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Abstract. We consider a natural class U LG of connected, simply connected nilpotent Lie
groups which contains Rn , the group U T n(R) of all triangular unipotent matrices over
R and many of its subgroups, and is closed under direct products. If G ∈ U LG, then
01 = G ∩ U T n(Z) is a lattice subgroup of G. We prove that if G ∈ U LG and 0 is a lattice
subgroup of G, then a free ergodic measure-preserving action T of G on a probability
space (X, B, µ) has completely positive entropy (CPE) if and only if the restriction T 0 of
T to 0 has CPE. We can deduce from this the following version of a well-known conjecture
in this case: the action T has CPE if and only if T is uniformly mixing. Moreover, such
T has a Lebesgue spectrum with infinite multiplicity. We further consider an ergodic free
action T with positive entropy and suppose T 0 is ergodic for any lattice subgroup 0 of G.
This holds, in particular, if the spectrum of T does not contain a discrete component. Then
we show the Pinsker algebra 5(T ) of T exists and coincides with the Pinsker algebras
5(T 0) of T 0 for any lattice subgroup 0 of G. In this case, T always has Lebesgue
spectrum with infinite multiplicity on the space L2

0(X, µ)	 L2
0(5(T )), where L2

0(5(T ))
contains all5(T )-measurable functions from L2

0(X, µ). To prove these results, we use the
following formula: h(T )= |G(0)|−1hK (T 0), where h(T ) is the Ornstein–Weiss entropy
of T , hK (T 0) is a Kolmogorov–Sinai entropy of T 0 , and the number |G(T 0)| is the
Haar measure of the compact subset G(0) of G. In particular, h(T )= hK (T 01), and
hK (T 01)= |G(0)|−1hK (T 0). The last relation is an analogue of the Abramov formula
for flows.

1. Introduction
The theory of entropy has a long history in the theory of ergodic theory and dynamical
systems. First introduced for an action of Z by Kolmogorov [26] in 1958, and refined by
Sinai in 1959, it is still finding important recent applications in wider settings [6, 15, 22,
39]. In particular, Kolmogorov discussed the class of actions of Z with completely positive
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entropy (CPE), and Rokhlin and Sinai [37] described mixing and spectral properties of
these systems. Ornstein [29] proved that if two Bernoulli actions of Z have the same
Kolmogorov–Sinai entropy, then they are isomorphic. Furthermore, Pinsker [31] proved
that if a Z-action on a probability space (X, B, µ) has positive Kolmogorov–Sinai entropy
h, then there exists a maximal Z-invariant factor-space 5 of X such that the restriction of
Z to 5 has entropy zero: in this situation a theorem of Sinai [43] tells us further that there
exists a Bernoulli Z-invariant subfactor of X with entropy h1, for any 0< h1 ≤ h.

It is natural to consider generalizations of these results to other locally compact
amenable groups. In particular, Feldman [13] found an analogue of Kolmgorov–Sinai
entropy h(T ) for an action T of Rn, 1≤ n <∞ and he proved that two Bernoulli actions
Ti , i = 1, 2 of Rn with h(T1)= h(T2) are isomorphic. We will describe his results in more
detail below in 2.1.

Feldman’s approach was extended by Ornstein and Weiss [30] to the class G of
amenable locally compact unimodular groups with zero self-entropy: G contains all
discrete and all nilpotent Lie groups. If G ∈ G, T is a measure-preserving action of G
on a probability space (X, B, µ), and ρ is a finite partition of X , then Ornstein and Weiss
define the spatial entropy sh(T, ρ) of the process (T, ρ). Then h(T )= supρ sh(T, ρ) is
defined as the entropy of the action T of G. However, the definition of spatial entropy takes
a different approach from Kolmogorov’s in [26]: we will discuss the relationships between
them below. It was further proved in [30] that h(T ) is a full invariant of the isomorphism of
Bernoulli actions of G. Ornstein and Weiss also proved an analogue of the Sinai theorem
on the existence of the Bernoulli subfactor, mentioned above, for an action T of G ∈ G
with h(T ) > 0, and an analogue of the classical Rudolph theorem on Bernoulli actions of a
group G ∈ G and its closed cocompact subgroups. For further details, see §§2.1–2.3 below.

If G is a discrete amenable group, and X, T and ρ are as above, then Kieffer [25] proved
an analogue of the Shannon–McMillan theorem for the action T using the Kolmogorov
entropy hK (T, ρ) of the process (T, ρ). Furthermore, it was shown in [13, 30] (see also
Lemma 2.3 below) that sh(T, ρ)= hK (T, ρ). It follows that h(T )= hK (T ), where hK (T )
is the classical Kolmogorov–Sinai entropy of T . These results suggest that the entropy
theory of actions of countable infinite amenable groups is very similar to the entropy theory
of Z-actions, and this intuition is supported by the study of CPE actions.

The initial results on CPE actions were obtained by Rokhlin and Sinai [37], who showed
that an action of Z has CPE if and only if it is uniformly mixing. Furthermore, they showed
that a CPE action of Z has Lebesgue spectrum with infinite multiplicity. To prove this, they
developed the method of perfect partitions. Later, this was extended by Kamiński [21]
to actions of Zd , d <∞, and then to actions of the group U T d(Z) of upper unipotent
triangular d × d-matrices over Z and its subgroups. Unfortunately, as is well known, these
methods cannot be applied to arbitrary discrete amenable groups.

A new approach to this problem, which can be applied to any countable infinite
amenable group, was introduced by Rudolph and Weiss [41], who applied results of
Connes et al [4] on the properties of orbits of actions of amenable countable groups.
Rudolph and Weiss [41] proved that any free CPE action of an amenable countable group
is uniformly mixing. In fact, it is not difficult to use the Rudolph–Weiss theory to show
that an action of a countable infinite amenable group is CPE if and only if it is uniformly
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mixing, see [12, 18, 47]. Dooley and Golodets [11] proved that any CPE action of a
countable amenable group has Lebesgue spectrum with infinite multiplicity.

The results of Rudolph and Weiss have led to an increased interest in the entropy of
actions of countable amenable groups. Glasner et al [16] studied Pinsker algebras in this
setting: Danilenko and Park [7, 8] developed a new approach to these problems using
cocycles, and Weiss [47] proved several versions of Shannon–McMillan theorems for
actions of monotileable amenable groups which we will use in this paper. Dooley et al [12]
studied non-Bernoulli CPE actions of countable amenable groups constructed as coinduced
actions: a version of this construction also appeared in [17] in connection with a question
of Thouvenot on CPE actions for discrete nilpotent groups.

New important results in the study of CPE actions of continuous amenable groups were
recently obtained by Avni [2], who developed the theory to include a notion of entropy
for cross-sections, and applied it to CPE actions of amenable groups in G. The theory of
cross-sections of locally compact groups actions was initially worked out by Feldman et
al [14]: Avni proved the following version of the Thouvenot conjecture.

THEOREM 1.1. Let G be an amenable group with zero self-entropy and let T be a free
CPE action of G on a probability space. Then T is uniformly mixing and has Lebesgue
spectrum with infinite multiplicity.

In this paper, we consider a special class of nilpotent Lie groups, which we call
unicommutator Lie groups, U LG. We prove that if G belongs to this class, then a
CPE action T of G on a probability space (X, µ) is equivalent to a system which is
uniformly mixing and has infinite Lebesgue spectrum. If the action T is free ergodic
with a positive entropy and the action T 0 of any lattice subgroup 0 of G is also ergodic
then we prove the existence of the Pinsker algebra 5(T ) for T . Moreover, T has
Lebesgue spectrum on L2(X, µ)	 L2(5(T )), where L2(5(T )) contains all functions
from L2(X, µ) measurable with respect to 5(T ). Our approach to this problem differs
from that of Avni. It was outlined to us by Benjy Weiss and we develop it below.

Let us describe the class of unicommutator Lie groups U LG.

Definition 1.2. We say that G belongs to U LG if it is connected simply connected and
if, furthermore, its Lie algebra g has a basis {ei }

N
1 whose commutators satisfy, for all

1≤ i < j ≤ N , that there is 1≤ k(i, j)≤ N such that:
(i) [ei , e j ] = 0 or [ei , e j ] = ek(i, j); and
(ii) [ei , ek(i, j)] = [e j , ek(i, j)] = 0.

These assumptions on g are made for technical reasons: we hope to weaken them later on.
The simplest examples of groups from this class are Rn, n ≥ 1, the group U T n(R) of all

triangular unipotent n × n-matrices over R, certain subgroups of U T n(R) and their direct
products.

First we investigated the case of Rn , and then we introduced the U LG groups for which
it is possible to extend this technique.

Recall that a discrete closed subgroup 0 of a locally compact group G is called a lattice
subgroup if G/0 has a finite G-invariant measure [33, II]. A lattice subgroup is called
uniform if 0 is cocompact in G. Recall also that all lattice subgroups of a simply connected
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nilpotent Lie group are uniform [33]. The existence of a lattice subgroup 0 in G ∈ U LG
follows from the commutations relations above for g [33].

We will see in §4.2 that G ∈ U LG is a subgroup of U T n(R) for some integer n, where
N < n with N , as above. Moreover, 01 = G ∩ U T n(Z) is also a lattice subgroup of G.

The main idea of this paper is to reduce the study of the entropy of an action of groups
in U LG to the study of the entropy of actions of its lattice subgroups 0.

This idea is not new in ergodic theory. Rudolph [40] proved that a free action St , t ∈ R
of R (i.e. a flow) with hK (St ) <∞ for each t ∈ R is CPE if and only if there is some t for
which St is a CPE action. The general situation, without this assumption, was considered
by Blanchard [3]. A similar result was obtained by Gurevich [20]. Sinai proved that if a
flow St , t ∈ R has CPE, then it has Lebesgue spectrum with infinite multiplicity [6].

To prove these results, the authors use the methods of perfect partitions and properties
of special flows. However, these approaches are difficult to apply in our situation. We use
rather the spatial entropy of Ornstein–Weiss [30], its special case, Feldman’s r -entropy, and
the connection of this entropy with the classical Kolmogorov–Sinai entropy [13]. These
matters are discussed in §2.

One of the main results of this paper is the following.

THEOREM 1.3. Let T be a free Borel ergodic action of a group G from U LG by measure-
preserving automorphisms of a probability space, and let 0 be a lattice subgroup of G.
Then the action T is CPE if and only if the restriction T 0 of T to 0 is CPE.

The proof of this statement is given in Theorem 3.2 for Rn-actions, and in Theorem 4.10
for actions of a group G ∈ U LG.

We derive two consequences from this statement.
• A free action T of a group G from U LG has CPE if and only if T is uniformly

mixing.
• If G and T are as above, then T has Lebesgue spectrum with infinite multiplicity.

We prove these results in §3 for Rn-actions, and in §4 for G ∈ U LG.
Let G belong to U LG, and let 0 be a lattice subgroup of G. Consider the action of 0

on G by left shifts. Since 0 is cocompact in G, then it follows from the definition of the
class U LG that there is a compact subset G(0) of G such that G(0) intersects any 0-orbit
at only one point. This observation is easy to see for the lattice 01, introduced above.
(We check this for the Heisenberg group H in the proof of Theorem 4.3 below.) Denote
by |G(0)| the Haar measure of G(0) ∈ G. We choose the Haar measure on G such that
|G(01)| = 1.

THEOREM 1.4. Let G, 0, 01 be as above, T an ergodic Borel action of G by measure-
preserving automorphisms of a probability space (X, B, µ), and the spectrum of T does
not contain a discrete component. If T 0 is the restriction of T to 0, then

h(T )= |G(0)|−1hK (T
0),

where h(T ) is the Ornstein–Weiss entropy of T and hK (T 0) is the classical entropy of T 0 .
In particular, we have h(T )= hK (T 01).
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One can easily derive from this theorem the following analogue of Abramov’s formula
for the entropy of a flow.

COROLLARY 1.5. If the conditions of Theorem 1.4 hold, then

hK (T
01)= |G(0)|−1hK (T

0).

Recall that if St , t ∈ R is a flow, then hK (St )= |t |hK (S1) [1], and St and S1 are not
necessarily ergodic. A similar formula was found by Conze [5] for the entropy of an action
of a lattice subgroup of Rn .

The proof of Theorem 1.4 for Rn-actions is given in 2.14, and for actions of a non-
commutative group from U LG, in 4.7. It seems to us that Theorem 1.4 might hold for a
larger class of groups than nilpotent Lie groups, (see [30, Appendix B]).

The second subject studied in this paper is the Pinsker algebra of actions of G ∈ U LG.
Suppose that a locally compact amenable group G has a measure-preserving free

action T on a probability space (X, B, µ). The maximal T -invariant sub-σ -algebra of
B, containing all finite partitions P such that the process (T, P) has entropy h(T, P)= 0,
is called the Pinsker algebra of 5(T ) of the action T . This algebra was introduced and
studied by Pinsker [31] for Z-actions.

Rokhlin and Sinai [37] described the Pinsker algebra of Z-actions using perfect
partitions and proved that T has infinite Lebesgue spectrum on the space L2

0(X, µ)	
L2

0(5(T )), where L2
0(5(T )) contains all 5(T )-measurable functions from L2

0(X, µ).
These and other results on the Pinsker algebra can be found in the recent monograph of
Glasner [15] and the survey of Thouvenot [45].

The Pinsker algebra and the Pinsker factor for actions of countable amenable groups
were further investigated by Glasner et al [16] and Danilenko [7]. The spectral properties
of these actions were studied by the authors in [11]. Essentially, all the major results on
the Pinsker algebra of Z-actions extend to this setting.

Pinsker algebras for flows were studied by Gurevich [20]. He showed that if St , t ∈ R is
a flow, and 5(St ) is the Pinsker algebra of the automorphism St , then the σ -algebra 5(St )

is independent of t 6= 0. To prove this assertion, the authors applied the Abramov formula
for the entropy of a flow, mentioned above. Spectral properties of a flow St , t ∈ R, with a
non-trivial Pinsker algebra 5(St ) for t 6= 0, appear not to have been considered.

We will study the Pinsker algebra via the connection between the entropy of an action
T of a group G and the entropy of the restriction T 0 .

Our second major result is the following theorem.

THEOREM 1.6. Let G be a nilpotent Lie group in U LG, 0 a lattice subgroup of G, and
let T be a free ergodic measure-preserving action of G by automorphisms on a probability
space (X, B, µ), with positive entropy, and the spectrum of T does not contain a discrete
component. If T 0 , is the restriction of T to 0, then the Pinsker algebra 5(T ) of T exists
and 5(T )=5(T 0), where 5(T 0) is the Pinsker algebra of T 0 . Furthermore, the action
T has infinite Lebesgue spectrum on the space L2

0(X, µ)	 L2
0(5(T )), where L2

0(5(T ))
contains all 5(T )-measurable functions from L2

0(X, µ).

The first part of this theorem follows from Theorem 1.4. Notice also that if the spectrum
of T does not contain a discrete component, then T 0 is ergodic for any lattice 0 of G (see
Proposition 2.12).

https://doi.org/10.1017/S0143385711000587 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385711000587


540 A. H. Dooley and V. Ya. Golodets

The paper is organized as follows. Section 2 contains preliminary results: we define
the Feldman r -entropy of actions of groups Zn and Rn, n ≥ 1, and its generalization by
Ornstein and Weiss [30] for a rather large class of locally compact unimodular amenable
groups. We also discuss some results on connections of this entropy with the classical
Kolmogorov–Sinai entropy. In §3, we study entropy of actions of Rn and its lattice
subgroups. Section 4 is devoted to the study of the entropy of actions of nilpotent Lie
groups from U LG.

2. The entropy of actions of Rn

In this section, we present some preliminaries and new results. In §2.1, we consider the
Feldman r -entropy [13] for Z-actions, and in §2.2 we introduce the spatial entropy [30] and
discuss some of its properties. In §2.3, we present Feldman’s theorem on the connection
between the spatial entropy of actions of the group Rn, n ∈ N, and those of its lattice
subgroups. We also give some applications and generalizations of this theorem. In
particular, we show that the Ornstein–Weiss entropy of an Rn-action coincides with the
classical entropy of the action of its lattice subgroup Zn (see Theorem 2.14).

2.1. Feldman’s r-entropy in Zn . Let us consider Z-actions in more detail: we will return
to the case Zn at the end of this subsection. Let T be an ergodic measure-preserving
automorphism of (X, B, µ) and ρ a finite partition of (X, µ). The classical entropy
hK (T, ρ) of the process (T, ρ) is

hK (T, ρ)= lim sup
N→∞

(1/N )H

( N∨
j=1

T− jρ

)
, (2.1)

where H(Q) is defined for a finite partition Q = {Qi } of (X, µ) by H(Q)=
−
∑
µ(Qi ) log µ(Qi ).

Now choose a real number r > 0 and consider a collection B of disjoint
∨N

j=1 T− jρ-
measurable sets each having diameter ≤r with respect to the normalized Hamming metric
on ρ − N -names of points, that is

x, y ∈ B ∈ B⇒ dρN (x, y)= (1/N )|{ j : 1≤ j ≤ N and ρ(T− j x) 6= ρ(T− j y)}| ≤ r,

where ρ(x)= ρi is an element of the partition ρ = {ρi } such that x ∈ ρi (= ρ(x)). This
family B is called a (ρ, N , r)-family.

Definition 2.1. [13] We define hr (T, ρ), the r -entropy, as the infimum of the set of real
numbers b such that for every ε > 0, there exists N0 such that if N > N0, then there exists
a (ρ, N , r)-family B with µ(

⋃
B) > 1− ε and (1/N )H(B)≤ b; in symbols

hr (T, ρ)= sup
ε>0

lim inf
N→∞

{
H(B)

N

}
,

where B is a (ρ, N , r)-family with µ(
⋃

B) > 1− ε.

Clearly, hr (T, ρ)≤ hK (T, ρ).
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Definition 2.2. [13] For r > 0, define kr (T, ρ) to be the same supremum as in equation 2.1,
but with log |B| replacing H(B). It follows from the Shannon–McMillan theorem that
kr (T, ρ)≤ hK (T, ρ), and also, clearly, hr (T, ρ)≤ kr (T, ρ). Furthermore, the number of
atoms of

∨N
j=1 T− jρ in a single B ∈ B is dominated by

( N
[Nr ]

)
, where

(n
k

)
is the binomial

coefficient, and [x] means the greatest integer not exceeding x .

The following properties are easy to verify.
• hr (T, ρ)= kr (T, ρ)= 0 if r ≥ 1.
• hr (T, ρ) and kr (T, ρ) are monotone non-increasing functions of r .

It is, furthermore, not difficult to prove that kr (T, ρ) is convex, and hence continuous
and strictly monotonic for r > 0 (see [13, Proposition 2.3]). Finally, hr (T, ρ)= kr (T, ρ)
for all r [13, Corollary 2.6].

LEMMA 2.3. [13] Let T and ρ be as above, and let k(T, ρ)= limr→0 kr (T, ρ), then
k(T, ρ)= hK (T, ρ).

Proof. The idea of the proof was given in [13]. We present a somewhat more detailed
proof because we will use it in the following. Let B be a (ρ, N , r)-family with µ(

⋃
B) >

1− ε/2. Then each B ∈ B contains no more than
( N
[Nr ]

)
|ρ|[Nr ] atoms. For sufficiently large

N , the Shannon–McMillan theorem gives a (
∨N

j=1 T− jρ)-measurable set E of measure

at least 1− ε/2 such that all atoms in E have measure at most 2−(hK (T,ρ)−ε/2)N . Consider
the (ρ, N , r)-family C= (B ∩ E : B ∈ B). Then

H(C) = −
∑

B

µ(B ∩ E)(log µ(B ∩ E)) (2.2)

= H(B)−
∑

B

µ(B)

(
log

µ(B ∩ E)

µ(B)

)
+

∑
B

µ(B ∩ (X\E)) log(µ(B)) (2.3)

≤ H(B)−
∑

B

µ(B)

(
log

µ(B ∩ E)

µ(B)

)
. (2.4)

Let B1 = {B ∈ B : µ(B ∩ E)≥ (1−
√
ε)µ(B)} and B2 = B\(B1).

Then

−

∑
B∈B1

µ(B) log
(
µ(B ∩ E)

µ(B)

)
≤−log(1−

√
ε)(1− ε/2). (2.5)

Notice that

−

∑
B∈B2

log
(
µ(B ∩ E)

µ(B)

)
<−

∑
B∈B2

(log µ(B ∩ E))µ(B).

Since µ(B ∩ E) < (1−
√
ε)µ(B) for B ∈ B2, we have

√
εµ(B) < µ(B\(B ∩ E)), for

any B ∈ B2. Hence∑
B∈B2

µ(B) < (1/
√
ε)µ

(
X\

(⋃(
B
⋂

E

)))
<
√
ε.

Let

C(N , ρ, r, ε)=−log
((

N

[Nr ]

)
|ρ|[Nr ]2−NhK (T,ρ)−ε/2

)
.
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Now the following estimate is obvious:

−

∑
B∈B

µ(B) log
(
µ(B ∩ E)

µ(B)

)
< C(N , ρ, r, ε)

√
ε. (2.6)

Let D(N , ρ, r, ε)= (1/N )C(N , ρ, r, ε). We may deduce from (2.2)–(2.6) that

H(C)
N
≤

H(B)
N
+ D(N , ρ, r, ε)

√
ε.

Since (hK (T, ρ)− ε/2)(1− ε)≤ (1/N )H(C) by the Shannon–McMillan theorem,
one can use Definition 2.1 to obtain the following estimate:

(hK (T, ρ)− ε/2)(1− ε)≤ hr (T, ρ)+ D(N , ρ, r, ε)
√
ε. (2.7)

We use Stirling’s formula to estimate D(N , ρ, r, ε) for large enough N , obtaining:

D(N , ρ, r, ε)=−r log r − (1− r) log(1− r)− r log |ρ| + hK (T, ρ)− ε/2+ O(1).

Hence, one can assume that limr→0 D(N , ρ, r, ε) < hK (T, ρ)− ε/4, for sufficiently
large N , and it follows from (2.7) that

(hK (T, ρ)− ε/2)(1− ε)≤ k(T, ρ)+ (hK (T, ρ)− ε/4)
√
ε.

Since ε > 0 is arbitrary, it follows from the last inequality that hK (T, ρ)≤ k(T, ρ).
But we have seen above that kr (T, ρ)≤ hK (T, ρ), and hence we deduce that k(T, ρ)=
hK (T, ρ). 2

Conze [5] and Katznelson and Weiss [23] showed that the above definitions and
theorems all hold for Zn, n > 1. In particular, one can apply the version of Shannon–
McMillan from [47] to prove an analogue of Lemma 2.3 for Zn-actions.

2.2. Ornstein–Weiss spatial entropy. Suppose that a locally compact unimodular group
acts freely and preserves the measure on a probability space (X, B, µ) via Tg : x 7→ gx .
Ornstein and Weiss [30] introduced the notion of spatial entropy to extend the above theory
to this setting. We summarize here their major results.

If ρ is a finite partition of X , one can consider a measurable mapping, also denoted ρ,
from X to a compact metric space (�, d), whose level sets form the partition

ρ : X→�.

The special case where d is the normalized Hamming metric on the set �=
{1, 2, . . . , |ρ|} was considered in §§2.1. For convenience, it is assumed that the diameter
of � is 1. Let F be a compact subset of G. The basic concept in this approach is a
ρ − r − F-ball which is a measurable subset E of X such that for all x, y ∈ E ,

dρF (x, y) < r,

where

dρF (x, y)= 1/|F |
∫

F
d(ρ( f x), ρ( f y)) d f,

and |F | is the Haar measure of F ⊂ G.
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If ρ is fixed, we write dF instead of dρF . Let {Fn} be an increasing sequence of Følner
subsets of G such that

⋃
n Fn = G. For fixed r > 0, consider the set Hr of all h > 0 such

that for all δ > 0, if n is large enough, one can cover (1− δ) of X by fewer than 2h|Fn |

ρ − r − Fn-balls.
Ornstein and Weiss proved that Hr is not empty for 0< r < 1, and defined the spatial

r-entropy of the process of (T, ρ) by

sh(T, ρ, r)= inf
h

Hr .

They further showed that sp(T, ρ, r) is a continuous monotonic increasing function in
r , and defined the spatial entropy sh(T, ρ) of (T, ρ) by sh(T, ρ)= limr→0 sh(T, ρ, r).

In the case of G = Z, we introduced the r -entropy kr (T, ρ) in Definition 2.2. It is clear
that sh(T, ρ, r)= kr (T, ρ), and Lemma 2.3 shows that sh(T, ρ)= limr→0 sh(T, ρ, r)=
hK (T, ρ), where hK (T, ρ) is the Kolmogorov–Sinai entropy of the process (T, ρ). It turns
out that this assertion holds for any countable amenable group.

PROPOSITION 2.4. [30] Let G be an infinite countable amenable group, T an ergodic
action of G on a probability space (X, B, µ), and ρ a finite partition of X. Then
sh(T, ρ)= hK (T, ρ).

The proof uses the arguments of the proof of Lemma 2.3 and the version of the
Shannon–McMillan theorem for actions of countable amenable groups proved in [25]
and [47, Theorems 4.4, 4.12].

Ornstein and Weiss [30] introduced a class G of groups which they called groups of zero
self-entropy. This class contains all discrete amenable groups, all nilpotent Lie groups,
some solvable Lie groups, and is closed under direct products. We consider groups from
this class in this paper.

Let G belong to G and let T be a measure-preserving, free ergodic action on a
probability space. Then the entropy h(T ) of the action T is defined by:

h(T )= sup
ρ

sh(T, ρ),

where ρ is a finite partition of X , sh(T, ρ)= limr→0 sh(T, ρ, r), and

h(T )= sh(T, ρ)

if a measurable partition ρ is a generator for T .
Ornstein and Weiss studied h(T ) as an invariant for the action T . In particular, they

showed that if T1 and T2 are Bernoulli and h(T1)= h(T2), then T1 and T2 are metrically
isomorphic. They also proved some useful properties of h(T ) which we will use later on.

2.3. Spatial entropy for actions of Rn . If f and g are measurable functions from a
measurable subset C of Rn to a finite index set, then we denote by dC ( f, g), or d( f, g),
the number (1/|C |)|{ f 6= g}|, where |C | denotes the Haar measure of C . For a measure-
preserving action ϕ of Rn on (X, B, µ) as above, and a finite partition ρ of X , one
can define a metric dρC (x, y)= d( f, g), where f (v)= ρ(ϕvx) and g(v)= ρ(ϕv y), v ∈
C, x, y ∈ X , that is (1/|C |)|{v : ρ(ϕvx) 6= ρ(ϕv y)}|.
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Let N be a positive real number and let CN denote the cube of side N , i.e. all of
whose vertices have coordinates either 0 or N . Denote by ρCN the σ -field spanned by
{ϕ−1
v ρ; v ∈ CN }. Then the family B of disjoint sets is called a (ρ, N , r)-family if:

(i) each B ∈ B is in ρCN ; and
(ii) each B ∈ B has dρCN

-diameter ≤r .
The r -spatial entropy sh(ϕ, ρ, r), or r -entropy, and the spatial entropy sh(ϕ, ρ) are

defined by analogy with §§2.1 and 2.2, and sh(ϕ, ρ)= limr→0 sh(ϕ, ρ, r).
Now let ϕD be the Zn-action obtained from ϕ on the DZn-lattice: ϕD

v = ϕDv , where
D is a positive real number. Then one can consider the Zn-process (ϕD,ρ), and define
the spatial entropy of this process by sh(ϕD, ρ). Feldman [13] found an important
connection between the spatial entropy sh(ϕ, ρ) of the process (ϕ, ρ), and the spatial
entropy sh(ϕDi , ρ) of the process (ϕDi , ρ), where Di−1 ⊂ Di , i ∈ N, and Di → 0.

THEOREM 2.5. [13] Let ϕ be an ergodic measure-preserving action of Rn on a probability
space (X, B, µ). If ρ is a finite partition of X, then

sh(ϕ, ρ)= lim
D↓0
|CD|

−1sh(ϕD, ρ). (2.8)

Proof. The proof which we will give is based largely on [13]: we give sufficient detail to
establish some key estimates which will be used subsequently. To simplify our argument,
we consider actions ϕ such that ϕ0 is ergodic for any lattice subgroup 0 of Rn . In
particular, ϕ has this property if its spectrum does not contain a discrete component (see
Proposition 2.12 below).

Fix D > 0. The continuous dρ(x, y)-distance on CN between x and y from X may be
computed by taking the discrete dρ-distance between ϕvx and ϕv y over CD-lattice points
in CN and taking the normalized integral of this as v ranges over CD . More exactly,

dCN (x, y)=
∫

CD

dv

|CD|

(
1

(N/D)n
∑

w∈(N/D)n
|{w : ρ(ϕw+vx) 6= ρ(ϕw+v y)}|

)
,

where we suppose that N/D is an integer.
Let B be a (ρ, N , δ)-family of a measure greater than 1− ε, i.e. µ(

⋃
B) > (1− ε). If

x and y are in the same B ∈ B, i.e. dCN (x, y) < δ, then a sequence of estimates based on
the Fubini theorem shows us that for any given ε > 0, a sufficiently small choice of δ > 0
guarantees that there exists a set V ⊂ CD with |V |/|CD|> 1− ε such that for each v ∈ V
there is a set Sv ⊂ X, µ(Sv) > 1− ε with the following properties.

For each B ∈ B, x ∈ B ∩ Sv , there is a set Rx ⊂ B, µ(Rx ) > (1− ε)µ(B) such that if
w ∈ V, x ∈ B ∩ Sv and y ∈ Rx , then the discrete distance from ϕvx to ϕv y (over the CD

lattice points in CN ) is less than ε/2.
Thus, if y′, y′′ are in Rx , the discrete distance from ϕv y′ to ϕv y′′ is less than ε. Choose

some fixed v ∈ V and some x(B) in each non-empty B ∩ Sv , and let B0 = {ϕ−vRx(B) :

B ∩ Sv 6= ∅}. Then µ(
⋃

B0) > 1− 3ε, |B0| ≤ |B|, and each B ∈ B0 has discrete dρ

diameter at most 3ε over the CD lattice points in CN . Expand each set B ∈ B0 to the
set B̃ by adding the set B of all points which have the same ρ-name over the CD lattice in
CN as any point of B. The family so obtained consists of sets which are measurable with
respect to

∨
{ϕvρ : v ∈ (DZ)n}. However, they may no longer be disjoint. We disjointify

them. Thus, we have produced a (ρ, N/D, 3ε)-family for ϕD , of measure at least 1− 3ε,
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and of cardinality ≤|B|. This shows that

sh(ϕ, ρ, δ)≥ |CD|
−1sh(ϕD, ρ, 3ε).

Since ε > 0 was arbitrary, we have

sh(ϕ, ρ, δ)≥ |CD|
−1sh(ϕD, ρ),

by the properties of sh(ϕ, ρ, γ ), and hence

sh(ϕ, ρ)≥ |CD|
−1sh(ϕD, ρ), (2.9)

which gives the result in one direction.
To prove the opposite direction, we require a lemma.

LEMMA 2.6. [13] Fix ε > 0. There exists D > 0 and N0 such that if N > N0, and if we
let Lx be the set of CD lattice points v in CN for which

|{w ∈ CD : ρ(ϕv+wx)= ρ(ϕvx)}|> (1− ε)|CD|,

then R = {x : |Lx |> (1− ε)|N/D|n} has measure > 1− ε, where |N/D|n is just the
number of CD lattice points in CN .

Proof. We present a sketch of the proof of this lemma. By a straightforward argument
involving Fubini’s theorem, we get, for sufficiently small D > 0, that

|{w ∈ CD : ρ(ϕwx)= ρ(x)}|> (1− ε)|CD|

for all x in a set of measure greater than 1− ε2. Since ϕD is ergodic by the assumptions
of the theorem, one can apply the mean ergodic theorem to ϕD . 2

Proof of Theorem 2.5. Let R be as in the statement of Lemma 2.6. Then µ(R) > (1− ε),
where R is a ρCN -measurable set, and if B is a {ϕvρ : v ∈ (DZ)n ∩ CN }-measurable set
of discrete diameter ≤r for the process {(ϕD

v , ρ) : v ∈ Zn
∩ CN }, then B ∩ R is ρCN -

measurable and has continuous diameter ≤r + 2ε, where we apply Lemma 2.6 for the
process {(ϕv, ρ) : v ∈ CN }.

Hence
sh(ϕ, ρ, r + 2ε)≤ |CD|

−1sh(ϕD, ρ, r).

Fixing D and letting r→ 0 gives

sh(ϕ, ρ, 2ε)≤ |CD|
−1sh(ϕD, ρ).

Let ε ↓ 0 so that D ↓ 0, as forced by ε. Then we have

sh(ϕ, ρ)≤ sup lim
D↓0

(|CD|
−1sh(ϕD, ρ)).

Now this estimate and inequality (2.9) allow us to complete the proof. 2

We present some simple corollaries of Theorem 2.5.

COROLLARY 2.7. Let ϕ, Rn, (X, B, µ), ρ be as in the statement of Theorem 2.5, and let
p ∈ R, p > 0. Define the action ϕ p of Rn on (X, B, µ) as follows:

ϕ p
v (x)= ϕ(pvx), v ∈ Rn, x ∈ X.

Then sh(ϕ p, ρ)= pnsh(ϕ, ρ) and h(ϕ p)= pnh(ϕ).
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Proof. Indeed,

sh(ϕ p, ρ)= lim
D↓0
|CD|

−1sh(ϕ pD, ρ)= pn lim
D↓0
|C pD|

−1sh(ϕ pD, ρ)= pnsh(ϕ, ρ). 2

Consider now an action ϕ of the group Rn
× Zm, n, m ∈ N on (X, B, µ). Again let

ϕD be the Zn
× Zm-action obtained from ϕ on (DZ)n × Zm . We need the following

generalization of Theorem 2.5.

THEOREM 2.8. Let ϕ be an ergodic measure-preserving action of Rn
× Zm on a

probability space (X, B, µ), and ρ a finite partition of X. If ϕD is the restriction of ϕ
to (DZ)n × Zm , then

sh(ϕ, ρ)= lim
D↓0
|CD|

−1sh(ϕD, ρ).

To prove the theorem, one can apply the argument of the proof of Theorem 2.5.

COROLLARY 2.9. Let ϕ and ρ be as in the statement of Theorem 2.8, and ϕD be an
ergodic action of (DZ)n × Zm . Then

sh(ϕ, ρ)= lim
i→∞
|CDi |

−1hK (ϕ
Di , ρ) (2.10)

where Di = 1/2iD, and hK (ϕ
D, ρ) is the Kolmogorov–Sinai entropy of the process

(ϕD, ρ).

Proof. Since ϕD is ergodic, ϕDi is also ergodic. Hence, sh(ϕDi , ρ)= hK (ϕ
Di , ρ) by

Proposition 2.4. Now the corollary follows from Theorem 2.8. 2

We now consider some generalizations of Theorems 2.5 and 2.8.
Let D̄ = (D1, . . . , Dn), Di ∈ R+, and C D̄ be the rectangle C D̄ = {0≤ xi ≤ Di , 1≤

i ≤ n} in Rn . Consider the family of rectangles C D̄N , where D̄N = {0≤ xi ≤ N Di , 1≤
i ≤ n} and N ∈ R+. Notice that |C D̄N | = N n

|C D̄|. Let ϕ be an ergodic action of Rn

as above, and ϕ D̄N be the restriction of ϕ to the subgroup
⊕n

i=1 Di NZ of Rn , which is
isomorphic to Zn .

PROPOSITION 2.10. Let ϕ be an ergodic action of Rn , as in the statement of Theorem 2.5,
and ρ be a finite partition of X. Then

sh(ϕ, ρ)= lim
N↓0
|C D̄N |

−1sh(ϕ D̄N , ρ),

where ϕ D̄N and C D̄N are defined above.
The analogues of Corollary 2.7, Theorem 2.8 and Corollary 2.9 also hold in this setting.

The proof of the proposition is as in Theorem 2.5.
Actually, we may give a stronger generalization of Theorem 2.5. Let {ei }, 1≤ i ≤ n

be a basis of the space Rn, ‖ei‖ = 1, not necessarily orthogonal. Then Rn
= Re1 +

· · · + Ren . Let D̄ = (Di ), 1≤ i ≤ n, where Di is a positive real number, and let C D̄ be
the parallelepiped {xi ei , 0≤ xi ≤ Di , 1≤ i ≤ n}. Consider the family of parallelepipeds
CN D̄ = {xi ei : 0≤ xi ≤ NDi }, where N ranges over R+. Again, |CN D̄| = N n

|C D̄|. Let

ϕ be the action of Rn as above, and ϕ D̄, D̄ = (Di ) be the restriction ϕ to the subgroup
D1Ze1 + · · · + DnZen of Rn , isomorphic to Zn . In fact, by [33, §II], any uniform lattice
subgroup 0 in Rn can be reduced to one of this form.
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PROPOSITION 2.11. Let Rn, ϕ and ρ be as in the statement of Proposition 2.10; then

sh(ϕ, ρ)= lim
N↓0
|CN D̄|

−1sh(ϕN D̄, ρ).

The analogues of Theorem 2.8 and Corollary 2.9 also hold.

The next proposition describes a class of actions ϕ of Rn , for which we apply
Theorem 2.5.

PROPOSITION 2.12. Let ϕ be an ergodic action of Rn
× Zm as above, 0 a lattice

subgroup of Rn
× Zm , and ϕ0 the restriction of ϕ to 0. If the spectrum of ϕ does not

contain a discrete component in L2
0(X, µ)= { f ∈ L2

:
∫

f (x) dµ(x)= 0}, then ϕ0 is
ergodic.

Proof. Suppose that ϕ is free and ϕ1 is not ergodic. Then we can take a Borel
decomposition of ϕ1 into ergodic components (see for example [24, III, Theorem 18.5]).
Then there is a Borel factor-space (Y, BY , ν) of X, B, µ) and the Borel partition X y y ∈ Y
of X , where the Borel set X y is ϕ1-invariant for each y ∈ Y , and the restriction ϕ1

|X y of
ϕ1 to X y is ergodic. Furthermore, we have the integral decomposition µ=

∫
Y µy dν(y),

where µy is the conditional measure on X y , and ν is the restriction of µ to Y .
Observe that for all t ∈ Rn, ϕ1

t X y is again a ϕ1-invariant subset of X . Thus, (Y, BY , ν)

is a ϕ-invariant factor-space of (X, B, µ), and, furthermore, it is an ergodic factor-space
because ϕ is ergodic. Now it follows from the definition of Y that the action ϕ of Rn

on Y is transitive, and it reduces to the action of the group Tm
= Rn/Rn−m

× Zm , where
1≤ m ≤ n. Hence, (Y, ν) coincides with (Tm, ν′), where ν′ is the Haar measure for Tn .

Thus, if ϕ1 is not ergodic, then ϕ has the factor-space (Tm, ν′). It is obvious that the
restriction of ϕ to this factor-space has a discrete spectrum. 2

2.4. Entropy of Rn-actions and an analogue of the Abramov formula for the entropy of a
flow. In this section, we discuss a connection between the Ornstein–Weiss entropy h(ϕ)
of an Rn-action ϕ and the classical Kolmogorov entropy hK (ϕ

1) of an ergodic Zn-action ϕ1

(Theorem 2.14). As a consequence of this theorem, we obtain a new proof of the Abramov
formula [1] for entropies of ergodic actions of lattice subgroups of R and its generalization
for Rn due to Conze [5].

PROPOSITION 2.13. Let G be a countably infinite amenable group, and Gr a subgroup
of G of a finite index r , i.e. [G : Gr ] = r . If T is a measure-preserving action by
automorphisms of G on the probability space (X, B, µ), then hK (Gr )= rhK (G).

This statement is well known for Z actions [6, 15] and for Zn-actions [5]. An alternative
proof was given in [7].

Proof. Let Er be a finite subset of G which meets each right Gr -coset exactly once. If α is
a finite partition of X , we set αr

=
∨

g∈Er
gα. The following formula was proved in [18]:

hK (Gr , α
r )= rhK (G, α). (2.11)

One can derive from (2.11) that hK (G)=∞ if and only if hK (Gr )=∞. Suppose
that hK (G) <∞, and that T acts freely on (X, B, µ). Then there exists a finite
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generating partition ρ of X for the action of G, i.e.
∨

g∈G gρ generates the σ -algebra
B (see [8, 38]). Furthermore, each such generating partition ρ has the property that
hK (G)= hK (G, ρ) [8, 38]. It follows from the definition of ρr that if ρ is a generating
partition for the G-action, then ρr is a generating partition for the action of Gr , and
hK (Gr )= hK (Gr , ρ

r ). Now one sees from (2.11) that hK (Gr )= rhK (G).
Now suppose that the action T of G is not free. By [46], there exists a Bernoulli

action T B of G on (Y, BY , µB) with entropy 0< hK (T B) <∞, so that the action T ′g =
Tg ⊗ T B

g , (g ∈ G) is free and h(T ′)= hK (T )+ hK (T B). It follows that hK (T ′|Gr )=

rhK (T ′), where T ′|Gr is the restriction of T ′ to Gr . Since [46], hK (T ′|Gr )= hK (T |Gr )+

hK (T B
|Gr ), and h(T B

|Gr )= rhK (T B). We conclude that hK (T |Gr )= rhK (T ). 2

THEOREM 2.14. Let ϕ be an ergodic action of Rn on (X, B, µ) as in the statement of
Theorem 2.5, and suppose that the spectrum of ϕ does not contain a discrete component
(see Proposition 2.12). If ϕ1 is the restriction of ϕ to the lattice subgroup Zn of Rn , then

h(ϕ)= hK (ϕ
1),

where h(ϕ) is the Ornstein–Weiss entropy of ϕ, and hK (ϕ
1) is the classical entropy of ϕ1.

A more general statement of Theorem 2.14 was conjectured in [30, Appendix B]. We
give the proof of it for our special case.

Proof. Recall that ϕ1 is an ergodic action, and assume first that hK (ϕ
1) <∞: we will

consider the other case below. It follows from (2.9) that sh(ϕ, ρ)≥ sh(ϕ1, ρ)= hK (ϕ
1, ρ)

for any finite partition ρ of X . Hence, h(ϕ)= supρ sh(ϕ · ρ)≥ supρ hK (ϕ
1, ρ)= hK (ϕ

1).
We claim that h(ϕ)= hK (ϕ

1). We will prove this by contradiction. Suppose the claim
is not correct. Then we have h(ϕ) > hK (ϕ

1) and there exists ε > 0 such that

h(ϕ)− ε > hK (ϕ
1). (2.12)

It follows from the definition of h(ϕ) (see §2.2 or [30]) that there is a finite partition
α of X such that h(ϕ)≥ sh(ϕ, α) > h(ϕ)− ε. Since sh(ϕ, α)= limi→∞ 2inhK (ϕ

1/2i
, α),

by Corollary 2.9, for j sufficiently large, 2 jnhK (ϕ
1/2 j

, α) > h(ϕ)− ε. Furthermore,

2 jnhK (ϕ
1/2 j

) > h(ϕ)− ε.

Now observe that Zn is a subgroup of (1/2 j Z)n of index 2 jn . Hence, we have
2 jnhK (ϕ

1/2 j
)= hK (ϕ

1) by Proposition 2.13. But then the following estimate follows:
hK (ϕ

1) > h(ϕ)− ε. This contradicts (2.12), which shows that h(ϕ)= hK (ϕ
1) for ergodic

ϕ1 with hK (ϕ
1) <∞.

Now suppose that hK (ϕ
1)=∞. Then, for any sufficiently large real number N > 0,

there exists a finite partition α such that hK (ϕ
1, α) > N . But sh(ϕ1, α)= hK (ϕ

1, α) by
Proposition 2.4. Thus, we have

sh(ϕ, α)≥ sh(ϕ1, α) > N

by (2.9). Since N is arbitrary, we have h(ϕ)=∞, and h(ϕ)= hK (ϕ
1)=∞. Thus, the

statement is proved. 2

The relation h(ϕ)= hK (ϕ
1) holds in more general situations. Let G = Rn and let 0

be a uniform lattice subgroup of G: these subgroups were described in Propositions 2.10
and 2.11. Now let 0 act on (G, mG) by shifts, where mG is the Haar measure on G.
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Thus, there is a compact subset G(0) of G such that each 0-orbit intersects with G(0) in a
unique point. Notice that G(0) can be realized as a parallelepiped in Rn , as we have seen
above. Let |G(0)| be the Haar measure of the set G(0) in G.

COROLLARY 2.15. Let ϕ be as in the statement of Theorem 2.14, 0 a lattice subgroup of
Rn , and ϕ0 the restriction of ϕ to 0. Then

h(ϕ)= |G(0)|−1hK (ϕ
0).

The proof follows exactly as in Theorem 2.14, using Propositions 2.10 and 2.11.

COROLLARY 2.16. (Abramov–Conze formula) Let ϕ and 0 be as in the statement of
Corollary 2.15. Then

hK (ϕ
1)= |G(0)|−1hK (ϕ

0).

Recall that this formula for the entropy of a flow {St , t ∈ R}was proved by Abramov [1]:
hK (St )= |t |hK (S1). But he did not require St , t 6= 0 to be ergodic. Conze [5] extended
this result for n > 1 as follows. Let {ei }, 1≤ i ≤ n, where ei = (0, . . . , 0, 1i , 0, . . . , 0)
is a basis in the space Rn , and {γi }, 1≤ i ≤ n is the image of {ei }, 1≤ i ≤ n by a real
n × n-matrix M . Then hK (ϕ

0)= |det(M)|hK (ϕ
1), where 0 is a lattice subgroup of Rn ,

generated by {γi }, 1≤ i ≤ n.
Our proof of the formula of Corollary 2.16 given above uses a different approach

from [1, 5]. We use our approach to give a similar formula for non-commutative nilpotent
Lie groups from U LG in §4.

3. Rn-actions with positive entropy
In §3.1, CPE and uniformly mixing actions of Rn

× Zm are considered. Spectral properties
of these actions are studied in §3.2. Actions of these groups with a positive entropy, their
Pinsker algebras and spectral properties are investigated in §3.3.

3.1. CPE actions of Rn .

Definition 3.1. We will say that a free action ϕ of G = Rn
× Zm, n, m ∈ N on a probability

space (X, B, µ) has completely positive entropy (CPE) if the spatial entropy sh(ϕ, ρ) of
the process (ϕ, ρ) is positive for any finite partition ρ of X .

If G is a discrete group, then an action ϕ of G has CPE if hK (ϕ, ρ) > 0 for any finite
partition ρ of X .

THEOREM 3.2. Let G and ϕ be as above. Then ϕ is a CPE action of G if and only if for
any uniform lattice subgroup 0 of G (see the remark after the statement of Theorem 2.10),
the action ϕ0 of 0 is also CPE.

Proof. Assume first that ϕ is a CPE action of Rn . Then it is obvious that ϕ is ergodic.
Let us show that ϕ D̄ is also ergodic for any D̄ = (Di ), Di > 0. Suppose ϕ D̄ is not ergodic
for some D̄. To simplify the notation, consider the situation of Theorem 2.5 and assume
that ϕ1 is a non-ergodic action of Zn . It follows from the proof of Proposition 2.12 that
there exists a ϕ-invariant factor-space (Y, BY , ν), where Y = Tn and ν is the Haar measure
on Y . Recall that ϕ is free. Furthermore, (Y, ν) also contains the factor-space (Y ′, ν′),
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where Y ′ = T. Now, if ψ is the restriction of ϕ to Y ′ and n ≥ 2, then it is obvious that
h(ψ)= 0. If n = 1, then again h(ψ)= 0. This follows from the second part of the proof
of Theorem 2.5 (see [30, Appendices B]).

Hence, if ϕ1 is not ergodic on (X, B, µ), then ϕ is a non-CPE action. But this
contradicts our assumption on ϕ, and hence ϕ1 is ergodic. Thus, if ϕ is a CPE action
of G, and 0 is a uniform lattice subgroup of G, then ϕ0 is ergodic.

Let us show that ϕ0 is also a CPE action of 0. To illustrate the idea of the proof,
consider the case G = R. Then for any finite partition ρ of X ,

sh(ϕ, ρ)= lim
n→∞

nhK (ϕ
1/n, ρ),

by Corollary 2.9. As sh(ϕ, ρ) > 0, our assumption implies that hK (ϕ
1/n, ρ) > 0 for

sufficiently large n. But hK (ϕ
1/n, ρ) is the classical entropy of the (1/n)Z-action, hence

we see that hK (ϕ
1/n, ρ)= H(ρ |

∨
∞

i=1 ϕ−i/nρ) (see [6, 15] for Z-actions, and [5] for Zn-
actions). This relation allows to derive the following estimate:

0< H

(
ρ

∣∣∣∣ ∞∨
i=1

ϕ−i/nρ

)
≤ H

(
ρ

∣∣∣∣ ∞∨
i=1

ϕ−iρ

)
= hK (ϕ

1, ρ).

Hence, sh(ϕ1, ρ)= hK (ϕ
1, ρ) > 0, and ϕ1 is a CPE action of Z.

The general case can be treated similarly, using Propositions 2.10 and 2.11, and
properties of the entropy of Zn-actions from [5, 23].

For the opposite direction, we suppose that ϕD is CPE. Then ϕD is ergodic, and
hK (ϕ

D, ρ)= sh(ϕD, ρ) > 0 for any finite partition ρ of X by Proposition 2.4. Now it
follows from (2.9) that sh(ϕ, ρ)≥ |CD|

−1sh(ϕD, ρ) > 0. This shows that ϕ is a CPE
action of Rn . 2

Definition 3.3. An action of a locally compact group G on a probability space (X, B, µ) is
called uniformly mixing if for any finite partition ρ and for any ε > 0, there exists a compact
subset K ⊂ G such that for any finite set F ⊂ G which is K -separated (i.e. gh−1 /∈ K for
any two distinct g, h ∈ F) one has:

H(ρ)−
1
|F |

H

(∨
g∈F

gρ

)
< ε.

THEOREM 3.4. Let ϕ be a free, ergodic, measure-preserving action of the group G =
Rn
× Zm on a probability space (X, B, µ). Then ϕ is a CPE action if and only if ϕ is

uniformly mixing.

Proof. We will give the proof for G = R: a similar proof holds in the general case. We
suppose first that ϕ is uniformly mixing and show that ϕ is CPE. To show this, it suffices
to check that ϕ1 is a CPE action of Z by Theorem 3.2.

Let ρ be a finite partition of X . Then for any ε > 0, there exists, by Definition 3.3, a
compact set K ⊂ R such that for any finite set F ⊂ R which is K -separated (i.e. g − h /∈ K
for g, h ∈ F), we have

H(ρ)−
1
|F |

H

(∨
r∈F

(ϕrρ)

)
< ε. (3.1)
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Suppose that K is a closed interval K = [0, m], where m ∈ N, and F is a K -separated
set of integers. Then it follows from (3.1) that ϕ1 is a CPE action of Z, by [37] (see
also [12, 47]), and hence ϕ is a CPE action of R by Theorem 3.2. Thus, we have proved
the theorem in one direction.

Suppose that ϕ is a CPE action of R on (X, B, µ). We will show that ϕ is uniformly
mixing. Again, this proof can be easily extended to actions of Rn, n > 1. Recall that if
ξ and η are finite partitions of X , then we can set d(ξ, η)= H(ξ/η)+ H(η/ξ), where
d(ξ, η) is the Rokhlin metric on the set of all measurable partitions ξ of X with H(ξ) <∞
(see [36, §6] or [15, Ch. 15, §3]).

Since ϕ is a strongly continuous action of R in the operator topology in the Hilbert
space, then for any finite partition ρ of X and any ε > 0, there exists an integer m such that

d(ϕtρ, ρ) < ε/2, |t |< 1/m, (3.2)

by [15, Lemma 15.9]. As ϕ is a CPE action, ϕ1/m is also a CPE action of (1/m)Z, by
Theorem 3.2. Hence ϕ1/m is uniformly mixing by the main theorem of [41], and there
exists for ε > 0 a finite subset K = {0,±1, . . . ,±m1}, m1 ∈ N such that if a finite subset
F of Z is K -separated, then

H(ρ)−
1
|F |

H

(∨
i∈F

ϕi/mρ

)
< ε/2. (3.3)

Let p = (m1 + 2)/m, and K1 = [−p, p] ⊂ R. We claim that if F1 is a finite subset of R
and F1 is K1-separated, then

H(ρ)−
1
|F1|

H

( ∨
ri∈F1

ϕriρ

)
< ε. (3.4)

To prove this, notice that each ri from F1 can be written in the form ri = ai/m + ti , where
ai ∈ Z and |ti |< 1/m. Since |ri − r j |> p, then |ai/m − a j/m|> m1/m, and hence it
follows from (3.3) that

H(ρ)−
1
|F1|

H

( ∨
ri∈F1

ϕai /mρ

)
< ε/2. (3.5)

We will use the following properties of the Rokhlin metric.
(i) d(ϕρ, ϕρ′)= d(ρ, ρ′) for any finite partitions ρ, ρ′ of X .
(ii) If {ρi } and {ρ′i } are two families of finite partitions of X , and 1≤ i ≤ n, n ∈ N, then∣∣∣∣H(∨

i

ρi

)
− H

(∨
i

ρ′i

)∣∣∣∣≤ n∑
i=1

d(ρi , ρ
′

i ).

Using these properties of the Rokhlin metric and (3.2), one can derive from (3.3) the
following estimate:

H(ρ)−
1
|F1|

H

( ∨
ri∈F1

ϕriρ

)
≤ H(ρ)−

1
|F1|

H

( ∨
ri∈F1

ϕai /mρ

)
+ ε/2≤ ε/2+ ε/2= ε.

Thus, (3.4) holds, and ϕ is uniformly mixing. 2
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COROLLARY 3.5. Let ϕ be a free CPE action of G = Rn
× Zm on (X, B, µ), and H a

closed subgroup of G. Then the restriction ϕ to H is a CPE action of H on (X, B, µ).

Proof. Let ϕH be the restriction of ϕ to H . Since ϕ is uniformly mixing by Theorem 3.4,
then ϕH is also uniformly mixing. Notice that H is isomorphic to the group G1 =

Rn1 × Zm1 (see [33, Ch. II]), where 0≤ n1 ≤ n, 0≤ m1 ≤ n + m − n1. Hence, it follows
again from Theorem 3.4 that ϕH is a CPE action of H . 2

COROLLARY 3.6. Let G, ϕ, (X, B, µ) be as in Theorem 3.4, and H a cocompact closed
subgroup of G. Then ϕ is a CPE action if and only if ϕH is a CPE action.

Proof. Notice that if H is a cocompact closed subgroup of Rn , then the structure of
H is worked out in [33]. More exactly, there is a decomposition of the space Rn as
a direct sum of subspaces V and W and a basis {e1, . . . , ep} in W such that H =
V
⊕

(Ze1 + · · · + Zep), dim V + p = n. Hence, any uniform lattice subgroup of H is
a uniform lattice subgroup of Rn . Now the corollary is obvious. 2

To complete this subsection, we make some remarks about Bernoulli actions of
Rn
× Zm , which are important examples of CPE actions of these groups. If G is an infinite

discrete amenable group, then it is easy to construct a Bernoulli action of G using the von
Neumann construction. Let (X, B, µ) be a probability space, and take a copy (Xg, Bg, µg)

of (X, B, µ) for each g ∈ G. We define a space (Y, BY , ν) as follows:

(Y, BY , ν)=
⊗
g∈G

(Xg, Bg, µg),

where y = (xg), xg ∈ Xg , is a point of Y and ν =
⊗

g µg . The Bernoulli action T of G is
defined as follows:

(Tg y)h = yhg,

where g, h ∈ G. It is easily seen from this definition that T is a uniformly mixing action
of G, and hence T is a CPE action of G (see for example [12]). It follows from [30] that
any Bernoulli action T ′ of G is isomorphic either to some T as above or to a factor action
of this T . Hence, any Bernoulli action of a discrete amenable group G is CPE.

If G is a locally compact unimodular amenable group, then a Bernoulli action T of G
can be realized either as a Poisson process on (G, m), where m is the Haar measure of G,
or as a factor of this process [30, III, §§4, 6]. Let T be a Bernoulli action of Rn . Since Zn

is a closed cocompact subgroup of Rn , then the restriction T to Zn is a Bernoulli action of
Zn by [30], and hence this restriction is a CPE action of Zn by the remark above. Now we
can conclude that the Bernoulli action T is a CPE action of Rn by Theorem 3.2. We will
use these remarks in the next subsection.

3.2. Spectral properties of CPE Rn-actions.

Definition 3.7. Let G be a locally compact group, and T be a Borel free measure-
preserving action of G on a standard Borel probability space (X, B, µ). The action
T defines the unitary representation g→Ug, g ∈ G, of the group G on the Hilbert
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space H0 = L2
0(X, µ)= { f : f ∈ L2(X, µ);

∫
X f (x) dµ(x)= 0} by

(Ug f )(x)= f (T−1
g x), f ∈ H0, g ∈ G.

We say that T has infinite Lebesgue spectrum if the representation g 7→Ug can be
decomposed as a countably infinite direct sum of copies of the regular representations
of G.

THEOREM 3.8. Let ϕ be a free CPE action of G = Rn
× Zm, n ≥ 1 on a probability space

(X, B, µ). Then ϕ has infinite Lebesgue spectrum on H0.

To prove this theorem for G = Rn
× Zm , we develop the approach which we used

in [11] to study spectral properties of discrete amenable groups. Let G = Rn
× Zm ,

and let Ĝ be the Pontryagin dual of G with Haar measure mĜ . Suppose we have a
Borel free action T of G on (X, B, µ), as in Definition 3.7. As above, let g→Ug

be the unitary representation of G on H0 induced by T . It follows from a generalized
version of Stone’s theorem [35] that Ug =

∫
Ĝ〈g, x〉d Ex , where 〈g, x〉, g ∈ G is the

character of G corresponding to x ∈ Ĝ, and Ex is the spectral measure of g→Ug on H0

commuting with Ug, g ∈ G. Let f ∈ H0, ‖ f ‖ = 1. Then we can define a Borel measure
m f ((1))= ((E1) f, f ) on Ĝ, where 1 is a Borel subset of Ĝ. As is well known, there
is a vector f0, ‖ f0‖ = 1 in H0 such that the measure m0 = m f0 is the maximal measure
in the following sense: any mk for k ∈ H0 with ‖k‖ = 1 is subordinated to m0, or, in
symbols, mk � m0. This means that if A0 is the support of m0 and Ak is the support of mk ,
then Ak ⊆ A0. Recall that the support A f of m f is the smallest Borel subset of Ĝ such
that m f (A f )= 1, m f (Ĝ\A f )= 0. Now we can realize H0 as a direct integral of Hilbert
spaces Hx , x ∈ Ĝ, with respect to the measure m0:

H0 =

∫
Ĝ

⊕
Hx dm0(x)

(see [9] or [10, Appendice A]). If fi , i = 1, 2 are vectors from H0, then there are
functions fi (x) ∈ Hx corresponding to fi , or, in symbols, x ∼ { fi (x)}, x ∈ Ĝ, such that
functions x→ ( f1(x), f2(x)), x→ ( fi (x), fi (x)) are measurable, where ( f1(x), f2(x))
is the inner product in the space Hx for almost all x ∈ Ĝ by the measure m0. Furthermore,
( f1, f2)=

∫
Ĝ ( f1(x), f2(x)) dm0(x). Let ν(x)= dim Hx be the dimension of Hx . The

function ν(x) is measurable with values in N ∪∞.

PROPOSITION 3.9. Let G, ϕ, (X, B, µ) be as in the statement of Theorem 3.8. Then ϕ
has infinite Lebesgue spectrum if and only if the measure m0 on Ĝ is equivalent to the
Haar measure mĜ of the group Ĝ and the dimension function is ν(x)=∞.

The proposition is a simple reformulation of Theorem 3.8 in the terminology of direct
integrals of Hilbert spaces (see [9, 10, Appendice A]). 2

The next step in proving Theorem 3.8 is the following lemma.

LEMMA 3.10. Let ϕ be as in the statement of Theorem 3.8. Then the measure m0 on Ĝ,
as above, is subordinated to the Haar measure mĜ of the group Ĝ, but is not necessarily
equivalent to the Haar measure.
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Proof. Again, to simplify the notation, we treat the case R; the general case can be treated
similarly. In this case, Ĝ is again R and mĜ is Lebesgue measure l on R. Now, if we have
an action St , t ∈ R on (X, B, µ), then we can define the unitary representation of R on
H0 = L2

0(X, µ) by
Ut f (x)= f (S−t x), t ∈ R, f ∈ H0.

Thus, we have a one-parameter strongly continuous group of unitary operators {Ut }, t ∈
R on the Hilbert space H0. It follows that {Ut }, t ∈ R has the spectral representation

Ut =

∫
∞

−∞

eiλt d Eλ,

by Stone’s theorem [34], where Eλ, λ ∈ R is the spectral family of projections on H0

commuting with Ut for all t ∈ R.
Let ψ be a finite function on R. Then we can consider the operator ψ(U ) on H0 given

by

ψ(U )=
∫
ψ(t)Ut dt =

∫
ψ(t)eiλt d Eλ dt =

∫
ψ̂(λ) d Eλ,

where ψ̂(λ)=
∫

R ψ(t)e
iλt dt is the Fourier transformation of ψ . In particular, if f ∈ H0,

and ‖ f ‖ = 1, then

(ψ1(U ) f, ψ2(U ) f )=
∫
ψ̂1(λ)

¯̂
ψ2(λ) d(Eλ f, f ) (3.6)

and

(Usψ(U ) f, ψ2(U ) f )=
∫

eiλsψ̂1(λ)
¯̂
ψ2(λ) d(Eλ f, f ), (3.7)

where s ∈ R.
Consider the subspace H f of H0 generated by {Us f }, s ∈ R, where f ∈ H0, ‖ f ‖ = 1.

H f is an invariant subspace with respect to Us, s ∈ R. It follows from (3.6) and (3.7) that
we can consider the inner product on H f in the following form: if ψ1, ψ2 ∈ H f , then there
exist measurable functions ψ1(λ), ψ2(λ), λ ∈ R such that

(ψ1, ψ2)
′
=

∫
R
ψ1(λ), ψ̄2(λ) d(Eλ f, f ),

where (ψi , ψi )
′
=
∫

R |ψi (λ)|
2 d(Eλ f, f ) <∞, i = 1, 2. Furthermore, we have

Ut (ψ(λ))= ei tλψ(λ), t ∈ R for ψ from H f .
Recall that m f (λ1 − λ2)= (E(λ1−λ2) f, f ), λi , i = 1, 2 is a Borel measure on R. We

would like to show that m f is subordinated to Lebesgue measure l on R. Suppose that
m f is not subordinated to l. Then, as is well known, we have m f = m f l + m f s , where
m f l is subordinated to l, and m f s is singular, i.e. does not subordinate to l. Let the Borel
subsets Al and As of R be the supports of m f l and m f s , respectively. Then we have
Al ∪ As ⊆ R, Al ∩ As =∅, and m f l(R)= m(R ∩ Al), m f s(R)= m(R ∩ As), where R
is a Borel subset of R. Furthermore, H f is decomposed as H f = Hl ⊕ Hs , where Hl and
Hs are orthogonal St -invariant subspaces of H f , where t ∈ R, corresponding to Al and As ,
respectively.

Consider the subgroup Sn, n ∈ Z. Let Un be the corresponding unitary representation of
this subgroup on H0, and Un =

∫ 2π
0 einα d Fα the spectral representation of this subgroup,

where {Fα} is the family of spectral projections for Un, n ∈ Z, commuting with Un, n ∈ Z.
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Since St , t ∈ R has a CPE action on (X, B, µ), then Sn, n ∈ Z also has a CPE action
on (X, B, µ) by Theorem 3.2 above. Hence, Un, n ∈ Z has Lebesgue spectrum on H0

by [11, 37]. In particular, it has a spectrum on Hs , subordinated to the Lebesgue spectrum,
because Hs is an (St , t ∈ R)-invariant subspace of H0. We use this observation below.

If now ψ1, ψ2 ∈ Hs , then we can rewrite the inner product of ψ1 and ψ2 as follows:

(ψ1, ψ2)
′
s =

∫
ψ1(λ)ψ̄2(λ) dms(λ).

It is obvious that the function g(λ)= χ[0,2π)∩As (λ), where χI is the indicator of the set
I ∈ R, belongs to Hs . Suppose that (g(λ), g(λ))′s > 0, and consider the following relations

((Fαg)(λ), g(λ)′s)=
∫ α

0
|g(λ)|2 dms(λ).

The left part of this equality defines the measure on [0, 2π) which is subordinated to
the Lebesgue measure in view of the spectral properties of Sn, n ∈ Z. But the right part
defines a singular measure on [0, 2π). This contradiction shows that (g(λ), g(λ))′s = 0,
and As ∩ [0, 2π)=∅.

Hence, for any k ∈ Z, we also have As ∩ [2kπ, 2(k + 1)π)=∅. Since {Si/m}, i ∈
Z, m ∈ N also has a CPE action on (X, B, µ) by Theorem 3.2, then again As ∩

[2kmπ, 2(k + 1)mπ)=∅. Thus, m f s = 0, and m f = m f l , and since f is an arbitrary
vector from H0, we conclude that the maximal measure m0 is subordinated to l. 2

We now consider spectral properties of Bernoulli actions of the groups G = Rn
×

Zm, n, m ∈ N, which are an important class of the CPE actions of these groups. First,
we will prove a Lemma on the structure of these actions.

LEMMA 3.11. Let G be a countable discrete infinite abelian group so that G = Rn
× Zm ,

and let T be a measure-preserving Bernoulli action of G on the probability space (Y, B, ν).
Let (Z , B Z , µZ )=

⊗n
i=1(Yi , Bi , νi ), where (Yi , Bi , νi ) is a copy of (Y, B, ν), and n ∈

N ∪∞. If φ is the action of G on (Z , B Z , µZ ) defined by

(φhz)i = Th yi , h ∈ G,

where z = (yi ), 1≤ i ≤ n, yi ∈ Y , then φ is a Bernoulli action of G, and h(φ)= nh(T ).

Proof. First assume that G is discrete. Since all Bernoulli actions of G with the same
entropy are isomorphic [30], the action T of G on (Y, B, ν) is a von Neumann action, as
discussed at the end of §3.1. Thus, we have

(Z , B Z , µZ )=

n⊗
i=1

⊗
g∈G

(X i
g, Bi

g, µ
i
g).

Consider a subspace (Ze, Be, µe) of (Z , B Z , µZ ), which we define as follows:

(Ze, Be, µe)=

n⊗
i=1

(X i
e, Bi

e, µ
i
e).

For g ∈ G, we have

φg(Ze, Be, µe)=

n⊗
i=1

(X i
g, Bi

g, µ
i
g).
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Furthermore, it follows from the construction that subspaces (Ze, Be, µe) and
φg(Ze, Be, µe) are independent for g 6= e, and

⋃
g∈G φ

g(Ze, Be, µe)= (Z , B Z , µZ ).
Hence,

(Z , B Z , µZ )=
⊗
g∈G

φg(Ze, Be, µe),

and one can see that φ acts according to the von Neumann construction. This means that
φ is a Bernoulli action of G. The equality h(φ)= nh(T ) is obvious.

Now suppose that G = Rn
× Zm . Then 0 = Zn

× Zm is a closed cocompact subgroup
of G. It follows from [30] that any free action S of G is Bernoulli if and only if the
restriction of S to 0 is Bernoulli. Since the restriction φ to 0 is Bernoulli by the argument
above, it follows that φ is also a Bernoulli action of G. The equality h(φ)= nh(T ) now
follows from the equality for actions of 0, above, and Theorem 2.14. 2

LEMMA 3.12. Let G, (X, B, µ) be as in the statement of Theorem 3.8, and let φ be a
Bernoulli action of G on (X, B, µ). If h(φ)=∞, then φ has a Lebesgue spectrum.

Proof. Consider first the case G = R. The general case can be proved similarly. Let
S = {St , t ∈ R} be a Bernoulli action on (X, B, µ) with h(S)=∞, and t→Ut the
corresponding unitary representation of S on H0.

It follows from Stone’s theorem [34] that Ut = ei t A, where A is a self-adjoint operator
on H0. Recall that a complex number λ is said to be in the resolvent set ρ(A) of A if the
operator Rλ = (λI − A)−1 is bounded on H0. If the number λ does not belong to ρ(A),
then this number is said to be in the spectrum σ(A) of A. Notice that σ(A) is a closed
subset of R.

Now let S−1
= {S−t , t ∈ R}. Since hK (St )= hK (S−t ) for each t , then h(S)= h(S−1)

by Theorem 2.14, and, furthermore, S−1 is Bernoulli, as St , t 6= 0 is Bernoulli. Hence, S
and S−1 are isomorphic by [30], and therefore the unitary representations t→Ut = ei t A

and t→U−t = e−i t A are unitarily equivalent. This allows us to conclude that σ(A)=
σ(−A)=−σ(A), and, furthermore, if λ ∈ σ(A), then −λ ∈ σ(A).

Consider the action S ⊗ S = (St ⊗ St ), t ∈ R on (X × X, B × B, µ× µ). This is a
Bernoulli action of R with h(S ⊗ S)=∞, by Lemma 3.11. Then S ⊗ S is isomorphic
to S by [30], and hence the unitary representation t→Ut of R on L2(X, µ) is unitarily
equivalent to the unitary representation t→Ut ⊗Ut , t ∈ R on L2(X ⊗ X, µ⊗ µ). Since
Ut ⊗Ut = ei t A

⊗ ei t A
= ei t (A⊗I+I⊗A), σ(A)= σ(A ⊗ I + I ⊗ A). Hence, if λ, ξ ∈

σ(A), then λ+ ξ ∈ σ(A) too. Thus, 0 ∈ σ(A), and hence σ(A) is a closed subgroup of R
because σ(A) is a closed subset of R. It follows from Lemma 3.10 that σ(A)= Al , and
l(σ (A))= l(Al) > 0, where l is Lebesgue measure on R. Thus, A is a closed subgroup of
positive measure of R. It is well known (and easily proved) that this implies A = R; hence
the spectrum of S is Lebesgue.

We now give the details of the case G = R2: the proof for general n is sufficiently
similar to be left to the reader.

Let S = (S1, S2) be a Bernoulli action of G on (X, B, µ) with h(S1, S2)=∞, where
(t, 0)→ S1

t and (0, t)→ S2
t , t ∈ R are free actions of R. Notice that if t→U j

t is the
unitary representation, corresponding to S j , j = 1, 2, then U j

t has a form U j
t = ei t A j ,

where A j is the infinitesimal generator of U j , and there is a common domain of essential
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self-adjointness to each operator A j , j = 1, 2 (see [34, Theorems VIII. 12–13]). We claim
that t→ Si

t is Bernoulli. Indeed, as S is a Bernoulli action of R2, then (S1
n , S2

m), n, m ∈ Z2

is a Bernoulli action of Z2, by [30, §III, Theorem 3.10], because Z2 is a closed cocompact
subgroup of R2. But then each of the actions S1

n and S2
n , n ∈ Z is also a Bernoulli action of

Z, by [12, Proposition 3.2]. Hence, Si
t , t ∈ R is a Bernoulli action of R for each i , again

by [30], and, furthermore, h(Si )=∞ for i = 1, 2.
Now let

H0 =

∫
R2

⊕
Hλ1,λ2 dm0(λ1, λ2)

be the decomposition of H0 corresponding to the representation (t1, t2)→ (U 1
t1 ,U 2

t2) of
R2 on H0. It follows from Lemma 3.10 that dm0(λ1, λ2)= g(λ1, λ2) dλ1 dλ2, where
g(λ1, λ2) is a non-negative function from L1(R2, l × l) and

∫
g(λ1, λ2) dλ1 dλ2 = 1.

Consider the direct integral of Hilbert spaces

Hλ1 =

∫
R

⊕
Hλ1,λ2 dmλ1(λ2), (3.8)

where dmλ1(λ2)= g(λ1, λ2)dλ2. Let E0 = {λ1 :
∫

R g(λ1, λ2) dλ2 = 0}; then

H0 =

∫
R\E0

⊕
Hλ1 dλ1

is the decomposition of H0 corresponding to the representation t→U 1
t . Since t→ S1

t is
a CPE action of R by Corollary 3.5, the spectrum of t→ S1

t is Lebesgue by the argument
above. Hence, l(E0)= 0, and we obtain

H0 =

∫
R

Hλ1 dλ1.

Since t→ S2
t has also a CPE action of R on X by Corollary 3.5, the restriction of

the representation t→U 2
t to Hλ1 , defined by (3.8), has Lebesgue spectrum for any

λ1 ∈ E1, where E1 = R\E0. Thus, if λ1 ∈ E1, then g(λ1, λ2) > 0 for a.a. λ2 ∈ R. If now
N0 = {(λ1, λ2) : g(λ1, λ2)= 0}, then we have l × l(N0)= 0 by Fubini’s theorem. This
means that (S1, S2) has Lebesgue spectrum, as claimed. 2

LEMMA 3.13. Let G, (X, B, µ) be as in the statement of Theorem 3.8, and φ a Bernoulli
action of G on (X, B, µ) with 0< h(φ) <∞. Then φ has Lebesgue spectrum.

Proof. As usual, we first consider the case G = R. Let S = {St , t ∈ R, } be the Bernoulli
flow with 0< h(φ) <∞, and t→Ut the unitary representation on H0 = L2

0(X, µ)
corresponding to t→ St , t ∈ R. Then Ut = ei t A by Stone’s theorem, where A is an
unbounded self-adjoint operator on H0. Notice that A is unbounded because the spectrum
of the lattice subgroup 1/nZ is the set [−nπ, nπ ] for any n ∈ N.

If σ(A) ∈ R is the spectrum of A, then σ(A)=−σ(A) (see the proof of Lemma 3.12),
and l(σ (A)) > 0 by Lemma 3.10. Consider also the flow S p

= {S p
t = Spt , t ∈ R}, where

p ∈ R, p > 0. It is clear that S p is Bernoulli, and h(S p)= ph(S). The last formula follows
from Corollary 2.7 above. It is obvious that the unitary representation t→U p

t of R,
corresponding to the flow S p, has a form t→U p

t = ei tp A. This shows that the spectrum
of S p is the subset σ(p A)= pσ(A) of R.
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Since h(S p) < h(S) for 0< p < 1, S has factor-space (Z p, B p, µp) such that the
restriction Tp of S to (Z p, B p, µp) is Bernoulli with entropy h(Tp)= h(S p)= ph(S)
by [30]. As Tp is Bernoulli with the entropy ph(S), then Tp is isomorphic to S p, by [30],
and hence the spectrum of Tp coincides with the set pσ(A), which is the spectrum
of S p. Since T p, 0< p < 1 is the restriction of S to the factor-space (Z p, B p, µp),
pσ(A)⊆ σ(A) for any 0< p < 1. Now, if a ∈ σ(A), 0< a <∞, and p ranges over
0< p < 1, then the closed interval [−a, a] ⊆ σ(A), because σ(A) is a closed subset of R.
Since σ(A) is unbounded in R, we see that σ(A)= R. Thus, the support of the measure m0

in the statement of Lemma 3.10 is equal to R, and m0 is equivalent to Lebesgue measure
on R. This means that the flow S with 0< h(S) <∞ has Lebesgue spectrum.

To complete the proof of the lemma, we make some remarks about the case G = R2.
In fact, we can apply the same argument as in the preceding proof. Furthermore, we see
that if S = (S1, S2) is a Bernoulli action of G with 0< h(S) <∞, then each Si , i = 1, 2
will be a Bernoulli action of R with h(Si )=∞. Thus, one can repeat the argument of
Lemma 3.12 for G = R2. The case R× Z can be treated similarly. 2

For the next lemma, we recall some properties of direct integrals of Hilbert spaces
(see [9, 10], Appendice A). Let M be the commutative von Neumann algebra on H0

generated by the unitary operators Ug, g ∈ G, where the group G is as in the statement of
Theorem 3.8, and let g→Ug be the unitary representation of G described in Definition 3.7.
Denote by M ′ the commutant of M on the space H0: a bounded operator b on H0 belongs to
M ′ if bm = mb for any m ∈ M . If b ∈ M ′, then there is a correspondence b ∼ {b(x)}, x ∈
Ĝ, where b(x) is a bounded operator on Hx for a.e. x ∈ Ĝ (a.e. denotes almost every), such
that for any vector f ∼ { f (x)}, x ∈ Ĝ, from H0, we have b f ∼ {b(x) f (x)}. Furthermore,
the function x→‖b(x)‖ is measurable, and ‖b‖ = supx ‖b(x)‖.

Thus, we have realized our space H0 as the direct integrals of Hilbert spaces
H0 =

∫
Ĝ

⊕
Hx dm0(x). Now we have (Ug f )∼< g, x > f (x), where g→Ug is the

representation of the group G on H0, < g, x > is the character of Ĝ, corresponding to
g ∈ G, and f ∼ f (x) is a vector from H0. If b ∈ M ′ and f ∈ H0, then b f ∼ b(x) f (x).
This means that in our case the von Neumann algebra M ′ is realized as direct integrals of
von Neumann algebras M ′x , or M ′ =

∫
Ĝ

⊕
M ′x dm0(x). It is important to note that in our

case M ′x = B(Hx ), where B(Hx ) is the algebra of all bounded operators on the space Hx .

LEMMA 3.14. Let φ be a Bernoulli action of G = Rn
× Zm on (X, B, µ). Then φ has

Lebesgue spectrum with infinite multiplicity.

Proof. It suffices, as above, to consider the case G = R. This simplifies the notation, and
the proof of the general case follows by the same arguments. Thus, let S = {St , t ∈ R} be
a Bernoulli flow, and first consider the case h(S)=∞. Consider the unitary representation
t→Ut , on the Hilbert space H0 = L2

0(X, µ), corresponding to the action t→ St on
(X, B, µ). Then we have H0 =

∫
R
⊕

Hλ dλ, by Lemma 3.12.
Let K be a cyclic finite group with k a generator: K = {ki , 1≤ i ≤ n − 1, kn

= e}.
Consider the space

(Y, BY , ν)=
⊗
s∈K

(Xs, Bs, µs), s = e, k, . . . , kn−1,
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where each (Xs, Bs, µs) is a copy of (X, B, µ). Define the action S′ = {S′t , t ∈ R} on
(Y, BY , ν) by

(S′t y)s = St xs,

where y = (xs), s ∈ K is a point in Y . It follows from Lemma 3.11 that S′ is Bernoulli
with h(S′)=∞.

Now K also has an action on (Y, BY , ν) defined by

(Lk y)s = xks, s ∈ K .

It is easy to check that Lr S′t = S′t Lr for t ∈ R, r ∈ K .
Let t→U ′t , t ∈ R be the unitary representation of R on the space H ′0 = L2

0(Y, ν),
corresponding to t→ S′t , and let s→ Vs be the unitary representation of K on H ′0,
corresponding to s→ Ls . Notice that s→ Vs is isomorphic to the left regular
representation of K .

We may write U ′t , t ∈ R in diagonal form U ′t =
∫

R ei tλ d E ′λ and realize H ′0 as the direct
integral of Hilbert spaces H ′0 =

∫
R
⊕

H ′λ dλ. To show that dim H ′λ ≥ n for a.e. λ ∈ R,
consider the subspace H K

0 = (
⊗

s∈K H s
0 ) of H ′0, where H s

0 is the copy of H0, and notice
that H K

0 is invariant with respect to U ′ and V .
Consider the restriction U ′t and Vk to H K

0 and retain the same notations for them.
Observe that U ′t , t ∈ R can be considered on the space H K

0 as the diagonal n × n-matrix
with operator Ut on the diagonal and the remaining coefficients are zero, and Vk as the
n × n-matrix with coefficients 0 and IH0 , where IH0 is the unit operator in H0, such that
VkU ′t V−1

k =U ′t , t ∈ R.
Consider also the S′t -invariant subspace Ys = (Xs, Bs, µs) of (X, B, ν) and let Es be

the conditional expectation Es from Y onto Ys . It is obvious that S′t Es = EsUt = Es S′t ,
and Es defines the orthogonal projection Ps from H K

0 onto H s
0 , and, furthemore, U ′t Ps =

PsU ′t , t ∈ R. The projection Ps can be also considered as the n × n-matrix {ai j , i, j =
1, 2, . . . , n}, where ass = Ps , and the rest ai j = 0. It is obvious that Vk Ps V−1

k = Pks .
Recall that HK is {Ut , t ∈ R},-invariant. Hence, we can realize H K

0 in the following
form:

H K
0 =

∫
R

⊕
H K
λ dλ.

Since Vk and Ps commute with U ′t , t ∈ R, then there exist measurable operator functions
{Vk(λ)} and {Ps(λ)}, corresponding to Vk and Ps , respectively, where V (λ) is a unitary
operator and P(λ) is a projection for a.a. λ. Moreover, Vk(λ)Ps(λ)V

−1
k (λ)= Pks(λ) for

a.a λ. Recall that St , t ∈ R is a Bernoulli flow, and it has the Lebesgue spectrum by
Lemmas 3.12 and 3.13. Hence, Ps(λ) 6= 0 for a.e. λ. Then we have that the relation
Vk(λ)Ps(λ)V

−1
k (λ)= Pks(λ) is not zero for a.e. λ. But the operators {Vk(λ), Ps(λ)} act

on the space H K
λ , hence one can conclude that dim H K

λ ≥ n for a.e. λ. Finally, since n is
arbitrary, we have that dim H K

λ =∞ for a.e. λ.
But H K

0 is a subspace of H ′0 =
∫

R
⊕

H ′λ dλ, so H K
λ is a subspace of H ′λ for a.e. λ.

Thus, dim H ′λ ≥ dim H K
λ ≥∞ for a.e. λ.

Returning now to S = {St , t ∈ R} and S′ = {St , t ∈ R}, we see that as S and S′ are
Bernoulli actions of R with the same entropy h(S)= h(S′)=∞, they are isomorphic
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by [30] and their unitary representations t→Ut and t→U ′t on the spaces H0 and H ′0,
respectively, are unitarily equivalent. But H0 =

∫
R
⊕

Hλ dλ, and we can deduce from the
estimate above that dim Hλ =∞ for a.e. λ. This means that the Bernoulli action S of R
with h(S)=∞ has infinite Lebesgue spectrum.

Now let S be a Bernoulli action of R with 0< h(S) <∞. Then there exists a Bernoulli
action Sm of R with entropy h(Sm)= 1/mh(S) for any m ∈ N (see [30, III]). Let
S′ = (⊗Sm)

m . It follows from Lemma 3.11 that S′ is also Bernoulli with h(S′)= h(S).
Hence, S and S′ are isomorphic, and one can apply a similar argument to show that S has
infinite Lebesgue spectrum. 2

Now we can complete the proof of Theorem 3.8.

Proof of Theorem 3.8. Let S be a CPE action of R on (X, B, µ). There exists a factor-
space (Y, BY , ν) of (X, B, µ) such that the restriction S′ of S to (Y, BY , ν) is Bernoulli
with 0< h(S′)≤ h(S) (see [30, III, §3]). Moreover, there exists a conditional expectation
E from (X, B, µ) onto (Y, BY , ν) such that E St = St E = S′t for any t ∈ R. The last
equality shows that E and St commute for any t .

It is obvious that E can be extended to an orthogonal projection PE from H X
0 =

L2
0(X, µ) onto HY

0 = L2
0(Y, ν). Furthermore, if t→Ut is a unitary representation of t→

St on H X
0 and t→U ′t is a unitary representation on HY

0 of t→U ′t , then PEUt =Ut PE =

U ′t for any t . Consider the decomposition H X
0 =

∫
R Hλ dm0(λ) of H X

0 corresponding to
the diagonal presentation of Ut =

∫
ei tλ d Eλ, where m0 is the Borel measure on R, defined

in the statement of Lemma 3.10 and subordinated to the Lebesgue measure l on R. Let M
be a commutative von Neumann algebra on H X

0 generated by Ut , t ∈ R. Then PE belongs
to the commutant M ′ of M , and there is a measurable field {Pλ}, where Pλ is an orthogonal
projection from B(Hλ) for a.a. λ ∈ R, such that PE ∼ {Pλ} (see [9]).

Since PE H X
0 = HY

0 , we have HY
0 =

∫
R PλHλ dm0(λ). But this is a decomposition of

HY
0 with respect to t→U ′t , and since t→ S′t is Bernoulli, m0 is equivalent to the Lebesgue

measure l by Lemmas 3.12 and 3.13. Furthermore, dim PλHλ =∞ for a.e. λ ∈ R, by
Lemma 3.14. Hence, dim Hλ ≥ dim PλHλ =∞ for a.e. λ, which means that S has infinite
Lebesgue spectrum. 2

3.3. The Pinsker algebras of Rn-actions. In this section, we consider ergodic actions ϕ
of Rn with positive entropy, and we also suppose that action ϕ0 is ergodic on (X, B, µ)
for any lattice subgroup 0 of Rn . We will show that the Pinsker algebra5(ϕ) of the action
ϕ exists and coincides with the Pinsker algebra of any action ϕ0 of a lattice subgroup 0 of
Rn (see Theorem 3.17). Then we will describe the spectral properties of such actions (see
Theorem 3.18).

Definition 3.15. Let ϕ be a free action of an amenable group G on (X, B, µ), and let5(ϕ)
be the minimal ϕ-invariant σ -subalgebra of B which contains each finite partition ρ of X
such that h(ϕ, ρ)= 0, where we assume that h(ϕ, ρ) is the Kolmogorov–Sinai entropy if
G is a discrete group, and the spatial entropy in other cases.

PROPOSITION 3.16. Let ϕ be a free action of Rn on (X, B, µ), and let ϕ1 and ϕ0 be, as
above, the restriction of ϕ to Zn and 0, respectively, where 0 is a lattice subgroup of Rn ,
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and 0 6= Zn . If 5(ϕ1) and 5(ϕ0) are the Pinsker algebras of ϕ1 and ϕ0 , respectively,
then 5(ϕ1)=5(ϕ0). In particular, ϕ0 is a CPE action if and only if ϕ1 is a CPE action.

Proof. It follows from the properties of the entropy hK (ϕ
1, ρ) (see [15, 36]) that 5(ϕ0)

is ϕ-invariant. Thus, it is also ϕ1-invariant. As the restriction of ϕ0 to 5(ϕ0) has zero
entropy, the restriction of ϕ1 to 5(ϕ0) also has entropy zero, by the Abramov–Conze
formula (Corollary 2.16). It follows that 5(ϕ1)⊆5(ϕ0), and the opposite inclusion
follows from symmetry. 2

Notice that results analogous to Proposition 3.16 were discussed in [3, 19] for the case
n = 1; we believe that the case n > 1 has not been considered before. In the next theorem,
we show that 5(ϕ)=5(ϕ0) if any ϕ0 is ergodic.

THEOREM 3.17. Let ϕ be a free ergodic action of Rn, n <∞, on (X, B, µ) with positive
entropy h(ϕ), and let ϕ0 be ergodic for any lattice subgroup0 of Rn . Then5(ϕ)=5(ϕ0).

Proof. In view of Proposition 3.16, it is enough to show that5(ϕ)=5(ϕ1). Since5(ϕ1)

is ϕ-invariant (see proof of Proposition 3.16), we can consider the restriction ψ of ϕ to
5(ϕ1). It follows from the definition of ψ that hK (ψ

1)= 0, but h(ψ)= hK (ψ
1) by

Theorem 2.14. Hence, h(ψ)= 0. This shows that 5(ϕ1)⊆5(ϕ).
For the opposite direction, consider a finite partition ρ of X such that sh(ϕ, ρ)= 0.

It follows from the estimate of equation (2.9) that sh(ϕ, ρ)≥ sh(ϕ1, ρ). Since ϕ1 is
ergodic by our assumptions, then hK (ϕ

D, ρ)= sh(ϕD, ρ) by Proposition 2.4, and we have
hK (ϕ

D, ρ)≤ sh(ϕ, ρ)= 0. Hence, 5(ϕ)⊆5(ϕ1) and we have 5(ϕ)=5(ϕ1).
The case of an arbitrary uniform subgroup 0 uses the same argument, if one takes into

account Propositions 2.10 and 2.11, which generalize Theorem 2.5. 2

We next analyse the spectral properties of Rn-actions with positive entropy.

THEOREM 3.18. Let ϕ be a free ergodic action of Rn, n <∞ on (X, B, µ) with entropy
h(ϕ) > 0 and with Pinsker algebra 5(ϕ), and let ϕ0 be ergodic for any lattice subgroup
of Rn . Then ϕ has infinite Lebesgue spectrum on the space L2

0(X, µ)	 L2
0(5(ϕ)), where

L2
0(5(ϕ)) is the subspace of L2

0(X, µ) consisting of all 5(ϕ)-measurable functions.

Proof. Since ϕ1 is an ergodic action of (Z)n , ϕ1/2k
is an ergodic action of (1/2kZ)n ,

and, furthermore, 5(ϕ)=5(ϕ1/2k
) by Theorem 3.17. But ϕ1/2k

has countable Lebesgue
spectrum on H X

0 = L2
0(X, µ)	 L2

0(5(ϕ
1/2k

)), by [11, Theorem 5.4]. This observation
allows us to apply the argument of Lemma 3.10 to show that H X

0 =
∫

Rn Hλ dm0(λ), where
m0 is a Borel measure on Rn , subordinated to the Haar measure on Rn . Now we need to
show that m0 is equivalent to the Lebesgue measure on Rn and dim Hλ =∞ for a.a. λ.

To do this, we observe that ϕ has a Bernoulli subfactor in view of our assumptions on it.
This means that there exists a ϕ-invariant subspace (Y, BY ), such that the restriction ϕ|Y of
ϕ to (Y, BY , µY ) is Bernoulli with 0< h(ϕ|Y )≤ h(ϕ), and even h(ϕ|Y ) <∞, according
to [30, III, §3, Theorem].

Then ϕ′ = (ϕ|Y )1 also has a Bernoulli action on (Y, BY , µY ), by [30, III, §6, The-
orem 10], and there exists a finite partition ρ of (Y, BY , µY ) such that the family
{ϕ′γ ρ, γ ∈ Zn

} is independent for γ 6= γ ′ and generates BY . If β is any finite partition
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of X from 5(ϕ)=5(ϕ1), then hK (ϕ
1, β)= 0, and it follows from [5, Theorem 4.2]

that ρ and β are independent. Since BY is generated by {ϕ′γ ρ, γ ∈ Zn
}, any A ∈ BY and

B ∈5(ϕ) is independent. One concludes from this observation that if f ∈ L2
0(Y, µY ), then

also f ∈ H X
0 = L2

0(X, µ)	 L2
0(5(ϕ)), and hence L2

0(Y, µY ) is a ϕ-invariant subspace of
H X

0 . But since ϕ|Y is Bernoulli, then ϕ has infinite Lebesgue spectrum on L2
0(Y, µY ),

by Lemma 3.14. Thus, we are in the situation of Theorem 3.8, and the argument given
there shows that ϕ has infinite Lebesgue spectrum on H X

0 . This completes the proof of the
theorem. 2

4. Entropy of nilpotent Lie group actions
We described in the Introduction the class of unicommutator Lie groups (U LG). Recall
that any connected, simply connected nilpotent Lie group can be realized as a closed
subgroup of the group U Tn(R) of upper triangular unipotent n × n-matrices over R for
some n ∈ N [33]. The simplest example of a non-commutative group from U LG is the
Heisenberg group H= U T 3(R). In this section, we consider free ergodic positive entropy
actions of elements of U LG. We will see that all the results on CPE actions and actions
with positive entropy which were proved in §3 extend to this class of nilpotent groups.
Detailed proofs are mostly given for H, but these generalize easily to all of U LG.

4.1. Classical entropy for actions of U T n((Z)) and its subgroups. In this section, we
briefly consider the entropy of actions of nilpotent countable torsion-free groups with a
finite number of generators [17]. Recall that each such group can be faithfully represented
in U T n(Z) for some n ∈ Z, by a well-known theorem of Malcev.

Let G be a countable two-step nilpotent matrix group,

G=

1 n3 n1

0 1 n2

0 0 1

 ,
where ni ∈ Z, i = 1, 2, 3. We fix generators of G: let Ti , (i = 1, 2, 3) be the matrix such
that ni = 1 and n j = 0 if j 6= i . Here T1 generates the centre Z of G. We define the
linear order T3 > T2 > T1, together with the associated lexicographical linear relation on
G : T j3

3 T j2
2 T j1

1 < T k3
3 T k2

2 T k1
1 , if ( j3, j2, j1) is lexicographically less than (k3, k2, k1). This

order relation is invariant with respect to the left translations of G, so we have the notion
of the ‘past’ in G defined as a subset of all elements of G which are less than the identity
in G.

Consider the sequence of rectangles Fn = {T
i3
3 T i2

2 T i1
1 , ms(n)≤ is ≤ Ms(n), s =

1, 2, 3}, where (Ms(n)− ms(n))→∞, as n→∞, and

M1(n)− m1(n)

Ms(n)− ms(n)
→∞, s = 2, 3,

as n→∞. Now, (Fn), n ∈ N is a Følner sequence of sets in G [17]. In particular, we can
let M2(n)= M3(n)= n, M1(n)= n2, ms(n)= 0, s = 1, 2, 3.

Now suppose that we have a free measure-preserving action S of G on the probability
space (X, B, µ), and a partition ρ of X with H(ρ) <∞. Then we can consider the
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Kolmogorov entropy

hK (S, ρ)= lim
n→∞

1
|Fn|

H(ρFn )

of the process (S, ρ), where {Fn}, n ∈ N is a sequence of sufficiently invariant subsets of
G, as above. Note that hK (S, ρ) does not depend on the choice of the sequence {Fn}.

Since G has a past, we can calculate hK (S, ρ) in a different form, using conditional
entropy, which will be useful for us below.

To do this, we introduce some new notation. Let

ρ−Ti
=

∞∨
k=1

T−k
i ρ, ρTi =

∞∨
−∞

T k
i ρ,

where Ti and ρ are as above. We also set ρ−G =
∨

T k3
3 T k2

2 T k1
1 , where the join is taken over

all triples (k1, k2, k3) ∈ Z3, which are lexicographically less than (0, 0, 0). More precisely,

ρ−G = ρ
−

T1
(ρT1)

−

T2
(ρ(T1,T2))

−

T3
. (4.1)

Now we have hK (S, ρ)= H(ρ|ρ−G ), by [32, 42]. A similar formula for the entropy of
Zn-actions was introduced in [5] (see §4). Now we can extend the methods of that section
to non-commutative groups from U LG.

Let ρ be a partition of X and H(ρ) <∞. We set

ρ̂ =
∧

n
(T−n

1 ρ−T1
∨ T−n

2 (ρT1)
−

T2
∨ T−n

3 (ρ(T1,T2))
−

T3
).

The next proposition will be useful in the following.

PROPOSITION 4.1. Let S be a free action of G on (X, B, µ) with positive entropy, and
let ρ1 and ρ2 be partitions of X with H(ρi ) <∞ for i = 1, 2. Assume that ρ̂1

= ν, where
ν = {X,∅}, and hK (S, ρ2)= 0. Then the partitions ρ1 and ρ2 are independent.

This proposition is an analogue of [5, Theorem 4.2], where it was proved for Zn-actions

Proof. Let G pk be the subgroup of G generated by T pk
2 , T pk

3 and T
p2

k
1 , where pk divides

pk+1. Then G pk+1 is a subgroup of G pK , and the sequence of partitions ρ1
k = (ρ

1)−G pk
is

decreasing. Since ρ̂1
= ν,

∧
k ρ

1
k = ν, and hence limk→∞ H(ρ1

|ρ1
k )= H(ρ1). Now, since

hK (S, ρ2)= 0, we have the equality H(ρ1
|ρ1

k )= H(ρ1
|ρ1

k ∨ ρ
2), the proof of which is

contained in the proof of [17, Theorem 2.6]. Hence,

H(ρ1
|ρ2)≥ H(ρ1

|ρ1
k ∨ ρ

2)= H(ρ1
|ρ1

k ),

and thus H(ρ1
|ρ2)≥ H(ρ1). But since H(ρ1

|ρ2)≤ H(ρ1), we can deduce H(ρ1)=

H(ρ1
|ρ2). It is well known that this equality implies that ρ1 and ρ2 are independent. 2

COROLLARY 4.2. Let S be a free ergodic action of G on (X, B, µ) with positive entropy
hK (S), (Y, BY , µY ) a Bernoulli factor of (X, B, µ) for S, and hK (S|Y ) <∞. If ρ is a
finite partition of X from5(S), i.e. hK (S, ρ)= 0, and α is a finite BY -measurable partition
of Y , then ρ and α are independent.
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Notice that this assertion for Z-actions was first proved in [31], then in a more general
form for Zn-actions in [44], and finally for countable amenable groups in [16]. We present
a simple proof of this statement for our case.

Proof. Since the restriction of S to (Y, BY , ν) is Bernoulli and hK (S|Y ) <∞, there exists
a finite partition γ of Y such that all partitions gγ, g ∈ G are independent and generate
the σ -algebra BY . It follows from these properties of γ that γ̂ = ν. Hence, γ and
ρ are independent by Proposition 4.1. The same holds for gγ and ρ for any g ∈ G.
But gγ, g ∈ G generate BY , and as α is BY -measurable, it follows that α and ρ are
independent. 2

4.2. Spatial entropy for actions of U LG-groups. Let us describe the structure of a
nilpotent Lie group from the class U LG, defined in the Introduction (Definition 1.2). If a
group G belongs to this class, then its Lie algebra g has a basis {ei }

N
1 whose commutators

satisfy the following conditions:
(i) [ei , e j ] = 0 or [ei , e j ] = ek(i, j); and
(ii) [ei , ek(i, j)] = [e j , ek(i, j)] = 0.

These properties imply some strong conditions on the group G and its Lie algebra g.
Let M(n, R) be the space of all n × n-matrices over R, and introduce in M(n, R) the usual
Lie bracket: [x, y] = xy − yx for x, y ∈ M(n, R). Consider M(n, R) as the Lie algebra
of the group GL(n, R) and it follows from the Ado–Iwasawa theorem [33] that there is a
faithful representation ρ of g on the subalgebra of all upper triangular nilpotent matrices of
M(n, R) for some n ∈ N. We will identify ρ(g)with g; we can then consider ei , 1≤ i ≤ N
as upper triangular nilpotent matrices from M(n, R).

The exponential mapping exp from M(n, R) to GL(n, R) is given by

exp X = I + X + 1/2X2
+ · · ·

for X ∈ M(n, R). If X ∈ g⊂ M(n, R), then exp X contains only a finite number of terms,
since X is a nilpotent matrix and hence exp g is a connected simply connected nilpotent
Lie subgroup of U T n(R), isomorphic to G [33]. We identify exp g with G.

Now let n be the Z-linear span of {ei }
N
1 , so that n is a lattice in g [33], and, furthermore,

n is a Lie subalgebra of M(n, Z) in view of the above commutation relations for {ei }
N
1 .

To see this, one can use the argument of the proof of [33, Theorem 2.12]. Now, as in [33,
Theorem 2.12], we can conclude that exp n is a lattice subgroup of G.

We now introduce the new assumption (A) on our Lie algebra g. We assume that each
matrix ei from g satisfies e2

i = 0, 1≤ i ≤ N .
First notice that condition (A) does not follow from the above commutations relations.

It is easy to construct examples of this. If condition (A) does hold, then we have exp tei =

I + tei ∈ M(n, R) for t ∈ R and, in particular, exp ei = I + ei ∈ U T n(Z). Recall that
U T n(Z) is the group of all unipotent n × n-matrices over Z. Hence, the lattice subgroup
exp n of G is also a subgroup of U T n(Z). This will be important for us in Theorem 4.7
below.

Clearly, the simplest situation is if ei is a matrix unit uks, 1≤ k < s ≤ n of M(n, Z)
for some i or, of course, for all i = 1, 2, . . . , N . Observe that if g is the subalgebra of
all upper triangular nilpotent matrices from M(n, R), then the basis of g can be chosen
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as follows: uks, 1≤ k < s ≤ n, where uks is a matrix unit from M(n, Z). In this case,
exp g= U T n(R) and exp n= U T n(Z).

We have introduced U LG as a simple class of connected nilpotent Lie groups where it
is easy to study the entropy of actions of the group and its lattice subgroups. We will try
to describe all phenomena which occur in this situation. We feel sure that many of our
theorems can be extended to a wider class of groups.

We consider in detail the Heisenberg group H= U T 3(R), the simplest example of a
non-commutative group from U LG, and the entropy of its actions. The properties we
develop actually hold for any group from U LG, in view of the above structure theorems,
and this allows one to apply similar methods:

H=

1 x12 x13

0 1 x23

0 0 1

 ,
where xi j ∈ R, i, j = 1, 2. Let ϕ be an ergodic action of H by automorphisms of
(X, B, µ), preserving a probability measure µ, and ρ a finite measurable partition of X .
We introduce the metric dρC (x, y)= dC (x, y), where x, y ∈ X , and C is a measurable
subset of H, as follows: dC (x, y)= (1/|C |)|{v ∈H : ρ(ϕvx) 6= ρ(ϕv y)}|, where v ∈

H, |C | is the Haar measure of C in H, and ρ(ϕvx) is defined in §2.1. Now, for a positive
real number N , we take the rectangle CN in H of the form CN = {O ≤ x12 ≤ N , 0≤ x23 ≤

N , 0≤ x13 ≤ N 2
}, and consider the analogue of the (ρ, N , r)-family of disjoint subsets of

X for the action of Rn in §2.3. We can now define the r -spatial entropy sh(ϕ, ρ, r) and the
spatial entropy sp(ϕ, ρ) of the process (ϕ, ρ) as in §2.3.

Let D be a positive real number. Denote by H D the subgroup of H of the form
x12 = Dn12, x13 = D2n13, x23 = Dn23, where ni j ∈ Z. One easily sees that H D is a
uniform subgroup of H, isomorphic to U T3(Z). Thus, if ϕ is a free ergodic action of
H on (X, B, µ), then ϕ induces a free action ϕD of H D on (X, B, µ), and one can define
the classical Kolmogorov entropy hK (ϕ

D, ρ) and the spatial entropy sh(ϕD, ρ) of the
process (ϕD, ρ). The next theorem describes the connections between entropy sh(ϕ, ρ)
and entropies sh(ϕD, ρ) as D ↓ 0. This is an analogue of Theorem 2.5 for spatial entropies
of Rn-actions.

THEOREM 4.3. Let ϕ be a measure-preserving ergodic action of H= U T 3(R) on a
(X, B, µ), and let ϕD be the restriction of ϕ to the lattice subgroup H D of H. Then

sh(ϕ, ρ)= lim
D↓0
|CD|

−1sh(ϕD, ρ),

where ρ is a finite partition of X.

Proof. Let u ∈ CN and D > 0 be such that N/D is an integer. Then the matrix u can
be decomposed as a product u = vw, where w ∈ CD , or 0<w12 ≤ D, 0<w23 ≤ D, 0<
w13 ≤ D2, and v has the following coefficients: v12 = i12 D, v23 = i23 D, v13 = i13 D2.
Here, the integers ii j satisfy the following inequalities:

0< i12 ≤ N/D, 0< i23 ≤ N/D, −N/D − 1< i13 ≤ N 2/D2. (4.2)

Observe that the inequalities (4.2) define the rectangle F D
N in the lattice subgroup H D ,

and, furthermore, {F D
N } is a Følner sequence of subsets in H D for fixed D, N/D ∈ Z
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and N/D→∞. Now we apply the same approach as in the proof of Theorem 2.5
to compute the continuous dρ-distance on CN between x and y from X by taking the
discrete dρ-distance between ϕx and ϕy over the CD-lattice points in CN , and taking the
normalized integral of this as w ranges over CD . More exactly,

dρCN
(x, y)=

∫
CD

dw

|CD|

(
1

|F D
N |

∑
v∈F D

N

|{w : ρ(ϕvwx) 6= ρ(vw y)}|

)
.

The rest of the proof is sufficiently similar to the proof of Theorem 2.5 above to be left
to the reader. 2

Again we have an analogue of Proposition 2.12.

PROPOSITION 4.4. Let ϕ be an ergodic action of H= U T 3(R) on (X, B, µ), and ϕD the
restriction of ϕ to the lattice subgroup H D . If the spectrum of ϕ does not contain a discrete
component in L2

0(X, µ)= { f ∈ L2
0(X, µ) :

∫
X f (x) dµ(x)= 0}, then ϕD is ergodic for

any D > 0.

To prove this proposition, we use the same argument as in Proposition 2.12.
The next assertion is a consequence of Theorem 4.3.

COROLLARY 4.5. Let ϕ and ρ be as in the statement of Theorem 4.3, and suppose that
ϕD is ergodic. Then

sh(ϕ, ρ)= lim
i→∞
|CDi |

−1hK (ϕ
Di , ρ),

where Di = 1/2i D, and hK (ϕ
D, ρ) is the Kolmogorov–Sinai entropy of the process

(ϕD, ρ).

This corollary is an analogue of Corollary 2.9, and can be proved similarly.
There is also an analogue of Proposition 2.10 for actions of H= U T 3(R). Let

D̄ = (D1, D2), where Di is a positive real number. Consider the discrete subgroups of
H, H D̄ , where x12 = i12 D1, x13 = i13 D1 D2, x23 = i23 D2, and ikl ∈ Z . It is easy to see
that H D̄ is a uniform subgroup of H in each case.

Let N D̄ = (N D1, N D2), where N ∈ R+, and let C D̄ be the rectangle in H defined by

C D̄ = {0≤ x12 ≤ D1, 0≤ x23 ≤ D2, 0≤ x13 ≤ D1 D2}.

It is obvious that |C D̄| = (D1 D2)
2.

Notice that if 0 is a lattice subgroup of H, then one can show that 0 is conjugated to
H D̄ for some D̄ = (D1, D2), Di > 0, i = 1, 2. This follows from [33, Proposition 2.17].
A similar statement holds for any group in U LG.

PROPOSITION 4.6. Let ϕ and ρ be as in the statement of Theorem 4.3. Then

sh(ϕ, ρ)= lim
N↓0
|CN D̄|

−1sh(ϕN D̄, ρ).

The analogues of Proposition 4.4 and Corollary 4.5 also hold in this situation.

Again, all the above results of this subsection hold for U LG.
Now we are ready to prove an analogue of Theorem 2.14.
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THEOREM 4.7. Let ϕ be an ergodic measure-preserving action of H= U T 3(R) on the
probability space (X, B, µ), and let the spectrum of ϕ not contain a discrete component
(see Proposition 4.4 above). If ϕ1 is the restriction of ϕ to the subgroup H1

= U T 3(Z) of
H, then

h(ϕ)= hK (ϕ
1),

where h(ϕ) is the Ornstein–Weiss entropy of the action ϕ (see §2.2), and hK (ϕ
1) is the

classical Kolmogorov entropy of the action ϕ1.

It is important to note that the statement of Theorem 4.7 makes sense for any nilpotent Lie
group G from U LG because G ∩ U T n(Z) is a lattice subgroup of G, as explained in the
beginning of this subsection.

Proof. The proof is based upon Theorem 2.14. To demonstrate this, we recall that ϕ1 is
ergodic. We present several steps of the proof, sufficient to convey the ideas. Notice that the
analogue of (2.9) for the present case is sh(ϕ, ρ)≥ sh(ϕ1, ρ), where ρ is a finite partition
of X . One can deduce from this, as in the proof of Theorem 2.14, that h(ϕ)≥ hK (ϕ

1).
To prove the opposite inequality, we apply the relation sh(ϕ, ρ)= limi→∞ 16i hK (ϕ

1/2i
,

ρ) from Corollary 4.5, where ρ is a finite partition of X . Furthermore, notice that H1 is a
subgroup of H1/2 of index 16; in symbols, [H1/2

:H1
] = 16. This observation shows that

[H1/2i
:H1
] = 16i , and it follows from Proposition 2.13 that hK (ϕ

1)= 16i hK (ϕ
1/2i

). We
can derive from these, as in the proof of Theorem 2.14, that hK (ϕ

1)≥ h(ϕ), and hence
h(ϕ)= hK (ϕ

1) holds. 2

As in §2.4, let us consider a general version of the relation h(ϕ)= hK (ϕ
1). Let 0 be

a lattice subgroup of H. Then there is, as in §2.4, a compact subset H(0) of H such that
each 0-orbit in G meets H(0) in a unique point. If |H(0)| is the Haar measure of H(0)
and if 0 = H D̄ , then |H(0)| = (D1 D2)

2, where D̄ = (D1, D2).

COROLLARY 4.8. Let ϕ be as in the statement of Theorem 4.7, 0 a lattice subgroup of H,
and let ϕ0 be the restriction of ϕ to 0. Then

h(ϕ)= |H(0)|hK (ϕ
0).

The proof is analogous to the proof of Theorem 4.7, taking into consideration
Proposition 4.6.

Now we are ready to present our analogues of the Abramov formula for the entropies
of lattice subgroups of actions of a nilpotent Lie group from U LG.

COROLLARY 4.9. Let ϕ, 0 be as in Corollary 4.8, then

hK (ϕ
1)= |H(0)|hK (ϕ

0).

4.3. CPE actions of U LG-groups and uniform mixing. Recall that the definition of CPE
actions for a group G from U LG is given in Definition 3.1 above.

THEOREM 4.10. Let ϕ be a free measure-preserving action of a group G ∈ U LG on a
space (X, B, µ), and let 0 be a lattice subgroup of G. Then the action ϕ is CPE if and
only if the restriction ϕ0 of ϕ to 0 is CPE.
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Proof. The proof is similar to the proof of Theorem 3.2. However, we make some
comments on it for the case of the group H= U T 3(R). It follows from Theorem 4.7 that
the action ϕ0 is ergodic on X for any lattice 0. This allows one to apply Corollary 4.5
to prove that ϕ0 is a CPE action if ϕ is CPE. In proving this, we use the formula
hK (ϕ

1, ρ)= H(ρ |
∨
∞

1 ϕ−iρ) (see proof of Theorem 3.2), where ρ is a finite partition of
X . Now we use a similar formula hK (ϕ

1, ρ)= H(ρ|ρ−H1), where ρ−H1 is defined in (4.1).

Now we make several remarks about the proof that a CPE action of ϕ0 implies that the
action of ϕ is CPE. Recall that 0 has a special structure, namely 0 =H D̄ (see the remarks
following Corollary 4.5). This allows us to apply the estimate of (2.9) to complete this
proof along the same lines as the proof of Theorem 3.2. 2

As in §3.1, we now consider uniformly mixing actions of groups from U LG. The
definition of these actions is given in Definition 3.3. Theorem 4.10 allows to prove a
well-known conjecture about the connection between CPE and uniformly mixing actions
of groups from U LG.

THEOREM 4.11. Let ϕ be a free measure-preserving ergodic action of a group G from
U LG-class on a probability space (X, B, µ). Then ϕ is CPE if and only if ϕ is uniformly
mixing.

Proof. The proof is similar to that of Theorem 3.4. For the case G =H, there are some
slight differences. If ϕ is uniformly mixing, ϕ1 is also uniformly mixing for the action
of H1

= U T 3(Z). But then ϕ1 is a CPE action of H1 by [12, 18, 47]. Thus, ϕ is also a
CPE action of H by Theorem 4.10. On the other hand, if ϕ is a CPE action of H, then
ϕ1 is a CPE action by Theorem 4.10, and hence ϕ1 is uniformly mixing by [41]. Since
ϕ is a strongly continuous action of H and ϕ1 is uniformly mixing, it follows that ϕ is
also uniformly mixing using the properties of the Rokhlin metric given in the proof of
Theorem 3.4. 2

COROLLARY 4.12. Let ϕ be a CPE action of a group G ∈ U LG on a space (X, B, µ), and
let K be a discrete closed subgroup or closed U LG-subgroup of G. Then the restriction
ϕK of ϕ to K is a CPE action on (X, B, µ).

Proof. It follows from Theorem 4.11 that ϕ and ϕK are uniformly mixing. If K is
discrete, then ϕK is a CPE action, by [12]. If K is a U LG-group, then ϕK has CPE by
Theorem 4.11. 2

PROPOSITION 4.13. Let G ∈ U LG, g be its Lie algebra, and {ei }
n
1 the canonical basis of

g, described at the beginning of §4.2. Let K be a closed cocompact subgroup of G such
that the connected component of unity K0 is a normal subgroup of G, and its Lie algebra
k0 has a basis { fi }

m
1 , m < n such that { fi }

m
1 is a subset of {ei }

n
1 . If ϕ is a free measure-

preserving ergodic action of G on (X, B, µ), then ϕ is a CPE action of G if and only if ϕK

is a CPE action of K .

Proof. It follows from the assumptions that K contains a uniform lattice subgroup 0 which
is a lattice subgroup of G. Now it is possible to develop the theory of §4.2 for actions of
the groups K and their uniform lattice subgroups 0, and prove, in particular, analogues
of Theorems 4.10 and 4.11. The subsequent argument is obvious. 2
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4.4. Spectral properties of CPE actions of U LG-groups. A locally compact group G is
of type I if any of its factor-representations by unitary operators in a Hilbert space is of type
I in the von Neumann classification [10]. For such groups, Mackey [28] defines the dual
object Ĝ, elements of which are equivalence classes of irreducible unitary representations
of G. Mackey introduced a Borel structure in Ĝ, and he showed that if g→Ug is a unitary
representation of G in a Hilbert space H , then there exists a decomposition

H =
∫
⊕

Ĝ
Hx dµ(x) and Ug =

∫
⊕

Ĝ
Ug(x) dµ(x),

where x→ Hx is a Borel field of Hilbert spaces, x 7→Ug(x) is a Borel field of factor-
representations of type I of G, and µ is a Borel measure on Ĝ.

Furthermore, Hx = H1
x ⊗ H2

x and Ug(x)=U 1
g (x)⊗ In(x), where x→ H i

x , i = 1, 2,
are Borel fields of Hilbert spaces, x→U 1

g (x) is a Borel field of irreducible representations

of G, and In(x) is the identity operator in H2
x such that dim H2

x = n(x) for a.e. x ∈ Ĝ.
Thus, it is possible to define for every unitary representation g→Ug of the group G, a

Borel measure µ on Ĝ and a Borel multiplicity function x→ n(x) on Ĝ. Mackey proved
that two unitary representations g 7→U 1

g , i = 1, 2 of G are unitarily equivalent if and only

if µ1 ∼ µ2 and n1(x)= n2(x) for a.e. x ∈ Ĝ.
Let us recall some examples of groups of type I which are considered in this paper. If

G is an abelian locally compact group, then its dual Ĝ coincides with the Pontryagin dual
group Ĝ. The other important, for us, class of groups is nilpotent connected Lie groups
which are also of type I. If G is such a group, and ZG is its centre, then Ĝ = ẐG .

More detailed information and references on type I groups can be found in Dixmier’s
monograph [10, 13.11.12], where a large class of Lie groups of type I is described,
including connected nilpotent Lie groups. Notice also that Dixmier (§18) introduced the
notion of the Plancherel measure mG on Ĝ for the decomposition of the regular (left and
right) representation of G. This measure allows us to obtain a version of the Plancherel
formula for non-commutative groups of type I. If G is abelian, then mG coincides with the
Haar measure of Ĝ, and if G is a connected nilpotent Lie group, then mG coincides with
the Haar measure of ẐG .

Now we are ready to present our results about the spectrum of CPE action of U LG-
groups.

THEOREM 4.14. Let ϕ be a free CPE action of G ∈ U LG on (X, B, µ). Then the action
of ϕ on L2

0(X, µ) has Lebesgue spectrum with infinite multiplicity.

Proof. Let ZG be the centre of G. Then ZG is a closed subgroup of G, and it follows
from Corollary 4.12 that ϕZG , the restriction ϕ to ZG , also has a CPE action. But ZG is
isomorphic to Rn for some integer n, in view of our assumptions on U LG-groups. Hence,
ϕZ

G has infinite Lebesgue spectrum by Theorem 3.8, and the measure corresponding to ϕ,
is the Plancherel measure mG of ẐG , as above. Thus, the spectrum of ϕ is Lebesgue.

To prove infinite multiplicity of the spectrum of ϕ, assume first that ϕ is a Bernoulli
action of G, as in the case of Theorem 3.8.

LEMMA 4.15. If ϕ is a Bernoulli action of G as above, then ϕ is a CPE action and it has
Lebesgue spectrum with infinite multiplicity.
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Proof. Notice first that ϕ is a CPE action. Indeed, if ϕ is Bernoulli, then ϕ1 is a Bernoulli
action of the lattice subgroup 01 of G, by [30, III, §6]. But since any two Bernoulli actions
of 01 with the same entropy are isomorphic [30, III], then we can realize it using a von
Neumann construction (see the end of §3.1). It is easy to see from this construction that ϕ1

is CPE. Then it follows from Theorem 4.10 that ϕ is also the CPE action of G, and hence
ϕ has the Lebesgue spectrum by the result above.

Now let ϕ act on the space (X, B, µ), and consider the unitary representation g→
Uϕg , g ∈ G on the Hilbert space H0 = ( f ∈ L2

0(X, µ) :
∫

X f (x) dµ(x)= 0). If we reduce
the representation g→Uϕg , g ∈ ZG to the diagonal form, then H0 is realized as

H0 =

∫
⊕

ẐG

Hz dmG(z),

and we have the following decomposition of the representation g→Uϕg , g ∈ G of G,

Uϕg =

∫
⊕

ẐG

Ug(z) dmG(z),

where g→Ug(z) is the irreducible I∞-representation of G on the space Hz for a.e. z.
Let M be the commutant of Uϕg , g ∈ G, i.e. M contains all bounded operators m on H0

such that mUϕg =Uϕg m. There is a decomposition of M, M =
∫
⊕

ẐG
Mz dmG(z) (see [9,

Appendice A]), where Mz is a factor of type In(z), where n(z) is a measurable function
from ẐG to N.

Since ϕ is a Bernoulli action of G, then we can apply the same approach as in the proof
of Lemma 3.14 and prove that Mz contains for a.a. z a subfactor of type In for any natural
number n. This means that Mz is also I∞-factor, and our representation g→Uϕg has
Lebesgue spectrum with infinite multiplicity. 2

Let us return to the proof of Theorem 4.14. Since ϕ is a free CPE action of G, then it
contains a Bernoulli subfactor, by [30, III, §3]. Thus, ϕ has the Lebesgue spectrum and
has a Bernoulli subfactor which has Lebesgue spectrum with infinite multiplicity. Hence,
ϕ also has Lebesgue spectrum with infinite multiplicity (see proof of Theorem 3.8 for
details). 2

4.5. Actions of U LG-groups with positive entropy and their Pinsker algebras. In this
section, we consider an action ϕ of a U LG-group G with positive entropy, assuming that
ϕ does not contain a discrete component, and hence the action ϕ0 is ergodic for any lattice
subgroup 0 of G. We will show that the Pinsker algebra 5(ϕ) exists for such an action,
and that5(ϕ)=5(ϕ0) (see Theorem 4.17). Then we will describe the spectral properties
for the action ϕ (see Theorem 4.18 below).

Recall that we assume that G is a subgroup of U T n(R), and 01 = G ∩ U T n(Z) is a
lattice subgroup of G, and below we will write ϕ1 instead of ϕ01 . Notice also that the
definition of the Pinsker algebra for action ϕ is given in Definition 3.15 above.

PROPOSITION 4.16. Let ϕ be a free action of G on (X, B, µ), with positive entropy
h(ϕ) > 0, and let the spectrum ϕ not contain a discrete component. Then the Pinsker
algebras5(ϕ1) and5(ϕ0) of the actions ϕ1 and ϕ0 , respectively, coincide. In particular,
ϕ0 is a CPE action of 0 if and only if 01 is a CPE action of 01.
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Proof. The proof is based on Corollary 4.9, and can be proved by the same argument as
the proof of Proposition 3.16. 2

THEOREM 4.17. Let ϕ and 01 be as in the statement of Proposition 4.16. Then 5(ϕ)=
5(ϕ1).

Proof. The proof is the same as the proof of Theorem 3.17, but now we apply
Proposition 4.16 instead of Proposition 3.16. Let us check only that 5(ϕ1) is ϕ-invariant.
Without loss of generality, it is enough to consider the case G =H. In this case,
01 =H1

= U T 3(Z).
Let N be a normal subgroup of H such that x12, x23 ∈ Z, and x13 ∈ R. It is easy to

see that H1 is a cocompact lattice subgroup of N . The same argument as in the proof of
Proposition 3.16 shows that 5(ϕ1) is ϕN -invariant, and 5(ϕ1)=5(ϕN ). If now g ∈H,
then 0 = gH1g−1 is also a cocompact lattice subgroup of N and 5(ϕ0)=5(ϕN ). It is
clear that 5(ϕ0)= g5(ϕ1)g−1. Hence,

g5(ϕ1)g−1
=5(ϕ0)=5(ϕN )=5(ϕ1).

Since g is an arbitrary element from H, 5(ϕ1) is ϕ-invariant. 2

Consider now the spectral properties of an action ϕ of G, as above, with positive
entropy. Again, we aim to reduce the problem to the restriction of ϕ to the centre ZG

of G and apply the results of Mackey [28] and Dixmier [10] outlined in §4.4.

THEOREM 4.18. Let ϕ be a free ergodic action of a group G, as above, on a space
(X, B, µ) with positive entropy h(ϕ) > 0 and Pinsker algebra 5(ϕ). Then ϕ has infinite
Lebesgue spectrum on the Hilbert space H X

0 = L2
0(X, µ)	 L2

0(5(ϕ)), where L2
0(5(ϕ))

is a subspace of L2
0(X, µ) consisting of all 5(ϕ)-measurable functions.

Proof. First, we can show that H X
0 =

∫
ẐG

Hλ dm0(λ), where m0(λ) is a Borel measure on

ẐG subordinated to the Haar measure on ẐG , by applying the argument of the beginning
of the proof of Theorem 3.18.

Then we again use the same approach as in the proof of Theorem 3.18, applying
Corollary 4.2 instead of [5, Theorem 5]. This corollary states the existence of the Bernoulli
factor of ϕ such that it is independent, in some sense, from 5(ϕ). Since this factor has
infinite Lebesgue spectrum by Lemma 4.15, the measure m0(λ) on ẐG is subordinated to
the Haar measure, and then one can conclude, using the same argument as in the proof of
Theorem 3.18, that ϕ has also infinite Lebesgue spectrum on the space H0. 2
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[35] F. Riesz and B. Sz-Nagy. Leçons d’Analyse Fonctionnelle. Academiai Kiado, Budapest, 1972.

https://doi.org/10.1017/S0143385711000587 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385711000587


On the entropy of actions of nilpotent Lie groups and their lattice subgroups 573

[36] V. A. Rokhlin. Lectures on the entropy theory of transformations with invariant measure. Uspekhi Mat.
Nauk. 22 (1967), 4–54 (in Russian).

[37] V. A. Rokhlin and Ya. G. Sinai. Construction and properties of invariant measurable partitions. Dokl.
Akad. Nauk. SSSR 141 (1961), 1038–1041 (in Russian).

[38] A. Rosenthal. Finite uniform generators for ergodic, finite entropy free actions of amenable groups.
Probab. Theory Related Fields 77 (1988), 147–166.

[39] D. J. Rudolph. Fundamentals of Measurable Dynamics. Oxford University Press, Oxford, 1990.
[40] D. J. Rudolph. A two-valued stepcoding for ergodic flows. Proceedings Mathematical Physics. Rennes,

Sept, 1975, pp. 14–21.
[41] D. J. Rudolph and B. Weiss. Entropy and mixing for amenable group actions. Ann. of Math. (2) 151

(2000), 1119–1150.
[42] A. V. Safonov. Information pasts in groups. Izv. Acad. Sci. USSR 47 (1983), 421–426 (in Russian).
[43] J. G. Sinai. A weak isomorphism of transfomations with invariant measure. Amer. Math. Soc. Transl. Ser.

2 57 (1966), 123–143.
[44] J.-P. Thouvenot. Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux

systèms dont l’un schéma de Bernolli. Israel J. Math. 21 (1975), 177–207.
[45] J.-P. Thouvenot. Entropy, Isomorphism and Equivalence in Ergodic Theory (Handbook of Dynamical

Systems, 1A). North-Holland, Amsterdam, 2002, pp. 205–237.
[46] T. Ward and Q. Zhang. The Abramov–Rokhlin entropy addition formula for amenable group actions.

Monatsh. Math. 114 (1992), 317–329.
[47] B. Weiss. Actions of amenable groups. Topics in Dynamics and Ergodic Theory (London Mathematical

Society Lecture Notes Series, 310). Eds. S. Bezuglyi and S. Kolyada. Cambridge University Press,
Cambridge, 2003, pp. 226–262.

[48] B. Weiss. Monotileable amenable groups. Topology, Ergodic Theory, Real Algebraic Geometry (American
Mathematical Society Translations, 202). Eds. V. Turaev and A. Vershik. American Mathematical Society,
Providence, RI, 2001, pp. 257–262.

https://doi.org/10.1017/S0143385711000587 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385711000587

