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SUMMARY

It is difficult to design controllers for the complicated
dynamics of omnidirectional vehicles steered by multiple
wheels with distributed traction force. In this paper, the
dynamic model of a three-wheel omnidirectional vehicle,
which is linearized to simplify controller design, is
developed. The conditions of making its dynamics linear are
derived first. Then, a strategy of planning wheel velocities
to satisfy these conditions is proposed. Consequently,
three-wheel omnidirectional vehicle can be easily treated
by classical linear control theories. Finally, a linear
optimal tracker is designed to control the omnidirectional
vehicle for desired movement trajectories. In particular,
the dynamic model includes the motors installed in the
three-wheel omnidirectional vehicle, making it a practical
model. Three kinds of vehicle trajectories illustrate the
planning of wheel trajectories for linearizing the vehicle
dynamics, and simulations demonstrate the performance of
the linear optimal tracker. In addition, experimental results
of a practical three-wheel omnidirectional vehicle are also
included.

KEYWORDS: Omnidirectional vehicles; Vehicle dynamics;
Vehicle control; Kinematic constraint; Optimal tracking
control; Tracking control; Trajectory planning.

1. Introduction

The high maneuverability of omnidirectional vehicles makes
movement fast and easy in tight spaces,22 and that has
prompted researchers to develop popular mobile robots.20

That is the reason why the small-size and middle-size leagues
of RoboCup, a competition in which teams of autonomous
robots play soccer,5 make frequent use of omnidirectional
vehicles. There has been tremendous research interest in
omnidirectional vehicles in the recent years.3,4

Omnidirectional vehicles are steered by at least three
traction force generated by the wheels. In this way
any combination of linear and rotational acceleration can
be achieved independently of the current orientation of
the robot.8 This is different from traditional three-wheel
mobile robot where, under nonholonomic constraint, one
wheel guides its direction and the other two control the
velocity.6 A microrobot, 8 mm in length, 6 mm in width
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and 6 mm in height, is implemented in ref. [19]. The
accuracy of kinematics has become important in the research
and development of omnidirectional mobile robots, as
investigated in ref. [13–14]. The combined force guided
by the complicated interaction among three omnidirectional
wheels improves the vehicle mobility, but makes dynamics
complicated.2 For accurate dynamic equations, Balakrishna
and Ashitava1 modeled single-wheeled slip, and, in a further
development, William, II et al.25 modeled multi-wheeled slip
for controller design.

Since omnidirectional vehicles are in general designed
by the degree of freedom of motion more than workspace
dimensions, how to generate an effective trajectory becomes
a vital issue. Muñoz et al.21 connected waypoints to generate
a path by using a sequence of splines. Because the splines
contained time information, the desired velocity of vehicles
could be limited by considering the hardware used. Faiz and
Agrawal7 approximated the set of all feasible states of the
system with a set of linear inequalities, which involved the
dynamics and other constraints. Huang and Tsai15 proposed
a controller for simultaneous tracking and stabilization in
polar coordinates. Moore and Flann20 presented a trajectory
generation algorithm based on an A

∗
algorithm for an off-road

vehicle. The path generator searched for a path achieving a
set of vehicle mission goals. In addition, trajectory generation
based on optimal strategies is more useful for vehicle
performance. For example, according to time-optimal rules,
the generated trajectory is solved for the shortest time to
arrive at a target location. In this situation, it is necessary
to check for a consistent coupling between low-level control
and motion planning.11 Kalmá-Nagy et al.17 employed time
optimality to derive the minimum time trajectory for real-
time computation in dynamic environment. Similarly, Purwin
and D’Andrea23 implemented an algorithm for four-wheeled
omnidirectional vehicles. In this paper, an easier way to
control a three-wheel omnidirectional vehicle based on lin-
earizing dynamics is proposed. In contrast to minimum time
trajectories developed by Kalmár-Nagy et al.17 and Purwin
and D’Andrea,23 the wheels’ velocity trajectories that lead an
omnidirectional vehicle dynamics to be linear are derived. As
its dynamics is linear, controlling an omnidirectional vehicle
to follow a desired trajectory becomes easy.

Kinematic equations of a vehicle involve the velocity
relationship between wheels and body. Vehicle dynamics
influences its body movement, but the traction force of the
vehicle results from the wheels’ rotation, which in turn is
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related to its body movement via kinematics. Intuitively,
kinematics relates to dynamics when a vehicle is steered
by wheels’ traction force. In this paper, a dynamic model
simplified by kinematic constraints is proposed. Although
many researchers have developed control algorithms based
on back-stepping design to combine kinematics into
dynamics,9,12,16 their ideas focused almost exclusively on
vehicle dynamics in their control models. The aim of
this research is to develop a simplified model based on
vehicle dynamics combined with its kinematics for easy
controller design. In fact, the complicated dynamics of a
three-wheel omnidirectional vehicle solved by kinematics
becomes a simple linear model. A linear optimal tracker is
thus suitable for the difficult problem of controlling the three-
wheel omnidirectional vehicle. The kinematics involved in
the dynamics of the three-wheel omnidirectional vehicle
simplifies its control problem. That is the main contribution
of this paper.

The kinematic transformation of wheel velocity to the
velocity of the three-wheel omnidirectional vehicle is the
vital factor in linearizing its dynamics. The control problem
of the three-wheel omnidirectional vehicle turns into a
problem of planning wheel velocity trajectories to maintain
linear dynamics. In this paper, three cases used as examples
illustrate the problem of planning wheel trajectories for
linear dynamics. In addition, a linear optimal tracker solves
the control problem of the three-wheel omnidirectional
vehicle in linear dynamics. This research demonstrates
that the hard problem of controlling the three-wheel
omnidirectional vehicle becomes easy trajectory planning
rather than complicated dynamics.

The remainder of this paper is organized as follows. In
Section 2, new nonlinear dynamic equations of a three-wheel
omnidirectional vehicle including motor model are derived.
The conditions of making the new nonlinear dynamic
equations linear are derived in Section 3. In Section 4, a
linear optimal tracker for easily controlling the three-wheel
omnidirectional vehicle is proposed. A way to plan wheels’
velocity trajectories to maintain the conditions of the vehicle
in linear dynamics is proposed in Section 5. In Section 6,
the designed controller is demonstrated by simulation and
experiments. Finally, conclusions and discussion are given
in Section 7.

2. Preliminaries

In this section, the kinematics and dynamics of a three-wheel
omnidirectional vehicle are reviewed to figure out its control
difficulties. The dynamics of the omnidirectional vehicle
derived in the study is an exact model, including motors.
The relationship between motor traction force and vehicle
motion is also included.

Figure 1 is a kinematic model of a three-wheel
omnidirectional vehicle, where (xb, yb) is the workspace
frame, (xr, yr ) is the vehicle frame, 1–3 are three wheels, and
D1–D3 are the unit vectors at the traction direction steered
by the three wheels. Let

R(θ) =
[

cos θ

sin θ

− sin θ

cos θ

]
(1)

Fig. 1. Geometry of a three-wheel omnidirectional vehicle.

be the transformation of a vector rotated with
counterclockwise angle θ . Then, the wheels’ position vectors
can be easily represented with respect to (xr, yr ) as follows:

P01 = L

[
1
0

]
, P02 = R

(
2π

3

)
P01 = L

2

[ −1√
3

]
,

P03 = R

(
4π

3

)
P01 = −L

2

[
1√
3

]
, (2)

where L is the distance between the wheels’ drive points and
the center of mass (CM) of the vehicle. In addition, the unit
vectors Di , of the wheel rolling direction, are given by

Di = 1

L
R

(π

2

)
P0i , that is, D1 =

[
0
1

]
,

D2 = −1

2

[√
3

1

]
, D3 = 1

2

[√
3

−1

]
. (3)

It is convenient to calculate absolute position and velocity
as the vehicle is moving by transforming the vehicle frame
(xr, yr ) to workspace frame (xb, yb). Let the vector P0 =
[x, y]T be the position of the CM in the workspace frame.
Then, the drive positions and velocities of three wheels are
given by

ri = P0 + R(θ)P0i , (4)

vi = Ṗ0 + Ṙ(θ)P0i , respectively, for i = 1, . . . , 3. (5)

And then the individual wheel velocities are

vi = vT
i (R(θ)Di). (6)

Substituting Eq. (5) into Eq. (6) results in

vi = Ṗ T
0 R(θ)Di + P T

0i Ṙ
T (θ)R(θ)Di. (7)

Let V = [v1 v2 v3]T be the wheels’ velocity vector, and
X = [x y θ]T be the vehicle configuration vector. Then, their
relationship satisfies17

V = P (θ)Ẋ (8)
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Fig. 2. A motor model.

with

P (θ) =

⎡
⎢⎢⎢⎢⎣

− sin θ cos(θ) L

− sin
(π

3
−θ

)
− cos

(π

3
−θ

)
L

sin
(π

3
+ θ

)
− cos

(π

3
+ θ

)
L

⎤
⎥⎥⎥⎥⎦ .

Equation (8) is usually named the inverse kinematics
equation of the three-wheel omnidirectional vehicle.
The motor traction force is the source of the vehicle
motion.

A model of the vehicle motor is depicted by Fig. 2, where
Tl is the torque of a rolling vehicle wheel, Tm = (Jms + Bm)ω
is the steering torque of the motor rotor. Notice that Jm and
Bm are the inertia moment and the viscous friction of the
motor rotor, respectively. If the motor steers via a gear box,
Bm includes gear viscous friction. As shown in Fig. 2, the
torque of a rolling wheel is

Tl = KM

u − KEω

Ra + Las
− (Jms + Bm)ω (9)

where ω is the angle velocity of the motor, Ra is armature
resistance, La is armature inductance, KM is a torque constant,
KE is the back-EMF (electromotive force) constant, and u is
the driving source of the motor.

It is crucial to understand the relationship between motor
traction force and vehicle motion to calculate the dynamics
of the three-wheel omnidirectional vehicle. The following
Lemma derives this relationship.

Lemma 1: Let f be the motor traction force, u be the
driving source of the motor, v be the linear velocity from
the rolling motor, and n is the gear ratio of the motor. If Tl

is constant, then the motor traction force can be approached
by

f = αu − βv + d(ω), (10)

where

α = KM

Rar
, β = nKMKE

Rar2
+ nBm

r2
,

and

d(ω) = −
[
JmLa

Rar
ω̈ +

(
Jm

r
+ BmLa

Rar

)
ω̇

]
.

Proof. From Eq. (9), the torque equation becomes

RaTl + LasTl = KM (u − KEω)−(Jms + Bm)(Las + Ra)ω.

(11)

Constant Tl makes LasTl into a trivial term. Then, Eq. (11)
can be reduced as

RaTl = KM (u − KEω) − (Jms + Bm)(Las + Ra)ω. (12)

In a motor, the linear and angular velocities have the
following relationship:

ω = nν/r, (13)

where n is the gear ratio of the motors, and r is the wheel
radius. Substituting Eq. (13) into Eq. (12) and manipulating
results in the traction force as follows,

f = Tl

r
= KM

Rar
u −

(
nKMKE

Rar2
+ nBm

r2

)
ν

−
[
JmLa

Rar
ω̈ +

(
Jm

r
+ BmLa

Rar

)
ω̇

]
.

�

The meaning of Eq. (10) is the motor traction force related
to its driving source u, and linear velocity v. The equation
holds, as Tl is constant. Generally, the condition of constant
Tl happens as the wheel is steered on uniform floor at a
constant velocity. If the wheel accelerates or decelerates,
the condition is violated, making the traction force of the
motor more complicated. In order to alleviate this influence,
the motion planning cannot use overly large accelerations or
decelerations. In addition, the term d(ω) is related to angular
acceleration and ω̈ (jerk) is the high-order term of motor
angular velocity. Like the most methods of modeling, the
high-order term of motor velocity d(ω) can be neglected
for a simple model and regarded as the disturbance in the
controller design. In Section 5, alleviating the influence of
the disturbance d(ω) will be solved by trajectory planning.
Assume that the vehicle movement results solely from the
traction force of its three wheels without slip. The traction
force results in linear and angle momentum as follows:

3∑
i=1

fi R(θ)Di = mP̈0, (14)

L

3∑
i=1

fi = J θ̈, (15)

where fi is the magnitude of the traction force produced by
the ith motor, the unit vector Di is the unit vector of rolling
direction of the ith wheel, m is the mass of the vehicle, and
J is its inertia moment. Substituting Eq. (10) into Eqs. (14)
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and (15) results in the following differential equation:
⎡
⎢⎣

mẍ

mÿ

J θ̈

⎤
⎥⎦ = αP̂ (θ)U (t) − 3β

2

⎡
⎢⎣

ẋ

ẏ

2L2θ̇

⎤
⎥⎦ + P̂ (θ)D(t) (16)

with

P̂ (θ) =

⎡
⎢⎢⎢⎣

− sin θ − sin
(π

3
− θ

)
sin

(π

3
+ θ

)

cos θ − cos
(π

3
− θ

)
− cos

(π

3
+ θ

)
L L L

⎤
⎥⎥⎥⎦ ,

U (t) =

⎡
⎢⎣

u1(t)

u2(t)

u3(t)

⎤
⎥⎦ , and D(t) =

⎡
⎢⎣

d(ω1)

d(ω2)

d(ω3)

⎤
⎥⎦ .

It is difficult to design a controller for the nonlinear and
time-varying dynamic system as Eq. (16). Simplifying this
dynamics for easy control of three-wheel omnidirectional
vehicles was a major motivation of this study. The methods
to do so are presented in the following sections.

E = P̂ −1(θ)

⎡
⎢⎣

m 0 0

0 m 0

0 0 J

⎤
⎥⎦ P −1(θ) =

⎡
⎢⎣

4
9m + J

9L2 − 4
9m cos

(
π
3

) + J
9L2 − 4

9m cos
(

π
3

) + J
9L2

− 4
9m cos

(
π
3

) + J
9L2

4
9m + J

9L2
4
9m cos

(
2π
3

) + J
9L2

− 4
9m cos

(
π
3

) + J
9L2

4
9m cos

(
2π
3

) + J
9L2

4
9m + J

9L2

⎤
⎥⎦ ,

F = −P̂ −1(θ)

⎡
⎢⎣

m 0 0

0 m 0

0 0 J

⎤
⎥⎦ ∂P −1(θ)

∂θ
= −

⎡
⎢⎣

0 − 4
9m sin

(
π
3

)
4
9m sin

(
π
3

)
4
9m sin

(
π
3

)
0 − 4

9m sin
(

2π
3

)
− 4

9m sin
(

π
3

)
4
9m sin

(
2π
3

)
0

⎤
⎥⎦ , and

G = −P̂ −1(θ)

⎡
⎢⎣

3β

2 0 0

0 3β

2 0

0 0 3βL2

⎤
⎥⎦ P −1(θ) = −

⎡
⎢⎢⎣

β − 2
3β cos

(
π
3

) + β

3 − 2
3β cos

(
π
3

) + β

3

− 2
3β cos

(
π
3

) + β

3 β 2
3β cos

(
2π
3

) + β

3

− 2
3β cos

(
π
3

) + β

3
2
3β cos

(
2π
3

) + β

3 β

⎤
⎥⎥⎦ .

3. The Dynamics of Omnidirectional Vehicles Simplified

by Its Kinematics

The main idea of this paper is to simplify the dynamics of the
three-wheel omnidirectional vehicle as a linear time invariant
model. In this section, the conditions of the vehicle in a
simplified model are derived. The usage of these conditions
is also discussed.

The main idea of simplifying the vehicle model is to
combine its kinematics into its dynamics. The vehicle
forward kinematic equation derived from inverse kinematic
equation Eq. (8) is

Ẋ(t) = P −1(θ)V (t). (17)

The derivative of Eq. (17) with respect to time is

Ẍ(t) = ∂P −1(θ)

∂θ
θ̇V (t) + P −1(θ)V̇ (t) (18)

where

P −1(θ) =

⎡
⎢⎣

− 2
3 sin θ − 2

3 sin
(

π
3 − θ

)
2
3 sin

(
π
3 + θ

)
2
3 cos θ − 2

3 cos
(

π
3 − θ

) − 2
3 cos

(
π
3 + θ

)
1

3L
1

3L
1

3L

⎤
⎥⎦

and

∂P −1(θ)

∂θ
=

⎡
⎢⎣

− 2
3 cos θ 2

3 cos
(

π
3 − θ

)
2
3 cos

(
π
3 + θ

)
− 2

3 sin θ − 2
3 sin

(
π
3 − θ

)
2
3 sin

(
π
3 + θ

)
0 0 0

⎤
⎥⎦.

The following theorem discloses the conditions of the vehicle
dynamics simplified in a linear form.

Theorem 1: Let a three-wheel omnidirectional vehicle
maneuver along a trajectory X(t) in configuration space.
If its wheels’ velocities V(t) related to Ẋ(t) satisfy inverse
kinematic equation Eq. (8), then its dynamics (16) becomes

EV̇ (t) = (F θ̇ + G)V (t) + αU (t) + D(t) (19)

where

Proof. Substituting Eqs. (17) and (18) into (19) results in

⎡
⎢⎣

m 0 0

0 m 0

0 0 J

⎤
⎥⎦ P −1(θ)V̇ = −

⎡
⎢⎣

m 0 0

0 m 0

0 0 J

⎤
⎥⎦ ∂P −1(θ)

∂θ
θ̇V

−

⎡
⎢⎣

3β

2 0 0

0 3β

2 0

0 0 3βL2

⎤
⎥⎦ P −1(θ)V + αP̂ (θ)U (t) + P̂ (θ)D(t)

(20)

After multiplying P̂ −1(θ), Eq. (20) becomes

EV̇ (t) = (F θ̇ + G)V (t) + αU (t) + D(t).

�
If the vehicle is manipulated by fixed θ̇ , the vehicle dynamics
will be simplified to a linear time invariant system derived
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from Eq. (19)

V̇ (t) = AV + BU + E−1D(t) (21)

where A = E−1(F	 + G), B = E−1α, 	 = θ̇ is a constant
value, and D(t) is the high-order disturbance produced by
motor angular velocities. It is worthwhile to force θ̇ to a
constant value 	 because the complicated dynamics of the
omnidirectional vehicle can then be easily simplified to a
linear system.

To summarize, there are two conditions to make the
omnidirectional vehicle dynamics linear:

(1) Its kinematics Eq. (8), and
(2) Constant change in heading θ̇(= 	).

Given a trajectory Ẋ(t) ([ẋ(t) ])([ẋ(t) ẏ(t) θ̇(t)]T ), the three-
wheel omnidirectional vehicle should been planned with
Eq. (8) under condition (1) for its dynamics to be linear.
Note that condition (2) does not restrict the position trajectory
of the three-wheel omnidirectional vehicle. This is because
the particular advantage of omnidirectional vehicles is that
the orientation trajectory θ(t) is independent of the position
trajectory [x(t) y(t)]. Hence, its orientation trajectory θ̇ (t)
can be manipulated with regardless of its position trajectory
[ẋ(t) ẏ(t)]. In general, it is not difficult to let the vehicle
change by a fixed angle within the time of a fixed period.
As a result, the three-wheel omnidirectional vehicle can
be planned to maneuver on any position trajectory under
condition (2). In Section 5, three kinds of trajectories
illustrate how to keep its dynamics linear.

4. Design of a Linear Optimal Tracker

Once it is possible to linearize the dynamics of the three-
wheel omnidirectional vehicle, linear optimal theories are
suitable for its control. In this section, a linear optimal tracker
for the control of the three-wheel omnidirectional vehicle is
proposed. Finally, the linear optimal tracker is summarized
by a calculation schema.

Let a linear time invariant system be Eq. (21), W (t) be
the desired velocity in which t ∈ [t0, T ], and C be a linear
combination matrix for the scalar of v(t) corresponding to
W (t). Then, a controller U (t) is designed for minimizing a
performance index defined as follows:

J (t0) = 1

2
Y (T )T MY (T ) + 1

2

∫ T

t0

[Y (t)T QY (t)

+ U (t)T RU (t)]dt, (22)

where Y (t) = (CV (t) − W (t)) is the tracking error of wheel
velocity, M, Q, and R are the matrices of weighting
factors for terminal condition, tracking error and controller
output, respectively, and M ≥ 0, Q ≥ 0, and R > 0 are
all symmetric. Note that D(t), the high-order variables in
Eq. (21), is regarded as system disturbance. Therefore, the
control problem of the vehicle based on this performance
index becomes optimal tracking control with disturbance.

Here, a linear optimal tracking controller based on
continuous linear quadratic tracker18 is designed. However,

the system as shown in Eq. (21) includes disturbance D(t)
that is temporarily neglected. The linear optimal tracking
control law for the system with disturbance should be solved
as follows:

Theorem 2: For the linear time invariant dynamic system
Eq. (21), the linear optimal tracker designed for the
performance index Eq. (22) is,

−Ṡ = AT S + SA − SBR−1BT S + CT QC,

S(T ) = CT MC, (23)

K(t) = R−1BT S(t), (24)

−ġ = (A − BK)T g + CT QW − SE−1D,

g(T ) = CT MW (T ) (25)

U (t) = −K(t)V (t) + R−1BT g(t) (26)

where Eq. (23) is a matrix Riccati equation for S(t) with final
condition S(T), K(t) is the gain matrix, Eq. (25) is an auxiliary
differential equation for g(t) with final condition g(T), and
U(t) is the controller output of the optimal tracker.

Proof. Define a Hamiltonian equation by combining Eqs.
(21) and (22)

H (V, u, t) = 1

2
[(CV − W )T Q(CV − W ) + UT RU ]

+ λT (AV + BU + E−1D). (27)

A state equation and a costate equation are obtained by

V̇ = ∂H

∂λ
= AV + BU + E−1D, and (28)

−λ̇ = ∂H

∂V
= AT λ + CT QCV − CT QW, respectively.

(29)

From stationary condition, we have

U = −R−1BT λ (30)

Let the costate be

λ = SV − g(t) (31)

where S is the solution of Eq. (23), and g(t) is driven by
reference W(t). Hence, the derivative of Eq. (31) with respect
to time is

λ̇ = ṠV + SV̇ − ġ. (32)

Combining Eqs. (23), (29), (31) and (32) together results in

−ṠV + ġ = AT SV − AT g + SAV + SBU + SE−1D

+ CT QCV − CT QW. (33)

Moreover, substituting Eq. (31) into (30) results in

U = −R−1BT SV + R−1BT g. (34)
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Fig. 3. The calculation schema of the linear optimal tracker for overcoming disturbance.

Substituting Eq. (34) into Eq. (33) obtains

−ṠV + ġ = AT SV − AT g + SAV − SBR−1BT SV

+SBR−1BT g + SE−1D + CT QCV − CT QW.

(35)

Let

−Ṡ = AT S + SA − SBR−1BT S + CT QC, and

K(t) = R−1BT S(t). (36)

Then, Eq. (35) can be simplified to

−ġ = (A − BK)T g + CT QW − SE−1D. (37)

Eqs. (34), (36) and (37) are the control law of the linear
optimal tracker for the system with known disturbance. �

To summarize, the linear optimal tracker consists of an
optimal tracking controller and a kinematic transformation
to achieve the mission that the wheels’ velocity trajectories
satisfy its kinematic constraint. Figure 3 schematizes the
linear optimal tracker. The goal of the linear optimal tracker
is to control wheel velocities V(t) to track W(t) which is
transformed from r(t) based on the vehicle kinematics. There
are two closed loops in Fig. 3. The first closed loop calculates
the auxiliary function g(t) for tracking W(t) and rejecting
the disturbance E−1D(t). After obtaining g(t), the linear
optimal controller U(t) is calculated to control the vehicle
in the second closed loop. Notice that the calculation of the
gain matrix K(t) is not shown in Fig. 3. K(t) is obtained
from Eq. (24) after solving S(t) from the Riccati Eq. (23). In
addition, the integration interval of Eqs. (23) and (25) should
be replaced by [T, 0] after canceling the minus signs of their
left-hand sides because their boundary conditions given are
the terminal values S(T ) = CT MC and g(T ) = CT MW (T ),
respectively. Therefore, if the tracked signal W(t) and the
disturbance E−1D(t) are given, K(t) and g(t) are stored by
off-line computation. When the vehicle motors are controlled
by the control signal U(t) calculated from K(t) and g(t), V(t)
tracks W(t).

5. Trajectory Planning for Kinematic Constraints

When designing a vehicle movement trajectory, it is essential
to carefully plan wheel velocities to satisfy the conditions

that the vehicle dynamics is linear. In this section, three
cases, each with a different kind of trajectories, illustrate
the planning strategy.

Let r(t) = [rx(t) ry(t) rθ (t)]T ∈ X(t) be the vehicle
movement trajectory in configuration space based on
workspace (xb, yb), and W (t) = [w1(t) w2(t) w3(t)]T ∈ V (t)
be the desired wheel velocity trajectory. Under the second
condition, ṙθ (t) must be constant when planning wheels’
velocities W(t) for the vehicle movement trajectory. As well,
it is necessary to design W(t) to satisfy inverse kinematics
Eq. (8):

W (t) = P (θ)ṙ(t) = P (θ)
[
ṙx(t) ṙy(t) ṙθ (t)

]T
. (38)

where ṙx(t) = ∂rx (t)
∂t

, ṙy(t) = ∂ry (t)
∂t

, and ṙθ (t) = ∂rθ (t)
∂t

. Given
trajectories r(t), the objective of trajectory planning is finding
the wheel velocity trajectories W(t).

It is well known that continuity is an important
consideration in trajectory planning. Here, the vehicle
velocity is designed to be piecewise continuous. Let |r(t)|
be the maneuver distance of the vehicle, and vvehicle(|r(t)|)
be the vehicle movement velocity. Figure 4 is the profile
of the vehicle velocity planned for piecewise continuity,
where |rd (t)| is the destination distance. In Fig. 4, the
horizontal line also represents time. The time periods
separated by t1, t2 and t3 are the regions of acceleration,
constant velocity and deceleration, respectively. Planning
only considers trajectories, which begin with acceleration
and end with and deceleration, giving a piecewise-continuous
velocity. Consequently, when planning a trajectory r(t), the
vehicle movement velocity trajectory vvehicle(|r(t)|) gives us
the vehicle movement velocity ṙ(t). After solving ṙ(t), wheel
velocity trajectories W(t) can be calculated by Eq. (38).

Planning of the vehicle velocity trajectory as shown in
Fig. 4 allows us to alleviate the disturbance of the un-modeled
high-order term, d(ω). In most of vehicle trajectories, the

Fig. 4. The profile of planning vehicle velocity.
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wheel angle jerk (ω̈) is zero on this kind of velocity trajectory.
The wheel angle acceleration (ω̇) is zero in the time period
(t1, t2). Consequently, the vehicle velocity trajectory planning
only has a disturbance d(ω) resulted from the wheel angle
acceleration and deceleration in time periods (0, t1) and
(t2, t3).

It is crucial to solve W(t) to satisfy Eq. (38) at the
initial conditions of trajectory planning. In general cases,
the velocity profile as shown in Fig. 4 supposes that the
vehicle movement begins from rest, i.e. W (0) = [0 0 0]T . At
each sampling period, we calculate Eq. (38) for W(t) so that
the whole trajectory satisfies the vehicle kinematic equation.
However, the initial velocities of the three wheels may not
be zero in special cases such as a trajectory consisting of
two intersecting straight lines. It is difficult to still satisfy
Eq. (38) when the wheel velocities change from the first
line to the second lines. To illustrate trajectory planning in
detail, we discuss three cases: a straight line, a circle and two
intersecting lines.

Case 1: A straight line
Let the angle between the straight line of the vehicle

movement and Xb (horizontal line) be θd . θd is a constant
for the straight line. The straight line, therefore, satisfies

ṙx(t) = vvehicle(|r(t)|) sin(θd),

ṙy(t) = vvehicle(|r(t)|) sin(θd),

and

ṙθ (t) = 0 (39)

where vvehicle(|r(t)|) is the trajectory as shown in Fig. 4.
For the straight line, w1(t), w2(t) and w3(t) are solved by
substituting Eq. (39) into Eq. (38). Notice that ṙθ (t) = 0
satisfies the first condition of linear vehicle dynamics,
and that in a nonholonomic vehicle (or mobile robot), rθ

must equal θd , but omnidirectional vehicles don’t have this
constraint. Simulation in the next section will show this
property.

Case 2: A circle trace
Let rR be the radius of a circle trace. Then, the relationship

between the linear velocity and the angular velocity of the
vehicle (see Eq. (13)) is obtained by

ṙθ (t) = vvehicle(|r(t)|)
rR

. (40)

The equation of the circle is

rx(t) = rR sin(rθ (t)), and

ry(t) = rR sin(rθ (t)). (41)

The derivative of Eq. (41) with respect to time is

ṙx(t) = −rR sin(rθ (t))ṙθ (t), and

ṙy(t) = rR cos(rθ (t))ṙθ (t). (42)

Eqs. (40) and (42) substituted into Eq. (38) can solve w1(t),
w2(t) and w3(t) for the wheels’ velocity trajectories. Two

Fig. 5. The velocity profile during the change of wheel velocities.

situations, fixed ṙθ (t) and rθ (i.e. ṙθ (t) = 0), meet the second
conditions of the vehicle in linear dynamics. Simulation in
the next section will show both situations.

Case 3: Two intersecting lines
In this case, the key point of trajectory planning is the

change in wheel velocities from the end of the first straight
line to the beginning of the second one. It is difficult during
this period to always satisfy kinematic Eq. (8). The trajectory
planning of this case is illustrated by an example below.

In Fig. 5, the time [0, t2] shows the vehicle as it moves along
the first straight line. The wheel velocity vector at t2 is [w1,2,
w2,2, w3,2]. The vehicle steered by wheel velocity vector
[w1,3, w2,3, w3,3] follows the second straight line beginning
at time t3. If the wheel velocity vector is [w1,3, w2,3, w3,3] at t3,
it is not difficult to steer the vehicle on the second straight line
after t3. During the time interval [t2, t3], the wheel velocity
vector needs to change from [w1,2, w2,2, w3,2] to [w1,3, w2,3,
w3,3] so that the vehicle movement can change from the first
straight line to the second straight line.

The strategy makes use of the maximum change velocity
as its basis. As shown in Fig. 5, the velocity of maximum
change is

a3 = max
i=1,...3

∣∣wi,j+1 − wi,j

∣∣ = w3,3 − w2,3. (43)

Fig. 6. The linear optimal tracker for the omnidirectional vehicle
with disturbance.
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Fig. 7. The linear optimal tracker for tracking a circle trajectory.

where wi,j is ith wheel velocity at time tj . Hence, a3 is
selected as the basis of velocity change. Let the maximum
motor acceleration be am. Then the time of velocity change
is designed by

tp = a3

am

(44)

The acceleration of the other wheels is designed according to
tp. This strategy is thus to vary acceleration (or deceleration)

within a fixed period. The acceleration of wheels 1 and 2 is

a1 = (w1,j+1 − w1,j )

tp
, and

a2 = (w2,j+1 − w2,j )

tp
, respectively. (45)

where w1,j is the velocity of wheel 1 at time tj , and w2,j is
that of wheel 2 at tj . Note that wheel 3 uses the maximum
acceleration, i.e., a3 = am. The trajectory planning of the
three cases is demonstrated by simulation in next section.

6. Simulation and Experiments

In this section, the linear optimal tracker is implemented by
simulation and experiments. Simulation includes three kinds
of trajectories discussed in the previous section.

In the study, the motor is a model 1524 made of Faulhaber
group (http://www.faulhaber-group.com/). When the linear
optimal tracker design includes disturbance D(t), Fig. 6
shows that the omnidirectional vehicle follows the planned
trajectory very well. Notice that the simulation fixes the
vehicle orientation at π/6 (i.e. rθ = π/6).

Figures 7 and 8 show the vehicle controlled to follow
a circle trace in different orientations. In Fig. 7, the vehicle
orientation is fixed at π/2, but in Fig. 8 its orientation follows
the circle trace, i.e. ṙθ is fixed. In addition to trajectory
tracking, the sub-figures (e) of Figs. 7 and 8 show the
vehicle’s instantaneous orientation. Both results show that
the optimal controller does a good job tracking the desired
trajectories for constant rθ and ṙθ . Sub-figures (c) and (f)

Fig. 8. The linear optimal tracker for tracking a circle trajectory.
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Fig. 9. The linear optimal tracker for tracking two straight lines at different slopes.

show the tracking errors of wheel velocities and vehicle
position, respectively.

Simulation includes controlling the vehicle to follow two
connected straight lines of different slopes. Figure 9(e) shows
that the vehicle can be controlled at orientation π/6 to follow
the two straight lines very well. Sub-figures (c) and (f) show
the trajectory errors of wheels’ velocities and the vehicle
position, respectively.

In this study, a real omnidirectional vehicle was
implemented for experiments. Figure 10 is the vehicle viewed
from the top and bottom. In the vehicle, a radio frequency
module is installed to receive experimental command, and a
RS-232 cable is connected to a personal computer for storing
experimental data. There are two experiments: one to control
the vehicle to track a straight line, the other to track a circle.

Zero slip, an assumption in the derivation of the
omnidirectional mobile vehicle dynamic model, must be
carefully maintained during practical experiments. Wheel
slip arises from too much acceleration. Therefore, we
performed an experiment to find the maximum slip-free
acceleration, by controlling the vehicle over a fixed distance.
When the vehicle wheels cause slip, the motor’s encoder still
counts wheel movement but without corresponding vehicle
movement. Wheel slip can thus be identified if the vehicle
moves less than the defined distance. After many tests, we
found out that the maximum slip-free acceleration on carpet
was about 0.8 m/s2, as shown in Fig. 10.

In the experiments, sampling interval is 1 ms (millisecond),
and motors’ positions in each sampling interval was stored
to estimate velocity. Too high a desired velocity makes

Fig. 10. The photo of the omnidirectional mobile vehicle.
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Fig. 11. The wheels’ velocities and tracking errors of the real vehicle controlled to follow a straight line.

Fig. 12. The wheels’ velocities and tracking errors of the real vehicle controlled to follow a circle.
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wheel velocity tracking difficult, because limited battery
energy means that the vehicle cannot attain arbitrarily high
velocities. By experimentation, we found that the wheel
velocities could be tracked very well if the vehicle moved
under velocity 0.6 m/s. Figures 11 and 12 show the results of
wheel velocities and tracking errors as the vehicle follows a
straight line and a circle, respectively.

7. Conclusions and Further Developments

An omnidirectional vehicle has its intrinsic motion
characteristics: the kinematic relationship between its body
movement and wheels’ rotation velocities. In this paper,
kinematics makes the dynamics of an omnidirectional vehicle
linear when its orientation change rate is fixed (i.e. constant
θ̇). Hence, the difficult control problem of omnidirectional
vehicles can be resolved by classical control theories. It is
interesting but not surprising that the vehicle’s dynamics
is related to its kinematics. Our research demonstrates that
complicated dynamics solved by kinematics is an easy way
to control omnidirectional vehicles. In addition, the examples
of planning wheel trajectory for maintaining the conditions
of the vehicle dynamics in linear illustrate that the vehicle
movement trajectories of straight lines and circle traces are
easy, but those of two straight lines with different slopes are
difficult. However, the strategy of varying acceleration in a
fixed period solves the difficulty of the latter case. Simulation
and experiments demonstrate these study results.

In this paper, motion planning makes the omnidirectional
vehicle linear, like decoupling the interaction among its three
wheels. In contrast to conventional motion planning, which
usually focuses on smooth trajectories, this is innovative, and
a concrete improvement on this control problem. In general,
controller design of robots only takes care of its dynamics,
but ignores its kinematics. This methodology paves a way to
consider kinematics and dynamics together for controlling
robots simply and easily. This suggests further development
to study controller design of robot arms, legs, and so on.
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