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1. Introduction

Morita equivalence is a fundamental tool in the study of C∗-algebras. For example,
Morita equivalent C∗-algebras A and B share much of their fine structure and
have equivalent representation theories. Many such properties are elucidated as the
‘Rieffel correspondence’ induced by an A – B-imprimitivity bimodule X. A summary
of these properties is given in Theorem 2.1, but the key feature is that the Rieffel
correspondence gives a natural lattice isomorphism between the ideal lattices of the
two C∗-algebras. In the case of C∗-algebras associated to dynamical systems of various
sorts, perhaps the fundamental tool used to generate useful Morita equivalences
is the notion of Fell-bundle equivalence. In this article, we show that there is an
analogous Rieffel correspondence induced by an equivalence q : E → T between two
Fell bundles pB : B → H and pC : C → K over locally compact groupoids H and K.
Rather than work at the level of the Fell-bundle C∗-algebras C∗(H; B) and C∗(K; C ),
we work with the Fell bundles themselves. We introduce a natural notion of an ideal
J of a Fell bundle B. In the case where B is the Fell bundle corresponding to
a group or groupoid G acting on a C∗-algebra A, these Fell-bundle ideals naturally
correspond to G-invariant ideals of A in the standard sense. More generally, our ideals
are the same as the Fell subbundles studied in [IW12]. We can form the quotient Fell
bundles B/J , and if H has a Haar system and if our Fell bundles are separable, then
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[2] The Rieffel correspondence for equivalent Fell bundles 289

the main result in [IW12] pushes the analogy of Fell bundle ideals with invariant ideals
in crossed products; that is, we have a short exact sequence of C∗-algebras

0 C∗(H; J ) C∗(H; B) C∗(H; B/J ) 0.

However, as we do not work with C∗-algebras, we do not require our groupoids to have
Haar systems.

In this article, our main result is that if E is an equivalence between B and C
as above, then there is a lattice isomorphism between the ideals of C and those of B.
Furthermore, if K and J are corresponding ideals of B and C , respectively, then K
and J are equivalent Fell bundles as are the quotients B/K and C /J . Naturally,
these equivalences arise from submodules and quotients of the given equivalence E .

We start in Section 2 with a detailed collection of preliminary material that
summarizes and conveniently collects in one place the basics of Banach bundles, Fell
bundles and Fell-bundle equivalence. We also introduce our notion of ideals of Fell
bundles and develop some of their basic properties. In Section 3, we establish our
basic Rieffel correspondence as Theorem 3.10. Then in Section 4, we establish the
equivalence between corresponding ideals and their quotients.

We know that if two separable Fell bundles are equivalent, and if both of the under-
lying groupoids have Haar systems, then their corresponding Fell-bundle C∗-algebras
are Morita equivalent and the classical Rieffel correspondence gives an isomorphism
between the ideal lattices of the two Fell-bundle C∗-algebras. In Section 5, we confirm
the natural conjecture that if two ideals correspond under our Rieffel correspondence
for Fell-bundle ideals, then the corresponding ideals in the Fell-bundle C∗-algebras
also correspond under the classical Rieffel correspondence.

Conventions. We use the standard conventions in the subject. In particular,
homomorphisms between C∗-algebras are assumed to be ∗-preserving and ideals in
C∗-algebras are two-sided and norm closed. Locally compact is meant to mean locally
compact and Hausdorff, and our groupoids are always meant to be locally compact
and Hausdorff. Suppose that A is an algebra and X is a (left) A-module. If S ⊂ A and
Y ⊂ X, then by convention, S · Y = span{a · x : a ∈ A and x ∈ Y}. Similarly, if 〈·, ·〉 is
an A-valued sesquilinear form on X, then 〈Y1, Y2〉 = span{〈x, y〉 : x ∈ Y1 and y ∈ Y2}.
If A is a C∗-algebra and the A-module X is a Banach space, then we call X a
Banach A-module if ‖a · x‖ ≤ ‖a‖‖x‖ for all a ∈ A and x ∈ X. Further, we say that
X is nondegenerate if A · X is dense in X.

2. Preliminaries

2.1. The Rieffel correspondence. If A is a C∗-algebra, then we let I(A) denote the
lattice of ideals in A. Suppose that X is an A – B-imprimitivity bimodule, and let C(X)
be the lattice of closed A – B-submodules of X. Then the Rieffel correspondence asserts
that there are natural lattice isomorphisms among I(A), C(X) and I(B). Specifically,
we have the following summary from [RW98, Section 3.3].
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THEOREM 2.1 (Rieffel correspondence). Suppose that A and B are C∗-algebras and
that X is an A – B-imprimitivity bimodule.

(a) Suppose that Y is a closed A – B-submodule of X. Then

K = A〈Y, X〉 = A〈X, Y〉 = A〈Y, Y〉 (2-1)

is an ideal in A, while

J = 〈Y, X〉B = 〈X, Y〉B = 〈Y, Y〉B (2-2)

is an ideal in B. We have

K · X = K · X = Y = X · J = X · J. (2-3)

(b) In particular, J 
→ X · J is a lattice isomorphism of I(B) onto C(X) with inverse
Y 
→ 〈Y, Y〉B and K 
→ K · X is a lattice isomorphism of I(A) onto C(X) with
inverse Y 
→ A〈Y, Y〉.

(c) If K, Y and J are as in part (a), then Y is a K – J-imprimitivity bimodule with
respect to the restricted actions and inner products.

(d) If K, Y and J are as in part (a), then the quotient Banach space X/Y is
an A/K – B/J-imprimitivity bimodule. In particular, the quotient norm on X/Y
equals the imprimitivity-bimodule norm.

REMARK 2.2. Suppose that J is an ideal in a C∗-algebra B, and that X is a right Hilbert
B-module. Then Y = X · J is a nondegenerate Banach J-module. Therefore, the Cohen
factorization [RW98, Proposition 2.33] implies that every element of Y is of the form
x · b with x ∈ Y and b ∈ J, so

Y = X · J = {x · b : x ∈ X and b ∈ J}.

As a result, we have X · J = X · J as in part (a), and similarly with K · X.

PROOF OF THEOREM 2.1. This is just a reworking of the basic results in [RW98,
Section 3.3]. The equalities in Equations (2-1) and (2-2) follow from [RW98, Lemma
3.23]. The lattice isomorphisms follow from [RW98, Theorem 3.22], while Equation
(2-3) follows from [RW98, Proposition 3.24] together with Remark 2.2. The statements
about imprimitivity bimodules follow from [RW98, Proposition 3.25]. �

2.2. Banach bundles. Roughly speaking, a Banach bundle is a topological bundle
in which each fibre is a Banach space. More precisely, we have the following definition.

DEFINITION 2.3. A Banach bundle over a topological space X is a topological space
B together with a continuous, open surjection p : B → X and complex Banach space
structures on each fibre Bx = p−1({x}) satisfying the following axioms.
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(B1) The map b 
→ ‖b‖ is upper semicontinuous from B to R+ (this means that for
all ε > 0, {b ∈B : ‖b‖ < ε} is open).

(B2) The map (a, b) 
→ a + b from B(2) = {(a, b) ∈B ×B : p(a) = p(b)} to B is
continuous.

(B3) The map (λ, b) 
→ λb is continuous from C ×B to B.
(B4) If (bi) is a net in B such that p(bi)→ x and ‖bi‖ → 0, then bi → 0x in B (where

0x is the zero element in Bx).

We say that p : B → X is separable if X is second countable and the Banach space
Γ0(X; B) is separable. If the map in axiom (B1) is actually continuous, we call B a
continuous Banach bundle.

REMARK 2.4. In some treatments, axiom (B3) in Definition 2.3 is replaced by the
formally weaker axiom that b 
→ λb is continuous for each λ ∈ C. However, since
{b ∈B : ‖b‖ < ε} is open, the proof of [FD88, Proposition II.13.10] shows the two
definitions are equivalent.

REMARK 2.5 (The literature). Continuous Banach bundles are treated in detail in
Sections 13–14 in [FD88, Ch. II] and many of the results there apply mutatis mutandis
to Banach bundles. In the past, Banach bundles as defined above were called ‘upper
semicontinuous Banach bundles’. We have adopted the convention to drop the modifier
in the general case. Banach bundles are discussed briefly in [MW08, Appendix A],
which is where Definition 2.3 comes from, and the corresponding notion of a
C∗-bundle is treated in detail in [Wil07, Appendix C].

The topology on the total space B of a Banach bundle might not be well behaved.
For example, it need not be Hausdorff [Wil07, Example C.27]. However, we do have
the following lemma.

LEMMA 2.6. If p : B → X is a Banach bundle, then the relative topology on Bx is the
(Banach space) norm topology.

PROOF. In the continuous case, this is [FD88, Proposition II.13.11], and proof carries
over to the general case; see [DWZ22, Lemma 2.2]. �

If p : B → X is a Banach bundle, we write Γ(X; B) for the vector space of
continuous sections. If X is locally compact, then we write Γc(X; B) and Γ0(X; B)
for the continuous sections that have compact support or that vanish at infinity,
respectively. We say that p : B → X has enough sections if given b ∈ Bx, there is an
f ∈ Γ(X; B) such that f (x) = b. Note that if X is locally compact, then since Γ(X; B)
is a C(X)-module by axiom (B3), we can take f ∈ Γc(X; B).

THEOREM 2.7 [Laz18, Corollary 2.10]. If p : B → X is a Banach bundle over a
locally compact space, then B has enough sections.

While the notion of a Banach bundle is a natural mathematical object, generally
Banach bundles arise in nature from their sections as described in the following result.
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THEOREM 2.8 (Hofmann–Fell). Let X be a locally compact space and suppose that
for each x ∈ X we are given a Banach space Bx. Let B be the disjoint union

∐
x∈X Bx

viewed as a bundle p : B → X. Suppose that Γ is a subspace of sections such that:

(a) for each f ∈ Γ, x 
→ ‖ f (x)‖ is upper semicontinuous; and
(b) for each x ∈ X, { f (x) : f ∈ Γ} is dense in Bx.

Then there is a unique topology on B such that p : B → X is a Banach bundle with
Γ ⊂ Γ(X; B). Furthermore, the sets of the form

W( f , U, ε) = {a ∈B : p(a) ∈ U and ‖a − f (p(a))‖ < ε}

with f ∈ Γ, U open in X and ε > 0 form a basis for this topology.

PROOF. In the continuous case, this is [FD88, Theorem II.13.18]. In general, it is
stated in [DG83, Proposition 1.3] and also follows mutatis mutandis from [Wil07,
Theorem C.25]. �

2.3. Banach subbundles. A subbundle of a Banach bundle is a Banach subbundle
if it is a Banach bundle in the inherited structure.

DEFINITION 2.9. Let p : B → X be a Banach bundle. We say that C ⊂B is a Banach
subbundle if each Cx = Bx ∩ C is a closed vector subspace of Bx, and p|C : C → X is
a Banach bundle when we give Cx the Banach-space structure coming from Bx and we
give C the relative topology.

REMARK 2.10. Since 0x ∈ Cx for all x, we must have p(C ) = X. However, some fibres
can be the zero Banach space.

REMARK 2.11. If {Cx} is any collection of closed subspaces with Cx ⊂ Bx and if
we give C =

∐
Cx = {b ∈B : b ∈ Cp(b)} the relative topology, then p : C → X is a

continuous surjection satisfying axioms (B1), (B2), (B3), and (B4) of Definition 2.3.
However, p : C → X may fail to be a Banach subbundle unless we also have p|C open.

Even if p|C is not open, we write Γ(X; C ) for the continuous functions f from X to
C such that p( f (x)) = x for all x ∈ X. Of course, if p|C is not open, there is no reason
that Γ(X; C ) should contain anything other than the zero section, as shown in the next
example.

EXAMPLE 2.12. Let B be a Banach space and B = X × B the trivial bundle over X.
Fix x0 ∈ X and let

Cx =

⎧⎪⎪⎨⎪⎪⎩
B if x = x0,
0x otherwise.

Then in general, p|C : C → X is not open and admits only the zero section.

PROPOSITION 2.13. Let p : B → X be a Banach bundle. Suppose that Cx is a closed
subspace of Bx for all x ∈ X and let C =

∐
Cx be as above. If { f (x) : f ∈ Γ(X; C )} is

dense in Cx for all x ∈ X, then the bundle p|C : C → X is a Banach subbundle of B.
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PROOF. Suppose that { f (x) : f ∈ Γ(X; C )} is dense in Cx for all x. Let U be a nonempty
(relatively) open set in C . In view of Remark 2.11, to show that p|C : C → X is
a Banach subbundle, it suffices to see that p(U) is open in X. Let x ∈ p(U) and
suppose that (xi) is a net in X converging to x in X. It suffices to see that (xi)
is eventually in p(U). Let b ∈ U be such that p(b) = x. Then for each n, the set
{b′ ∈B : ‖b′ − b‖ < 1/n} is an open neighbourhood of b in B. Hence, there is
fn ∈ Γ(X; C ) such that ‖ fn(x) − b‖ < 1/n. Thus, ‖ fn(x) − b‖ → 0. By axiom (B4),
fn(x) − b→ 0x in B. However, by axiom (B2), fn(x)→ b in B. Since everything
in sight is in C and C has the relative topology, for some N, fN(x) ∈ U. However,
fN(xi)→ fN(x). So fN(xi) is eventually in U. Therefore xi is eventually in p(U). �

REMARK 2.14. In [FD88, Problem 41 in Ch. II], Fell and Doran call a family
{Cx} of subspaces as in Proposition 2.13 in a continuous Banach bundle a lower
semicontinuous choice of subspaces.

REMARK 2.15. If p : B → X is a Banach bundle over a locally compact space
and if p|C : C → X is a Banach subbundle, then it has enough sections by Lazar’s
Theorem 2.7. Hence, { f (x) : f ∈ Γ(X; C )} is not only dense, it is all of Cx.

2.4. Quotient Banach bundles. Let p : B → X be a Banach bundle over a locally
compact space X and let C ⊂B be a Banach subbundle as in Definition 2.3. Then
we can formally form the quotient B/C =

∐
x∈X Bx/Cx, where Bx/Cx is the usual

Banach space quotient. We let q : B →B/C be the quotient map so that if b ∈ Bx,
then q(b) = qx(b), where qx : Bx → Bx/Cx is the usual Banach space quotient map. In
particular, q is norm reducing. If f ∈ Γc(X; B), then we write q( f ) for the section of
B/C given by q( f )(x) = qx( f (x)).

PROPOSITION 2.16. Let p : B → X be a Banach bundle and C ⊂B a Banach sub-
bundle. Then p̄ : B/C → X is a Banach bundle in the quotient topology. Furthermore,
the quotient map q : B →B/C is continuous and open, and the quotient topology on
B/C is the unique topology such that Γ = {q( f ) : f ∈ Γc(X; B)} ⊂ Γc(X; B/C ).

REMARK 2.17. As pointed out in [Laz18], Proposition 2.16 can be sorted out of [Gie82,
Ch. 9]. We give the short proof for completeness.

PROOF. Let f ∈ Γc(X; B). We claim x 
→ ‖qx( f (x))‖ is upper semicontinuous. Fix
ε > 0. Suppose ‖qx( f (x))‖ < ε. Then by definition of the quotient norm, there is a
c ∈ Cx such that ‖ f (x) + c‖ < ε. Let d ∈ Γc(X; C ) be such that d(x) = c. Then there
is a neighbourhood V of x such that ‖ f (y) + d(y)‖ < ε if y ∈ V . Since q( f ) = q( f + d),
it follows that ‖q( f )(y)‖ < ε for y ∈ V . This establishes the claim.

It follows from Theorem 2.8 that there is a unique topology on B/C such that
B/C is a Banach bundle with Γ := {q( f ) : f ∈ Γc(X; B)} ⊂ Γc(X; B/C ).

Next we claim that the quotient map q : B →B/C is continuous. Suppose that (ai)
is a net in B such that ai ∈ Bxi and ai → a0 in B. Then xi → x0 in X. Let f ∈ Γc(X; B)
be such that f (x0) = a0. Then
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‖ f (xi) − ai‖ → 0.

Since q is norm reducing,

‖q( f )(xi) − q(ai)‖ → 0.

Since q( f ) ∈ Γc(X; B/C ), [MW08, Lemma A.3] implies that q(ai)→ q(a0). Thus, q
is continuous as claimed.

To see that q is also open, let V be an open neighbourhood of b ∈B. Then in view
of Theorem 2.8, there is a f ∈ Γc(X; B), an open neighbourhood U of p(b) and an
ε > 0 such that

b ∈ W( f , U, ε) := {a ∈ B : p(a) ∈ U and ‖a − f (p(a))‖ < ε}.

We need to verify that q(V) is a neighbourhood of q(b). Since q( f ) ∈ Γc(X; B/C ), it
suffices to see that

q(W( f , U, ε)) = {q(c) : p(c) ∈ U and ‖q(c) − q( f )(p(c))‖ < ε}.

Since the left-hand side is clearly a subset of the right-hand side, it suffices to consider
q(c) in the right-hand side. If x = p(c), then

ε > ‖q(c) − q( f )(x)‖ = ‖qx(c − f (x))‖ = inf
qx(a)=c

‖a − f (x)‖.

Hence, there is an a ∈ W( f , U, ε) such that q(a) = q(c). This suffices to show that q is
open.

Since q is continuous and open, the topology on B/C is the quotient
topology. �

2.5. Fell bundles. Fell bundles are natural generalizations of Fell’s Banach
∗-algebraic bundles from [FD88, Ch. VIII] and were introduced by Yamagami in
[Yam87]. The following definition comes from [MW08, Definition 1.1].

DEFINITION 2.18. Suppose that p : B → G is a Banach bundle over a second
countable locally compact Hausdorff groupoid G. Let

B(2) = {(a, b) ∈B ×B : (p(a), p(b)) ∈ G(2)}.

We say that p : B → G is a Fell bundle if there is a continuous, bilinear, associative
multiplication map (a, b) 
→ ab from B(2) to B and a continuous involution b 
→ b∗

from B to B such that:

(FB1) p(ab) = p(a)p(b);
(FB2) p(a∗) = p(a)−1;
(FB3) (ab)∗ = b∗a∗;
(FB4) for each u ∈ G(0), the fibre Bu is a C∗-algebra with respect to the inherited

multiplication and involution on Bu; and
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(FB5) for each g ∈ G, Bg is an Br(g) – Bs(g)-imprimitivity bimodule when equipped
with the inherited actions and inner products given by

Br(g)〈a, b〉 = ab∗ and 〈a, b〉Bs(g) = a∗b. (2-4)

We say that the Fell bundle p : B → G is separable if it is separable as a Banach
bundle.

REMARK 2.19 (Saturated). It should be noted that our Fell bundles are saturated in that
whenever (g, h) ∈ G(2), then Bg · Bh := span{ab : a ∈ Bg and b ∈ Bh} is always dense in
Bgh [MW08, Lemma 1.2]. This is a consequence of item (FB5). Some authors prefer
to work with a weakened version of item (FB5) where the inner products in Equation
(2-4) are not full.

REMARK 2.20. If p : B → G is a Fell bundle, then the restriction B|G(0) is a
C∗-bundle and Γ0(G(0); B) is a C∗-algebra called the associated C∗-algebra to B. (The
terminology is a bit challenging. If G has a Haar system, then one can also form the
Fell-bundle C∗-algebra C∗(G; B) by viewing Γc(G; B) as a ∗-algebra and completing
as in [MW08].)

2.6. Equivalence of Fell bundles. Suppose that T is a left G-space. Then we say
that a Fell bundle p : B → G acts on (the left of) a Banach bundle q : E → T if there
is a continuous map (b, e) 
→ b · e from B ∗ E := {(b, e) ∈B × E : s(b) = r(q(e))} to
E such that:

(a) q(b · e) = p(b) · q(e);
(b) a · (b · e) = (ab) · e for appropriate a, b ∈ B and e ∈ E ; and
(c) ‖b · e‖ ≤ ‖b‖‖e‖.

Right actions of a Fell bundle are defined similarly.
Let T be a (G, H) equivalence with open moment maps ρ : T → G(0) and

σ : T → H(0) as in [Wil19, Definition 2.29]. It is shown in [Wil19, Lemma 2.42]
that there are open continuous maps τG : T ∗σ T → G and τH : T ∗ρ T → H such that
τG(e, f ) · f = e and e · τH(e, f ) = f .

DEFINITION 2.21 [MW08, Definition 6.1]. Suppose that T is a (G, H)-equivalence,
and that pB ·B → G and pC : C → H are Fell bundles. Then a Banach bundle
q : E → T is a B – C -equivalence if the following conditions hold.

(E1) There is a left B-action and a right C -action on E such that b · (e · c) = (b · e) · c
for composable b ∈B, e ∈ E and c ∈ C .

(E2) There are continuous sesquilinear maps (e, f ) 
→ B〈e, f 〉 from E ∗σ E to B
and (e, f ) 
→ 〈e, f 〉C from E ∗ρ E to C such that:

(i) pB(B〈e, f 〉) = τG(q(e), q( f )) and pC (〈e, f 〉C ) = τH(q(e), q( f ));
(ii) B〈e, f 〉∗ = B〈 f , e〉 and 〈e, f 〉∗B = 〈 f , e〉B;
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(iii) B〈b · e, f 〉 = bB〈e, f 〉 and 〈e, f · c〉C = 〈e, f > 〉C ; and
(iv) B〈e, f 〉 · g = e · 〈 f , g〉C .

(E3) With the actions and inner products coming from conditions (E1) and (E2),
each Et is a Bρ(t) – Cσ(t)-imprimitivity bimodule.

2.7. Fell subbundles and ideals. Naturally, a subbundle of a Fell bundle is called a
Fell subbundle if it is a Fell bundle in the inherited structure.

DEFINITION 2.22. Let p : B → G be a Fell bundle over a groupoid G. We call
C ⊂B a Fell subbundle if C is a Banach subbundle such that p|C : C → G is a Fell
bundle with respect to the inherited operations. In particular, C must be closed under
multiplication and involution.

We focus on Fell subbundles that are multiplicatively absorbing.

DEFINITION 2.23. A Fell subbundle J of a Fell bundle B is called an ideal if
ab ∈J whenever (a, b) ∈B(2) and either a ∈J or b ∈J .

EXAMPLE 2.24. Suppose that α : G → Aut(A) is a C∗-dynamical system for a group
G. Let B = A × G be the associated Fell bundle over G: (a, s)(b, r) = (aαs(b), sr). Let
I be an α-invariant ideal of A. Then J = I × G is an ideal in B.

EXAMPLE 2.25. Suppose that A is a C∗-bundle over X so that A = Γ0(X; A ) is a
C∗-algebra. Let J be an ideal in A and for each x ∈ X, let Jx = {a(x) : a ∈ J} so that Jx

is an ideal in Ax. Let

J =
∐
x∈X

Jx.

It follows from Proposition 2.13 that J is a Banach subbundle and in fact is obviously
an ideal of the Fell bundle A . Clearly, J ⊂ Γ0(X; J ). Since J is an ideal in the
C0(X)-algebra A, if φ ∈ C0(X) and b ∈ J, then φ · b ∈ J. Now it follows from [Wil07,
Proposition C.24] that J is dense in Γ0(X; J ). Therefore, J = Γ0(X; J ).

LEMMA 2.26. Suppose that J is an ideal in B. Then for each g ∈ G, Jg is a
Jr(g) – Js(g)-imprimitivity bimodule. Furthermore,

Jg = Bg · Js(g) = Jr(g) · Bg, (2-5)

where we are taking advantage of Remark 2.2. Furthermore,

Jr(g) = JgB∗g = BgJ∗g = JgJ∗g and Js(g) = J∗gBg = B∗gJg = J∗gJg.

PROOF. The first assertion is immediate since J is, by assumption, a Fell sub-
bundle. The remaining statements follow from the Rieffel correspondence; see
Theorem 2.1. �

DEFINITION 2.27. Let p : B → G be a Fell bundle and J ⊂B a Banach subbundle.
We call J a weak ideal of B if whenever (a, b) ∈B(2), then ab ∈J whenever either
a or b is in J .
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REMARK 2.28. If I is an ideal in a C∗-algebra, then the existence of approximate
identities implies that I is ∗-closed and hence a C∗-subalgebra. A similar serendipity
applies to weak ideals.

PROPOSITION 2.29. If p : B → G is a Fell bundle, then every weak ideal in B is an
ideal.

PROOF. Let J be a weak ideal in B. Since Jg is closed with respect to the norm
on Bg, it is a closed B(r(g)) – B(s(g))-submodule of the B(r(g)) – B(s(g))-imprimitivity
bimodule Bg. In particular, Ju is an ideal in the C∗-algebra Bu for all u ∈ G(0). Then,
applying the Rieffel correspondence, Jg is a Kg – Ig-imprimitivity bimodule where Ig

is the closed linear span of elements of the form b∗a with b ∈ Bg and a ∈ Jg. Similarly,
Kg is the closed linear span of products ab∗ with a ∈ Jg and b ∈ Bg. Furthermore,

Jg = Bg · Ig = Kg · Bg. (2-6)

Note that Ig is an ideal in Js(g). Fix c ∈ Js(g). If b ∈ Bg, then bc ∈ Jg by the weak ideal
property. Since B∗g · Bg is a dense ideal in Bs(g), we can find an approximate unit (ei)
in Bs(g) where each ei =

∑ni
k=1 b∗kbk with each bk ∈ Bg. However, then eic is in Ig and

eic→ c. Hence, c ∈ Ig and Ig = Js(g). A similar argument shows that Kg = Jr(g).
Since Js(g) is an ideal in the C∗-algebra Bs(g), we have J∗s(g) = Js(g). Hence, using

Equation (2-6),

J∗g = (Bg · Js(g))
∗ = J∗s(g) · B∗g = Jr(g−1) · Bg−1 = Jg−1 .

In particular, J ∗ =J and J is closed under taking adjoints. Since J is a weak
ideal, it is closed under multiplication and we just showed it is also closed under the
adjoint operation. Now we just have to observe that it is a Fell bundle. However,
this follows from the above discussion and identification of Ig with Js(g) and Kg

with Jr(g). �

It is standard to think of a Fell bundle p : B → G as a generalized groupoid
crossed product of G acting on the associated C∗-algebra A := Γ0(G(0); B). As an
example of this rubric, it is shown in [IW12, Proposition 2.2] that there is a natural
action of G on Prim A given as follows. Note that Prim A is naturally fibred over G(0).
Since Bg is a Br(g) – Bs(g)-imprimitivity bimodule, the Rieffel correspondence induces
a homeomorphism φg : Prim(Bs(g))→ Prim(Br(g)) [RW98, Corollary 3.33]. Then the
G-action is given by g · Ps(g) = φg(Ps(g)). Naturally, an ideal I in A is called G-invariant
if hull(I) := {P ∈ Prim A : P ⊃ I} is G-invariant. If I is an ideal in A, then we let
Iu = qu(I), where qu : Γ0(G(0); B)→ Bu is the evaluation map.

PROPOSITION 2.30 [IW12]. Suppose p : B → G is a Fell bundle and that I is a
G-invariant ideal in the associated C∗-algebra Γ0(G(0); B). Then

BI := {b ∈B : b∗b ∈ Is(b)}

is an ideal in B. Conversely, if J is an ideal in B, then I = Γ0(G(0); J ) is a
G-invariant ideal in Γ0(G(0); B) and J =BI .
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PROOF. It follows from [IW12, proof of Lemma 3.1] that an ideal I ⊂ Γ0(G(0); B)
is G-invariant if and only if for all g, we have φg(Is(g)) = Ir(g). By the Rieffel
correspondence, the latter is equivalent to

Bg · Is(b) = Ir(b) · Bg for all g ∈ G. (2-7)

Suppose that I is G-invariant. Then it follows from [IW12, Proposition 3.3] that
J :=BI is a Fell subbundle such that Equation (2-7) holds. Suppose that a ∈ Bg and
b ∈ Bh are composable. If a ∈J , then

ab ∈ Ir(g) · BgBh ⊂ Ir(gh) · Bgh = Jgh.

Similarly, if b ∈J , then

ab ∈ BgBh · Is(h) ⊂ Bgh · Is(gh) = Jgh

and BI is an ideal.
Now suppose that J is an ideal in B. Let

I = Γ0(X; J ).

Then as in Example 2.25, we have Iu = Ju. Now it follows from Lemma 2.26 and
Equation (2-7) that I is G-invariant. Since BI and J have the same fibres, clearly
BI =J . �

3. The Rieffel correspondence for Fell-bundle equivalences

In this section, we let qE : E → T be an equivalence between pB : B → H and
pC : C → K. In particular, T is an (H, K)-equivalence and we let ρ : T → H(0) and
σ : T → K(0) be the open moment maps.

We need the following observation from [MW08, Lemma 6.2].

LEMMA 3.1. As above, let qE : E → T be a Fell-bundle equivalence between
pB : B → H and pC : C → K. Then (b, e) 
→ b · e induces an imprimitivity bimodule
isomorphism of Bh⊗Bρ(t) Et onto Eh·t. Similarly, (e, c) 
→ e · c induces an isomorphism
between Et⊗Cσ(t) Ck and Et·k.

COROLLARY 3.2. Let E , B and C be as above. Let J be an ideal in C and
σ(t) = r(k). Then Et · Jk = Et·k · Js(k).

PROOF. Lemma 3.1 implies that Et · Ck = Et·k. Therefore, by Lemma 2.26,

Et · Jk = Et · Ck · Js(k) = Et·k · Js(k). �

DEFINITION 3.3. Let qE : E → T be an equivalence between pB : B → H
and pC : C → K. Then a Banach submodule M of E is called a Banach
B – C -submodule if Bh ·Mt ⊂ Mh·t whenever s(h) = ρ(t) and Mt · Ck ⊂ Mt·k whenever
σ(t) = r(k). We say that M is full if Bh ·Mt = Mh·t and Mt · Ck = Mt·k.
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PROPOSITION 3.4. Let E , B and C be as above. If J is an ideal in C , then

E ·J :=
⋃

{(t,k):σ(t)=r(k)}
Et · Jk

is a full Banach B – C -submodule of E with (E ·J )t = Et · Jσ(t). Similarly, if K
is an ideal in B, then K · E is a full Banach B – C -submodule with (K · E )t =

Kρ(t) · Et.

PROOF. We have

E ·J =
⋃

{(t,k):σ(t)=r(k)}
Et · Jk ⊂

⋃
{(t,k):σ(t)=r(k)}

Et · Jk

which, by Corollary 3.2, is

=
⋃

{(t,k):σ(t)=r(k)}
Et·k · Js(k) =

⋃
t∈T

Et · Jσ(t) ⊂ E ·J .

Therefore, E ·J =
⋃

t∈T Et · Jσ(t) and (E ·J )t = Et · Jσ(t) as claimed.
In particular, E ·J is a bundle over T with closed fibres Et · Jσ(t). However, if

f ∈ Γc(T; E ) and φ ∈ Γc(K(0); J ), then φ · f given by φ · f (t) = f (t) · φ(σ(t)) is a
section in Γc(T; E ·J ). Now it follows from Proposition 2.13 that E ·J is a Banach
subbundle of E .

We still need to see that E ·J is a full B – J -submodule. However, if s(h) = ρ(t),
then

Bh · (E ·J )t = Bh · (Et · Jσ(t))

= (Bh · Et) · Jσ(t)

= Eh·t · Jσ(t) = (E ·J )h·t.

However, if σ(t) = r(k), then

(E ·J )t · Ck = Et · (Jr(k) · Ck)

which, by Lemma 2.26, is

= Et · (Ck · Js(k))

= Et·k · Js(k) = (E ·J )t·k.

Thus, E ·J is a full Banach B – C -submodule as claimed.
The corresponding statements for K · E are proved similarly. �

Now suppose that M is a full Banach B – C -submodule of E . Then Mt is
a closed Bρ(t) – Cσ(t)-submodule of Et. By the Rieffel correspondence, Mt is a
Lt – Rt-imprimitivity bimodule for the ideals Lt = B〈Mt, Et〉 in Bρ(t) and Rt = 〈Et, Mt〉C
in Cσ(t). Furthermore, Lt · Et = Mt = Et · Rt.
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LEMMA 3.5. In the current set-up, the ideal Rt depends only on σ(t) and the ideal Lt

depends only on ρ(t). Hereafter, we denote them by Rσ(t) and Lρ(t), respectively.

PROOF. If σ(t′) = σ(t), then t′ = h · t. Since Et is a Bρ(t) – Cσ(t)-imprimitivity bimod-
ule, and since Rt and Rh·t are both ideals in Cσ(t), to see that Rt = Rh·t, it suffices, by
the Rieffel correspondence, to see that Et · Rt = Et · Rh·t. Since M is full,

Et · Rh·t = Et · 〈Eh·t, Mh·t〉C = Et · 〈Bh · Et, Bh ·Mt〉C .

Clearly,

Et · 〈Bh · Et, Bh ·Mt〉C ⊂ Et · 〈Bh · Et, Bh ·Mt〉C . (3-1)

However, consider

e · 〈 f , g〉C

with e ∈ Et, f ∈ Bh · Et and g ∈ Bh ·Mt. Then there are sequences ( fi) ⊂ Bh · Et

and (gi) ⊂ Bh ·Mt such that fi → f and gi → g in norm in Eh·t and hence in E .
Therefore, e · 〈 fi, gi〉C → e · 〈 f , g〉C in E . Since the convergence takes place in Et,
the convergence is in norm. It follows that

Et · 〈Bh · Et, Bh ·Mt〉C ⊂ Et · 〈Bh · Et, Bh ·Mt〉C .

Therefore, we have equality in Equation (3-1), and

Et · Rh·t = Et · 〈Bh · Et, Bh ·Mt〉C
which, using condition (E2)(iv), is

= B〈Et, Bh · Et〉 · Bh ·Mt

which, using conditions (E2)(ii) and (E2)(iii), is

= B〈Et, Et〉 · B∗hBh ·Mt

which, since B∗hBh = Bs(h) = Bρ(t) = B〈Et, Et〉 and since Bs(h) ·Mt = Mt, is

= Mt = Et · Rt.

Thus, Rt = Rh·t as required.
The proof for Lt is similar. �

If σ(t) = r(k), then 〈Mt, Et·k〉C is the subspace of Ck spanned by inner products of
elements in Mt with elements of Et·k. Then given k ∈ K, we let

⊕
σ(t)=r(k) 〈Mt, Et·k〉C

denote the subspace of Ck generated by the summands. Then

〈M , E 〉C :=
∐
k∈K

⊕
σ(t)=r(k)

〈Mt, Et·k〉C =
∐
k∈K

⊕
σ(t)=r(k)

〈Mt, Et · Ck〉C (3-2)

where the closure takes place in the Banach space Et·k.
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LEMMA 3.6. In the setting above, both 〈Mt, Et · Ck〉C and 〈Mt, Et · Ck〉C are norm
dense in Rr(k) · Ck, where we have invoked Lemma 3.5 to realize that Rt depends only
on r(k) = ρ(t).

PROOF. Clearly,

〈Mt, Et · Ck〉C = 〈Mt, Et〉C · Ck ⊂ Rr(k) · Ck.

Moreover,

〈Mt, Et〉C · Ck = Rr(k) · Ck = Rr(k) · Ck.

This implies the first assertion.
For the second, we just need to see that 〈Mt, Et · Ck〉C ⊂ 〈Mt, Et〉C · Ck. To this end,

suppose that (ci) is a sequence in Et · Ck converging to c in Et·k. Then for any m ∈ Mt,
the sequence (〈m, ci〉C ) converges to 〈m, c〉C in C since 〈·, ·〉C is continuous on E ∗ρ E .
Since the convergence takes place in Ck, the convergence is in norm by Lemma 2.6.
Since each 〈m, ci〉C ∈ 〈Mt, Et〉C · Ck, the result follows. �

Using Lemma 3.6 and Equation (3-2),

〈M , E 〉C ⊂
∐
k∈K

Rr(k) · Ck. (3-3)

Moreover, 〈M , E 〉C ∩ Ck is norm dense in Rr(k) · Ck.

LEMMA 3.7. In the current set-up, JM :=
∐

k∈K Rr(k) · Ck is a Banach subbundle
of C .

PROOF. As in the proof of Proposition 2.13, the issue is to see that p : JM → K is
open. Let U be a nonempty (relatively) open set in JM . Given k ∈ p(U), it suffices
to show that given a sequence (ki) converging to k in K, (ki) is eventually in U. If this
fails, then after passing to a subsequence and relabelling, we can assume ki � U for
all i.

Since (JM )k is Rr(k) · Ck, we can find c ∈ Cr and c′ ∈ Rr(k) such that c′c ∈ U and
p(c′c) = k. Let t ∈ T be such that σ(t) = r(k). Since Rr(k) is the closure of 〈Et, Mt〉C
in Cr(k), there is a sequence (c′i) ⊂ 〈Et, Mt〉C converging to c′ in norm. However, then
c′ic→ c′c in norm. Then (c′i c) is eventually in U. Therefore, we may as well assume
that c′ =

∑n
j=1 〈ej, mj〉C with each ej ∈ Et and each mj ∈ Mt.

Since Banach bundles have enough sections, we can find f ∈ Γ(K; C ), gj ∈ Γ(T; E )
and hj ∈ Γ(T; M ) such that f (k) = c, gj(t) = ej and hj(t) = mj.

Since r(ki)→ r(k) = σ(t) and since σ is open, we can pass to a subsequence, relabel
and assume that there are ti ∈ T such that ti → t and σ(ti) = r(ki). Then

d(ti) :=
n∑

j=1

〈g(ti), h(ti)〉C ∈ Rσ(ti) and d(ti) f (ki) ∈ Rσ(ti) · Cki = (JM )ki .
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Furthermore, d(ti) f (ki)→ c′c in JM . Hence, (d(ti) f (ki)) is eventually in U. Since p is
continuous, p(d(ti) f (ki)) = ki is eventually in p(U), which contradicts our assumptions
on (ki) and completes the proof. �

PROPOSITION 3.8. In the current set-up, JM :=
∐

k∈K Rr(k) · Ck is an ideal in C .

PROOF. In view of Proposition 2.29, we just have to show that JM is a weak ideal.
For convenience, let Jk = Rr(k) · Ck.

Suppose that (c, m) ∈ Cl × Jk with s(l) = r(k). By Lemma 3.6, there is a sequence
(mi) in 〈Mt, Et · Ck〉C converging to m in norm (and hence in C ). However, then cmi →
cm in C ∩ Clk in C and hence in norm. Since Mtc∗ ⊂ Mt·l−1 , cmi ∈ 〈Mt·l−1 , Et·k〉C ⊂ Jlk

(using Equations (3-2) and (3-3)). Since Jkl is closed in norm in Ckl, it follows that
cm ∈JM .

A similar argument shows that mc ∈JM if (m, c) ∈ Jk × Cl with s(k) = r(l).
Hence, JM is a weak ideal as claimed. �

PROPOSITION 3.9. We retain the current set-up. Let J be an ideal in C .
Then M = E ·J is a Banach B – J -submodule of E and JM =J . Hence,
J 
→ E ·J is a lattice isomorphism of the collection of ideals in C to the collection
of closed B – C -submodules of E .

PROOF. By Proposition 3.4, M := E ·J is a full Banach B – J -submodule and
Mt = (E ·J )t = Et · Jσ(t). Thus, applying the Rieffel correspondence to Et,

Rσ(t) = span〈Et, Mt〉C = span〈Et, Et · Jσ(t)〉C = Jσ(t).

Thus, in Equation (3-3), Rr(k) = Jr(k). Therefore,

JM =
∐
k∈K

Rr(k) · Ck =
∐
k∈K

Jr(k) · Ck =J ,

where the last equality comes from Equation (2-5) of Lemma 2.26.
Now suppose that M is a full closed B – C -submodule. Then Proposition 3.8

implies that JM is an ideal in C with (JM )k = Rr(k) · Ck. Let M ′ := E ·JM . In
particular, if u ∈ K(0), (JM )u = Ru · Cu = Ru. Thus, (JM )k = Rr(k) · Ck = Ck · Rs(k)

by Lemma 2.26. Then M ′
t = (E ·JM )t = Et · Rσ(t). This means

R′σ(t) = 〈Et, M ′
t 〉C

= 〈Et, Et〉C · Rσ(t)

= 〈Et, Et〉C · Rσ(t)

= Cσ(t) · Rσ(t) = Rσ(t).

Therefore, M′t = Et · Rσ(t) = Et · R′σ(t) = Mt. Hence, E ·JM =M . �

By symmetry, we have a lattice isomorphism K 
→K · E between the ideals in
B and the full Banach B – C -submodules of E . Then we have the following Rieffel
correspondence for Fell bundle equivalence.
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THEOREM 3.10. Suppose that qE : E → T is a Fell-bundle equivalence between
pB : B → H and pC : C → K. Then there are lattice isomorphisms among the
ideals of B, the full Banach B – C -submodules of E and the ideals of C . The
correspondences are given as follows.

(a) If J is an ideal in C , then the corresponding full Banach B – C -submodule is

E ·J =
⋃
t∈T

Et · Jσ(t).

(b) If M is a full Banach B – C -submodule, then for each t ∈ T, Mt is a
Lρ(t) – Rσ(t)-imprimitivity bimodule for ideals Lρ(t) = B〈Mt, Et〉 in Bρ(t) and
Rσ(t) = 〈Et, Mt〉C in Cσ(t). Then the corresponding ideals JM in C and K M in
B are given by

JM =
⋃
k∈K

Rr(k) · Ck and K M =
⋃
h∈H

Lr(h) · Bh.

(c) If K is an ideal in B, then the corresponding B – C -submodule is

K · E =
⋃
t∈T

Kρ(t) · Et.

The following is a generalization of [RW98, Proposition 3.24].

COROLLARY 3.11. Suppose that qE : E → T is a Fell-bundle equivalence between
pB : B → H and pC : C → K. If J is an ideal in C , then the corresponding ideal
K in B is

∐
h∈H Hr(h) · Bh, where

Hρ(t) = B〈Et · Jσ(t), Et〉. (3.4)

PROOF. If J is an ideal in C , then according to Theorem 3.10(a), the corresponding
full Banach B – C -submodule is M = E ·J . Then using Theorem 3.10(b), the
corresponding ideal K in B is

⋃
h∈H Lr(h) · Bh, where Lr(h) is given by the right-hand

side of Equation (3-4) for any t ∈ T such that ρ(t) = r(h). This gives the result. �

4. Extending the Rieffel correspondence

Now we want to state and prove the analogues for Fell bundles of parts (c) and (d)
of Theorem 2.1.

PROPOSITION 4.1. Suppose that qE : E → T is a Fell-bundle equivalence between
pB : B → H and pC : C → K. Suppose that J is an ideal in C , and that M and
K are the corresponding full Banach B – C -submodule in E and ideal in B. Then
M is a Fell-bundle equivalence between K and J .

PROOF. Since M is a B – C -submodule of E , we clearly have a left K -action and a
right J -action satisfying condition (E1).
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For condition (E2), we claim that it suffices to let K 〈e, f 〉 = B〈e, f 〉 and 〈e, f 〉J =
〈e, f 〉C . To see this, note that if (e, f ) ∈M ∗σ M , then we can assume (e, f ) ∈
Mt ×Mh−1·t for some h ∈ H and t ∈ T . However, Mt = Kρ(t) · Et. Additionally, we
have B〈Kρ(t) · Et, Mh−1·t〉 = Kρ(t) · B〈Et, Mh−1·t〉 ⊂ Kρ(t) · Bh = Kh. Therefore, K 〈·, ·〉 is
K -valued. Similarly, 〈·, ·〉J is J -valued. The rest of condition (E2) follows from
the given properties of B〈·, ·〉 and 〈·, ·〉C .

For condition (E3), the fact that Mt is a Kρ(t) – Jσ(t)-imprimitivity bimodule follows
from the Rieffel correspondence (part (c) of Theorem 2.1). �

PROPOSITION 4.2. Let qE : E → T be an equivalence between pB : B → H and
pC : C → K. Suppose that J is an ideal in C and that M and K are the
corresponding full Banach B – C -submodule in E and ideal in B, respectively. Then
the quotient Banach bundle E /M is an equivalence between B/K and C /J .

PROOF. We let qK : B →B/K and qJ : C → C /J be the quotient maps. Then
the given left and right actions of B and C on E induce left and right actions of B/K
and C /J on E /M in the expected way:

qK (b) · q(e) = q(b · e) and q(e) · qJ (c) = q(e · c)

assuming that b · e and e · c are defined.
To see that these actions are continuous, we use the fact that q, qK and qJ are open

as well as continuous (Proposition 2.16). Suppose that q(ei)→ q(e) while qK (bi)→
qK (b) with bi · ei defined for all i. We need to verify that q(bi · ei)→ q(b · e). For
this, it suffices to see that every subnet has a subnet converging to q(b · e). However,
after passing to a subnet and relabelling, the openness of the quotient maps means we
can pass to another subnet and assume that e′i → e and b′i → b with q(e′i) = q(e) and
qK (b′i) = qK (bi). Then the continuity of the quotient maps implies that q(bi · ei) =
q(b′i · e′i)→ q(b · e) as required.

We also have

‖q(b · e)‖ ≤ inf{‖b′ · e′‖ : qK (b′) = qK (b) and q(e′) = q(e)}
≤ inf{‖b′‖‖e′‖ : qK (b′) = qK (b) and q(e′) = q(e)}
= ‖qK (b)‖‖q(e)‖.

Therefore, B/K acts on the left of E /M . The argument for the right action is
similar.

Now we need to verify the axioms in Definition 2.21. Axiom (E1) is immediate
since E is an equivalence. For Axiom (E2), we define

〈q(e), q( f )〉C /J := qJ (〈e, f 〉C ) and B/K 〈q(e), q( f )〉 = qK (B〈e, f 〉).

It is not hard to check that these pairings are well defined. Then properties (i), (ii),
(iii) and (iv) follow from the corresponding properties for E and the observation that
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the quotient maps are multiplicative. The continuity follows using the continuity and
openness of the quotient maps as we did above for the left and right actions.

Of course, Axiom (E3) is clear. �

5. At the C∗-level

Since the previous exposition did not require it, we have purposely avoided
discussing the Fell-bundle C∗-algebras that are associated to a Fell bundle. However,
there is an obvious question: how is our Rieffel correspondence for ideals in equivalent
Fell bundles related to the standard Rieffel correspondence for ideals in Morita
equivalent C∗-algebras? In order that there be C∗-algebras, we now have to assume
our groupoids have Haar systems. To apply the equivalence theorem, that is, [MW08,
Theorem 6.4], we also need our Fell bundles to be separable.

We return to the set-up in Section 3: we let qE : E → T be an equivalence
between the separable Fell bundles pB : B → H and pC : C → K. In particular, T
is a (H, K)-equivalence (although it is not required, we note that T must be second
countable since H and K are [Wil19, Proposition 2.53]) and we let ρ : T → H(0) and
σ : T → K(0) be the open moment maps.

Then the equivalence theorem implies that C∗(H(0); B) and C∗(K(0); C ) are Morita
equivalent via an imprimitivity bimodule X, which is the completion of X0 := Γc(T , E )
with the actions and inner products given in [MW08, Theorem 6.4]. Then we can let

X–Ind : I(C∗(K(0); C ))→ I(C∗(H(0); B))

be the classical Rieffel lattice isomorphism.
If J is an ideal in C , then as shown in [IW12, Lemma 3.5], the identity map ι

induces an isomorphism of C∗(K(0); J ) onto the ideal Ex(J ), which is the closure
of ι(Γc(K(0); C )) in C∗(K(0); C ).

Let J be an ideal in C and K the corresponding ideal in B as in Theorem 3.10.
The goal here is to establish that the two Rieffel correspondences are compatible in
that

X–Ind(Ex(J )) = Ex(K ). (5-1)

By [RW98, Proposition 3.24], the left-hand side of Equation (5-1) is

span{∗〈〈x · b, y〉〉 : x, y ∈ X and b ∈ Ex(J )},

where 〈·, ·〉 is the Γc(H(0); B)-valued inner product from [MW08, Equation (6.3) in
Theorem 6.4]. In particular, if x, y ∈ X0 and b ∈ Γc(K(0); J ), then provided ρ(t) = s(h),

∗〈〈x · b, y〉〉(h) =
∫

K
B〈x · b(h · t · k), y(t · k)〉 dλσ(t)

K (k), (5-2)
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where according to [MW08, Equation (6.2) in Theorem 6.4],

x · b(h · t · k) =
∫

K
x(h · t · kl)b(l−1) dλs(k)

K (l). (5-3)

Let M = E ·J =K · E . Note that M is a K – J -equivalence. Then the
integrand in Equation (5-3) is in the Banach space Mh·t·k for all l. Hence,

x · b(h · t · k) ∈ Mh·t·k = Kr(h) · Eh·t·k.

Plugging into Equation (5-2), and using condition (E2)(iii) of Definition 2.21, we
clearly have

∗〈〈x · b, y〉〉(h) ∈ Kr(h) · Bh = Kh.

It follows that

X–Ind(Ex(J )) ⊂ Ex(K ).

However, we can also work with X–Ind−1. Then

X–Ind−1(Ex(K )) = span{〈〈x, c · y〉〉∗ : x, y ∈ X and c ∈ Ex(K )}.

A similar argument to the above shows that

X–Ind−1(Ex(K )) ⊂ Ex(J ). (5-4)

Now Equation (5-1) follows by applying X–Ind to both sides of Display (5-4).
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