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The stability properties of round variable-density low-Mach-number jets are studied
by means of direct numerical simulation (DNS) and linear stability analysis. Fully
three-dimensional DNS of variable-density jets, with and without gravity, demonstrate
that the presence of buoyancy causes a more abrupt transition to turbulence. This
effect helps to explain differences between normal gravity and microgravity jet
diffusion flames observed in the laboratory.

The complete spectrum of spatial eigenmodes of the linearized low-Mach-number
equations is calculated using a global matrix method. Also, an analytic form for
the continuous portion of this spectrum is derived, and used to verify the numerical
method. The absolute instability of variable-density jets is confirmed using Brigg’s
method, and a comprehensive parametric study of the strength and frequency of this
instability is performed. Effects of Reynolds number, the density ratio of ambient-
to-jet fluid (S1), shear-layer thickness and Froude number are considered. Finally, a
region of local absolute instability is shown to exist in the near field of the jet by
applying linear stability analysis to mean profiles measured from DNS.

1. Introduction
1.1. Motivations

A primary motivation for this work is to explain the marked differences between
microgravity jet flames and normal gravity jet flames observed in drop-tower
experiments performed by Bahadori et al. (1992) and Hegde, Zhou & Bahadori
(1994). In these experiments, which were repeated for different fuel types (methane,
propylene and propane), transitional and turbulent microgravity flames were observed
to be wider and much taller than corresponding normal gravity flames. Also, the
normal gravity flame length reached a constant value in the limit of high Reynolds
number, but the microgravity flame length appeared to increase monotonically with
respect to Reynolds number. In the turbulent regime, for example, a microgravity
flame might be twice as long as its normal gravity counterpart.

Bahadori et al. (1992) and Hegde et al. (1994) suggest that many of the observed
differences between microgravity and normal gravity jet flames might be explained
through changing jet stability properties. As we will discuss in further detail in this
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paper, many of these properties can be understood by considering the simpler problem
of a non-reacting, but variable-density, jet. There is a large body of work available
on the stability of variable-density jets (see Monkewitz & Sohn 1988), but the
theory traditionally neglects the effect of buoyancy. For jet diffusion flames, however,
buoyancy appears to have a significant effect on the overall stability of the flow. It
is not clear, though, whether buoyancy induced by heat release or buoyancy arising
from a non-unity ratio of the density of air to that of cold fuel, S1, plays a larger
role in determining the overall stability properties of the flame. The latter effect is
present in many combustion applications in which the density of the fuel does not
match the density of air (for example, the density of methane is about half that of
air at the same temperature). Furthermore, from an inviscid linear stability analysis,
Monkewitz & Sohn (1988) determined that variable density jets with S1 > 1.39 are
absolutely unstable, and support self-sustaining oscillations. As we will see, this
absolute instability plays a key role in the near-field development of variable density
jets. In the analysis of Monkewitz & Sohn (1988), however, the jet was assumed to be
dominated by inertia, so that the effect of buoyancy on this absolute instability was
not considered. For these reasons, we restrict ourselves in this paper to considering
only the influence of buoyancy induced by non-unity density ratio S1, and thus
consider only non-reacting variable-density jets. Nevertheless, at various points in
this paper, we will refer back to the reacting problem and compare our results to
observations of diffusion flames when appropriate.

Idicheria, Boxx & Clemens (2003) repeated and extended some of the same drop-
tower experiments. They did not, however, observe the dramatic increase of flame
length under conditions of microgravity, as was observed by Bahadori et al. (1992) and
Hegde et al. (1994). For all three fuels that Idicheria et al. (2003) studied (methane,
ethylene and propane), the flame lengths of the microgravity flames behaved similarly
to the flame lengths of the normal gravity flames for a large range of Reynolds
number. They attribute the difference of their observations from those of previous
workers to either the added presence of a pilot flame keeping the flame attached, or to
the microgravity flames being more sensitive to external disturbances and thus more
dependent on boundary conditions. These two seemingly opposing results of similar
laboratory experiments provide further motivation for studying the fundamental fluid
mechanics of the problem in more detail, separate from the complicating influence of
the reactive terms.

1.2. Previous work

Through linear stability theory, Batchelor & Gill (1962) demonstrated that a
cylindrical vortex sheet in an inviscid incompressible fluid of uniform density is linearly
unstable with respect to small disturbances of all azimuthal wavenumbers. Such a
vortex sheet defines a jet with a top-hat profile. The infinitely thin vortex sheet separ-
ates the interior of the jet which flows with axial velocity uj from the surrounding qui-
escent fluid. While a cylindrical vortex sheet serves as a model for the near field of a jet,
a more general velocity profile, such as one derived from similarity analysis, is required
to analyse the stability properties of a fully developed jet. Such a similarity solution
can be found by considering boundary-layer approximations based on the requirement
of a narrow jet (see White 1991). For the fully developed jet profile, Batchelor & Gill
(1962) conclude that the inviscid incompressible uniform-density jet is linearly unstable
only to disturbances of azimuthal wavenumber n=1 (the so-called helical modes).

A review of jet stability theory (Michalke 1984) catalogued extensions of the inviscid
incompressible uniform-density theory which capture various other effects, including
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those of finite Reynolds number and non-zero Mach number. An important aspect of
Michalke’s paper is the identification of a functional form for the axial velocity profile
in the potential core of a jet. This profile is widely used throughout the literature to
model the mean flow in the near field of a jet, and is known as ‘Michalke’s profile
two’ from the label assigned to it in his paper.

Although compressibility was considered through the Mach-number effect in
Michalke’s review, another important variable density effect influencing jet stability
is that of the jet density ratio S1. For upward pointing jets, S1 > 1 yields a positively
buoyant jet. This effect is important for variable-density jets, even in the limit of zero
Mach number. Thus, the effect of the jet density ratio must be considered separately
from the Mach-number effect.

Monkewitz & Sohn (1988) analysed heated jets for which S1 �=1 by means of
an inviscid linear stability analysis. For density ratios above a threshold value of
S1 = 1.39, their theory predicted that the variable density jet becomes absolutely
unstable. Since common fuels are often less dense than air, this absolute instability
may play a key role in the near-field development of fuel jets, and thus is of primary
importance to our study.

Monkewitz et al. (1990) further investigated how non-unity density ratios affect jet
stability by observing the characteristics of heated jets experimentally. The onset of
oscillatory modes in the heated jet experiments was shown to be well correlated to the
threshold of absolute instability predicted by the linear stability theory (Monkewitz &
Sohn 1988). Non-unity jet density ratios were also studied for heterogeneous jets by
Kyle & Sreenivasan (1993), who investigated the oscillating modes of helium/air jets.

The role of the air-to-fuel density ratio in jet diffusion flames in normal gravity
was studied by Demare & Baillot (2001). Using laser tomography and particle image
velocimetry (PIV), they examined lifted methane flames with an air-to-fuel ratio of
about two, which places these jets past the threshold necessary for the onset of self-
sustained oscillations. The self-sustained oscillations manifest themselves as a train
of ring vortices, which provide one mechanism by which some air is entrained into
the middle of the fuel stream. They observed, however, the largest amount of mixing
to be caused by axially aligned counter-rotating axial vortex pairs, which remain
quasi-steady and draw fuel out of the centre of the jet in a star-shaped pattern. At
the base of the lifted flame, these well-organized vortex filaments are able to oppose
flame-front propagation, and shape the flame in this region into lobes. The cause of
these vortices is thought to be a secondary three-dimensional instability acting upon
the initial vortex rings.

In addition to laboratory experiments, a number of numerical simulations of
reacting variable-density jets have been performed. Kaplan, Oran & Baek (1994)
performed axisymmetric simulations of lifted methane/air diffusion flames, in which
the nozzle exit velocity is sufficient for the flame to detach from the nozzle and
stabilize at a distance downstream. In such a configuration, the ‘pre-mixing zone’
between the nozzle and the flame is exactly a variable-density jet, the perturbation
of which can have dramatic consequences for the flame just downstream. Kaplan
et al. (1994) observed that the lifted flame base interacts strongly with the Kelvin–
Helmholtz vortical structures which form in the region of the jet shear layer. This
gives further justification for considering only non-reacting variable-density jets.

One important difference between the simulations of Kaplan et al. (1994) and the
simulations presented in this paper is that the jet in the simulations of Kaplan et al.
(1994) had a substantial coflow of air surrounding it. Because of this, a free-slip
lateral boundary condition can be employed without the danger of recirculation. In
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this case, all the air entrained into the jet must come from the coflow stream crossing
the inlet boundary. The jet considered in this paper, on the other hand, has no coflow,
and thus must entrain all of its air across the lateral boundary. Therefore, even a
slight amount of coflow is enough to drastically alter the streamlines in the near field
of a jet. Also, as Kaplan et al. (1994) point out, while an axisymmetric simulation
can provide insight into the initial primary instability of the jet, it cannot capture the
fully three-dimensional nature of transition to turbulence.

Mizobuchi et al. (2002) performed a three-dimensional direct numerical simulation
(DNS) of a turbulent lifted hydrogen/air flame. Using the DNS data, they identified
three components of a lifted hydrogen flame: a leading-edge flame, an inner premixed
flame, and outer islands of diffusion flames. They also found that the leading-edge
flame, while in the general shape of a ring, has a complicated three-dimensional
structure. They found this ring to be unstable with respect to long time scales, which
agrees with the observations of Kaplan et al. (1994), as well as the results presented
in this paper.

1.3. Our approach

In this paper, we study non-reacting variable-density jets through a synergy of DNS
and linear stability analysis. In the first part of the paper, we examine a series of
three-dimensional DNS of variable-density jets. From the rich dataset provided by
DNS, we are able to quantify the transition to turbulence with and without gravity by
directly measuring vorticity and baroclinic torque. Furthermore, we measure the self-
sustaining oscillations predicted by linear theory directly from the DNS of the fully
nonlinear problem. In this way, the linear stability analysis presented in the latter half
of this paper serves as a confirmation of what we observe in the DNS.

To implement the DNS, we use the low-Mach-number equations (see McMurtry
et al. 1986; McMurtry 1987) from which acoustic waves have been filtered out.
Therefore, we consider the stability of the low-Mach-number equations in the latter
half of this paper. In order to capture the pinch-point phenomenon associated with
absolute instability, the spatial stability of low-Mach-number variable-density jets
was considered. Using a matrix method, the entire spatial spectrum with all of
its components is derived and catalogued, with the purpose of providing a firm
foundation on which to base further work on optimization and control.

In order to quantify the importance of buoyancy to the local stability properties
of variable-density jets, a comprehensive parametric study is presented based on the
spatial stability analysis. In this study, the effects of buoyancy are compared to the
effects of density ratio S1, Reynolds number Re and shear-layer thickness.

Finally, the aforementioned synergy between DNS and linear stability analysis is
taken a step further by using mean profiles measured from DNS as base flows to
which to apply the stability analysis. From this, we compute how the local stability
properties change as the jet develops in the axial direction. This analysis allows us
to determine at which axial location the jet transitions from absolute instability to
convective instability.

2. Mathematical model
2.1. Flow configuration

Figure 1 shows a schematic diagram of a variable-density jet in a cylindrical domain.
The cylindrical domain is oriented vertically so that gravity acts with magnitude g

in the downward direction. The jet fluid enters at the bottom of the domain through
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Figure 1. Diagram of the computational domain with a traction-free lateral boundary
condition and a free-slip collar around the outlet.

a circular orifice of diameter d with maximum velocity uj . As the jet develops
downstream, ambient fluid is entrained into the flow and mixes with the jet fluid.

An important feature of this flow configuration is the absence of coflow. The
circular fuel nozzle is set flush into a flat wall which prohibits flow across the bottom
boundary except within the confines of the nozzle. Instead, ambient fluid is allowed
to be entrained into the jet flow across the lateral boundaries.

Open boundaries pose inherent difficulties in simulation, because the fluid behaviour
just outside of the computational domain must be modelled. It would thus appear
advantageous to restrict the lateral boundaries to being closed in the same manner
as the bottom boundary. Through numerical experimentation, however, Boersma,
Brethouwer & Nieuwstadt (1998) demonstrated that closing the lateral boundary can
have an appreciable effect on an otherwise free jet flow. This happens because the
mass entrainment into the jet near the nozzle creates a recirculation zone surrounding
the jet. Also, Jendoubi & Strykowski (1994) point out that counterflow can have
a dramatic effect on the stability properties of the jet. Therefore, to minimize the
influence of the lateral boundaries on the jet flow, an open-boundary condition must
be selected. For our simulations, we have chosen a viscous traction-free boundary
condition similar to that implemented by Boersma et al. (1998).

Likewise, the outlet boundary must also be open to allow the jet flow to exit the
domain. The goal of the open outlet boundary condition is to model a jet flow into
a large ambient space. For this purpose, a convective outflow condition is chosen.

From numerical experiments, it was found that the use of open boundaries for both
the lateral and outflow boundaries can lead to inconsistency at the point of intersection
of these two boundaries. This inconsistency arises because we have selected different
models based on the different types of flow expected at each of these boundaries. Spe-
cifically, the viscous traction-free boundary condition best models the small-amplitude
irrotational flow across the lateral boundaries, whereas the convective outflow condi-
tion captures the large-amplitude highly rotational flow of the jet exiting through the
top of the domain.

To avoid computational difficulties associated with the inconsistency of the open
boundaries, it was found that the inclusion of a free-slip collar around the outlet
greatly improves numerical stability. This collar closes a short section of the lateral
boundary immediately adjacent to the outlet boundary, thereby acting as a buffer
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between the two numerical boundary conditions. Unlike the ‘dump combustor’ case
described above, where the entire lateral boundary was closed, a short collar near
the outlet does not significantly influence the overall flow. This can be argued by
considering streamlines confined to the corner region near the intersection of lateral
and outlet boundaries. Without the collar, such streamlines enter the domain across
the lateral boundary near the outlet and then quickly exit the domain across the
outlet near the lateral boundary. Note that these streamlines do not approach the
flow of interest in the centre of the domain, and thus the fluid associated with these
streamlines is not entrained into the jet flow. Conversely, most of the fluid which is
entrained into the central jet flow has its origin at the lateral boundary, close to the
inlet boundary. Therefore, the introduction of a collar in the corner region near the
outlet boundary is not expected to influence significantly the jet flow of interest in
the centre of the domain.

2.2. Governing equations

In the limit of low Mach number, the independent variables of the fully compressible
Navier–Stokes equations and the ideal gas law can be represented as power series in
ε = γMa2, expanded about a condition of zero Mach number Ma. For instance, the
pressure p(x, t) can be decomposed into the series

p(x, t) = p(0)(x, t) + εp(1)(x, t) + · · · . (2.1)

Substituting the power series for p(x, t) and for the other independent variables
into the governing equations, and equating the coefficients of powers of ε to zero,
results in the following lowest-order equations:

Dρ

Dt
+ ρ(∇ · u) = 0, (2.2a)

∇p(0) = 0, (2.2b)

∂ρu
∂t

= −∇p(1) + ∇ ·
(

1

S1Re
τ − ρuu

)
− ρ

Fr2
k̂, (2.2c)

ρ
DT

Dt
=

1

S1RePr
∇2T , (2.2d)

p(0) = ρ[(S1 − 1)T + 1]. (2.2e)

With the exception of pressure, only the zeroth-order approximations to the density ρ,
the velocity u, and the reduced temperature T are required in the above lowest-order
equations. Therefore, we have dropped the superscript notation, except in the case
of pressure, where it is required to distinguish between the zeroth- and first-order
approximations.

Because the pressure gradient term in the compressible momentum equation is
multiplied by 1/γMa2, the first-order pressure gradient, ∇p(1), balances the other
lowest-order variables in (2.2c). Furthermore, (2.2b) is obtained by considering that
the zeroth pressure gradient term will be much larger than any of the other terms in
the compressible momentum equation in the limit of zero Mach number.

Equation (2.2b) means that p(0) is uniform in space, and, because our problem has
open boundaries at which the pressure should remain uniform in time, this means
that p(0) will remain uniform in time as well. The term p(0) is sometimes referred
to as the thermodynamic or ‘slow’ component of the pressure – in our case, it does
not change at all. On the other hand, the first-order pressure, p(1), is known as the
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hydrodynamic or ‘fast’ component of the pressure, and adjusts quickly to variations
in the flow.

2.2.1. Non-dimensionalization

Equation (2.2) has been written in non-dimensional form. Since several possible
methods of non-dimensionalization exist, it is important to specify our technique
carefully here. In the following, the primes denote dimensional quantities. The
primitive variables ρ, u and p, space and time are non-dimensionalized as follows:

ρ =
ρ ′

ρ0

, u =
u′

uj

, p =
p′

ρ0RT0

, ∇ = d∇′, t =
t ′uj

d
, (2.3)

where ρ0, T0, uj and d represent ambient density, ambient temperature, the maximum
fluid velocity at the nozzle and the nozzle diameter, respectively. Note that non-
dimensionalizing pressure in the above manner results in a Mach number squared
multiplying the pressure gradient term in the compressible momentum equation which
allows the low-Mach-number equations to be expressed in the form presented in (2.2).

The non-dimensional viscous stress tensor τ and acceleration due to gravity g are
defined as follows:

τ =
τ ′d

µuj

, g =
g′

g
= −k̂, (2.4)

where g is the magnitude of acceleration due to gravity, and µ is the fluid viscosity
which is taken to be constant throughout the flow. In our study, we neglect variable
viscosity effects, as they might mask other, more fundamental effects. Notice also that
g′ is simply the unit vector in the direction in which gravity acts.

Finally, the temperature field is scaled by the ambient temperature T0 and the
maximum temperature Tmax ,

T =
T ′ − T0

Tmax − T0

, (2.5)

so that the non-dimensional temperature T varies between zero and unity.
The specific choice of scales for the non-dimensionalization of the governing

equations yields a set of key parameters that determine the flow dynamics and
stability behaviour. This set includes the Reynolds number Re, the Froude number
Fr, the density ratio S1, and the Prandtl number Pr, as written below.

Re =
ρjujd

µ
, Fr =

uj√
gd

, S1 =
ρ0

ρj

=
Tmax − T0

T0

+ 1, Pr =
µ0cp

λ
. (2.6)

Here, Tmax is the temperature at the jet exit, and the Reynolds number is defined in
terms of the density of the jet fluid, ρj . We point out that the kinematic viscosity
ν = µ/ρj changes as the density changes; thus, as the jet density decreases, the jet
velocity must increase to yield a constant Reynolds number.

The Froude number provides information about the magnitude of buoyant forces
compared to inertial forces. As the Froude number increases, buoyant forces become
less important compared to inertial and viscous forces. As the condition of zero
gravity (g → 0) is approached, the Froude number becomes infinitely large (Fr → ∞),
and the buoyant term vanishes altogether.

The energy equation (2.2d) containing the Prandtl number was derived by assuming
that the specific heat cp and the thermal conductivity λ are constant throughout the
fluid, and that the Mach number is low enough that only the advective and diffusive
terms remain. For a detailed derivation of this equation, see Poinsot & Veynante
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(2001) and Bird, Stewart & Lightfoot (1960). For computational efficiency, the non-
dimensional form of the ideal gas law (2.2e) can be used to eliminate T in (2.2d), so
that

D

Dt

(
1

ρ

)
=

1

ρ

1

S1RePr
∇2

(
1

ρ

)
, (2.7)

assuming, without loss of generality, that p(0) = 1.

3. Numerical simulation
Direct numerical simulations have been performed to investigate the disturbance

dynamics in variable-density jets. The results of these simulations are then used to
motivate and guide computational stability analyses. The goal is to extract a physical
understanding of the phenomena observed in the direct numerical simulations.

3.1. Numerical methods

To implement the DNS, a computer code was developed to solve the low-Mach-
number equations (2.2) in cylindrical coordinates on a staggered mesh. In order to
resolve as large a range of scales as possible, highly accurate sixth-order compact
schemes are used to compute spatial derivatives in the non-periodic directions
(r and x) (see Lele 1992). In the remaining periodic direction (θ), an even more
accurate spectral method is employed. Also, using a staggered mesh has the added
benefit of being able to treat the advection of high wavenumbers more accurately
than is possible on a collocated mesh (see Pierce & Moin 2001).

To complement the accuracy of the space differencing schemes, third-order Adams–
Bashforth time differencing (see Durran 1999) is used to advance the advection and
diffusion terms in the momentum and energy equations. The effect of the pressure
gradient is then treated with a projection method which enforces the constraint
imposed by the continuity equation (see Chorin 1967).

The low-Mach-number equations differ from the anelastic equations sometimes
used in atmospheric science by including the term ∂ρ/∂t in the continuity equation
(2.2a), which allows for the advection of fluid pockets of varying density. McMurtry
(1987) points out, however, that any slight error in the calculation of ∂ρ/∂t can have
far-reaching consequences owing to the elliptic nature of the constraint imposed by
the continuity equation. Therefore, in order to compute this term as accurately as
possible, a predictor–corrector scheme is used, similar to the type employed by Najm,
Wyckoff & Knio (1998). Najm et al. (1998) report handling density ratios as large as
10:1, although in the present work, a maximum density ratio of 4:1 is considered.

Finally, an asymptotic method is used to treat the centreline, since the governing
equations in cylindrical coordinates contain an apparent singularity at r = 0 (see
Constantinescu & Lele 2002). Furthermore, in the region near to the centreline, a
spectral cutoff filter is used to avoid numerical difficulties associated with azimuthal
clustering of grid points.

For further details about the numerical method, refer to Nichols (2005).

3.2. Simulation configurations

In order to study the effects of buoyancy on the stability of variable-density jets, we
present two simulations with identical configurations except for one flow parameter:
the Froude number. In one case, the Froude number was specified to be infinite
(Fr = ∞) corresponding to a non-buoyant jet in zero gravity. In the other simulation,
the Froude number was set to Fr = 8, corresponding to a buoyant jet. The simulations
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Simulation S1 Re Fr
Ru

θu

Rρ

θρ

Pr Sc Perturbation level

A2 4.0 1000.0 ∞ 12.5 12.5 0.7 0.7 5%
A3 4.0 1000.0 8.0 12.5 12.5 0.7 0.7 5%

Table 1. Variable density jet simulation runs.

are labelled A2 and A3, respectively, in order to correspond to the notation of Nichols
(2005).

In order to simulate a jet in the transitioning regime, a Reynolds number of
Re = 1000 was selected for both simulations. The Prandtl number, Pr, and Schmidt
number, Sc, were both set to 0.7, implying a unity Lewis number condition. The flow
parameters for both simulations have been summarized in table 1.

The simulations used a computational domain of radial extent R = 4 and axial
extent X = 18 with a discretization resolution of 128 × 512 × 256 grid points in the
r , x and θ directions, respectively. Because of the non-dimensionalization introduced
in § 2, the distances R and X are both measured in terms of the nozzle diameter.

The same inlet velocity and density profiles were used for both simulations. The
inlet axial velocity profile chosen corresponds to Michalke’s profile number two (see
Michalke 1984), with a radius Ru = d/2 = 0.5 and a radius-to-momentum thickness
ratio Ru/θu = 12.5:

ux(x = 0, r) =
1

2

(
1 + tanh

(
1

4

Ru

θu

(
Ru

r
− r

Ru

)))
. (3.1)

The inlet density profile was also assumed to take on the functional form given by
Michalke’s profile two, but subtracted from 1 so that the density is lowered in the
centre of the jet. Expressed mathematically, the density profile at the inlet is given by
the following formula:

ρ(x = 0, r) = 1 −
(

1 − 1

S1

)
1

2

(
1 + tanh

(
1

4

Rρ

θρ

(
Rρ

r
− r

Rρ

)))
, (3.2)

with Rρ/θρ = 12.5. In a following section, we will investigate how Ru/θu and Rρ/θρ

affect the jet stability properties. These parameters have been written in such a way
that higher values correspond to thinner shear layers, and, as we will see, more
unstable jets.

As shown in figure 2, the ambient-to-jet density ratio was chosen to be four
(S1 = 4.0), yielding a jet which is four times less dense in the centre than at the edges.
This density ratio was chosen to ensure that the jet is well within the absolutely
unstable regime, according to Monkewitz & Sohn (1988). While an oxidizer-to-
fuel density ratio of S1 = 4.0 might be realizable in some specialized combustion
applications, it should be noted that for methane flames S1 is closer to 2.0. This
means that methane flames are closer to the boundary between the convective and
absolute instability regimes, but, as we will show, S1 = 2.0 still yields an absolutely
unstable jet. The advantage of choosing a larger density ratio is that the effects of
the instability are somewhat stronger and so reach a (statistically) steady state more
quickly, allowing for shorter computer simulation runs.

The flow is initially chosen to be parallel throughout the domain with no axial
variation allowed in any of the flow variables. In order to break the symmetry, random
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Figure 2. Inlet profiles for variable-density-jet simulations.

perturbations were added as white noise to the initial velocity field in the vicinity
of the parallel flow shear layer. The maximum amplitude of these perturbations was
taken to be 5 % of the peak jet inlet velocity, or 0.05uj . The addition of perturbations
to the flow can be thought of as a type of initial low-level forcing, after which
the flow is left to develop purely in accordance to the governing equations (2.2). In
other words, random perturbations are added only at time t = 0 and at no other
times, so fluctuations present in the flow at later times are a direct result of the
initial perturbations. This represents a more controlled environment than found in
the laboratory where random perturbations can occur at any time.

Perturbing the initial flow is necessary to allow the flow to develop three-dimensional
features, because without some initial perturbation to the system, the numerical
scheme would constrain the flow to remain axisymmetric, possibly missing important
physical processes. As we will see, the absolute instability which develops in the
near field of the flow is observed to be axisymmetric, i.e. of azimuthal wavenumber
n = 0. Perturbations of other azimuthal wavenumbers either damp out or grow
only as they are convecting downstream. Because of this, the perturbations added
to the initial flow field do not affect the very near field of the jet in the limit of
t → ∞, except by triggering a large-amplitude, rather robust, axisymmetric absolute
instability. It should be noted that the addition of three-dimensional perturbations is
not completely necessary to trigger this absolute instability, because just the initial
axisymmetric adjustment from parallel flow to that of a naturally spreading jet in
the absence of perturbations was found to be sufficient to trigger this instability. On
the other hand, as the initial three-dimensional perturbations convect downstream,
some will saturate and cause the flow to transition to a fully three-dimensional
turbulent flow. Worse, without three-dimensional perturbations to introduce non-zero
values to azimuthal wavenumbers n> 0, the numerical method would constrain these
wavenumbers to remain exactly equal to zero throughout the simulation. In this sense,
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the initial perturbations are critical to this study, since turbulence cannot develop in
a flow that is constrained to be axisymmetric.

3.3. Direct numerical simulation results

Figures 3 and 4 show the time development of the jet from initial conditions for
the two different Froude numbers, Fr= ∞ (the non-buoyant case) and Fr =8.0 (the
buoyant case). Each successive image is separated from the previous one by a non-
dimensional time of 12, so that a non-dimensional timespan of 72 is considered in
each case. With a time step of �t = 0.004, this corresponds to 18 000 time steps.
Part (h) in each sequence does not represent a new time, but rather displays an axial
cross-section of the domain at the final time step shown in the seventh image.

In order to visualize the flow, a conserved scalar field Z was carried through the
computation. The inlet boundary condition Z(x = 0, r) was set to the same functional
form as given on the right-hand side of (3.1), so that Z = 1 at the centre of the
nozzle and Z = 0 in the ambient regions. The term Z is often referred to as the
mixture fraction of jet fluid (fuel) and ambient fluid (air). The blue surfaces in these
plots are in each case the isosurface Z = 0.111. If Z = 0.111 represents the ideal
mixture of fuel and air required for combustion, then this surface is referred to as the
stoichiometric surface.

In both cases, the flow initially adjusts to become non-parallel. By non-dimensional
time t = 48 (figures 3(e) and 4(e)), however, the initial adjustment has left the
computational domain. In the final images of both sequences, we observe that the
laminar inflow at the bottom of the domain enters first into an oscillatory state which
is dominated by a train of Kelvin–Helmholtz-type vortices convecting downstream
along the shear layer. The roll-up of the Kelvin–Helmholtz vortices is visualized in
an axial cross-section in part (h) of each sequence.

In the case of the non-buoyant jet, long axially-aligned streak-like structures are
observed to develop in figures 3(e–g) and 4(e–g) in the region 4<x < 10. These
structures are sometimes referred to as side jets because they form by jet fluid being
ejected from the jet centre in a star shaped pattern seen in a radial cross-section in
figure 5(a). From animations of this flow (not shown) the side jets were observed to
maintain their azimuthal position throughout many cycles of the oscillation associated
with the passage of the Kelvin–Helmholtz rings. The side-jet formation is thought to
be a result of a secondary instability, the analysis of which is beyond the scope of
the present discussion. However, side-jet formation is markedly absent in the case of
the buoyant jet, the result of which is that the transition to the quasi-turbulent flow
observed at the top of both domains is much more abrupt in the case of the buoyant
jet. This is consistent with the findings of Bahadori et al. (1992) who observed buoyant
jet flame instabilities forming at the flame tip and then gradually incorporating the
entire flame as flow rates were increased, whereas microgravity flame instabilities first
appeared throughout the entire flame.

3.4. Vorticity dynamics

In order to quantify the difference in abruptness of transition observed in the previous
section, we consider vorticity dynamics. The vorticity equation for a variable density
flow can be written as:

D

Dt

(
ω

ρ

)
=

(
ω

ρ

)
· ∇u +

∇ρ × ∇p

ρ3
+ diffusive terms. (3.3)

In this equation, the fluid vorticity is denoted by ω = ∇ × u. The left-hand side
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Figure 3. Simulation A2 (Fr = ∞): time series of the (stoichiometric) isosurface Zst = 0.111.
A non-dimensional time of 12.0 elapsed between successive images. (h) Contours of Z on an
axial cross-section taken through (g).

represents the material derivative of the weighted vorticity ω/ρ, which is balanced
on the right-hand side by first the vortex stretching/tilting term, then the baroclinic
torque and, finally, the diffusive terms. Note that in this moderate Reynolds-number
flow, the diffusive terms are relatively small. Moreover, the diffusive terms usually act
to lessen gradients of vorticity instead of sharpening them, as is possible with the
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Figure 4. Simulation A3 (Fr = 8.0). Details as for figure 3.

vortex stretching and baroclinic torque terms. Also, by writing this equation as the
transport of the weighted vorticity ω/ρ rather than just the simple vorticity ω, we
eliminate the need for a dilatation term.

To measure the increasing three-dimensionality of the vorticity as the jet transitions
to turbulence, we can compute the ‘weighted’ root mean square (r.m.s.) over radial
cross-sections of each of the three vorticity components. For instance, for a given axial
location the weighted r.m.s. value of the θ component of vorticity can be calculated
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(a) (b)

Figure 5. Contours of Z on radial cross-sections taken at x = 8 and t = 72 (corresponding
to figures 3(g) and 4(g)) of (a) the non-buoyant jet and (b) the buoyant jet. Side jet formation
is observed only in the non-buoyant case.
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Figure 6. The spatial development of vorticity in (a) a non-buoyant and (b) a buoyant jet,
taken at non-dimensional time t = 72.0.

as: (
ωθ

ρ

)
rms

=

(
1

A

∫ ∫ (
ωθ

ρ

)2

r dr dθ

)1/2

, (3.4)

where A is the cross-sectional area.
The weighted r.m.s. values of the three vorticity components are plotted as functions

of x in figure 6. The figure shows that for both the non-buoyant and buoyant jet,
the jet enters the domain at x = 0 containing only azimuthal vorticity. Also, for
both cases, the other components of vorticity begin to grow, beginning at about axial
location x = 6. For the non-buoyant jet, these other components of vorticity reach
the same magnitude as the azimuthal vorticity at approximately x = 9.5, after which
the three components of vorticity are comparable in magnitude, indicating a region
of turbulence before the flow leaves the domain. For the non-buoyant jet, the long
region of exponential growth of the radial and axial vorticity is thought to be due to
the presence of a secondary instability, which has the effect of stretching and tilting
the vorticity (see Brancher, Chomaz & Huerre 1994). In the case of the buoyant
jet, however, this transition happens more abruptly, with the growing components
of vorticity reaching the same magnitude as azimuthal vorticity at axial location
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Figure 7. The spatial development of baroclinic torque in (a) a non-buoyant and (b) a
buoyant jet, taken at non-dimensional time t = 72.0.

x = 7.5. This trend is confirmed by a simulation (not shown) of a jet in strong gravity
(Fr = 4) in which the increased buoyancy produces an even more abrupt transition
(see Nichols 2005).

The pulsations evident in the weighted r.m.s. azimuthal vorticity curve in figure 6
are due simply to the roll-up of ring vortices. Since we are integrating over a cross-
section in (3.4), cross-sections intersecting a vortex ring will naturally have a larger
value of (ωθ/ρ)rms than those cross-sections that do not. In other words, the primary
instability has the effect of concentrating azimuthal vorticity into spatially coherent
flow structures (the vortex rings). Note that these oscillations are evident well into
the region of secondary instability and even to some extent in the turbulent region.
From this, we can conclude that the primary instability, which can be explained by
linear theory, has a significant effect on the overall flow development.

The effect of the moderate Reynolds number, Re = 1000, is evident in figure 6. For
higher Reynolds numbers, we would expect all three vorticity components to increase
as we move downstream in the turbulent region, owing to the high amount of vortex
stretching and tilting exhibited by turbulent flows. However, in our flow, the three
components show a gradual decrease because the vorticity is diffused by viscosity.
Therefore, it might be better to call this region the quasi-turbulent region, since it
exhibits some characteristics of turbulence (approximate isotropy of vorticity), but
not others.

In the turbulent region, the total level of vorticity is greater in the case of the
buoyant jet than in the case of the non-buoyant jet. As one might guess, this increased
level of vorticity in the turbulent region of buoyant jets can in part be attributed to
increased baroclinic torque acting as a source for vorticity. Figure 7 shows the axial
development of the r.m.s. components of baroclinic torque, computed using the same
type of spatial averaging as in (3.4). In much the same manner as the vorticity, the
baroclinic torque is initially directed only in the azimuthal direction in the region
near to the inlet, after which the three components of the torque equalize as the jet
develops downstream. From our simulations, we observe that the magnitude of the
baroclinic torque in the quasi-turbulent region is indeed nearly twice as large in the
buoyant jet than in the non-buoyant jet.

Buoyancy seems to have the opposite effect in the region of primary instability.
Note the four large peaks in the θ curves between x = 0 and x = 4 in figure 7.
The amplitude of the second and fourth peaks is substantially reduced in the case
of the buoyant jet. The origin of these peaks can be explained by considering a
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Figure 8. Schematic of baroclinic torque in vortex rings.

schematic of an axial cross-section of a vortex ring (figure 8). There is a region of
low pressure associated with the centre of the vortex ring, which produces oppositely
directed pressure gradients at the top and bottom of the vortex, as shown by the
two vertical arrows labelled ∇p. In general, the density gradient vector, shown as the
horizontal arrow labelled ∇ρ, is directed away from the centreline. The misalignment
of the pressure and density gradients produces baroclinic torques in the top half and
the bottom half of the vortex as shown by the small arcs. In the bottom half of the
vortex ring, the baroclinic torque tends to be in the same direction as the rotation of
the vortex ring itself, whereas the baroclinic torque in the upper half of the vortex
opposes the rotation of the vortex.

In figure 7, the four peaks in θ torque are due to two vortex rings. The first and
third peaks are due to the baroclinic torque in the bottom halves of these rings and
the second and fourth peaks are due to the oppositely directed torque in the top
half of the rings. Recall that we are plotting r.m.s. quantities in these figures, so
information about the sign of the torques is lost upon squaring.

In figure 8, we have assumed a condition of zero gravity. When gravity is added,
however, a mean hydrostatic pressure gradient develops which would be directed
downwards in the figure. This mean gradient has the effect of weakening the upwards
directed pressure gradient in the top half of the vortex ring and strengthening the
downwards directed pressure gradient. This causes a corresponding weakening of
baroclinic torque in the upper half of the vortex ring and a strengthening of the
torque in the bottom half of the ring. Since the second and fourth peaks of θ torque
in figure 7 correspond to baroclinic torques in the upper half of the rings, this explains
why these peaks are diminished going from the non-buoyant jet to the buoyant jet.
As expected, the first peak in figure 7 decreases going from the non-buoyant jet to the
buoyant jet. The third peak decreases slightly, however, which does not fit the pattern,
but note that it is spread over a larger axial distance. This decrease might then be
explained by considering that the acceleration of the centreline velocity produced by
buoyancy counteracts the expected increase in torque in the bottom half of the vortex
rings by spreading the pressure gradient over larger axial distances.

3.5. System response

In order to capture the frequency response of the system, time histories of the radial ve-
locity were recorded at stations located at different distances downstream of the shear
layer. The stations were all located at the same radial coordinate of r = 0.5, which
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Figure 9. Time histories of radial velocity in region of primary instability for zero gravity jet
(simulation A2).

St

|u
r|2 

(d
B

) x = 0.563

x = 1.694

x = 2.824

0 0.4 0.8 1.2 1.6

–60

–40

–20

0

20

Figure 10. Power spectra of radial velocity signal in region of primary instability for zero
gravity jet (simulation A2).

placed them at the centre of the shear layer in the parallel flow used for the initial
conditions. Also, the azimuthal coordinate of each station was fixed at θ = 0. Figure 9
plots histories from three stations, all of which were located within the region of
primary instability. These data were generated by simulation A2 of a jet in zero gravity.

Figure 9 captures the near-field behaviour of the jet, which is dominated by a
self-sustaining mode-locked oscillation with a Strouhal number, St , of:

St =
f d

uj

= 0.250, (3.5)

where f = 1/T and T is the non-dimensional period for one complete cycle. This
oscillation is due to the primary instability of the jet.

Another way to interpret the development of the jet in the region of primary
instability is to consider the power spectra of the signals of figure 9. These
spectra are plotted in figure 10. Note that the spectrum for the station closest to
the inlet is extremely narrow-banded, being almost entirely comprised of a pure
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Simulation Fr St

A2 ∞ 0.250
A3 8.0 0.270

Table 2. Measured frequency of primary instability.

fundamental oscillation at the aforementioned Strouhal number. Because of inherent
nonlinearities, harmonics appear as the jet develops downstream, and signals measured
at downstream stations become increasingly broadbanded. However, the flow at
all stations in the region of primary instability is dominated by the fundamental
frequency, as can be seen from the figure, taking into account that a logarithmic scale
was used for the vertical axis.

Table 2 summarizes the frequencies observed from DNS in the region of primary
instability for cases A2 and A3. The 8% increase in frequency in the buoyant case is
believed to be significant because the measurement error of the peak-to-peak period
T , based on a sample time �t , was about 0.1 %. Statistical scatter was avoided by
averaging ten peak-to-peak measurements of T for ten complete cycles in each case.
Furthermore, this trend of increasing frequency with increasing buoyancy is confirmed
by a simulation (not shown) of a jet in strong gravity (Fr = 4) in which an even
greater frequency is observed (see Nichols 2005).

4. Stability analysis
Since the axial velocity and density profiles of the jet satisfy the inflection point

theorem, extended to include variation in the density, it meets the necessary condition
for instability according to Rayleigh’s inflection-point criterion (see e.g. Drazin &
Reid 1981). Since this is neither sufficient proof of instability nor provides any detail
about the observed instability behaviour, we must verify by means of a linear stability
analysis that variable-density jets are indeed unstable to low-level perturbations, which
will be the primary topic of this section.

4.1. Linearized equations

The low-Mach-number equations are linearized by considering small wavelike
perturbations of the form

q(x, r, t) = q̃(α, r, ω) exp(i αx − iωt), (4.1)

about mean profiles ū and ρ̄ such as those shown in figure 2. Here, α denotes
the complex axial wavenumber and ω denotes the complex frequency. Substituting
solutions of this form into the low-Mach-number equations and neglecting terms
of higher order in the perturbation quantities, yields a system of Fourier–Laplace
transformed equations describing an eigenvalue problem for either α or ω, given that
the other is known. For example, if a fixed, real α is specified, then the eigenvalue
problem can be solved for complex eigenvalues ωj . This case is known as the
temporal problem since the eigenvalues ωj determine the system’s temporal response
to perturbations of axial wavenumber α.

For the remainder of this paper, however, we will be primarily concerned with
the spatial problem in which a real frequency ω is given and the eigenvalue problem
is solved for complex eigenvalues αj . By considering the spatial problem, we can
examine how jet instabilities grow in space at different frequencies. The spatial
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problem is slightly more difficult than the temporal problem because the eigenvalue
α appears nonlinearly in the above system, whereas ω appears only linearly. This is
because the original untransformed equations contained second derivatives in space,
but only first derivatives in time. The nonlinear (quadratic) eigenvalue problem can
be recast into a linear one, however, by introducing the additional variables ũx, ṽx

and ρ̃x , as the following system of equations shows. Similar results can be obtained
by using a companion matrix technique.

iαũ = ũx, (4.2a)

iα

(
− 4

3S1Re
ũx + p̃

)
=

(
iωρ̄ +

1

S1Re

(
∂2

∂r2
+

1

r

∂

∂r

))
ũ − ρ̄ūũx − ρ̄ū′ṽ

+
1

3S1Re

(
∂

∂r
+

1

r

)
ṽx − 1

Fr2
ρ̃, (4.2b)

iαṽ = ṽx, (4.2c)

iα

(
− 1

S1Re
ṽx

)
=

1

3S1Re

∂ũx

∂r
+

[
iωρ̄ +

4

3S1Re

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)]
ṽ

− ρ̄ūṽx − ∂p̃

∂r
, (4.2d)

iαρ̃ = ρ̃x, (4.2e)

iα (ρ̄ũ + ūρ̃) = −
(

ρ̄ ′ +
ρ̄

r
+ ρ̄

∂

∂r

)
ṽ + iωρ̃, (4.2f)

iα

(
− 1

S1RePr
f ρ̃x

)
= −ρ̄T̄ ′ṽ − ρ̄ūf ρ̃x

+

(
iωρ̄f +

1

S1RePr

[
f

∂2

∂r2
+

(
2f ′ +

f

r

)
∂

∂r

+

(
f ′′ +

f ′

r

)])
ρ̃. (4.2g)

Here, the temperature perturbation T̃ has been eliminated by applying the algebraic
linearized equation of state. Furthermore, in order to write the equations resulting
from this elimination more succinctly, a new variable, f , is defined in terms of mean
quantities such that

T = − (S1 − 1)T̄ + 1

(S1 − 1)ρ̄
ρ = − 1

(S1 − 1)ρ̄2
ρ = f (r)ρ. (4.3)

4.1.1. Matrix notation

Equations (4.2) were written in a special form so that the eigenvalue α appears only
on the left-hand side. This was to enable us to represent the eigenvalue problem (4.2)
in an efficient matrix notation as follows.

iαMq = Lq. (4.4)

In this equation, q denotes the state vector of our seven independent variables

q = [ũ ũx ṽ ṽx ρ̃ ρ̃x p̃]T . (4.5)
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In (4.4), M is the coefficient matrix of the state variables appearing on the left-hand
side of (4.2).

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

0 − 4

3S1Re
0 0 0 0 1

0 0 1 0 0 0 0

0 0 0 − 1

S1Re
0 0 0

0 0 0 0 1 0 0

ρ̄ 0 0 0 ū 0 0

0 0 0 0 0
f

S1RePr
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.6)

Similarly, L is the coefficient matrix of the state variables appearing on the right-hand
side of (4.2). This matrix takes the form

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0

L21 L22 L23 L24 L25 0 0

0 0 0 1 0 0 0

0 L42 L43 L44 0 0 L47

0 0 0 0 0 1 0

0 0 L63 0 L65 0 0

0 0 L73 0 L75 L76 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.7)

where the non-zero elements are as follows:

L21 = iωρ̄ +
1

S1Re

(
∂2

∂r2
+

1

r

∂

∂r

)
, L22 = ρ̄ū, L23 = −ρ̄ū′, (4.8a − c)

L24 =
1

3S1Re

(
∂

∂r
+

1

r

)
, L25 = − 1

Fr2
, (4.8d, e)

L42 =
1

3S1Re

∂

∂r
, L43 = iωρ̄ +

4

3S1Re

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
, (4.8f, g)

L44 = −ρ̄ū, L47 = − ∂

∂r
, (4.8h, i)

L63 = −ρ̄ ′ − ρ̄

(
∂

∂r
+

1

r

)
, L65 = iωρ̃, (4.8j, k)

L73 = −ρ̄T̄ ′, (4.8l)

L75 = iωρ̄f +
1

S1RePr

[
f

∂2

∂r2
+

(
2f ′ +

f

r

)
∂

∂r
+

(
f ′′ +

f ′

r

)]
, (4.8m)

L76 = −ρ̄ūf. (4.8n)

Standard eigenvalue routines (such as the QR-algorithm) can then be used on the
discretized versions of the matrix operators L and M.
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Figure 11. Spectrum of the complex eigenvalues α of (4.4). This spectrum was calculated
using the parameters Re = 100, S1 = 4.0, Fr = ∞, Pr = 0.7 and ω = 1.5.

4.2. Eigenvalue spectrum

Because the extent of the radial coordinate direction is semi-infinite, we expect a
discrete and a continuous spectrum when solving for the eigenvalues of the linear
stability operator. Discrete modes are confined to the part of the radial coordinate
direction that shows variations in the mean velocity, density and temperature profiles.
The continuous modes, on the other hand, have non-zero contributions in the free
stream.

Figure 11 shows the complete spectrum of eigenvalues of the numerical
approximation to (4.4) plotted in the complex α-plane. The symbols on the plot
are obtained by discretizing the linear operator in the radial coordinate using a
spectral method. The curves shown in grey, however, are an analytic representation
of the continuous portion of the spectrum, a derivation of which is given in the
Appendix. As figure 11 demonstrates, the analytic curves become increasingly better
approximated as the resolution of the spectral discretization is increased.

In addition to the continuous modes, figure 11 shows a spectrum of discrete modes
in the region 0 <αr < 5 which do not appear to be associated with the grey curves.
The eigenvalues associated with the least-damped discrete modes lie in the region
αi < 10, and in each of these cases, we observe that the spectral resolution is sufficient
to determine the location of the eigenvalue precisely.

A Reynolds number of Re = 100 was selected to generate figure 11 so as to clearly
display both the discrete and continuous portions of the spectrum on the same
plot. For the transitioning jets in the previous section, the Reynolds numbers were
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Figure 12. Eigenfunction associated with the unstable eigenvalue of the discrete spectrum for
which αi<0 and ∂ω/∂α > 0. The solid, dashed and heavy black lines indicate the real part, the
imaginary part and magnitude of the eigenfunction, respectively. α = (3.153178, −2.227813i).

Re = 1000, in which case the portions of the continuous spectrum having hyperbolic
form (see the Appendix) move further away from the origin.

The discrete spectrum shown in figure 11 appears to contain two eigenvalues for
which αi<0. In the case of negative αi , the associated eigenfunction amplifies in
the downstream direction according to (4.1). It is premature, however, to conclude
that these eigenvalues are unstable, because the group velocity ∂ω/∂α must also be
considered. As will be detailed in a following section, the group velocity for one of
these modes is negative while the other is positive. A negative group velocity implies
upstream energy propagation, and for the currently considered case of αi<0 this
upstream energy propagation is damped. Therefore, there is only one discrete mode
for which αi < 0 and ∂ω/∂α > 0 which may be called unstable. Figure 12 shows
the components ũ, ṽ, T̃ and p̃ of the eigenfunction associated with the unstable
eigenvalue.

4.3. Absolute stability analysis

When analysing the spatial stability of shear flows it is prudent to investigate the
potential for absolutely unstable modes. An absolute instability exists if a delta-
function forcing in space and time results in an upstream and downstream propagating
disturbance that eventually contaminates the entire flow domain. Mathematically,
absolute instabilities manifest themselves by the occurrence of pinch points between
spatial spectral branches in the unstable half of the complex α-plane. Brigg’s method
is the standard technique for analysing shear flows for the existence of absolutely
unstable behaviour.

4.3.1. Brigg’s method

Starting with a linear partial differential equation forced by delta functions in space
and time

D

(
−i

∂

∂x
, i

∂

∂t

)
G(x, t) = δ(x)δ(t), (4.9)
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Figure 13. Pinch point visualized by mapping lines parallel to the real axis in the complex
ω-plane into the complex α-plane.

we are interested in the long-time (t → ∞) behaviour at x = 0. Using a joint Fourier–
Laplace transform of the equation we can formulate the solution as

G(x, t) =
1

4π2

∫
L

∫
F

exp(iαx − iωt)

D(α, ω)
dα dω, (4.10)

with D(α, ω) as the dispersion relation associated with the homogeneous part of (4.9).
In order to evaluate the integral asymptotically we start with a temporal integration
contour L : −∞<ωr<∞ and ωi sufficiently high. We subsequently lower the contour
by decreasing ωi until the spatial integration contour F is pinched between two
branches of the spatial stability problem. It is important to keep in mind that the two
spatial branches have to correspond to an upstream and downstream propagating
mode. The value of the temporal growth rate ω0

i at which the temporal integration
contour cannot be lowered any farther determines the absolute growth rate of the
flow. If ω0

i is positive, the flow is absolutely unstable; if ω0
i is negative, the flow

is absolutely stable, but may be convectively unstable. Pinch points in the complex
α-plane map to corresponding branch points in the ω-plane through the generalized
dispersion relation. For more details on Brigg’s method and the computation of
absolute instabilities, see Briggs (1964).

Up to this point, we have used Re = 100 in order to illustrate the spatial eigenvalue
spectrum. We now consider the parameter set corresponding to the simulations, for
which Re = 1000. The mean velocity and density profiles are taken from the inlet
boundary conditions displayed in figure 2, where R/θu = 12.5, R/θρ = 12.5 and S1 = 4.

The mapping of the ω-plane under the dispersion relation D(α, ω) around the
resulting pinch point is visualized in figure 13. In the α-plane, the location of the
pinch point is α0 = 1.715 − 2.264i. The contours in figure 13 were drawn by mapping
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lines parallel to the real axis in the ω-plane into the α-plane. For example, since the
branch point was found to be at ω0 = 1.493+0.317i in the ω-plane, the lines marked
with filled dots in figure 13 represent the map of the horizontal line ωi = 0.317 in
the ω-plane onto the α-plane. Likewise, the contours marked with upward pointing
triangles in figure 13 are the map of the horizontal ω-plane line ωi = ω0

i +0.05 = 0.367.
Since the imaginary part ω0

i = 0.317 is positive, the flow is predicted to be absolutely
unstable, which we have observed to be true by direct numerical simulation. The
corresponding Strouhal number can be calculated from ω0

r as follows:

St =
ω0

r d

2πuj

=
1.493 × 1.0

2π × 1.0
≈ 0.238. (4.11)

This represents a relative error of −4.8 % compared to the measured dominant
Strouhal number of the previous section (see table 2, simulation A 2). A possible
explanation for this discrepancy is that the axially evolving mean profiles have a large
effect on the dominant frequency predicted.

4.4. Axial development of stability properties

In this section, we study how the local stability properties of the jet change as the jet
develops downstream. We approach this problem from two directions. First, we study
how the stability properties change as the parameters describing the model top-hat
mean profiles are systematically varied. Secondly, we replace the model mean profiles
with mean profiles measured directly from the simulations.

It is important to note that both of these analyses employ the parallel-flow
assumption and so provide information only about local stability properties about
a given axial location. In this way, the spreading of the jet is taken into account
indirectly, inasmuch as it modifies the mean profiles about which we linearize. This
approach is similar to that used by Raynal et al. (1996) for the variable-density plane
jet. It is also possible to consider the effect of jet spreading directly through the
addition of a slowly varying scale, and in this way obtain global instability modes
(see Lesshafft et al. 2006). It is thought, however, that the onset of local absolute
instability is a necessary condition for the onset of global absolute instability (see
Chomaz 2005).

4.4.1. Parametric study

The parameters Ru/θu, Rρ/θρ , Re, S1 and 1/Fr2 form a five-dimensional parameter
space. In order to study how the complex frequency ω0 and complex wavenumber α0

of the absolute instability change as these parameters vary, the pinch point analysis
of § 4.3.1 could be repeated for every point in the five-dimensional parameter space.
Because this is computationally impractical, we restrict the domain of our parametric
study to two-dimensional ‘slices’ through the larger five-dimensional space. This is
done by varying pairs of the five parameters while the other three are held constant.
Figure 14 illustrates this graphically for the case of a three-dimensional parameter
space. The cube represents the entire parameter space, and the dashed lines indicate
the planes along which we measure. Note that only two of the three possible planes
are shown (the other being the S1–1/Fr2 plane). For the five-dimensional case, there
are ten such slices, all of which are mutually perpendicular to each other.

Along each of the two-dimensional planes, the branch point ω0 corresponding to
the pinch point α0 is measured, as previously mentioned. Figure 15 displays contours
of the non-dimensional frequency St which is calculated from ω0

r . Each subplot in
the figure corresponds to one of the ten possible planes discussed above. The five
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Figure 14. Pairwise variation of flow parameters.
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Figure 15. Contours of St for primary instability. The asterisk denotes the intersection point
of all the planes.

parameters are arranged along the horizontal and vertical axes in such a way that the
resulting triangular matrix encompasses all of the possible pairwise combinations.

The contour lines in figure 15 provide a convenient way of establishing the relative
importance of each pair of parameters: if the contour lines in a subplot are mostly
horizontal (as is the case in the subplot S1–1/Fr2), the jet frequency is more sensitive
to the parameter along the vertical axis. The converse is also true: if the contours
are mostly vertical, the parameter along the horizontal axis is more important in
determining the jet frequency. In this way, the contour lines literally ‘point’ to the
more important parameter.

The rationale for pairwise variation of parameters is to use information obtained
about the relative importance of each pair of parameters to develop an overall ranking
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Influence: Most Least
Flow parameter: S1 Ru/θu Rρ/θρ 1/Fr2 Re

Table 3. Ranking of parameters according to their influence upon ω0 for jets of sufficiently
high Reynolds number (Re> 500).
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Figure 16. Contours of temporal growth rate (ω0
i ) for primary instability. The asterisk

denotes the intersection point of all the planes.

of the five parameters. Because the bottom row of figure 15 contains mostly horizontal
contour lines, we conclude that S1 is the most important parameter in determining the
frequency of the absolute instability. Note also that the jet frequency is not sensitive
to Re as long as Re exceeds a threshold of about 500. Above this threshold, the
parameters can be ranked as shown in table 3. Below the threshold of Re = 500,
however, the jet frequency becomes sensitive to the Reynolds number, so that in this
case, Re should be ranked between Ru/θu and Rρ/θρ . In either case, we note that the
jet frequency is relatively insensitive to buoyancy in the range 2.0 <Fr< ∞.

Figure 16 displays contours of the temporal growth rate ω0
i using the same technique.

For high Reynolds numbers, we again find the parameter ranking to be the same as
shown in table 3, with the possible exception that Ru/θu and Rρ/θρ have relatively
equal effects on the temporal growth rate of the absolute instability. Low Reynolds
numbers, however, appear to have a strong effect, so that for Re < 500, Re becomes
the most important parameter determining the temporal growth rate.

While viscous effects become important below a threshold of Re = 500, the ranking
given in table 3 remains a consistent guide for jets with Re > 500, and this provides
some rationale for the selection of Re = 1000 in the simulations of the first part
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Figure 17. Mean axial velocity profiles measured from (a) the zero gravity jet and (b) the
buoyant jet.

of this paper. To summarize this case, we have found that the characteristics of
the absolute instability depend strongly on the density ratio S1, show a somewhat
lesser dependence on shear- and density-layer thicknesses, have a surprisingly weak
dependence on buoyancy, and have almost no dependence on Reynolds number for
jets with Re > 500.

Finally, note that the flow parameters of this section have been written so that the
spreading and relaxation of a jet as it develops downstream will result in an eventual
decrease in all of these quantities. This means that a jet with inlet conditions given by
the asterisks in figure 16 will migrate down and to the left in each subplot. The heavy
black lines in this figure indicate the contour of zero temporal growth rate and
represent the boundary between absolute and convective instability. We therefore
expect the jet to transition from absolute instability to convective instability as the
boundary displayed in figure 16 is crossed at some downstream location within the
jet. Note that because this boundary separates two regimes of different types of
instability, it is not the same as a neutral curve which, by definition, separates a
regime of instability from a regime of stability.

4.5. Mean profiles from DNS

Figure 17 shows the local mean axial velocity profiles at various downstream locations
for the non-buoyant and buoyant jets. For the zero gravity jet, the jet centreline velocity
decreases monotonically with respect to x. Also, as the jet develops downstream, the
inlet top-hat profile gradually relaxes to a fully developed jet profile, as expected. For
the buoyant jet, the centreline velocity increases for a distance downstream before
starting to decay.

Figure 18 displays the corresponding mean density profiles. In every case, the
density profile tends to spread radially more than the corresponding axial velocity
profile. Also, instead of relaxing directly into a fully developed profile, the mean
density profile first develops a ‘plateau’ near the centre of the transition layer, the
origin of which will be discussed in the following section.

Performing a pinch-point analysis using the mean profiles measured at each axial
location x, we obtain the development of the frequency and temporal growth rate
of the absolute instability as a function of axial distance x (figure 19). As is evident
from figure 19, the buoyancy can play a role in maintaining the frequency of the
absolute instability over the length of the jet. Recall from the parametric study in
the previous section that the buoyancy has little direct effect on the frequency of
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Figure 18. Mean density profiles measured from (a) the zero gravity jet and (b) the
buoyant jet.

x

St

F r = ∞
F r = 8

0 1 2 3 4
x

0 1 2 3 4

0.16

0.18

0.20

0.22

0.24(a) (b)

ωi
0

–0.4

–0.2

0

0.2

Figure 19. (a) Frequency and (b) temporal growth rate of the local absolute instability as a
function of x, derived from the mean profiles measure from DNS. A pocket of local absolute
instability is observed from the jet inlet to approximately 1.5 diameters downstream.

the absolute instability. The effect observed in figure 19 must then be caused by an
indirect effect of buoyancy. For instance, the acceleration due to buoyancy increases
the local Reynolds number, as well as decreases the thickness of the shear layer since
the shape of the axial velocity profile changes.

As is evident from this figure, buoyancy does not have much of an effect on
the growth rate. This figure is interesting, however, because it shows how the jet
transitions from absolute to convective instability. The region above the heavy black
line represents the regime of absolute instability whereas the region underneath it
represents the regime of convective instability. From this plot, we see clear evidence
of a pocket of absolute instability from the jet inlet to around x = 1.5. Since the jet
flows from the pocket of absolute instability into the region of convective instability,
the jet can be thought of from a systems standpoint as a self-sustaining oscillator
which feeds into an amplifier (see Huerre 2000).

4.6. Effects of mixing

To further explain the invariance of the length of the pocket of absolute instability
with respect to buoyancy as observed in figure 19, we consider in this section the
influence of the formation of the previously mentioned plateau in the mean density
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Figure 20. (a) axial velocity profile (solid) and family of density profiles (dashed) modelling
mixing, (b) temporal growth rate ω0

i vs. alignment I for the family of profiles shown in (a),
and (c) temporal growth rate vs. alignment for variable shear- and density-layer thicknesses.

profile. This plateau arises because of the roll-up of Kelvin–Helmholtz vortices and
is sustained by strong mixing occurring in their cores.

In figure 20(a) we consider a family of density profiles formed by the superposition
of two radially offset tanh profiles. In this way, the gradient of the density profile is
lessened at the point where the axial velocity gradient is strongest. To quantify the
total alignment of the profiles, we define an integral quantity, I , such that:

I = −
∫ ∞

0

∂ux

∂r

∂ρ

∂r
r dr. (4.12)

Figure 20(b) shows that the temporal growth rate ω0
i is proportional to the logarithm

of this alignment term I . Since ω appears in the exponent of (4.1) this means that the
rate of growth of the total amplitude of the absolute instability is proportional to I .

The dots labelled A, B, C and D in figure 20(b) correspond to the density profiles
labelled similarly in figure 20(a). Note that the formation of even a rather modest
plateau as in profile C is enough to cause the jet to switch from absolute to convective
instability, as ω0

i becomes negative for this case. Since profile C is representative of
those measured from DNS, we suggest that the formation of the plateau could
be responsible for the development of ω0

i within the pocket of absolute instability,
masking other weaker effects such as those due to buoyancy.

To further test the idea that the growth rate of the amplitude of the absolute
instability is proportional to the alignment term I , we consider jets with varying
shear- and density-layer thicknesses, but with no density plateau. In the ranges
10 < Ru/θu < 15, and 5 <Rρ/θρ < 15, corresponding to the top half of the Ru/θu−Rρ/θρ

subplot in figure 16, the data for ω0
i again collapse to a straight line, as shown in

figure 20(c).
A possible physical interpretation of the alignment term I involves baroclinic

torque. If we assume that the strength of any initial axial pressure perturbations, as
measured by ∂p/∂x, are proportional to ∂ux/∂r , then I will be proportional to the
baroclinic torque generated by the interaction of these pressure perturbations with
the mean density gradient. Therefore, in addition to characterizing the alignment of
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the mean profiles, I might also be interpreted as the total ‘availability’ of baroclinic
torque within the domain.

5. Conclusions and recommendations
We have verified, both through DNS and linear stability analysis, that variable-

density jets, both with and without the presence of a buoyant force, exhibit absolute
instability. The absolutely unstable jet has a natural frequency at which it generates
a continuous series of vortex rings. The linear theory predicted this natural frequency
to within 5 % of that measured from DNS. Furthermore, using mean profiles taken
from DNS data, this local absolute instability was shown to be confined to a pocket
near to the nozzle. Therefore, variable-density jet dynamics can be thought of as an
upstream oscillator driving a downstream amplifier.

Furthermore, the parametric study showed that in variable density jets, buoyancy
does not have a strong direct effect on the absolute instability. Therefore, we conclude
that if buoyancy does play a role in changing the local stability properties of a
variable-density jet, it must be an indirect effect. For example, the acceleration due to
buoyancy will increase the local Reynolds number. More subtly, this acceleration also
changes the shape of the mean profiles, producing thinner shear layers. Consulting
figure 15, both of these changes result in higher-frequency self-sustaining oscillations
for the buoyant jet, which was observed in figure 19.

From the DNS results, we observed that buoyancy does have the effect of producing
more abrupt transition to turbulence. As discussed below, it is thought that this is due
in part to the suppression or alteration of the secondary instability, since the side jets
present in the non-buoyant case were absent in the buoyant case. To test this hypo-
thesis, however, further work is required. The more abrupt transition to turbulence in
the case of the buoyant jet is in agreement, however, with the observation of Bahadori
et al. (1992) that instabilities appear first at the flame tip, whereas microgravity
(approximately non-buoyant) flame instabilities incorporate the entire flame.

The experiments of Bahadori et al. (1992) focused on propane/air flames, for which
S1<1.0, and so absolute instability is not expected. They comment, however, that
they repeated the experiments for methane flames and observed qualitatively similar
results, i.e. a marked increase in microgravity flame length (see Hegde et al. 1994). This
is surprising because stability theory applied to related cases suggests that absolute
instability will be present in the case of the methane jet no matter the gravity level.
Moreover, the mixing due to the self-sustained oscillations in the methane jet will be
nearly the same in the non-buoyant and buoyant cases, since S1 is a more dominant
parameter in determining the frequency than Fr. This consideration tends to support
the experimental observations of Idicheria et al. (2003) who saw no increase in flame
height in microgravity conditions.

Finally, although we conclude that the increase in flame length observed by Bahadori
et al. (1992) and Hegde et al. (1994) cannot be due to a suppression of mixing due
to the primary instability, this effect may still be due to the presence of a secondary
instability. For instance, in the microgravity jet, we observed the formation of side
jets which eject fuel from the centre of the jet. This would produce wider flames in
the near field, which then could persist further downstream.

In fact, in this paper, we have seen strong evidence of secondary instability, including
the appearance of coherent structures in figure 3 and the initial exponential growth
of the radial and axial components of vorticity observed in figure 6. Furthermore, this
type of secondary instability has been observed in jet diffusion flames in the laboratory
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(see Demare & Baillot 2001). To more fully understand these secondary instabilities,
further theoretical development is required. In computing the complete spatial
spectrum and deriving analytic forms for the continuous portions of this spectrum,
however, this paper has constructed a solid theoretical framework on which to build.
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Appendix. Continuous spectrum
Because of the unbounded nature of the domain in the r-direction, we expect

and confirm the presence of a continuous spectrum. Eigenfunctions associated with
eigenvalues on the continuous spectrum display highly oscillatory behaviour as r

tends to infinity; in contrast, eigenfunctions associated with the discrete spectrum
are confined to oscillate in the interior of the jet. Because the eigenfunctions on the
continuous spectrum oscillate as r → ∞, the boundary condition at infinity must be
relaxed to ρ̃, ũ, ṽ, p̃ bounded as r → ∞ to accommodate and accurately capture the
continuous part of the spectrum in our computations.

An analytical expression for the location of the continuous spectrum can easily be
derived by taking the limit as r → ∞ of the linear stability operator. In this limit, the
mean profiles have the following properties: ū, ū′, T̄ , T̄ ′ → 0, ρ̄ → 1 and ρ̄ ′ → 0, and
the linearized equations reduce to

−iωρ̃ = −iαũ − 1

r

∂rṽ

∂r
, (A 1a)

−iωũ = −iαp̃ − 1

Fr2
ρ̃ +

1

S1Re

(
−4

3
α2ũ +

1

r

∂

∂r
r
∂ũ

∂r
+ iα

1

3r

∂rṽ

∂r

)
, (A 1b)

−iωṽ = −∂p̃

∂r
+

1

S1Re

(
−α2ṽ +

4

3

∂

∂r

1

r

∂rṽ

∂r
+ iα

1

3

∂ũ

∂r

)
, (A 1c)

−iωf ρ̃ =
1

S1RePr

(
−α2f ρ̃ + f

∂2ρ̃

∂r2
+

f

r

∂ρ̃

∂r

)
. (A 1d)

We observe that (A 1d) is a homogeneous ordinary differential equation for ρ̃ only.
Furthermore, equations (A 1a)–(A 1c) can be solved in terms of the variables ṽ and
ρ̃. It is then straightforward to recast the above equations into the following general
form:

L1ṽ = L2ρ̃, L3ρ̃ = 0, (A 2a, b)

where the linear operators Lj are given as follows:

L1 = (r2D2 − 3rD + (iωS1Re − α2)r2 + 3)(r2D2 + rD − α2r2 − 1), (A 3a)

L2 =

(
r2D2 − 3rD +

(
iωS1Re − α2 − αS1Re

ωFr2

)
r2 + 3

)
(−i ωr2D), (A 3b)

L3 = (r2D2 + rD + (i ωS1RePr − α2)r2). (A 3c)
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From (A 2) we can see that the general solution is the superposition of two classes of
solutions. One class is associated with the homogeneous solution ṽh of (A 2a), which
requires that ρ̃ = 0. The other class is associated with the homogeneous solution ρ̃h

of (A 2b). For this class, (A 2a, b) is satisfied by a particular solution ṽp .[
ṽ

ρ̃

]
= C1

[
ṽh

0

]
+ C2

[
ṽp

ρ̃h

]
. (A 4)

The linear operators given in (A 3) can be factored (this factorization is non-
commutative, however) so that it is apparent that solutions take the form of Bessel
functions. For instance, the homogeneous solution to L1ṽh = 0 is:

ṽh = C1K1(a1,2r) + C2r
2K1(a3,4r), (A 5)

where K1 denotes the first-order modified Bessel function of the second kind,

a1,2 = ±(α2)1/2, (A 6)

a3,4 = ±(α2 − iωS1Re)1/2. (A 7)

The singularity of K1 at r = 0 is not significant to the present analysis because we
are interested only in the limiting behaviour as r → ∞. The square roots appearing
in (A 6) and (A 7), give rise to two pairs of branch cuts, which define the locus of the
continuous spectrum. We first consider the branch cuts associated with a3,4. Following
Schmid & Henningson (2001), if we define an auxiliary function,

Z = α2 − iωS1Re, (A 8)

then

a3,4 = ±Z1/2. (A 9)

We select the negative real axis of the Z-plane for the branch cut of the square
root function, which implies that the two branches of Z1/2 are the left and right-half
planes, denoted without loss of generality as a3 and a4, respectively. In the limit of
r → ∞,

K1(a3,4r) ∼
√

π

2a3,4r
exp(−a3,4r), (A 10)

which implies that, with the above choice of branch cut, the solution with the
coefficient a4 is the only one which will satisfy the condition that the solution remain
bounded as r → ∞ (see Ashpis & Reshotko 1990).

In the α-plane, the locus of the continuous spectrum is defined as the map of the
selected branch cut in the Z-plane, through the auxiliary function (A 8). The real and
imaginary parts of (A 8) are:

α2
r − α2

i < 0, 2αrαi = ωS1Re. (A 11)

If ω is positive, (A 11) describes sections of hyperbolas in the first and third quadrants
of the α-plane, ending at the branch points:

(αr, αi) =

(
±

√
ωS1Re

2
, ±

√
ωS1Re

2

)
. (A 12)

This corresponds to the outer hyperbola branch cuts shown in grey in figure 11. The
branch cuts found along the imaginary axis are derived from (A 6) for which the
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Figure 21. An example of an eigenmode of the continuous spectrum taken from the outer
hyperbola branch cuts in figure 11. α = (16.805786, 17.833110i).

auxiliary function is

Z = (α + ε)(α − ε), (A 13)

so that

a1,2 = ± lim
ε→0

Z1/2. (A 14)

In this case, the two branch points are infinitesimally close to the origin, but the origin
itself remains a regular point which is an important consideration when performing
an inverse Fourier transform by contour integration.

The final two portions of the continuous spectrum come from the class of solutions
associated with ρ̃h. In this case, the auxiliary function is similar to (A 8), but contains
the Prandtl number Pr as follows:

Z = α2 − i ωS1RePr . (A 15)

In a similar fashion as before, this produces the two hyperbolic branch cuts which are
displayed in figure 11 just inside the hyperbolic branch cuts found previously. Note
that in the case of Pr = 1.0, the two pairs of hyperbolic branch cuts coincide.

Figure 21 displays an example eigenmode of the continuous spectrum in the class
ṽ = ṽh, ρ̃ = 0 where ṽh = r2K1(a4r) as r → ∞, which corresponds to the outer
hyperbola branch cut. As expected, T̃ = f ρ̃ is nearly zero at all radial locations for
this case (where f is negative and non-zero for all r , see (4.3)). In the limit of infinite
resolution, we would expect that T̃ be exactly zero at all radial locations.

In contrast to eigenmodes of the outer hyperbola in figure 11, the eigenmodes of
the inner hyperbola arise from the class ṽ = ṽp, ρ̃ = ρ̃h. In this case, the homogeneous
solution ρ̃h serves to drive a particular solution ṽp , as is observed in the example in
figure 22.

Finally, an example eigenmode of the portion of the continuous spectrum along the
imaginary axis is displayed in figure 23. Like the eigenmodes of the outer hyperbolas,
the imaginary axis modes derive from the solution class ṽ = ṽh, ρ̃ = 0. In the case
of the imaginary axis branch cuts, however, ṽh = K1(a2r) (as opposed to r2K1(a2r))
as r → ∞. Perhaps because of the absence of the r2 factor, these modes are allowed
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Figure 22. An example of an eigenmode of the continuous spectrum taken from the inner
hyperbola branch cuts in figure 11. α = (13.952983, 15.016015i).
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Figure 23. An example of an eigenmode of the continuous spectrum taken from the
imaginary axis branch cuts in figure 11. α = (0.050173, 2.301720i).

to connect with oscillations in the interior of the jet. Since this is the case, we could
hypothesize that the eigenmodes of the continuous spectrum along the imaginary axis
play an important role in a free stream disturbance receptivity analysis. This might
mean that the jet is particularly susceptible to disturbances of long axial wavelength,
because for the imaginary axis modes, αr is small.

In general, the continuous spectrum is necessary to ensure completeness of the
linearized stability solution, which is essential when expansions into eigenfunctions
become necessary or convenient. In addition, it is believed that the continuous
spectrum plays an important role in receptivity studies when free stream disturbances
interact with and excite internal (discrete) modes (see Jacobs & Durbin 2001).
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