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The tip vortices shed by two marine propellers are studied, relying on large-eddy
simulation, using a cylindrical grid consisting of 5 billion points. A tip-loaded design,
featuring winglets at the tips of its blades, is compared against a conventional one at the
design advance coefficient and a model-scale Reynolds number equal to 432 000. The
tip-loaded propeller achieves improved performance, but produces also more intense tip
vortices. The propeller with winglets actually generates two vortices from the tip of each
blade, originating at the edge of each winglet and at the junction between the winglets
and the blades. They merge at a short distance downstream, within a diameter from the
propeller plane. The helical vortices originating from this merging process experience a
slower instability, in comparison with the tip vortices in the wake of the conventional
propeller, persisting further downstream, due to the weaker shear with the wakes shed by
the following blades. The results of the simulations highlight that splitting the single tip
vortex of a conventional propeller into two smaller vortices by means of winglets does not
imply necessarily the generation of weaker vortices and lower negative peaks of pressure
at their core: the geometry of the winglets needs to be carefully optimized to achieve this
target.
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1. Introduction

The operation of marine propellers results in the generation of intense tip vortices. They
are problematic for a number of reasons. In particular, they are locations of cavitation
phenomena, due to the local minima of pressure achieved within their core (Zhang et al.
2015; Park & Seong 2017; Peng et al. 2019). As a result, they affect the structural
integrity of the propeller blades at their onset, and all devices placed downstream, such
as rudders. In addition, they are source of vibrations and noise, causing additional
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fatigue and discomfort, and increasing the environmental impact of marine propulsion
(Farcas, Thompson & Merchant 2016; Vakili, Olger & Ballini 2020, 2021). They are also
detrimental to the stealth and tactical capabilities of military vessels.

With the purpose of mitigating the above issues, conventional propellers are designed to
reduce the load at the tips of their blades. This way, lower gradients are generated between
their pressure and suction sides, reducing the intensity of the tip vortices. However, this
solution has a negative impact on the efficiency of propulsion. An alternative solution is
represented by the use of winglets at the tips of the blades, similar to those adopted on the
wings of airplanes. These devices allow splitting the single tip vortex typically generated
by a conventional blade into two vortices. This way, the load at the tips of the blades can be
increased, resulting in tip-loaded propellers, achieving higher performance and efficiency,
equivalent to lower fuel consumption and pollution coming from marine propulsion.

Unfortunately, we are currently very far from a full understanding of the flow physics
of tip-loaded propellers with winglets, which would be useful to optimize these devices.
Experiments are expensive and challenging, and can provide important but limited
information, usually dealing with visualizations of the dynamics of the tip vortices. For
instance, Bertetta ef al. (2012) reported laser doppler velocimetry experiments conducted
in a cavitation channel, coupled with computations performed by both potential and
Reynolds-averaged Navier—Stokes (RANS) solvers. Their study revealed the generation
of a couple of vortices from each blade of a propeller with winglets, produced respectively
at the leading edge and at the tip of each winglet. A detailed experimental study in this
field is also attributable to Amini et al. (2019). They reported experiments on a simplified
elliptical blade, exploring a number of geometries of winglets. They were demonstrated to
be effective in delaying the inception of cavitation phenomena, while their effect on the
lift to drag ratio was found to be almost negligible.

Potentially, more details may be inferred from computational fluid dynamics, but the
simulation of the flow physics is very demanding already for conventional propellers,
shedding a single tip vortex from each blade. It is not only the onset of the tip vortices
that needs to be resolved. In addition, their downstream evolution, mutual interaction
and instability require to be reproduced, which is possible only through expensive,
high-fidelity, eddy-resolving methodologies on very fine grids. Of course, this challenge is
even reinforced in the case of winglets propellers, due to the increased complexity of the
geometry and the need to resolve two smaller tip vortices shed by each blade.

To date, only a few works were able to reproduce the dynamics and downstream
development of the tip vortices shed by marine propellers by using eddy-resolving
methodologies, as detached-eddy simulation (DES) or large-eddy simulation (LES). For
instance, DES computations were conducted by Muscari & Di Mascio (2013), Muscari,
Di Mascio & Verzicco (2013), Guilmineau et al. (2015), Gong et al. (2018), Viitanen
et al. (2018) and Sun et al. (2020). LES was instead utilized by Balaras, Schroeder &
Posa (2015), Kumar & Mahesh (2017), Posa et al. (2019), Asnaghi, Svennberg & Bensow
(2020), Liao et al. (2020), Wang et al. (2021), Zhang, Ding & Liang (2021) and Posa,
Broglia & Balaras (2022b). However, those works focused on conventional propellers,
with no winglets at the tips of their blades.

A few computational studies are actually available in the literature on tip-loaded
propellers with winglets. However, they are based on the solution of the RANS equations
on grids consisting of a few million points (Sdnchez-Caja, Sipila & Pylkkanen 2006;
Sanchez-Caja et al. 2012, 2014a,b; Haimov, Vicario & Del Corral 2011; Brown et al. 2014;
Shin & Andersen 2017; Gao et al. 2019; Maeda et al. 2021) and are not targeted at analysing
the wake dynamics. They typically provide results dealing with global performance, load
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on the blades and cavitation phenomena in the vicinity of the propeller. RANS is also
sometimes utilized to verify the results produced by lower-fidelity methodologies, as in
the works by Gaggero, Gonzdlez-Adalid & Pérez-Sobrino (2016a,b) and Kim & Kinnas
(2021), where results from boundary element methods are validated through comparisons
against more accurate RANS computations. In the studies above, no discussion was
reported on the downstream dynamics of the couple of tip vortices shed by each blade
as well as that of the overall wake system. This is consistent with the limitations in terms
of both grid resolution and computational technique, negatively affecting the simulation
of the wake flow and resulting in the quick diffusion of the wake structures. An exception
in this field is the work reported by Zhu & Gao (2019). However, they adopted LES on a
grid consisting of only 11 million points, similar to those typical of lower-fidelity, RANS
computations and not well suited to eddy-resolving simulations.

In the present work, the interest in the dynamics of the tip vortices shed by propellers
with winglets is driven by the complex flow physics revealed by visualizations from recent
experiments, such as those reported in the work by Brown, Schroeder & Balaras (2015):
a system of helical vortices was generated, consisting of pairs of tip vortices from each
blade, joining at a short distance downstream of the propeller plane. Therefore, LES
computations were conducted, dealing with the same tip-loaded propeller with winglets
as in Brown et al. (2015) and a similar, conventional one without winglets, to compare the
dynamics of the tip vortices populating their wakes. In particular, results are compared
in terms of intensity of tip vortices and instability of the two wake systems as well
as resulting turbulent stresses. The additional effect of the interaction between primary
and secondary tip vortices shed by the propeller with winglets is included, performing a
detailed vortex core analysis dealing with them as well as with the single vortex arising
from their joining process. A similar vortex core analysis is reported on the tip vortices
shed by the propeller without winglets. In addition, in this study the analysis is extended to
the root vortices shed by both conventional and tip-loaded blades, which are demonstrated
to have also a significant impact on the wake signature. LES computations were carried out
using an immersed-boundary (IB) technique on a cylindrical grid consisting of 5 billion
points, orders of magnitude beyond those typically available in the literature. This LES/IB
approach was already validated extensively for the simulation of marine propellers in
earlier works (Balaras et al. 2015; Posa et al. 2019, 2022b), where more conventional
design solutions were simulated.

This work is organized as the discussion of the methodology in § 2, the overall set-up
of the computations in § 3, the analysis of the results in § 4, and conclusions in § 5. In
particular, the results section presents an overview of the dynamics of the tip vortices
(§4.1), a comparison with references in the literature (§ 4.2), the merging process between
the couple of tip vortices shed by each blade with a winglet (§4.3), and a comparison
between the tip and root vortices from the tip-loaded and conventional propellers (§ 4.4).

2. Methodology

The filtered Navier—Stokes (NS) equations for incompressible flows were resolved in
non-dimensional form. The subgrid scales (SGS) were accounted for by using the
wall-adaptive local eddy-viscosity (WALE) model by Nicoud & Ducros (1999). This
SGS model was already utilized successfully in a variety of flow problems of practical
interest (Posa & Broglia 2021a; Posa, Broglia & Balaras 2021, 2022a). It computes the
eddy-viscosity by means of both the deformation and rotation tensors of the resolved
velocity field, and is able to reproduce its correct behaviour in the vicinity of walls without
ad hoc corrections or damping functions. It also automatically switches off in regions
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of laminar flow. The enforcement of the no-slip boundary condition on the surface of
bodies was achieved by using an IB methodology. This introduces, within the momentum
equation, a forcing term that accounts for the action of the body on the flow. This strategy
allows relaxing the requirement for the Eulerian grid discretizing the computational
domain to fit the geometry of the bodies immersed within the flow. They are represented
by means of Lagrangian grids, ‘immersed’ within the Eulerian grid and discretizing the
surface of the bodies. This feature of the IB methodology is especially convenient for
handling moving bodies, as in the present case: the Lagrangian grids can move within the
Eulerian grid with no need of grid deformation or regeneration, by just updating the forcing
terms representing the action of the immersed boundaries within the momentum equation.
For more details about the particular IB technique utilized to carry out this study, see the
works by Balaras (2004) and Yang & Balaras (2006). Several studies using the same solver,
dealing with marine propellers and including extensive validations against experiments,
are available in earlier publications (Posa & Broglia 20215, 2022a,b). Although it should
be acknowledged that the use of an IB technique typically requires grids consisting of
a much larger number of points, in comparison with body-fitted methodologies, regular
grids result in more efficient numerical schemes, reducing the CPU cost per grid point.
So the increase in the computational cost is significant, but it is not proportional to the
size of the grid. It is also worth noting that regular grids are also convenient in terms of
accuracy of the adopted numerical schemes and their conservation properties, which are
especially important in eddy-resolving techniques, such as LES. This advantage is actually
reinforced in the case of moving bodies, for which body-fitted methods typically require
grid deformation/regeneration and interpolations of the solution between grids, which are
also detrimental to efficiency and accuracy.

The NS equations were discretized in space on a staggered cylindrical grid, using
second-order central differences. As demonstrated by Fukagata & Kasagi (2002), this
strategy achieves the exact conservation of mass, momentum and kinetic energy by the
discretized version of the NS equations, with beneficial outcomes on the accuracy of
the solution. The singularity of the grid at the axis is not a problem for the pressure
variable and the azimuthal and axial velocity components. The former is defined at the cell
centres, while the azimuthal and axial velocities are defined at the cell faces orthogonal
to the azimuthal and axial directions, respectively. Therefore all of them are not defined
at the grid axis. Their value there comes instead from interpolations between the first
layer of cells in the radial direction and a neighbouring layer of ghost cells. For the radial
velocity variable, the problem of the singularity at the axis is avoided by resolving the
radial component of the momentum equation for ¢, = ru,, which is by definition equal
to zero at the axis. More details on the subject can be found in Verzicco & Orlandi
(1996). The advancement of the solution in time was conducted using a fraction-step
technique (Van Kan 1986). The discretization in time of all convective, viscous and SGS
terms utilized the explicit three-step Runge—Kutta scheme. However, to relax the stability
requirements on the time step, the terms of azimuthal derivative in the vicinity of the
wake axis were discretized using the implicit Crank—Nicolson scheme. This is also the
case for the terms of radial derivative in the vicinity of the tips of the propeller blades,
where the grid was refined to resolve properly the onset and downstream evolution of
the tip vortices. The hepta-diagonal Poisson problem arising from the enforcement of
the continuity requirement was decomposed into a series of penta-diagonal systems of
equations across the radial and axial directions by means of trigonometric transformations
along the periodic azimuthal direction. Then each penta-diagonal system was inverted
using an efficient direct solver (Rossi & Toivanen 1999). More details about the adopted
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(b)

Figure 1. Geometries of the (a) BASE and (b) TLP propellers.

NS solver can be found in Balaras (2004), Yang & Balaras (2006) and Yang, Preidikman
& Balaras (2008), where it was demonstrated globally second-order accurate in both space
and time on canonical flow problems.

3. Set-up
3.1. Flow problem

Two propellers were simulated, shown in figure 1(a,b), dealing with conventional and
tip-loaded geometries, respectively. In particular, the latter is equipped with winglets at
the tips of its blades. They are the same propellers analysed by means of experiments
and RANS computations in the work by Brown er al. (2014). They will be referred to
as BASE and TLP cases, respectively. The TLP propeller was developed by the Naval
Surface Warfare Center, Carderock Division, of the US Navy. It includes a pressure side
winglet at the tip of each blade. The conventional propeller was designed by Bailar Marine
Consulting, enforcing the same design requirements as for the TLP geometry, with the
purpose of producing a reference for assessing the performance of the tip-loaded design.
Both propellers were required to be five-bladed, fixed-pitch and right-handed, to have a
30° projected skew and a ratio between the radii at the hub and at the tips of the blades
equal to 0.225. The design requirements included also the ability to produce a minimum
value of thrust (1383 kN at full scale in open-water conditions) for a nominal advance
coefficient equal to J = 0.923. Note that the advance coefficient is defined as J = V /nD,
where V is the advance velocity, n is the frequency of the rotation, and D is the diameter
of the propeller. Both propellers were designed to achieve their peak performance and not
to experience pressure and suction side cavitation at the nominal advance coefficient.

In addition to the evident difference between the two propellers in figure 1, due to the
winglets in the TLP case, the conventional blades are characterized by a more dramatic
reduction of their chord towards outer radii. Moreover, they feature a decreasing pitch from
the root to the tip, that is, a decreasing angle relative to the azimuthal direction, while the
tip-loaded blades have an almost constant distribution of their pitch. As a result, the load
on the propeller blades is decreasing towards outer radii in the BASE case, while the radial
distribution of the load is more uniform in the TLP case. It should be noted that Brown
et al. (2014) designed the two propellers for comparison purposes. Of course, just changing
the conventional design by adding winglets to its blades would make this comparison
easier. Meanwhile, this would result in an unrealistic geometry of the winglets propeller.
In contrast, the two propellers were designed to meet the same requirements and provide
similar performance. This implies changes affecting the entire span of the blades, in order
to distribute the overall load in a different way. In conventional propellers, it achieves
its peak at about 70 % of the radial extent, and undergoes a drop in the vicinity of the
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tip. In contrast, winglets propellers are designed by prescribing a more uniform spanwise
distribution of the circulation. Additional details dealing with the two geometries can be
found in the work by Brown et al. (2014).

In the framework of this study, the two propellers were simulated at the design advance
coefficient / = 0.923. The Reynolds number of a marine propeller is typically computed
considering its characteristic length and velocity scales (blade chord and relative velocity
of the flow, respectively) at 70 %R, where R is the radial extent of the propeller. The
Reynolds number of the simulation dealing with the TLP case was equal to

70%R)/VZ + (0.7 x 271 x R)?
Repp = S70% WV2+ (07 x 2mn x R) — 432000, G.1)
V

where ¢(70 %R) is the chord of the propeller blades at 70 %R, while v is the kinematic
viscosity of the fluid. This Reynolds number is the same as the one adopted in both
model-scale experiments and RANS computations by Brown et al. (2014) to verify the
performance of the TLP design and assumed in this study as a reference. It should be also
noted that the chord length at 70 % of the tip radius for the BASE geometry is about 10 %
smaller than for the TLP propeller, resulting in a similar, but slightly smaller Reynolds
number. Both propellers were simulated in open-water conditions, again in agreement
with Brown et al. (2014), which means that they ingested a uniform flow, operating in
isolated conditions. To reproduce the same set-up adopted in the reference experiments
and computations, their geometries included a downstream shaft, as illustrated in figure 1,
which prevents the generation of a hub vortex in their wake. This choice has no effect
on the blade loads, but it is able to influence the wake dynamics, due to the significant
signature on it by the hub vortex (Posa et al. 2019, 2022b). In the experiments, although
a downstream shaft does not allow investigating the effect by the hub vortex on the wake
dynamics, it makes easier the generation of the clean, uniform inflow conditions of the
open-water configuration. The use of an upstream shaft, in contrast, requires the presence
of a support placed upstream of the propeller, affecting the flow that it ingests.

3.2. Computational grids and boundary conditions

A cylindrical grid consisting of 1192 x 2050 x 2050 (5 billion) points across the radial,
azimuthal and axial directions was adopted. This grid was designed based on earlier
studies conducted on the INSEAN E1658 propeller in open-water conditions, operating
at similar values of Reynolds number (Posa et al. 2019, 2022b), where a close agreement
with reference experiments (Felli & Falchi 2018) was verified on both parameters of global
performance and wake features. Actually, in comparison with the validation study in Posa
et al. (2019), the resolution was improved in the azimuthal direction across the whole
extent of the domain, in the streamwise direction in the wake region, and in the radial
direction at the tips of the propeller blades. The geometry of tip-loaded propellers with
winglets is indeed significantly more complex at outer radial coordinates, in comparison
with that of a conventional propeller. Although a grid refinement study was not conducted,
due to computational cost considerations, the comparison with the experiments by Brown
et al. (2014) in § 4.2 will show a good agreement.

The grid was stretched in the radial and axial directions, with the purpose of clustering
nodes in the vicinity of the propeller blades. The radial and streamwise distributions of
the grid spacing are reported in figure 2. The axis of the cylindrical grid was placed on
the axis of each propeller, which is the origin of the radial coordinates in the cylindrical
reference frame. The origin of the streamwise coordinates was placed on the propeller
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plane. Figure 2(a) shows that the finest radial spacing of the grid is achieved at the tips of
the propeller blades (/D = 0.5), while the minimum axial spacing spans the whole region
of the propeller blades. The grid was instead characterized by a uniform angular spacing
in the azimuthal direction. It is worth noting that this choice also allowed clustering points
in the region of interest of the computational domain, thanks to the cylindrical topology
of the grid and its decreasing linear azimuthal spacing from outer to inner radii, where
the propeller was placed. In the vicinity of the immersed boundaries, the adopted Eulerian
grid resulted in a near-wall resolution of about 4 wall-units. It should be noted that this
is an average value, since in the present case the immersed boundaries move through the
Eulerian grid. Therefore, the grid resolution actually ranges between 0 and 8 wall-units
as the Lagrangian grid rotates during the simulations. Nonetheless, the distance of the
interface points of the Eulerian grid from the Lagrangian grid, which are the first points
off the wall, always stays small enough to make the linear reconstruction of the solution
at the interface points accurate across the whole range of distances. The cylindrical
grid discretized a computational domain extending 2.5D upstream of the propeller plane
and 5.0D downstream, and having a radial extent equal to 5.0D. Uniform axial velocity
conditions were enforced at the inlet, convective conditions at the outlet, and Neumann
conditions at the lateral cylindrical boundary. A schematic of the dimensions of the domain
and boundary conditions is provided in figure 3. The radial size of the domain results in
a blockage generated by the propeller equal to only 1 %. This is well below the 10 % limit
prescribed in the literature (Segalini & Inghels 2014).

The geometries of both BASE and TLP propellers were discretized using surface grids
of triangular elements (see figure 4). They were represented by about 158 000 and 172 000
triangles, respectively. It should be noted that in the regions of the blade geometry
characterized by low levels of curvature, the two Lagrangian grids in figure 4 have different
levels of resolution. Actually, it was verified that the resolution of the Lagrangian grid
in those areas has a negligible influence on the solution, but a significant effect on the
efficiency of the solver and the resulting computational cost. The present study adopted
an Eulerian IB method. In contrast with Lagrangian IB techniques, the accuracy of the
solution is driven mostly by the resolution of the Eulerian grid, while the Lagrangian
grid is required only to discretize properly the geometry of the body immersed within the
flow. More details can be found in Vanella, Posa & Balaras (2014) and Posa, Vanella &
Balaras (2017). It should be also considered that the geometry of the tip-loaded blades
is more uniform across the spanwise direction, in terms of pitch, camber and chord
length. Therefore, although the discretization of their tips needs more elements than for
conventional blades, fewer triangles are required at inner radial coordinates. For these
reasons the blades with winglets were discretized by a smaller number of elements in
the areas of low curvature, reducing in this way the already significant computational
cost of the simulations. Thanks to the adopted IB methodology, the rotation of the
propeller blades was accounted for by just rotating the Lagrangian grids of the bodies
within the stationary Eulerian grid discretizing the computational domain. This rotation
was prescribed by the selected value of the advance coefficient. Therefore, no tasks of
grid deformation/regeneration were required, with beneficial effects on the accuracy and
efficiency of the solution.

3.3. Time resolution and CPU cost of the simulations

Computations were carried out enforcing a constant Courant-Friedrichs—Lewy number
equal to 1, based on the stability requirements of the Runge—Kutta scheme. This stability
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Figure 2. (@) Radial and (b) axial distributions of the grid spacing.

condition resulted in more than 9000 steps per revolution, or less than 0.04° of rotation
of the propeller blades per time step. The flow was developed during two flow-through
times, to achieve statistically steady conditions. Then statistics were sampled across 10
full revolutions of the propeller blades. It is worth noting that phase-averaged statistics —
i.e. statistics synchronized with the rotation of the propeller — were computed at run time
considering a cylindrical grid rotating with the propeller. This strategy avoided the need
to store a large number of files of the instantaneous solutions of the flow, while increasing
substantially the size of the statistical sample, since all time steps during the simulations
were included in the sample. It should be acknowledged that phase averaging is affected by
the instability of the wake system. Indeed, phase averages include both the fluctuations due
to small-scale turbulence and those associated with the oscillations of the major structures
populating the wake flow, as the tip and root vortices, away from their average trajectories.
The use of phase averaging was preferred to time averaging for the statistical analysis of
the flow features, since the latter is affected by the rotation of the propeller and is not
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Figure 4. Details of the Lagrangian grids of the BASE (a,b) and TLP (c.d) propellers looking from upstream
(a,c) and downstream (b,d).

suitable to capture the coherence of the wake flow as well as to identify its break-up, due
to instability phenomena.

Simulations were conducted in a high-performance computing environment, using a
solver with parallel capabilities on 2048 cores of a distributed-memory cluster (Yang &
Balaras 2006). The overall cylindrical grid was decomposed into cylindrical subdomains
in the streamwise direction, and communications between subdomains were handled using
calls to message-passing interface (MPI) libraries. The overall computational cost of the
simulations was equivalent to about 16 million core hours.
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Figure 5. Instantaneous (a,b) and phase-averaged (c,d) visualizations through isosurfaces of the pressure
coefficient from the (a,c) BASE, ¢, = —0.4, and (b,d) TLP, ¢, = —0.6, simulations. Colours show the
magnitude of vorticity, scaled by U, /D.

4. Results
4.1. Overview of the flow

Visualizations of the major structures shed by the two propellers are provided in
figure 5. Both instantaneous and phase-averaged results are shown, in figures 5(a,b) and
figures 5(c,d), respectively. It should be noted that the tip vortices generated by the TLP
propeller were found more intense than those from the BASE geometry, so different values
of the pressure coefficient were considered for extracting the isosurfaces in figure 5. The
pressure coefficient is defined as ¢, = (p — poo)/(0.50 Ugo), where p is the local pressure,
Poo 18 its free-stream value, p is the density of the fluid, and U is the free-stream velocity,
in this case equal to the advance velocity, V.

In figure 5, the wake of the BASE propeller displays the typical helical vortices shed
from the tips of its blades. The system of tip vortices shed by the propeller with winglets is
more complex, consisting in the near wake of a couple of helical structures from each
blade. This special feature of the wake is consistent with the visualizations from the
experiments reported by Bertetta et al. (2012) and Brown et al. (2015). Details are shown
in figure 6, where a lower value of the pressure coefficient is considered. While the BASE
propeller generates the typical tip vortex, due to roll-up of vorticity from the pressure
side towards the suction side of its blades, the TLP propeller sheds a vortex, indicated
as «, from the edge of its winglets, and an additional vortex, indicated as S, produced
downstream of the junction between the blades and their winglets. The visualizations in
figure 6 also suggest, as discussed more in detail later, that the vortices « shed by the TLP
propeller are more intense than the tip vortices from the blades of the BASE propeller;
the former can be tracked further downstream for the particular value of the pressure
coefficient, compared to the latter. However, the tip vortices in figure 6(a) affect a wider
area of the surface of the propeller. Although the present simulations do not include a
cavitation model, this result suggests that the propeller with winglets is indeed able to
limit the intensity of the cavitation phenomena on the surface of the propeller: the region
of low pressure on the suction side of the propeller blades extends over a smaller area than
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Figure 6. Phase-averaged visualizations through isosurfaces of the pressure coefficient (¢, = —1.6) from the
(a) BASE and (b) TLP simulations. Colours show the magnitude of vorticity, scaled by Uno/D.

Figure 7. Phase-averaged contours of the pressure coefficient over the suction side of the propeller blades
from the (@) BASE and (b) TLP simulations.

for the BASE geometry. This is consistent with the design criteria utilized for the TLP
geometry by Brown ef al. (2014), targeted at limiting the amount of suction side cavitation.
This is also illustrated by means of the contours of figure 7, showing the phase-averaged
distribution of the pressure coefficient on the suction side of the propeller blades, looking
from upstream. It is evident that the design including winglets is able to maintain higher
levels of pressure, relative to the free-stream value, especially at outer radial coordinates,
in comparison with the conventional geometry. Meanwhile, it is also able to generate a
larger thrust, as discussed later, in § 4.2. This point is also clear in figure 8, dealing with
the phase-averaged pressure coefficient on the pressure side of the blades. The highest
values are achieved at the tip of the TLP propeller, while for the BASE design, the pressure
coefficient undergoes a reduction at the outer radii. In addition, the chord at the tip of the
tip-loaded blades is larger than that of the BASE propeller. This also contributes to the
generation of higher levels of thrust in the former case.

The vortices o and g from the TLP propeller interact with each other and eventually
merge into a single helical structure at a short distance downstream, as shown in figure 5.
Also, this feature of the wake flow is in agreement with the experiments reported by
Bertetta et al. (2012) and Brown et al. (2015). Then these helical vortices remain coherent
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Figure 8. Phase-averaged contours of the pressure coefficient over the pressure side of the propeller blades
from the (a) BASE and (b) TLP simulations.

across a few diameters away from the propeller, in a similar way as for the BASE geometry,
as shown in figures 9 and 10 by means of instantaneous and phase-averaged visualizations,
respectively. However, both figures 9 and 10 reveal a faster instability of the tip vortices
shed by the BASE propeller. In the phase-averaged statistics of figure 10, this result is
indicated by the faster diffusion of the signature of the tip vortices in figure 10(a). This
difference in the wake development between the BASE and TLP cases and its source will
be discussed in more detail in the subsections below. Figure 9 also displays, in the near
wake, smaller structures within the wake core, populating the shear layers shed from the
trailing edge of the blades. They are more evident in the details of figure 11, especially in
the wake of the BASE propeller. They are significantly smaller and not as coherent as the
tip vortices, therefore their signature is missing in the phase-averaged visualizations of the
wake in figure 10. Figure 11 also highlights that: (i) the single tip vortex resulting from the
joining process of the primary and secondary vortices shed by the blades with winglets is
larger that that from the conventional ones; (ii) short-wave fluctuations affect the core of
the tip vortices already in the near wake; (iii) the root vortices shed by the BASE propeller
are much stronger than those from the TLP one.

Figures 12 and 13 show contours of vorticity magnitude from an instantaneous
realization of the solution for the TLP propeller. They highlight the ability of the
computational grid to capture the small scales populating the wake. Details are provided
in figures 12(b,c) and 13(b,c), where the grid lines are shown respectively at the inner radii
of the wake, in the vicinity of the shaft, and at its outer radii, in the vicinity of the tips of
the blades.

4.2. Comparison with the results by Brown et al. (2014)

The work by Brown et al. (2014) provides results on the global parameters of performance
for both BASE and TLP propellers, utilized here as a reference. It should be noted that the
TLP propeller was actually manufactured and tested experimentally in a towing tank. This
is not the case for the BASE propeller, which was instead simulated by RANS.

Table 1 reports a comparison between the results of the present LES/IB computations
with those published by Brown ez al. (2014) in terms of thrust coefficient, torque coefficient
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Figure 9. Instantaneous visualizations through isosurfaces of the pressure coefficient (¢, = —0.2) from the
(a) BASE and (b) TLP simulations. Colours show the magnitude of vorticity, scaled by Uso /D.
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Figure 10. Phase-averaged visualizations through isosurfaces of the pressure coefficient (¢, = —0.2) from
the (a) BASE and (b) TLP simulations. Colours show the magnitude of vorticity, scaled by Uso/D.

and efficiency. They are defined as

T 0 JKr

Kr = —_—, Kn = —, = s
r pn2D* Q pn2D> 7 21K

(4.1a—c)
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Figure 11. Instantaneous visualizations through isosurfaces of the pressure coefficient (¢, = —0.4) from the
(a) BASE and (b) TLP simulations. Colours show the magnitude of vorticity, scaled by Us,/D.

BASE propeller

RANS by Brown ez al. (2014) Present LES/IB computations Relative error
Kr 0.387 0.386 —0.36 %
Ko 0.091 0.092 +0.27 %
n 62.3 % 61.9 % —0.63%

TLP propeller

Experiments by Brown et al. (2014) Present LES/IB computations Relative error
Kr 0.406 0.415 +2.16 %
Ko 0.095 0.092 —2.58%
n 62.9 % 66.0 % +4.87 %

Table 1. Comparison of the global parameters of performance of the BASE and TLP propellers operating in
open-water conditions with the results reported by Brown et al. (2014) for J = 0.923.

where T is the thrust generated by the propeller, and Q is the torque acting on its blades.

The results in table 1 display a close agreement between the RANS computations
reported by Brown et al. (2014) and the present LES for the BASE propeller, with errors
remaining below 1 %. They are actually larger on the TLP propeller, for which LES/IB
provides a slightly higher value of thrust and a lower value of torque in comparison with
the experiments by Brown et al. (2014), resulting in a higher efficiency of propulsion.
However, the agreement remains quite satisfactory. In addition, it should be noted that
the physics shown in § 4.1 is consistent with that discussed by Brown et al. (2015) on the
same US Navy TLP propeller through both experiments and computations: they revealed
the generation of a system of two tip vortices from each blade. Also those vortices were
generated at the junction between the blade and the winglet, and at the edge of the winglet,
respectively. They were separated initially, but eventually merged at about half a diameter
downstream of the propeller. Table 1 also shows how the TLP geometry proposed by
Brown et al. (2014) is actually successful in achieving improved performance, compared
to the conventional one. This improvement is especially evident in the results from the
present simulations.
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Figure 12. (a) Instantaneous contours of vorticity magnitude, scaled by U /D, on a meridian slice of the
cylindrical grid in the wake of the TLP propeller. (b) Detail of the grid at the inner radii in the vicinity of the
shaft. (¢) Detail of the grid at the outer radii in the vicinity of the tip of a blade.
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Figure 13. (a) Instantaneous contours of vorticity magnitude, scaled by U, /D, on the cross-section of the
cylindrical grid at z/D = 0.2 in the wake of the TLP propeller. (b) Detail of the grid at the inner radii in the
vicinity of the shaft. (¢) Detail of the grid at the outer radii in the vicinity of the tip of a blade.
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4.3. Interaction and merging of the tip vortices in the near wake

Figure 5 shows the mutual interaction between the couple of tip vortices shed by each blade
with winglet, leading them eventually to merge. For more details, figure 14(a) provides
contours of phase-averaged vorticity magnitude at the streamwise coordinate z/D = 0.2.
The signature of the two tip vortices from each blade is well distinguishable as maxima
of vorticity. The tip vortices from the edges of the winglets, characterized by higher
values of vorticity, are indicated again as «, while the ones from the junctions between
the blades and the winglets are indicated as 8. As the wake develops downstream, the
shear between the two tip vortices causes the vortices « to rotate around the vortices 3,
eventually merging with them at about z/D = 0.7 in figure 14( f). Note that the colour scale
is shrinking across the panels of figure 14, due to the decreasing streamwise evolution of
the maxima of vorticity at the core of the tip vortices.

The intense shear between the couple of tip vortices o and § is demonstrated in figure 15,
where the turbulent shear stress u;u. is shown from phase-averaged statistics. The stress
u,u;, was computed as a time-averaged product of the fluctuations in time of the radial and
streamwise velocity components, relative to their phase averages. Although the behaviour
of the other shear stresses was found to be similar, in the region of the interface between the
o and B vortices, u,u., achieved the highest values. The highest levels of stress are indeed
achieved between o and B, which is also consistent with their rotation relative to each
other as they develop downstream: note that the vortices « gradually move to inner radial
coordinates relative to the vortices 8. In figure 15, they are identified as local minima of the
pressure coefficient, indicated by means of isolines. When the merging process between «
and B completes, the levels of shear stresses undergo a substantial decay, confirming that in
the near wake, the major source of the stress u/.u. is associated with the interaction between
o and B. Note that the colour scale in figure 15 is again shrinking towards downstream
coordinates.

More details are provided in figure 16, where azimuthal profiles through the cores
of the tip vortices are illustrated. Two streamwise locations are considered, z/D = 0.3
and z/D = 0.7, corresponding to figures 14(b,f) and 15(b,f). It should be noted that at
z/D = 0.3, the tip vortices o and g are still separated, but are roughly aligned along
the azimuthal direction, so the same azimuthal profile goes through the core of both tip
vortices. At z/D = 0.7, their merging process is already complete. It is also worth noting
that figure 16 exploits the symmetry of the phase-averaged statistics, therefore the range
of azimuthal coordinates on the horizontal axis goes from 0° to 72°. In figure 16(a), the
position of the core of the two tip vortices is indicated by the minima of the pressure
coefficient (dashed lines). At z/D = 0.3, the highest values of shear stress (solid lines) are
achieved between them, in the region between 62° and 5°. At z/D = 0.7, the couple of
minima of the pressure coefficient are replaced by a single negative peak, of intermediate
magnitude between the minima at z/D = 0.3, coming from the merging of the two vortices
o and B. The reduction of the shear stresses is dramatic. In figure 16(b), azimuthal
profiles for turbulent kinetic energy (solid lines) and vorticity magnitude (dashed lines)
are shown. The turbulent kinetic energy was computed as k = 0.5 (uju), + ujyuly + uu’),
where u,u,., ujuy and ulu, are the mean squares of the fluctuations of the radial, azimuthal
and streamwise velocity components, relative to their phase averages. As expected, the
maxima of turbulence and vorticity correlate with the minima of the pressure coefficient
in figure 16(a). At z/D = 0.3, the shear between the vortices « and § results in large levels
of turbulent kinetic energy also at azimuthal coordinates between them (see the region
around ¥ = 72°), in addition to the locations of their cores. Again, at z/D = 0.7, the pairs
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Figure 14. Contours of phase-averaged vorticity magnitude, scaled by Us,/D, downstream of the TLP
propeller. Streamwise locations at z/D coordinates (a) 0.2, (b) 0.3, (¢) 0.4, (d) 0.5, (e) 0.6, (f) 0.7, (g) 0.8,
(h) 0.9, and (i) 1.0. Arrows show the rotational speed of the propeller.

of maxima of both vorticity and turbulent kinetic energy seen upstream are replaced by
isolated, weaker peaks associated with a single tip vortex from each propeller blade.

4.4, Comparison between the tip and root vortices shed by the two propellers

4.4.1. Intensity of the tip vortices

Contours of phase-averaged azimuthal vorticity are shown in figure 17 in the near wake,
providing a comparison between the BASE and TLP cases. They highlight again the
presence of two sharp maxima at outer radii just downstream of the TLP geometry,
eventually merging into a single vortex. Although also in figure 17(a) a smaller peak of
positive vorticity is visible in the near wake in the vicinity of the signature of the tip
vortex, it is not actually associated with a secondary tip vortex. As discussed by Kumar &
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Figure 15. Contours of phase-averaged turbulent shear stress u/u, scaled by Ugo, downstream of the TLP

r Z’
propeller. Streamwise locations at z/D coordinates (a) 0.2, (b) 0.3, (¢) 0.4, (d) 0.5, (e) 0.6, (f) 0.7, (g) 0.8, (h)
0.9, and (i) 1.0. Arrows show the rotational speed of the propeller. White isolines show locations of pressure
coefficient ¢, = —0.8.

Mahesh (2017) and Posa et al. (2019), the propeller wake is characterized by a system of
helical vortices across the span of the wake of each blade. They are also distinguishable
at inner radii in the wake of the TLP propeller as local minima of azimuthal vorticity.
These smaller helical vortices are less intense in comparison with the tip vortices, so their
signature is weaker and lost more quickly as the wake develops downstream.

The visualizations in figure 17 point also to significant differences between the two
panels across all radii of the propeller wake. These differences will be shown to have
an important influence on the downstream development of the tip vortices. Conventional
propellers are characterized by a reduction of the load of their blades at outer radii, with the
purpose of producing less intense tip vortices. This result is also achieved by decreasing
the pitch of the blades, that is, the angle of their profile relative to the azimuthal direction,
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Figure 16. Azimuthal profiles through the core of the tip vortices at the streamwise locations z/D = 0.3
and z/D = 0.7 in the wake of the TLP propeller: (a) phase-averaged turbulent shear stress u).u (solid lines)
and pressure coefficient (dashed lines); (b) phase-averaged turbulent kinetic energy (solid lines) and vorticity
magnitude (dashed lines). Arrows indicate the azimuthal locations of the cores of the vortices.

from the root to the tip. This design results in a wake of each blade having also a decreasing
pitch from inner towards outer radii, as shown by figure 17(a), where the wake of each
blade stretches across a wide range of streamwise coordinates as it develops downstream.
The pitch of the blades of tip-loaded propellers is much more uniform along the radial
direction, influencing this way also the wake features, as demonstrated by the contours in
figure 17(b): it is larger than for conventional propellers at outer radii, and smaller at inner
radii. This feature of the flow results in a delayed shear by the wake of each blade with the
tip vortices shed by the preceding blade.

A more detailed comparison is reported in figure 18. In figure 18(a,c,e,g), profiles of
vorticity magnitude are shown across the cores of the tip vortices visualized in figure 17.
In the label of the horizontal axes of figure 18, the quantity [ refers to the local coordinate
centred at the vortex core, while L was selected as L = 0.05D. In figure 18, the solid and
dashed lines deal with the profiles across the streamwise and radial directions, respectively.
At the first location, indicated as A4 in figure 17, the comparison across tip vortices shows
that while the vortex 8 from the TLP propeller is characterized by a similar intensity as
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Figure 17. Contours of phase-averaged azimuthal vorticity, scaled by U, /D, on the meridian plane x/D = 0:
(a) BASE and (b) TLP cases.

the tip vortex from the BASE propeller, the values of vorticity achieved by the vortex «
are almost three times higher, indicating that the geometry with winglets fails in producing
weaker tip vortices, as a result of the larger level of load at the tip of the propeller blades,
in comparison with the BASE design. This is still the case at location B, where the gap in
vorticity values between the two vortices from the TLP propeller declines, as a result of
their interaction. Eventually, at location C, the tip vortices o and 8 merged into a single
structure, characterized by higher levels of vorticity, in comparison with that shed by the
BASE propeller. Similar features are still visible at location D.

The differences affecting the intensity of the tip vortices are especially important,
since they have an impact on the minima of pressure achieved at their core. They are
problematic for the cavitation phenomena that they are potentially able to generate, and the
resulting acoustic signature. Therefore, figures 18(b.d, f,h) provide profiles of the pressure
coefficient. It is clear that lower levels of pressure are produced at the core of both tip
vortices shed by the TLP propeller, in comparison with the single tip vortex shed by the
BASE one.

The contours in figure 19 allow us to follow the development of the propeller wake
further downstream. They show that the signature of the tip vortices originating from the
TLP geometry remains more distinguishable at downstream locations, in comparison with
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Figure 18. Profiles of phase-averaged vorticity magnitude (a,c,e,g) and pressure coefficient (b,d, f,h) through
the core of the tip vortices at the locations (a,b) 4, (¢,d) B, (e,f) C, and (g,h) D in figure 17. Solid and dashed
lines show the profiles through the streamwise and radial directions, respectively. On the horizontal axes, the
local coordinate / relative to the vortex core is scaled by L = 0.05D.

that from the conventional propeller. As noted above and discussed in more detail later,
this behaviour is tied not only to the higher intensity of the vortices, but also to their
slower process of instability, resulting into a slower diffusion of their signature in the
phase-averaged statistics of the flow.

4.4.2. Turbulence at the core of the tip vortices

Contours of phase-averaged turbulent kinetic energy are shown across the near wake in
figure 20. Significant differences between figures 20(a) and 20(b) affect not only the tip
vortices, extending across all radial coordinates. For instance, the different distribution of
the load across the blades results in the generation of intense root vortices at inner radii
of the wake of the BASE propeller. They are much weaker downstream of the TLP one.
Again, the wake of each blade is much more elongated in the streamwise direction in
figure 20(a) than in figure 20(b), as already seen in the vorticity fields. The contours in
figure 20 also show that while at their onset the tip vortices shed by the TLP propeller are
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Figure 19. Contours of phase-averaged azimuthal vorticity, scaled by U, /D, on the meridian plane x/D = 0:
(a) BASE and (b) TLP cases.

characterized by higher levels of turbulent kinetic energy, this is no longer the case already
at about a diameter downstream. Also in this case, a more detailed comparison between
BASE and TLP cases is reported in figure 21, by means of profiles crossing the core of the
tip vortices. Again, the solid and dashed lines deal with the profiles along the streamwise
and radial directions, respectively.

The comparison in figure 21(a), dealing with the location A in figure 20, is qualitatively
similar to that reported above for the vorticity magnitude: the highest levels of turbulent
kinetic energy are achieved by far in o, while g shows values similar to those within the
single tip vortex shed by the BASE propeller. For B, the values in « are closer to those
in B, as shown in figure 21(b). Again, 8 does not display substantial differences from the
tip vortex in the BASE case. Comparisons change for C. The above discussion, dealing
with vorticity maxima and pressure minima, pointed out that the single vortex originating
from the merging process between o and B is more intense than the tip vortex from the
BASE propeller. Nonetheless, turbulence in figure 21(c) is higher in the latter case. This
result is confirmed at the downstream location D in figure 21(d). Phase-averaged turbulent
kinetic energy is associated with fluctuations relative to statistics synchronized with the
rotation of the propeller, due to deviations of the tip vortices from their helical trajectories
originating at the tips of the blades. Therefore, the results in figure 21 indicate that in the
BASE case, the tip vortices develop a faster instability, leading to their faster break-up, as
also shown by the visualizations reported in § 4.1.

The process of faster instability of the tip vortices in the BASE case is illustrated at more
downstream locations in figure 22. The outer radii are characterized by a gradual increase
of turbulence levels, due to the growing meandering of the tip vortices. This rise is faster
for the tip vortices shed by the BASE propeller. Actually, this behaviour affects also inner
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Figure 20. Contours of phase-averaged turbulent kinetic energy, scaled by Ugo, on the meridian plane
x/D = 0: (a) BASE and (b) TLP cases.
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Figure 21. Profiles of phase-averaged turbulent kinetic energy through the core of the tip vortices at the
locations (a) A, (b) B, (c) C, and (d) D in figure 20. Solid and dashed lines show the profiles across the
streamwise and radial directions, respectively. On the horizontal axes, the local coordinate / relative to the
vortex core is scaled by L = 0.05D.
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Figure 22. Contours of phase-averaged turbulent kinetic energy, scaled by Ugo, on the meridian plane
x/D = 0: (a) BASE and (b) TLP cases.

radial coordinates, although there turbulence is significantly lower. Also figures 22(a) and
22(b) highlight the substantial differences affecting the shear layer shed from the trailing
edge of each propeller blade, which will be demonstrated below to be an important source
of the faster instability of the tip vortices in the BASE case.

Results for the instability of the wake system of both propellers are summarized in
figure 23, where the streamwise evolution of the phase-averaged turbulent kinetic energy
and shear stresses is reported. At each streamwise coordinate, those quantities were
averaged within the fluid domain in the region of radial coordinates r/D < 0.5. The
highest turbulent stresses are achieved just downstream of the TLP propeller. The initial
sharp drop of turbulence levels is followed by a gradual increase, due to the development
of instability by the wake system. This is faster downstream of the BASE propeller, as
demonstrated by all turbulent stresses. More details are provided in figure 24, where
the wake was divided into four regions: 0.000 < r/D < 0.125 (RI), 0.125 < r/D <
0.250 (R2), 0.250 < r/D < 0.375 (R3) and 0.375 < r/D < 0.500 (R4). Averages of the
phase-averaged turbulent kinetic energy were computed in each of them. Both BASE and
TLP cases show that the growth of turbulence, due to the instability of the wake system, is
faster moving from inner to outer radii: it is dominated by the instability of the tip vortices.
In contrast, the root vortices, as discussed in detail below, remain more stable and provide
a more limited contribution to the downstream rise of the turbulent stresses. The results
of figure 24 show also that the streamwise evolution of turbulent kinetic energy in R1 is
characterized by a sharp peak at z/D =~ 0.25. This is due to the separation of the boundary
layer on the shaft, because of the contraction of its cross-section.
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Figure 23. Streamwise evolution of the phase-averaged turbulent stresses downstream of the BASE and TLP
propellers: averages in the region r/D < 0.5 for (a) k, (b) |uju|, (c) |ujuly|, and (d) |ufyu|.
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Figure 24. Streamwise evolution of the phase-averaged turbulent kinetic energy downstream of the (a) BASE

and (b) TLP propellers: averages in the regions 0.000 < r/D < 0.125 (R1I), 0.125 < r/D < 0.250 (R2),
0.250 < r/D < 0.375 (R3) and 0.375 < r/D < 0.500 (R4).
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4.4.3. Root vortices

Figure 19 reveals the signature of additional structures populating the core of the propeller
wake. In particular, the vortices shed from the root of the blades are especially intense
for the BASE propeller. This is illustrated by means of phase-averaged contours of axial
vorticity in figure 25, dealing with cross-stream sections of the propeller wake at increasing
downstream distances. At z/D = 0.5 (figure 25a), the wake coherence is dominated by
the tip and root vortices, which are counter-rotating and co-rotating with the propeller,
respectively. The roll-up of the vorticity of the shear layer shed from each blade reinforces
the intensity of the root vortices, indicated by y and characterized by well-distinguishable
maxima of negative vorticity. They remain evident also at downstream coordinates,
in contrast with the tip vortices. Although initially the latter have intensity similar to
that of the root vortices, they undergo a faster instability, leading to diffusion of the
phase-averaged maxima of vorticity, first because of vortex meandering and eventually
due to break-up into smaller structures. This is very evident in figure 25(f), dealing with
the streamwise coordinate z/D = 3.0.

Figure 26 deals with the wake of the TLP propeller. Significant differences from
figure 25 affect not only the tip vortices at the outer radii. This is not surprising, since
the design of the TLP propeller is based on a more uniform distribution of the load across
the span of the blades, resulting into a reduction at the inner radii and an increase at the
outer ones, in comparison with the BASE propeller. In figure 26(a), more, smaller and
less intense negative maxima of axial vorticity are visible at inner radii, in contrast with
the contours of figure 25(a). In particular, the roll-up of the vorticity populating the wake
of the propeller blades into the root vortices, observed in figure 25(a), is missing in the
visualization of figure 26(a). Actually, the results at z/D = 1.0 in figure 26(b) reveal that
the roll-up of the vorticity shed by each propeller blade gives rise to additional structures,
at intermediate radii between the tip vortices and the root vortices. In the following, they
will be indicated by §, to distinguish them from the root vortices, denoted by y. The other
panels of figure 26 show that also in the wake of the TLP propeller, the downstream decay
of the intensity of the maxima of negative vorticity is slower, compared to the positive
peaks associated with the tip vortices, because of the slower instability of the vortices at
inner radii.

An overview of the differences between BASE and TLP cases is provided through
instantaneous isosurfaces of the pressure coefficient in figure 27. Figure 27(a) shows that
the root vortices have actually a more significant signature than the tip vortices. The former
produce lower values of pressure and are more likely to develop cavitation phenomena and
noise. As demonstrated above, the tip vortices in the wake region illustrated in figure 27(a)
are still coherent, but they are less intense, so they generate lower pressure minima at their
core. Actually, the opposite phenomena occur in the wake of the TLP propeller, since
the load across the span of its blades is redistributed towards outer radii. As a result, in
the visualization of figure 27(b), using the same value of the pressure coefficient as in
figure 27(a), the tip vortices are well captured, while the root ones are not visible, since
they are less intense and characterized by weaker pressure minima at their core.

The isosurfaces of the second invariant of the velocity gradient tensor (Q-criterion;
Hunt, Wray & Moin 1988) from phase-averaged statistics, visualized in figure 28, are
able to isolate the inner helical vortices populating the wake of the propeller. Actually, just
downstream of it, the roll-up of the vorticity of the shear layer shed by each blade originates
several vortices across the span, but they are not a long-standing feature of the wake
flow. An exception is represented by the helical structures, indicated as 4, that populate
mid-radial coordinates between the root and the tip downstream of the TLP propeller.

951 A25-27


https://doi.org/10.1017/jfm.2022.852

https://doi.org/10.1017/jfm.2022.852 Published online by Cambridge University Press

Figure 25. Contours of phase-averaged streamwise vorticity, scaled by U, /D. Streamwise locations at z/D
coordinates (a) 0.5, (b) 1.0, (¢) 1.5, (d) 2.0, (e) 2.5, and (f) 3.0, in the wake of the BASE propeller. Arrows
show the rotational speed of the propeller.
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Figure 26. Contours of phase-averaged streamwise vorticity, scaled by Us,/D. Streamwise locations at z/D
coordinates (a) 0.5, (b) 1.0, (¢) 1.5, (d) 2.0, (e) 2.5, and (f) 3.0, in the wake of the TLP propeller. Arrows show
the rotational speed of the propeller.
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Figure 27. Instantaneous visualizations through isosurfaces of the pressure coefficient (¢, = —0.8) from the
(a) BASE and (b) TLP simulations. Colours show the magnitude of vorticity, scaled by Uso /D.
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Figure 28. Phase-averaged visualizations through isosurfaces of the second invariant of the velocity gradient
tensor (QD?/ Ugo = 40) from the (a) BASE and (b) TLP simulations. Colours show the magnitude of vorticity,
scaled by Uso/D.

Therefore, moving away from the propeller plane, while the wake of the BASE propeller
is characterized by a system of only two major helical vortices, the tip and root vortices,
as shown in figure 28(a), the wake of the TLP propeller is populated by additional inner
vortices §, well-distinguishable in figure 28(b), coming from the roll-up of the wake of
each blade.
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Figure 29. Azimuthal profiles of phase-averaged vorticity magnitude (solid lines) and pressure coefficient
(dashed lines) through the core of the vortices y and § at the streamwise locations of z/D coordinates (a) 0.5,
(b) 1.0, (¢) 1.5, (d) 2.0, (e) 2.5, and (f) 3.0. Arrows indicate the azimuthal locations of the cores of the vortices.

Azimuthal profiles at the radial coordinates of the core of the root vortices are shown
in figure 29 for the phase-averaged vorticity magnitude (solid lines) and the pressure
coefficient (dashed lines). Exploiting again the symmetry of the configuration, only an
angular sector of 72° is considered. Figure 29(a) deals with the streamwise location at
z/D = 0.5. It is evident that the root vortices are way more intense in the wake of the
BASE propeller, since across its blades the load is shifted towards inner radii. As a result,
the peaks of vorticity and negative pressure associated with its root vortices are stronger
and sharper than those in the wake of the TLP propeller. At z/D = 1.0 in figure 29(b), the
comparison includes also the vortices § downstream of the TLP propeller, in addition to the
vortices ¥, which are the root vortices. While the root vortices from the BASE propeller
remain much more intense than those from the TLP one, the large structures § coming from
the roll-up of the vorticity in the wake of the tip-loaded blades feature an intensity similar
to that for the root vortices y. This is also the case at the more downstream locations
considered in figures 29(c—f), although the fading maxima of vorticity and minima of
pressure remain better distinguishable for § than for y, since in the latter case the azimuthal
profiles are also affected by the boundary layer on the surface of the shaft.

The results for turbulent kinetic energy in figure 30 are actually very similar to those in
figure 29. Also the maxima of turbulence at the core of the root vortices shed by the BASE
propeller are sharper and higher than those in the wake of the TLP propeller. Again, for
the latter, the maxima of the azimuthal profiles are mostly hidden by the boundary layer
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Figure 30. Azimuthal profiles of phase-averaged turbulent kinetic energy (solid lines) and pressure coefficient
(dashed lines) through the core of the vortices y and § at the streamwise locations of z/D coordinates (a) 0.5,
(b) 1.0, (c) 1.5, (d) 2.0, (e) 2.5, and (f) 3.0. Arrows indicate the azimuthal locations of the cores of the vortices.

over the shaft, since the root vortices are closer to its surface in comparison with the BASE
case. In the wake of the TLP propeller, the levels of turbulent kinetic energy achieved at
the core of the vortices § are similar to those at the core of the root vortices y .

Overall, the weaker signature of the root vortices in the TLP case, compared to the BASE
case, is attributable to the lower load at the root of the TLP propeller. In its wake, the
different distribution of the load results in the generation of a couple of major additional
vortices within the wake core at intermediate radii between the tip and root vortices, while
most of vorticity at inner radial coordinates rolls up into stronger root vortices in the wake
of the BASE propeller.

4.4.4. Shear between wake structures

Section 4.4.2 discussed the development of higher levels of phase-averaged turbulent
kinetic energy in the near wake of the BASE propeller, due to faster instability phenomena
affecting its tip vortices. This behaviour was found tied to the interaction of the tip vortex
shed by each blade with the wake from the trailing edge of the following blade. As
discussed in earlier works (Posa et al. 2019, 2022b), dealing with the INSEAN E1658
propeller, the tip vortices are characterized by a smaller pitch, compared to the shear
layer shed by each blade, which means a slower advancement along the streamwise
direction. This feature eventually leads each tip vortex to experience shear with the
wake of the following blade at some distance downstream of the propeller, promoting

951 A25-32


https://doi.org/10.1017/jfm.2022.852

https://doi.org/10.1017/jfm.2022.852 Published online by Cambridge University Press

The tip vortices shed by a propeller with winglets

the development of instability, according to the mechanisms of short waves, long waves
and mutual inductance discussed in detail by Widnall (1972) and Felli, Camussi & Di
Felice (2011). The visualizations above demonstrated that the distribution of the pitch
across the spanwise extent of the conventional blades results in more elongated wakes
than downstream of the TLP design, leading to their faster interaction with the tip vortices
shed by the preceding blades. This is shown by the contours of phase-averaged shear
stress u,u, in figure 31, whose values at the outer boundary of the propeller wake are
higher in the wake of the BASE propeller than downstream of the TLP one, despite the
lower intensity of the tip vortices shed by the former. Their signature is identified through
minima of the pressure coefficient, indicated again by means of isolines. This signature
is better distinguishable in the TLP case, due to the higher intensity of the tip vortices,
resulting in stronger minima of pressure at the outer boundary of the propeller wake. The
trend observed in the near wake is even reinforced further downstream (figure 32), as
the interaction involving the wake structures becomes more complex and their process of
instability develops, producing higher levels of shear stress. In addition, the signature of
the tip vortices in figure 32 through isolines of ¢, is lost more quickly downstream of the
BASE propeller, because of the faster instability affecting its wake.

This mechanism of interaction within the wake is illustrated in more detail in figures 33
and 34, dealing with cross-sections downstream of the BASE and TLP propellers,
respectively. Also in these figures, the signature of the tip vortices is identified by means of
isolines of the pressure coefficient, useful to isolate the regions of pressure minima at their
core. It should be noted that the selected value of the pressure coefficient changes across
panels, due to the instability affecting the tip vortices: vortex meandering and eventual
break-up cause diffusion of the phase-averaged minima of the pressure coefficient as the
wake develops downstream. The highest values of u).u are achieved in the area of shear
between the tip vortices and the wake of the following blades. It is interesting to notice
that the values of turbulent shear stress achieved in figure 33 are significantly higher than
those in figure 34, especially at the interface between the tip vortices and the wake from
each blade. Meanwhile, the minima of pressure are weaker in the former case, dealing with
the wake of the BASE propeller. This is due to both the lower intensity of the tip vortices
and their faster instability, spreading their signature on the phase-averaged statistics of the
flow. For instance, while for the selected values of the pressure coefficient the minima at
the core of the tip vortices are still visible in figures 34(d—f), this is no longer the case
in figures 33(d—f). Note that in both figures 33 and 34, the colour scale for the turbulent
shear stress becomes wider at downstream locations, due to the rising shear at the outer
boundary of the propeller wake.

Interestingly, figures 33 and 34 highlight also that the levels of shear stress achieved
at inner radii, populated by the root vortices, are substantially lower than those affecting
the wake boundary. This result is consistent with the discussion in § 4.4.3: the signature
of the root vortices in the phase-averaged statistics of the wake flow experiences a slower
decline at downstream coordinates, in comparison with the tip vortices, because of the
slower development of instability phenomena.

A more in-depth comparison between BASE and TLP cases is provided in figure 35,
where azimuthal profiles are shown through the minima of pressure identified in
figures 33(a,c,e) and 34(a,c,e), dealing with the streamwise locations z/D = 1.0, z/D =
2.0 and z/D = 3.0, respectively. Figure 35 shows profiles for both u,u, (solid lines) and ¢,
(dashed lines). Again, the range of azimuthal coordinates in figure 35 goes from ¢+ = 0° to
¥ = 72°, exploiting the statistical symmetry of the phase averages. Once again, it is clear
that the tip vortices from the TLP propeller are more intense, leading to stronger minima
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Figure 31. Contours of phase-averaged turbulent shear stress i}, scaled by U, on the meridian plane

x/D = 0: (a) BASE and (b) TLP cases. White isolines show locations of ¢, = —0.4.

of pressure. Nonetheless, the levels of shear are higher downstream of the BASE propeller
in figures 35(a,b). In contrast, in figure 35(c), the peak achieved in the BASE case is lower.
This is due to the faster instability of the wake system, resulting in a faster diffusion of its
phase-averaged statistics, as also demonstrated by the increased azimuthal uniformity; as a
result, also in figure 35(c), the levels of shear stress in the BASE case are higher, with the
exception of the peak associated with the core of the tip vortices. In figure 35, the shear
stresses are a growing function of the streamwise coordinate, which is consistent with the
increasing evolution of the phase-averaged turbulence discussed in § 4.4.2 and visualized
in more details in figures 36 and 37.

Already in figures 36(a) and 37(a), dealing with the streamwise coordinate z/D = 1.0,
the levels of turbulent kinetic energy associated with the tip vortices are significantly
higher in the wake of the BASE propeller. The contours in figures 36 and 37 clearly show
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Figure 32. Contours of phase-averaged turbulent shear stress i), scaled by Ugo, on the meridian plane

x/D = 0: (a) BASE and (b) TLP cases. White isolines show locations of ¢, = —0.2.

the differences affecting the development of the wakes of the conventional and tip-loaded
blades, due to the different spanwise distributions of their pitch angle, and resulting in
higher levels of shear in the former case. Differences are also evident at inner radii, again
as a result of the spanwise distribution of the load across the blades of the BASE and
TLP propellers. Also, figures 36 and 37 highlight the achievement of lower levels of
turbulent stresses at the inner radii than at the outer ones. In particular, the root vortices are
more stable than the tip vortices. Therefore, their core is characterized by lower values of
turbulent kinetic energy. The values of turbulent kinetic energy in figure 36 remain higher
than those in figure 37 up to figures 36(e) and 37(e), referring to the location z/D = 3.0.
There, the diffusion of the phase-averaged statistics, due to wake instability and vortex
meandering, causes the peaks of turbulence in figure 36(e) to spread in the azimuthal
direction, becoming also slightly smaller than those in figure 37(e). However, although
delayed, similar phenomena affect also the wake of the TLP propeller as its instability
develops.

The comparison between figures 36 and 37 is clarified in figure 38, where azimuthal
profiles across the core of the tip vortices are shown at the streamwise coordinates
z/D =1.0, 2.0 and 3.0 for both turbulent kinetic energy (solid lines) and vorticity
magnitude (dashed lines). Both figures 38(a,b) keep the behaviour observed in the near
wake: the tip vortices shed by the TLP propeller are more intense (higher vorticity), but
also more stable (lower turbulent kinetic energy). In contrast, in figure 38(c), the peak of
turbulent kinetic energy for the TLP case becomes eventually higher than that for the
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Figure 33. Contours of phase-averaged turbulent shear stress u/.u’, scaled by Ugo. Streamwise locations at z/D

coordinates (a) 1.0, (b) 1.5, (¢) 2.0, (d) 2.5, (e) 3.0, and (f) 3.r5,zin the wake of the BASE propeller. Arrows
show the rotational speed of the propeller. White isolines show locations of ¢, (a) —0.50, (b) —0.50, (c) —0.40,

(d) —0.40, (¢) —0.20, and (f) —0.10.
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Figure 34. Contours of phase-averaged turbulent shear stress u,.u, scaled by Ugo. Streamwise locations at z/D

coordinates (a) 1.0, (b) 1.5, (¢) 2.0, (d) 2.5, (e) 3.0, and (f) 3.5, in the wake of the TLP propeller. Arrows show
the rotational speed of the propeller. White isolines show locations of ¢, (a) —0.50, (b) —0.50, (¢) —0.40, (d)
—0.40, (e) —0.20, and (f) —0.10.
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Figure 35. Azimuthal profiles of phase-averaged turbulent shear stress wuju] (solid lines) and pressure

coefficient (dashed lines) through the core of the tip vortices at the streamwise locations of z/D coordinates
(a) 1.0, (b) 2.0, and (c) 3.0. Arrows indicate the azimuthal locations of the cores of the vortices.

BASE case, in agreement with the results observed for the turbulent shear stresses in
figure 35(c). The instability of the tip vortices in the latter case smears out their signature
in the phase-averaged flow fields, leading the peak value of phase-averaged turbulent
kinetic energy to switch from an increasing to a decreasing trend between the streamwise
coordinates z/D = 2.0 and z/D = 3.0.
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Figure 36. Contours of phase-averaged turbulent kinetic energy, scaled by Ugo. Streamwise locations at z/D
coordinates (a) 1.0, (b) 1.5, (c¢) 2.0, (d) 2.5, (e) 3.0, and (f) 3.5, in the wake of the BASE propeller. Arrows
show the rotational speed of the propeller. White isolines show locations of ¢, (a) —0.50, (b) —0.50, (¢) —0.40,
(d) —0.40, (¢) —0.20, and (f) —0.10.
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Figure 37. Contours of phase-averaged turbulent kinetic energy, scaled by Ugo. Streamwise locations at z/D
coordinates (a) 1.0, (b) 1.5, (¢) 2.0, (d) 2.5, (e) 3.0, and (f) 3.5, in the wake of the TLP propeller. Arrows show
the rotational speed of the propeller. White isolines show locations of ¢, (a) —0.50, (b) —0.50, (c) —0.40, (d)
—0.40, (¢) —0.20, and (f) —0.10.
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Figure 38. Azimuthal profiles of phase-averaged turbulent kinetic energy (solid lines) and vorticity magnitude
(dashed lines) through the core of the tip vortices at the streamwise locations of z/D coordinates (a) 1.0, (b)
2.0, and (c) 3.0. Arrows indicate the azimuthal locations of the cores of the vortices.

5. Conclusions

Large-eddy simulation was utilized to compare the tip vortices generated by a tip-loaded
propeller with winglets, designed by Brown er al. (2014), against those shed by a
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conventional propeller, developed by prescribing the same design requirements. The
results of the present study can be summarized as follows.

(1) Each blade with winglet sheds two tip vortices, from the edge of the winglet and
from its junction with the blade, respectively.

(i) The two tip vortices keep separated in the near wake, but merge at less than a
diameter downstream of the propeller.

(iii) The tip vortex produced at the edge of the winglet is smaller, but more intense than
the single tip vortex generated by the conventional design.

(iv) The tip vortex originating from the merging process between the two tip vortices
shed by each blade with winglet is characterized by an intensity similar to that of the
tip vortex from the conventional blade.

(v) The instability of the tip vortices from the propeller with winglets is slower than for
the BASE propeller.

(vi) The slower instability is tied to the more uniform spanwise distribution of the pitch
across the blades of the TLP propeller and their wakes, resulting in a delayed shear
of the tip vortices with the wake of the following blades.

(vii) The root vortices shed by the TLP propeller are weaker than those from the BASE
one, because of the lower load of the blades at inner spanwise locations.

(viii) For both BASE and TLP propellers, the root vortices are more stable than the tip
vortices: they keep coherent further away from the propeller, and develop lower
values of turbulence.

The generation of a system of pairs of tip vortices, quickly merging downstream of the
propeller with winglets, was found to be in agreement with the results of the experiments
discussed by Bertetta et al. (2012) and Brown et al. (2015). Based on the results of the
present study, although an improved performance is achieved by the TLP propeller, in
comparison with the conventional one, more intense tip vortices are generated. They are
locations of pressure minima, which are detrimental in terms of cavitation, affecting the
integrity of rudders operating downstream and the acoustic signature of the wake system.
Brown et al. (2015) suggested that by splitting the single tip vortex, typical of conventional
propeller blades, into two separated tip vortices, propellers with winglets may be able to
generate weaker structures, delaying the inception of cavitation. Although this may be the
case with an optimized design of the end plate at the tip, the present results highlight
that in the presence of tip-loading, the generation of two weaker tip vortices is not a
straightforward outcome of the use of winglets; in this case, even more intense helical
structures are shed, producing stronger pressure minima at the outer boundary of the
propeller wake.

These results are actually in agreement with the analysis of the same TLP propeller
reported by Brown et al. (2014): their experiments visualized the onset of cavitation
phenomena at the core of the tip vortices. Meanwhile, cavitation performance was
improved on the suction side of the propeller blades, where also the present computations
demonstrated the generation of weaker pressure minima, compared to the conventional
geometry. This is also consistent with the design of the TLP propeller by Brown et al.
(2014), which prescribed no cavitation on the suction side of its blades, but without
requirements on cavitation inception within the tip vortices. Although the adopted
numerical approach does not include a cavitation model, the results of the present study
highlight that tip-loading, even in presence of winglets, can be problematic in terms of
cavitation phenomena affecting the wake structures, potentially giving rise to more intense
tip vortices than in conventional design solutions. They suggest that the design process
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should carefully take into account the cavitation inception within the wake structures,
due to the potential by tip-loading of generating even more intense tip vortices than
conventional design solutions, despite the use of winglets.
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