. To obtain the second inequality, let R signify the set of all pairs (H1,H2) such that

(Q1) is satisfied. Since H3 = Hd(n, pz′ ), we have

P(z, z′) = P
[
M(H3) = mz′ − μ, (H1, H2) ∈ R

]
.
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Therefore, letting Q̄2 (resp. Q̄3) denote the set of all (H1,H2) ∈ R that violate (Q2) (resp.

(Q3)), we have

P(z, z′) − Π(α′, z, z′)

� P
[
M(H3) = mz − μ, (H1, H2) ∈ R \ Q(α′, z, z′)

]
� P

[
M(H3) = mz − μ|(H1, H2) ∈ Q̄2

]
· P

[
N (H2) = ν

]
+ P

[
(H1, H2) ∈ Q̄3

]
(Q2)

� α′n−1/2 · P
[
N (H2) = ν

]
+ P

[
(H1, H2) ∈ Q̄3

]
� α/n+ P

[
(H1, H2) ∈ Q̄3

]
(by Theorem 2.3), (5.7)

provided that α′ � α/C for some large enough number C = C(I ,J ). Further, if (H1, H2) ∈
Q̄3, then either H1 does not feature a component of order Ω(n), or H2 has two such

components. Since
(
n−1
d−1

)
q1 > (d− 1)−1 + ε due to our choice of ε > 0, Theorem 2.2 entails

that the probability of either event is O(n−100). Thus, the assertion follows from (5.7).

Lemma 5.8. For any α, α′ > 0, there exists β = β(α) > 0 such that for any z, z′, z′′ ∈ [−β, β]

we have

Π(α′, z, z′) � (1 + α)P(z′′, z′).

Proof of Lemma 5.8. Consider (H1,H2) ∈ Q(α′, z, z′) and let us condition on the event

(H1, H2) = (H1,H2). Let N1 =
(
ν
d

)
− M(H1). Moreover, let Δ = mz − μ− M(H2), Δ′′ =

mz′′ − μ− M(H2). We claim that there is a number ω = ω(α′) such that

|N1q2 − Δ| � ωn1/2. (5.8)

Indeed, if |N1q2 − Δ| > ωn1/2 for a large ω = ω(α′), then

P
[
M(H3) = mz − μ|(H1, H2) = (H1,H2)

]
(5.6)
= P

[
|F | = Δ|(H1, H2) = (H1,H2)

]
� exp

[
−ω2/3

]
n−1/2 (by Proposition 2.1 and (5.5))

< α′n−1/2,

in contradiction to (Q2). Thus, there exists β = β(α, α′) > 0 such that, for |z − z′| < β,

Proposition 2.1 yields

P
[
|F | = Δ|(H1, H2) = (H1,H2)

]
P
[
|F | = Δ′′|(H1, H2) = (H1,H2)

] (5.5)
=

P
[
Bin

(
N1, q2

)
= mz − μ− M(H2)

]
P
[
Bin

(
N1, q2

)
= mz′′ − μ− M(H2)

]
∼ exp

[(
N1q2 − Δ′′)2 −

(
N1q2 − Δ

)2

2N1q2(1 − q2)

]

∼ exp

[
2(Δ − Δ′′)(N1q2 − Δ) + (Δ − Δ′′)2

2N1q2(1 − q2)

]
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∼ exp

[
2σ(z − z′′)(N1q2 − Δ) + σ2(z − z′′)2

2N1q2(1 − q2)

]

� exp

[
2σ

√
nωβ + σ2β2

Ω(n)

]
� 1 + α.

Consequently,

Π(α′, z, z′)

=
∑

(H1 ,H2)∈Q(α′ ,z,z′)

P
[
M(H3) = mz − μ|(H1, H2) = (H1,H2)

]
· P

[
(H1, H2) = (H1,H2)

]
=

∑
(H1 ,H2)∈Q(α′ ,z,z′)

P
[
|F | = Δ|(H1, H2) = (H1,H2)

]
· P

[
(H1, H2) = (H1,H2)

]
� (1 + α)

∑
(H1 ,H2)∈Q(α′ ,z,z′)

P
[
|F | = Δ′′|(H1, H2) = (H1,H2)

]
· P

[
(H1, H2) = (H1,H2)

]
� (1 + α)P(z′′, z′),

as claimed.

Proof of Lemmas 5.4 and 5.6. Let z, z′ ∈ [−z∗, z∗]. Let (H1,H2) ∈ Q(α′, z, z′) for a small

enough α′ > 0. Then (5.5) and (5.6) together with Proposition 2.1 imply that

P
[
M(H3) = mz − μ|(H1, H2) = (H1,H2)

]
= P

[
Bin

((
ν

d

)
− M(H1), q2

)
= mz − μ− M(H2)

]
= O(n−1/2).

Hence, by Theorem 2.3

Π(α′, z, z′) � O(n−1/2) · P
[
(H1, H2) ∈ Q(α′, z, z′)

]
� O(n−1/2) · P

[
N (H1) = ν

]
= O(1/n).

Thus, Lemma 5.7 implies that P(z, z′) = O(1/n), whence Lemma 5.4 follows.

Now, let α > 0. Let α′ > 0 be the number from Lemma 5.7. Moreover, let C =

C(d, I ,J ) > 0 be sufficiently large that P(z, z′) � C/n for all z, z′ ∈ [−z∗, z∗]; such a

C exists by our above proof of Lemma 5.4. Furthermore, by Lemma 5.8 there exists β > 0

such that

Π(α′, z, z′) � (1 + α/C)P(z′′, z′), for all z, z′, z′′ ∈ [−β, β]. (5.9)

Then, for any z, z′, z′′ ∈ [−β, β] we have

P(z, z′) � Π(α′, z, z′) + (α+ o(1))/n (Lemma 5.7)

� (1 + α/C)P(z′′, z′) + (α+ o(1))/n (Lemma 5.8)

� P(z′′, z′) +
α

C
· P(z′′, z′) + (α+ o(1))/n

� P(z′′, z′) + (2α+ o(1))/n,
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where the last step follows from our choice of C . Thus, we have established Lemma 5.6

as well.

6. Proof of Theorem 1.1

We shall derive Theorem 1.1 from Theorem 1.3 and (3.2).

Suppose that ν = (1 − ρ)n+ x and μ = (1 − ρd)
(
n
d

)
p+ y, where n−1/2(x, y) ∈ I . Let α >

0 be arbitrarily small but fixed, and let Γ = Γ(α) > 0 be a sufficiently large number.

Moreover, set

P = P
[
N (Hd(n, p)) = ν, M(Hd(n, p)) = μ

]
,

B(m) = P

[
Bin

((
n

d

)
, p

)
= m

]
,

Q(m) = P
[
N (Hd(n, m)) = ν, M(Hd(n, m)) = μ

]
.

Let L = ln0.9 n. Then, letting m range over integers, we define

S1 =
∑

m:|m−m0|�Γσ

B(m)Q(m),

S2 =
∑

m:Γσ<|m−m0|�L√
n

B(m)Q(m),

S3 =
∑

m:|m−m0|>L
√
n

B(m)Q(m),

so that

P = S1 + S2 + S3. (6.1)

We shall estimate the three summands S1, S2, S3 separately.

Let us first deal with S3. As m0 = O(n), the Chernoff bound (2.1) entails that∑
m:|m−m0|>L

√
n

B(m) � n−2.

Since 0 � Q(m) � 1, this implies

S3 � n−2. (6.2)

To bound S2, we need the following lemma.

Lemma 6.1. There is a number K = K(d, I ,J ) > 0 such that Q(m) � Kn−1 for all m such

that |m− m0| � L
√
n.

Proof of Lemma 6.1. Let z = σ−1(m− m0), so that m = mz . Then |z| = O(L) = o(z∗),

because σ = Ω(
√
n). In addition, let μ̄m = m− μ, so that

Q(m) = P
[
N (Hd(n, m)) = ν, M̄(Hd(n, m)) = μ̄m

]
= g(z)/n. (6.3)

Let cz = dmz/n = dm/n. Then by Proposition 3.2 there exists K = K(d, I ,J ) > 0 such

that g(z) � K . Thus, the assertion follows from (6.3).
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Choosing Γ = Γ(d, I ,J ) > 0 large enough, we can achieve that∑
m:|m−m0|>Γσ

B(m) � α/K.

Therefore, Lemma 6.1 entails that

S2 =
∑

m:Γσ<|m−m0|�L√
n

B(m)Q(m) � αn−1. (6.4)

Concerning S1, we employ Proposition 2.1 to obtain

B(m) ∼ 1√
2πσ

exp

[
− (m− m0)2

2σ2

]
if |m− m0| � Γσ. (6.5)

In addition, let 0 < �m < 1 signify the unique number such that

�m = exp

(
dm

n
(�d−1
m − 1)

)
.

Then Lemma 4.1 yields

�m = ρ+ Δm/n+ o(n−1/2), with Δm = −m− m0

σ
· σN λ.

Hence,

1 − �dm = 1 − ρd − Ξm/m+ o(n−1/2), with Ξm =
m0d

n
Δmρ

d−1.

Thus, Theorem 1.3 entails that Q(m) ∼ ϕ(m), where

ϕ(m) =
1

2π
√
τ2
N τ

2
M − τ2

NM

· exp

[
− τ2

N τ
2
M

2(τ2
N τ

2
M − τ2

NM)
(6.6)

·
(

(x+ Δm)2

τ2
N

− 2τNM(x+ Δm)(y + Ξm)

τ2
N τ

2
M

+
(y + Ξm)2

τ2
M

)]
.

Now, combining (6.5) and (6.6), we can approximate the sum S1 by an integral as follows:

S1 ∼
∑

m:|m−m0|�Γσ

1√
2πσ

exp

[
− (m− m0)2

2σ2

]
ϕ(m)

= o(1/n) +
1√
2πσ

∫ m0+Γσ

m0−Γσ

exp

[
− (m− m0)2

2σ2

]
ϕ(m)dm

∼
∫ Γ

−Γ

ϕ(mz)φ(z) dz. (6.7)

Further, note that

Δmz = −zσN λ = −zΘ(
√
n) and (6.8)

Ξmz = −zσN λρd−1m0d/n = −zσN λρd−1c = −zΘ(
√
n). (6.9)
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Since τN , τM,
√
τNM = Θ(

√
n), the function ϕ(mz) decays exponentially as z → ∞. There-

fore, choosing Γ large enough, we can achieve that∫
R\[−Γ,Γ]

ϕ(mz)φ(z) dz < α/n. (6.10)

Combining (6.1), (6.2), (6.4), (6.7), and (6.10), we obtain∣∣∣∣P − (1 + o(1))

∫ ∞

−∞
ϕ(mz)φ(z) dz

∣∣∣∣ � 3α/n.

Finally, we need to verify that
∫ ∞

−∞ ϕ(mz)φ(z) dz coincides with the expression P (x, y)

from Theorem 1.1. To carry this out, we set

θ(z) =
1

2π
√
τ2
N τ

2
M − τ2

NM

,

δ(z) = σN λ, ξ(z) = σN λρ
d−1c,

t1(z) = τ−2
N , t2(z) =

2τNM
τ2
N τ

2
M
, t3(z) = τ−2

M, v(z) =
τ2
N τ

2
M

2(τ2
N τ

2
M − τ2

NM)
,

u0(z) = t21(z)x2 + t2(z)xy + t3(z)y2,

u1(z) = 2t1(z)δx+ t2ξ(z)x+ t2(z)δy + 2t3(z)ξy,

u2(z) = t1(z)δ2 + t2(z)δξ + t3(z)ξ2 − 1

2v(z)
.

Whereas the coefficients u0(z), u1(z), u2(z), v(z) vary with z, these variations are negligible

in the limit n → ∞: we have uj(z) ∼ uj(0) and v(z) ∼ v(0) uniformly for |z| � z∗. Therefore,

plugging (6.8) and (6.9) into (6.6) yields

ϕ(mz)φ(z) ∼ θ exp
[
−v

(
z2u2 − zu1 + u0

)]
∼ θ exp

[
−v

(
u2

(
z − u1

2u2

)2

− u2
1

4u2
+ u0

)]
.

Hence, with

θ′ = θ

∫
R

exp

[
−u2v

(
z − u1

2u2

)2]
dz ∼

√
π

u2v
θ,

we obtain ∫
R

ϕ(mz)φ(z) dz ∼ θ′ exp

[
−v

(
u0 − u2

1

4u2

)]
.

To complete the proof, we just need to check that the exponent

−v
(
u0 − u2

1

4u2

)
,

viewed as a quadratic function of x, y, matches the exponent in (1.3). This is an elementary,

albeit tedious, matter of algebraic manipulations.2

2 Full details can be found in [5, Chapter 4].
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