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Uniconnected solutions to the Yang–Baxter
equation arising from self-maps of groups
Wolfgang Rump

Abstract. Set-theoretic solutions to the Yang–Baxter equation can be classified by their universal cov-
erings and their fundamental groupoids. Extending previous results, universal coverings of irreducible
involutive solutions are classified in the degenerate case. These solutions are described in terms of a
group with a distinguished self-map. The classification in the nondegenerate case is simplified and
compared with the description in the degenerate case.

1 Introduction

Very soon after Drinfeld’s suggestion [9] to study set-theoretic solutions S∶X2 → X2

to the Yang–Baxter equation

(S × 1X)(1X × S)(S × 1X) = (1X × S)(S × 1X)(1X × S)

in X3, these solutions found increasing attention during the past 30 years (see, e.g., [1,
4–8, 10–12, 14, 15, 18, 19, 21, 23, 25–30]. Due to their close connection with braidings,
they arise in various topics, including noncommutative regular rings [13, 14], regular
affine groups [2–4], Hopf–Galois theory [1, 6, 11, 16], and Garside groups [7, 8, 23].

A first systematic study of involutive solutions was undertaken by Etingof et al.
[10] who introduced the structure group (GX ; ○) of a solution S(x , y) = (x y, x y),
generated by X, with relations x ○ y = x y ○ x y . A solution S is said to be nondegenerate
if the component maps y ↦ x y and y ↦ yx are invertible for all x ∈ X. In [21], it was
shown that left nondegenerate involutive solutions S are equivalent to cycle sets, that
is, sets X with a single binary operation ⋅ such that the self-maps σ(x)∶X → X with
σ(x)(y) ∶= x ⋅ y are bijective, and X satisfies the equation

(x ⋅ y) ⋅ (x ⋅ z) = (y ⋅ x) ⋅ (y ⋅ z).(1.1)

Furthermore, it was shown that finite cycle sets are (two-sided) nondegenerate.
The structure group GX of a nondegenerate cycle set X is obtained by a process of

discrete integration where equation (1.1) plays the role of an integrability condition.
More precisely, X embeds into GX , and the operation on X extends to GX and
makes GX into a cycle set. The action GX × X → X given by (a, x) ↦ a ⋅ x leads to a
factor group G(X) of GX , acting faithfully on X, such that G(X) is generated by the
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permutations σ(x) with x ∈ X. Therefore, G(X) is called the permutation group of X.
If X is nondegenerate, G(X) is also a cycle set, induced by the cycle set structure of
GX .

Until now, several types of cycle sets with an underlying group structure have been
found. The cycle sets GX and G(X) are two examples. Both are braces [22], that is,
additive abelian groups with a ring-like multiplication where (GX ; ○) plays the role
of an adjoint group, similar to that of a radical ring: a ○ b = ab + a + b. Any brace
satisfies

(a + b) ⋅ c = (a ⋅ b) ⋅ (a ⋅ c),

so that equation (1.1) follows by the commutativity of addition. Etingof et al. [10]
already considered affine solutions to the Yang–Baxter equation. These also can be
described as cycle sets with an underlying abelian group. In [24], we studied two
other types of cycle set structures on an abelian group. Given the close connection
between group structures and symmetries, the cumulative occurrence of groups in
relation with cycle sets indicates a high level of inner balance of this structure.
Surprisingly, there is another connection with groups arising in the context of
coverings.

In this paper, we introduce a class of self-maps of a group G, leading to a cycle
set structure on G, such that the universal covering of any cycle set is of that type.
In [26], we developed a general covering theory which applies to noninvolutive and
even degenerate solutions to the Yang–Baxter equation. Here, we focus upon the
involutive case. To highlight the analogy with topological coverings of connected
spaces, special attention is payed to irreducible cycle sets, consisting of a single orbit
under the permutation group.

By [26, Theorem 6], every cycle set X has a universal covering p̃∶ X̃ ↠ X, a cycle
set morphism which does not change the permutation group G(X), and does not
increase the set of G(X)-orbits. Like in topology, it is universal, hence essentially
unique, so that it factors through each covering of X. The relationship between X
and X̃ is determined by the fundamental groupoid π1(X), which can be replaced by a
group if X is irreducible. Thus, in order to classify all irreducible cycle sets, the main
step consists in the knowledge of cycle sets arising as universal coverings, i.e., those
with a trivial fundamental group. In [27], these uniconnected cycle sets, analogous to
simply connected spaces, are classified in the nondegenerate case. Here, we remove
the restriction by characterizing arbitrary uniconnected cycle sets as groups with a
specific self-map (Theorem 3.2).

Using a result of [28], we show that nondegenerate uniconnected cycle sets
are equivalent to braces with a distinguished generator (Theorem 3.3). Here, the
uniconnected cycle set structure differs from the cycle set structure as a brace! As
a corollary, it follows that a uniconnected cycle set is nondegenerate if and only if its
underlying group is the adjoint group of a brace. It turns out that a great many of
universal coverings are degenerate: For example, each group with a right-invariant
lattice structure (e.g., Artin’s braid group) gives rise to a degenerate uniconnected
cycle set (Example 1). A class of nondegenerate uniconnected cycle sets is obtained
from differential groups (Example 2).
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2 Preliminaries

In this section, we briefly recall some facts on cycle sets needed in what follows. A set
X with a binary operation ⋅ is said to be a cycle set [21] if the left multiplication σ(x):
y ↦ x ⋅ y is invertible, and the equation (1.1) holds for all x , y, z ∈ X. So σ defines a
map

σ ∶ X →S(X)(2.1)

into the permutation group S(X). The subgroup G(X) of S(X) generated by the
image of σ is said to be the permutation group of X. The image σ(X) admits a well-
defined operation

σ(x) ⋅ σ(y) ∶= σ(x ⋅ y),

so that equation (1.1) is retained for σ(X), the retraction [10, 21] of X. In general,
σ(X) is not a cycle set, unless X is nondegenerate, that is, the square map x ↦ x ⋅ x
is bijective. The retraction σ(X) is then again nondegenerate, so that the retraction
process can be iterated. Finite cycle sets are always nondegenerate [21, Theorem 2].

A brace A is a cycle set with an abelian group structure satisfying

a ⋅ (b + c) = (a ⋅ b) + (a ⋅ c),(2.2)

(a + b) ⋅ c = (a ⋅ b) ⋅ (a ⋅ c),(2.3)

for all a, b, c ∈ A. Note that equation (1.1) follows by equation (2.3) and the commuta-
tivity of (A;+). Equation (2.2) says that σ(a) is a group automorphism for all a ∈ A.
As a cycle set, any brace A is nondegenerate. Moreover, it is a group with respect to
the operation

a ○ b ∶= ab + b,(2.4)

where ab ∶= σ(b)−1(a). The group A○ ∶= (A; ○) is called the adjoint group of A.
Typical examples of braces are radical rings R (=Jacobson radicals of rings, viewed as
pseudorings) with the operation a ⋅ b ∶= b(1 + a)−1. Then, the adjoint group is given
by Jacobson’s circle operation [17]

a ○ b = a + ab + b.

In accordance with Jacobson’s notation [17], we write a′ for the inverse in the adjoint
group of a brace. Note that the unit element of A○ is 0.

For any nondegenerate cycle set X, the permutation group G(X) is the adjoint
group of a unique brace A(X) such that σ ∶X → A(X) is a cycle set morphism. A
subset of a brace A is said to be a cycle base [22, Definition 4] if it is invariant under
the adjoint group A○ and generates the additive group of A. By [28, Proposition 10], a
brace A is generated by an element e ∈ A if and only if X ∶= {ea ∣ a ∈ A} is a cycle base
of A. Thus, each transitive cycle base (i.e., such that A○ acts transitively on it) is given
by a generator e ∈ A.

A right ideal [22] of a brace A is an additive subgroup which is invariant under
the action of A○. By equation (2.4), any right ideal is a subbrace. For radical rings,
this concept coincides with the usual one. We say that a brace A is a torsion brace if
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each a ∈ A is of finite order in (A;+). For a torsion brace A, equation (2.2) implies
that the primary decomposition of the additive group is a decomposition into right
ideals.

The fundamental groupoid [26] π1(X) of a cycle set X has X as set of objects, and
pairs (a, x) ∈ G(X) × X as morphisms from x to a(x). Composition is the obvious
one:

x �→ b(x) �→ ab(x),

given by (a, b(x))(b, x) ∶= (ab, x). Inverses are (a, x)−1 ∶= (a−1 , a(x)). The isomor-
phism classes of objects in π1(X) form a set C(X), consisting of the G(X)-orbits of
X. Any morphism f ∶X → Y of cycle sets induces a map C( f )∶C(X) → C(Y). If f is
surjective, it gives rise to a commutative diagram

X
f �� Y

G(X)
�

σ

G( f )�� G(Y)
�

σ

with a surjective group homomorphism G( f ). We call f ∶X ↠ Y a covering [26] if
C( f ) and G( f ) are bijective. By [26, Theorem 6], any cycle set X admits a covering
X̃ ↠ X which is universal in the sense that it factors uniquely though each covering
Y ↠ X, so that X̃ → Y is again a covering. Cycle sets X with no proper coverings
Y ↠ X are characterized by their fundamental groupoid which is skeletal.

A cycle set X is said to be indecomposable if G(X) acts transitively on X, that
is, ∣C(X)∣ = 1. Then, X̃ is indecomposable, too. Thus, G(X) = G(X̃) acts freely and
transitively on X̃. Being quite analogous to simply connected topological spaces, such
cycle sets are called uniconnected [27].

3 Bracial self-maps of groups

Let ε∶G → G be a self-map of a group G. We define the kernel of ε to be the subgroup

Ker ε ∶= {h ∈ G ∣ ∀ g ∈ G∶ ε(hg) = ε(g)}.

For a group homomorphism ε, this concept coincides with the usual one. Note,
however, that Ker ε need not be normal for an arbitrary self-map ε.

Definition 3.1 We call a cycle set structure (B;⊙) on a group B bracial if it satisfies
a ⊙ b = b(a ⊙ 1) for all a, b ∈ B.

Thus, B is uniquely determined by its group structure and the self-map

ε(a) ∶= (a ⊙ 1)−1 .

We call ε the structure map and ε(B) the image of B. The kernel Ker B ∶= Ker ε of ε will
be called the kernel of B. In terms of ε, we have
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Proposition 1 A self-map ε∶B → B of a group B defines a bracial cycle set if and only
if it satisfies the equation

ε(aε(b)−1)ε(b) = ε(bε(a)−1)ε(a).(3.1)

Proof For a, b, c ∈ B, we have

(a ⊙ b) ⊙ (a ⊙ c) = bε(a)−1 ⊙ cε(a)−1 = cε(a)−1ε(bε(a)−1)−1

= c(ε(bε(a)−1)ε(a))−1 .

Equation (3.1) says that this expression is symmetric in a and b. ∎

Consider the subgroup ⟨ε(B)⟩ of B generated by the image of B. For a, b ∈ B,
we have a ⊙ b = b(a ⊙ 1) = bε(a)−1. Therefore, the right regular representation of B
induces a group isomorphism

π∶ ⟨ε(B)⟩ �→∼ G(B)(3.2)

onto the permutation group of B, which maps a ∈ ⟨ε(B)⟩ to the right multiplication
b ↦ ba−1. On the other hand, we have a map

σ ∶B → G(B)

with σ(a)(b) ∶= a ⊙ b. So the isomorphism (3.2) yields a factorization

σ ∶B
ε�� ε(B) ⊂

ι� ⟨ε(B)⟩
π
∼
� G(B).(3.3)

Theorem 3.1 Let B be a bracial cycle set. Then, G(B) acts freely on B. The subset ⟨ε(B)⟩
of B is a uniconnected subcycle set. The left cosets of ⟨ε(B)⟩ are the G(B)-orbits of B.

Proof Assume that α(b) = b for some α ∈ G(B) and b ∈ B. Then, b = bπ−1(α)−1,
which yields π−1(α) = 1, that is, α = 1B . For a ∈ ⟨ε(B)⟩ and b ∈ B, we have b ⊙ a =
aε(b)−1 ∈ ⟨ε(B)⟩. Thus, ⟨ε(B)⟩ is a subcycle set. By induction, the equation b ⊙ a =
aε(b)−1 shows that the cycle set ⟨ε(B)⟩ is indecomposable, hence uniconnected.
Moreover, the equation implies that the left cosets of ⟨ε(B)⟩ are the G(B)-orbits
of B. ∎

As a consequence, we get a classification of uniconnected cycle sets.

Theorem 3.2 A bracial cycle set B is uniconnected if and only if ⟨ε(B)⟩ = B. Con-
versely, every uniconnected cycle set B is bracial and satisfies ⟨ε(B)⟩ = B.

Proof The first statement follows by Theorem 3.1. Conversely, let (B;⊙) be any uni-
connected cycle set. Choose an element 1 ∈ B. Then, there is a bijection γ∶G(B) �→∼ B
with γ(α) ∶= α(1). So the map σ ∶B → G(B) with σ(a)(b) = a ⊙ b satisfies σ(a) =
γ−1(a ⊙ 1). Define a multiplication in B as follows:

ab ∶= γ−1(b)(a).(3.4)
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For given a, b ∈ B, consider the automorphisms α ∶= γ−1(a) and β ∶= γ−1(b) in G(B).
Because γ(αβ) = αγ(β), we have γ(γ−1(b)γ−1(a)) = γ−1(b)(a) = ab, which yields
γ−1(ab) = γ−1(b)γ−1(a). Thus, equation (3.4) defines a group structure on B with an
isomorphism

γ∶G(B)op �→∼ B.

In particular, we obtain ⟨ε(B)⟩ = B. For a, b ∈ B, equation (3.4) gives a ⊙ b =
σ(a)(b) = γ−1(a ⊙ 1)(b) = b(a ⊙ 1). Whence B is a bracial cycle set. ∎

In [27, Theorem 2], nondegenerate uniconnected cycle sets are classified in terms
of braces with a transitive cycle base. The following example shows that uniconnected
cycle sets need not be nondegenerate.

Example 1 Let G be a right �-group [23], that is, a group with a lattice order, satisfying

a ⩽ b �⇒ ac ⩽ bc

for all a, b, c ∈ G. Consider the self-map ε∶G → G given by ε(a) ∶= a ∨ 1. Then,
ε(aε(b)−1)ε(b) = (a(b ∨ 1)−1 ∨ 1)(b ∨ 1) = a ∨ b ∨ 1, which is symmetric in a and b.
Hence, ε makes G into a bracial cycle set. The kernel of ε is {1}, while the image
ε(G) is the positive cone of G. Therefore, the corresponding cycle set (G;⊙) with
a ⊙ b ∶= b(a ∨ 1)−1 is uniconnected. However, (G;⊙) is degenerate: For a ⩾ 1, we have
a ⊙ a = a(a ∨ 1)−1 = 1. So the square map a ↦ a ⊙ a is not injective if ∣G∣ ≠ 1.

The diagram (3.3) shows that the structure map ε of a bracial cycle set B gives the
retraction ε(B) of B. By [21, Section 6], this implies that the cycle set structure of B
induces a well-defined binary operation on ε(B):

ε(a) ⋅ ε(b) ∶= ε(bε(a)−1).(3.5)

Indeed, ε(b) = ε(c) implies that ε(bε(a)−1)ε(a) = ε(aε(b)−1)ε(b) = ε(aε(c)−1)ε(c) =
ε(cε(a)−1)ε(a), which yields ε(bε(a)−1) = ε(cε(a)−1). Thus, ε(a) ⋅ ε(b) does not
depend on the choice of b. So the operation (3.5) satisfies equation (1.1), which makes
ε(B) into a cycle set if B is nondegenerate. In general, however, (ε(B); ⋅) is not a
subcycle set of (B;⊙).

Example 2 Let C be a differential group [20], that is, an abelian group with an
endomorphism d∶C → C satisfying d2 = 0. For an element b ∈ C with db ≠ 0, we
define ε(x) ∶= dx + b. Then, ε(x − ε(y)) + ε(y) = d(x + y) − db + 2b. By symmetry,
this gives a bracial cycle set C with x ⊙ y = y − ε(x) = y − dx − b. Because 1 − d is
invertible, the cycle set is nondegenerate. However, ε(C) is not a subcycle set. Indeed,
ε(x) ⊙ ε(y) = d(y − b) ∉ ε(C), because db ≠ 0. The subcycle set ⟨ε(C)⟩ = dC +Zb
is uniconnected.

Now, we turn our attention to the nondegenerate case. Note that a bracial cycle set
B is nondegenerate if and only if the map a ↦ aε(a)−1 is bijective.
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Definition 3.2 We call a self-map ε∶G → G of a group G right invariant if the
implication

ε(a) = ε(b) �⇒ ε(ac) = ε(bc)(3.6)

holds for a, b, c ∈ G.

Let ε∶G → G be a self-map with kernel H. Because ac = (ab−1)bc, condition (3.6)
says that ε(a) = ε(b) if and only if ab−1 ∈ H. So the fibers of ε are the right cosets of
H. Therefore, ε induces a bijection ε∶G/H �→∼ ε(G) from the set G/H of right cosets
onto the image of ε. In Example 2, but not in Example 1, the map ε is right invariant.

Proposition 2 Let G be a group with a right invariant self-map ε∶G → G. Then,

g ⋅ ε(a) ∶= ε(ag−1)(3.7)

(with g , a ∈ G) defines a transitive action of G on the image of ε.

Proof Because ε is right invariant, equation (3.7) gives a well-defined map G ×
ε(G) → ε(G). Furthermore, gh ⋅ ε(a) = ε(ah−1 g−1) = g ⋅ ε(ah−1) = g ⋅ (h ⋅ ε(a))
and 1 ⋅ ε(a) = ε(a). Thus, equation (3.7) defines an action on ε(G). Because aG = G,
this action is transitive. ∎

Proposition 3 The structure map ε∶B → B of a nondegenerate uniconnected cycle set
B is right invariant.

Proof The diagram (3.3) shows that ε(a) = ε(b) is equivalent to σ(a) = σ(b).
Assuming this, we have to show that σ(ac) = σ(bc) holds for all c ∈ B. Because B
is uniconnected, it is enough to verify the equivalence

σ(a) = σ(b) ⇐⇒ σ(c ⊙ a) = σ(c ⊙ b).

Indeed, σ(a) = σ(b) implies (c ⊙ a) ⊙ (c ⊙ d) = (a ⊙ c) ⊙ (a ⊙ d) = (b ⊙ c) ⊙
(b ⊙ d) = (c ⊙ b) ⊙ (c ⊙ d) for all d ∈ B. Thus, σ(c ⊙ a) = σ(c ⊙ b). Conversely,
assume that σ(c ⊙ a) = σ(c ⊙ b). Then, (a ⊙ c) ⊙ (a ⊙ c) = (c ⊙ a) ⊙ (c ⊙ c) =
(c ⊙ b) ⊙ (c ⊙ c) = (b ⊙ c) ⊙ (b ⊙ c). Because B is nondegenerate, we obtain
a ⊙ c = b ⊙ c. As B is uniconnected, this implies that σ(a) = σ(b). ∎

For a nondegenerate bracial cycle set B, the group G(B) is the adjoint group of a
brace. So the group isomorphism (3.2) also makes ⟨ε(B)⟩ into a brace A(B). Taking
π as an identification, we get a factorization

σ ∶B
ε�� ε(B) ⊂

ι � A(B)(3.8)

which identifies ε(B) with the image of σ .

Theorem 3.3 Let B be a brace, generated by e ∈ B. Then, there is a unique self-map
ε∶B → B with ε(0) = e such that ε is the structure map of a nondegenerate uniconnected
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cycle set with group B○. Conversely, every nondegenerate uniconnected cycle set arises
in this way.

Proof By [28, Proposition 10], X ∶= {ea ∣ a ∈ B} is a transitive cycle base of B. So
[27, Theorem 2] shows that the operation

a ⊙ b ∶= b ○ (ea)′

makes B into a nondegenerate uniconnected cycle set. In particular, (B;⊙) is a bracial
cycle set with ε(a) = (a ⊙ 0)′ = ea . Thus, ε(B) = X and ε(0) = e. By Propositions 2
and 3, the structure map ε is unique: ε(a) = ε(0 ○ a) = ε(0)a = ea .

Conversely, let B be a nondegenerate uniconnected cycle set. Because ε(B) is
the retraction of B, the map ε∶B↠ ε(B) is a cycle set morphism. So the cycle set
morphism (3.8) shows that ι is a morphism of cycle sets. Thus, ε(B) is a cycle base of
A(X). Equation (3.5) shows that it is transitive.

By equation (3.5), the action (3.7) coincides with the adjoint action in A(B). Hence,
ε(a) = a−1 ⋅ ε(1) = ε(1)a for all a ∈ A(B). Thus, a ⊙ b = bε(a)−1 = b(ε(1)a)−1. By [27,
Theorem 2], the proof is complete. ∎

Corollary A uniconnected cycle set B is nondegenerate if and only if B is the adjoint
group of a brace.

Proof By [27, Proposition 2], a cycle set is nondegenerate if and only if it is a cycle
base of a brace. ∎
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