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TEMPTATION AND SELF-CONTROL
IN A MONETARY ECONOMY

RYOJI HIRAGUCHI
Chiba University

We construct a microfounded model of money with Gul–Pesendorfer preferences. In each
period, agents are tempted to spend all their money by the end of the period, and they
suffer from the forgone utility that could have been obtained by adopting the tempting
choice. We find that the Friedman rule may not be optimal. A positive nominal interest
rate improves welfare because it reduces the real money balances and renders the
temptation less attractive. The welfare gained by deviating from the rule is equivalent to
0.67% of consumption.
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1. INTRODUCTION

A number of authors study the desirability of the Friedman rule, which sets the
nominal interest rate to zero. Chari and Kehoe (1999) show that the rule is optimal
in reduced-form monetary models such as the money-in-the-utility-function model
and the shopping-time model. These models are sometimes criticized, however,
because the role of money is uncertain. To overcome this criticism, Lagos and
Wright (2005), henceforth LW, construct a search-theoretic model in which money
is essential and find that the Friedman rule is still optimal because a deviation
from the rule reduces the match surplus. Their framework has been extended in
many directions. Aruoba and Wright (2003) combine the LW model with the
neoclassical growth model. Lagos and Rocheteau (2005) consider endogenous
search intensity. Faig and Huangfu (2007) study a competitive search model based
on LW. Interestingly, the optimality of the rule is unchanged in their models. These
findings indicate that the rule is robustly optimal in the standard monetary models.

One limitation of the existing monetary models is their assumption of constant
discounting, which is inconsistent with experimental evidence. As Thaler (1981)
and Benzion et al. (1989) find, an agent’s preference is actually reversed as time
passes. To explain the preference reversals, Gul and Pesendorfer (2001) construct
a model in which the agent compromises between his commitment utility and
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temptation utility but suffers from the forgone utility that could have been obtained
by adopting the tempting choice.1 This is called the self-control cost; the agent’s
utility is the maximized sum of the commitment and temptation utilities minus the
maximum temptation level. Recent experimental and empirical results, including
Ashraf et al. (2006), Ameriks et al. (2007), and Bucciol (2012), find support for
the Gul–Pesendorfer preferences.

In this paper, I incorporate the Gul–Pesendorfer preferences into the LW model.
Each date is divided into two subperiods, day and night. The day market is
decentralized and the night market is centralized. I first assume that the price
mechanism is competitive in the two markets. The role of money is to facilitate
trade in the day market, where buyers and sellers are anonymous and the buyers
need money to make payments. I set the temptation function proportional to the
period utility, in line with DeJong and Ripoll (2007). In each period, the agent is
tempted to consume all his money by the end of the period, but he holds back some
money for his next-period transactions. Thus, he is tempted to work less and enjoy
more leisure in the night market than he actually does, owing to the quasi-linearity
of the utility function. In our model, the extra utility from enjoying leisure is the
self-control cost, and it is proportional to the real value of the end-of-period money
balances.

I first show that if the relative risk aversion coefficient of the utility function
in the day market is less than or equal to 1, the optimal policy deviates from the
Friedman rule. In our model, an agent facing a self-control problem has to pay a
cost to carry a positive amount of money with him. This self-control cost does not
exist in Lagos and Wright (2005). A deviation from the Friedman rule reduces the
end-of-period money balances and lowers the cost. As in Lagos and Wright (2005),
a positive nominal interest rate reduces consumption and generates inefficiency
in the decentralized market. However, its first-order effect is zero around the rule
because the rule maximizes match surplus. Thus, the reduction in self-control cost
dominates the surplus loss.

I next measure the welfare gained by deviating from the Friedman rule. The
estimates of the temptation parameter vary with the literature. Following DeJong
and Ripoll (2007), the optimal nominal interest rate is 5.9% and the welfare gained
by deviating from the Friedman rule is equivalent to a 0.67% consumption. These
results do not change significantly in a recent estimate by Bucciol (2012).

As a robustness check, I finally consider three situations: (i) the terms of trade in
the decentralized market are determined by Nash bargaining, (ii) the agent faces
the self-control problem in each subperiod, and (iii) the temptation function is
quasigeometric, as in Krusell et al. (2010). We demonstrate that the nonoptimality
of the Friedman rule continues to hold in these cases.

The Gul–Pesendorfer preferences are then incorporated into the various types
of macroeconomic models. DeJong and Ripoll (2007) demonstrate that the self-
control preferences partially resolve the equity premium puzzle in asset pricing
models. Miao (2008) studies the option exercise decision problem of an agent
facing temptation. Krusell et al. (2010) incorporate self-control preferences into
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the Ramsey model and find that the famous zero capital tax principle does not hold.
Bucciol (2011), Kumru and Thanopoulos (2011), and Kumru and Tran (2012) con-
struct an overlapping generations model to investigate the social security system.
Nakajima (2012) studies the consumer debt. However, these studies are nonmone-
tary. As far as we know, our paper is the first to deal with the self-control problem
in a monetary economy.

Several authors study the monetary models with nonconstant discounting.2

Graham and Snower (2008, 2013) incorporate hyperbolic discounting into the New
Keynesian model. Since hyperbolic discounting generates time-inconsistency, they
solve the individual’s problem as a game between current self and future self.
They find that inflation has a long-run effect on a real variable and that the
Friedman rule is not optimal. Their conclusion is similar to ours, but the mechanism
through which the deviation from the rule works differs. In Graham and Snower
(2013), the deviation works because agents are excessively myopic. Here, the
agents’ preferences are time-consistent, but it is still desirable to have preferences
because it operates as a temptation-reducing device, just as the savings subsidy
in Krusell et al. (2010) and the Pay-As-You-Go (PAYG) social security in Kumru
and Thanopoulos (2011) do.

Some literature finds that the optimal policy may deviate from the Friedman rule
in the LW framework. Craig and Rocheteau (2008) incorporate nominal frictions
into the LW model. He et al. (2008) consider theft and banking. Andolfatto (2013)
studies a case in which agents cannot commit to pay tax. In this paper, we provide
another reason for why a deviation from the rule can be good. As Walsh (2003) and
Bhattacharya et al. (2009) point out, most of the central banks pursue nonnegative
inflation rates, and this is inconsistent with the Friedman rule, which implies
deflation. Our results suggest that by introducing empirically and experimentally
plausible preferences into monetary models, we can rationalize the actual monetary
policies. It is well known that a deviation from the Friedman rule reduces a cost
to carry money. In this paper, the cost is generated by the self-control problem.

The remainder of the paper is organized as follows. Section 2 provides our
model. Section 3 studies the optimal policy and quantifies the welfare gained by
deviating from the Friedman rule. Section 4 studies the robustness of our result.
Section 5 concludes the paper. The appendix provides the proofs of propositions.

2. MODEL

In this section, we describe our model. In the following, we denote any next-period
variable z as z+1.

2.1. The Setup

The setup is very close to the LW model. Time is discrete and goes from t = 0 to
+∞. There is a continuum of agents with unit measure who discount the future
by δ ∈ (0, 1). Each date is divided into two subperiods, day and night. While trade

https://doi.org/10.1017/S1365100516000572 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100516000572


TEMPTATION AND INFLATION 1079

occurs in a decentralized market during the day subperiod, a centralized market
is open during the night subperiod. We refer to the day market as the DM and
the night market as the CM. Here, we assume that the pricing mechanism in the
DM is competitive (Walrasian). A competitive version of the LW model is also
investigated in Berentsen et al. (2005).

During the day subperiod, individuals participates in a decentralized market with
bilateral matching. For two individuals i and j , the probability that the individual
i consumes what j produces but not vice versa equals 0.5, and the individual j

consumes what i produces but not vice versa also equals 0.5. For simplicity, we
rule out the possibility of double coincidence of wants. At the CM, agents trade a
general good that they produce and consume. The utility over the period is

U(qb, qs, x, h) = u(qb) − c(qs) + U(x) − h, (1)

where u(q) is the utility from consuming q units of the DM good, c(q) is the cost
of producing q units of the DM good, U(x) is the utility from consuming x units
of the CM good, and h is the cost of producing h units of the CM good. The labor
productivity in the CM equals 1.

The functions u, U , and c are twice continuously differentiable and satisfy
c(0) = u(0) = 0, u′ > 0, U ′ > 0, c′ > 0, u′′ < 0, U ′′ < 0, c′′ ≥ 0, u′(0) =
U ′(0) = ∞, and u′(∞) = U ′(∞) = 0. We denote the efficient quantity in the DM
as q∗. It satisfies u′(q∗) = c′(q∗). Similarly, let x∗ denote the efficient quantity
in the CM, which satisfies U ′(x∗) = 1. The maximized surplus in the CM is
S∗ ≡ U(x∗) − x∗.

Money has the role to facilitate trade in the DM market, where buyers and
sellers are anonymous. Money is divisible and storable but intrinsically useless.
The stock of money M evolves according to M+1/M = 1 + π , where the growth
rate of money π is constant. New money is injected into the CM as a lump-sum
transfer, T = πM .

2.2. Seller’s Problem

In each period, the seller supplies qs units of labor in the DM, consumes x units
of the general good, supplies h units of labor in the CM, and holds m+1 units of
money at the end of the period. He does not consume in the DM; his utility over
the period is denoted by U(0, qs, x, h). Now, let zs ≡ (qs, x, h,m+1) be a vector
of these variables and ẑs = (q̂s, x̂, ĥ, m̂+1) be a vector of the variables the agent
is tempted to choose.

In the following, we denote the value functions of a seller (a buyer) in the DM
who holds m units of money as V s(m) [V b(m)] and the expected value for the
agent entering the DM as V (m) = 1

2 [V s(m) + V b(m)]. The problem of the seller
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is

V s(m) = max
zs∈A

[U(0, qs, x, h) + δV+1(m+1) + Ws(qs, x, h,m+1)]

− max
ẑs∈A

[Ws(q̂s, x̂, ĥ, m̂+1)]. (2)

Here, A = [(q, x, h,m+1) ∈ R4
+ : x = h + φ(pq + m + T − m+1)] is the budget

set, φ is the price of the money in terms of the general good, p is the price of
the DM goods, and Ws is the temptation function. The first part of equation (2)

describes the actual choice of the seller, who maximizes the sum of the commitment
utility and temptation utility. It represents a compromise between the utility under
commitment and the cost of self-control. The second part of equation (2) represents
the utility from the most tempting choice. The seller suffers from the lack of the
forgone utility from the tempting choice.

The temptation utility is usually assumed to be more tilted toward current
consumption than commitment utility. Following DeJong and Ripoll (2007), we
set the temptation function proportional to the period utility function:

Ws(qs, x, h,m+1) = λU(0, qs, x, h), (3)

where λ > 0 indicates the strength of temptation. We simplify equation (2) on the
basis of equation (3) as

V s(m) = max
zs∈A

[(1 +λ)U(0, qs, x, h)+ δV+1(m+1)] −λ max
ẑs∈A

[U(0, q̂s , x̂, ĥ)]. (4)

We denote the first part of equation (4), representing the compromise, as V s
com,

and the second part, representing the temptation, as V s
tem. From the quasilinearity

of the utility function in the CM, the two parts reduce to

V s
com = (1 + λ){max

qs

[φpqs − c(qs)] + max
x

[U(x) − x] + φ(m + T )}

+ max
m+1≥0

[−(1 + λ)φm+1 + δV+1(m+1)], (5)

V s
tem = λ{max

q̂s

[φpq̂s − c(q̂s)] + max
x̂

[U(x̂) − x̂] + φ(m + T )}

+λ max
m̂+1≥0

(−φm̂+1). (6)

From equations (5) and (6), labor supply in the DM and consumption in the CM,
which the seller is tempted to choose, coincide with the actual choices, and trade
in the CM is efficient. Therefore, q̂s = qs and x̂ = x = x∗.

The only difference between the actual choice and the temptation choice is on
the next period’s nominal balances. The seller takes a positive amount of money
into the next period in case he becomes a buyer in that period. However, as is
clear from equation (6), he is tempted to choose m̂+1 = 0. This is because he is
tempted to gain utility solely from the current consumption. From these results,

https://doi.org/10.1017/S1365100516000572 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100516000572


TEMPTATION AND INFLATION 1081

we simplify the seller’s value function V s(m) = V s
com − V s

tem as

V s(m) = max
q

[φpq − c(q)] + S∗ + φ(m + T )

+ max
m+1

[−(1 + λ)φm+1 + δV+1(m+1)]. (7)

The first-order conditions on the output and future money balances are

φp = c′(q), (8)

(1 + λ)φ = δV ′
+1(m+1). (9)

When the seller supplies one unit of labor additionally in the DM, his disutility
from labor increases by c′(q) units, but he saves his labor supply in the CM by
φp units; from equation (8), the cost and the benefit are the same. On the other
hand, the left-hand side of equation (9), (1 + λ)φ = φ + λφ, gives the cost of
holding one unit of money for the next period. The first term φ indicates the
marginal disutility of labor, while the second term λφ gives the marginal cost of
self-control. The agent is tempted to enjoy leisure today and hold no money for
tomorrow. Thus, when he holds one unit of money additionally, he suffers from the
forgone utility from leisure by λφ units. This is the cost of self-control. Equation
(9) indicates that the sum of the marginal costs is equal to the marginal value of
holding money, δV ′

+1(m+1). As in the LW model, the choice of holding future
money is independent of the current level of money balances.

2.3. Buyer’s Problem

The buyer chooses a vector of variables, zb ≡ (qb, x, h,m+1), where qb is the
consumption in the DM, and x, h, and m+1 are the same as for the seller. We
denote the vector that the buyer is tempted to choose as ẑb ≡ (q̂b, x̂, ĥ, m̂+1).
Since he does not work in the DM, his period utility is denoted as U(qb, 0, x, h).

We assume that the temptation utility of the buyer is the same as that of the seller
and is given as Wb(qb, x, h,m+1) = λU(qb, 0, x, h). The buyer’s value function
is

V b(m) = max
zb∈B

[(1+λ)U(qb, 0, x, h)+δV+1(m+1)]−λ max
ẑb∈B

[U(q̂b, 0, x̂, ĥ)]. (10)

Here, B = [(q, x,m+1, h) ∈ R4
+ : x = h + φ(m + T − m+1 − pq) and pq ≤ m]

is the budget set; the second constraint requires that the buyer cannot pay more
money than he has. The first and the second parts of equation (10), say V b

com and
V b

tem, respectively, reduce to

V b
com = (1 + λ){ max

pqb≤m
[u(qb) − φpqb] + max

x
[U(x) − x] + φ(m + T )}

+ max
m+1

[−(1 + λ)φm+1 + δV+1(m+1)], (11)

https://doi.org/10.1017/S1365100516000572 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100516000572


1082 RYOJI HIRAGUCHI

V b
tem = λ[ max

pq̂b≤m
(u(q̂b) − φpq̂b) + max

x̂
{U(x̂) − x̂} + φ(m + T )]

+ λ max
m̂+1

{−φm̂+1}. (12)

By definition, we have V b(m) = V b
com −V b

tem. As with the seller’s case, trade in the
CM is efficient, the quantity qb is the same as the hypothetical temptation quantity
q̂b in the DM, and m̂+1 = 0. Function V b thus simplifies to

V b(m) = max
pq≤m

[u(q) − φpq] + S∗ + φ(m + T )

+ max
m+1≥0

[−(1 + λ)φm+1 + δV+1(m+1)]. (13)

From equations (7) and (13), it follows that the value function of the buyer differs
from that of the seller only in the surplus term in the DM. The first-order conditions
on the next-period money balances are given by equation (9).

2.4. Competitive Equilibrium

In this section, we obtain the equilibrium allocation in which qb = qs . From
equations (7) and (13), it is clear that the DM value function V satisfies the
following Bellman equation:

V (m) = 1

2
max
pq≤m

[u(q) − φpq] + 1

2
max

q
[φpq − c(q)] + φ(m + T ) + S∗

+ max
m+1

[−(1 + λ)φm+1 + δV+1(m+1)]. (14)

We observe λ only in the third term of equation(14) because the temptation choice
in the DM is the same as the actual choice. The following lemma characterizes
the real interest rate R.

LEMMA 1. R = 1+λ
δ

.

Proof. See Appendix A.

From equation (14), we have V (m) = 1/2 maxpq≤m[u(q)−φpq]+φm+V (0).
By substituting this into equation (9) lagged one period, we obtain

max
m≥0

{
−iφm + 1

2
max
pq≤m

[u(q) − φpq]

}
, (15)

where i = Rφ−1/φt − 1 is the nominal interest rate. In equation(15), the term
iφm represents the cost of holding m units of money and the term u(q) − φpq

represents the surplus from buying q units of the special good. This problem is
well defined, if and only if the nominal interest rate is nonnegative. If i > 0, the
constraint pq ≤ m binds.

For the time being, we follow the LW model and focus on equilibria at the
Friedman rule, which are the limits of equilibria, as the nominal interest rate
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goes to 0. Under this assumption, the buyer’s constraint binds even if i = 0. We
then show that under the Friedman rule, the equilibrium at which the constraint
binds welfare dominates the equilibria at which the agents hold more money than
needed.

From equation (8), the first-order condition on m in equation (15) reduces to
i = 1/2[u′(q)/c′(q) − 1]. In the steady state, the inflation rate is equal to the
money growth rate 1 + π . Thus, i = (1 + λ)(1 + π)/δ − 1, and the quantity q

solves
1

2

[
u′(q)

c′(q)
− 1

]
= i = (1 + λ)(1 + π)

δ
. (16)

Hence, the quantity q is strictly decreasing in i and trade is efficient (i.e., q = q∗)
under the Friedman rule.

At the equilibrium with m = M , the real value of money balances, φM =
φpq = c′(q)q, is a strictly increasing function of q. Moreover, from equation
(16), q is decreasing in the temptation parameter λ. Therefore, given the inflation
rate, φM is decreasing in λ. When the degree of temptation becomes higher, the
agent suffers from the self-control cost more severely than before. As we show in
the next section, the cost is proportional to the money balances. Hence, the agent
tries to reduce his money holdings.

3. OPTIMAL MONETARY POLICY

In this section, we focus on the monetary policy that maximizes stationary welfare.

3.1. Steady-State Welfare

In equilibrium, equation (14) implies V (M) = [u(q) − c(q)]/2 − λφM+1 +
δV+1(M+1) + S∗ since m + T = (1 + π)M = M+1. Stationary welfare, say v, is
expressed as

(1 − δ)v = u(q) − c(q)

2
− λφM+1 + S∗. (17)

The welfare function is very similar to that of the LW model. The only difference
is that it negatively depends on the real value of the end-of-period money balances
φM+1. The term λφM+1 represents the value of the extra leisure enjoyed by
adopting the tempting choice. At the end of each period, the agent holds M+1

units of money for future transactions. However, the agent is tempted to consume
all the money by the end of the period and enjoy extra leisure by φM+1 units of
time owing to the quasilinearitiy of the utility function in the CM. The extra utility
from leisure reduces the agent’s welfare because he suffers from the forgone utility
that could have been obtained by adopting the tempting choice. This is what Gul
and Pesendorfer (2001) call the self-control cost.

So far, we assumed that the buyer’s constraint always binds. Strictly speaking,
under the Friedman rule, agents may hold more money than what is needed.
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Overaccumulation of money does not affect welfare in the LW model, but here
it does, because real balances enter the welfare function. In any equilibria under
the Friedman rule, if the quantity in the DM is q∗, the price of the DM good is
p∗ = c′(q∗)/φ, and the inflation rate is φ/φ+1 = δ/(1 + λ), then the stationary
welfare under the rule, say vFR, is

(1 − δ)vFR = u(q∗) − c(q∗)
2

− λδ

1 + λ
φ+1M+1 + S∗.

Stationary welfare is decreasing in the real balances, φ+1M+1, which are equal
to or greater than φp∗q∗ = q∗c′(q∗). The best equilibrium under the Friedman
rule is the one in which the agent has the smallest amount of money. Therefore,
when we study the optimal policy, we focus on the equilibria where the buyer’s
constraint binds.

Let e(q) ≡ [u′(q) + c′(q)]q. From equation (8), it follows that φM+1 = (1 +
π)φM = 1

2
δ

1+λ
e(q). Substituting this equality into equation (17), we express v as

a function of q:

(1 − δ)v(q) = u(q) − c(q)

2
− 1

2

λδ

1 + λ
e(q) + S∗. (18)

If the degree of temptation λ is zero, the welfare function coincides with that in
the LW model.

3.2. Nonoptimality of the Friedman Rule

A deviation from the Friedman rule is welfare-improving if v′(q∗) < 0, since
q is decreasing in i, and q = q∗ if i = 0. The first term of equation (18),
[u(q) − c(q)]/2, represents the match surplus and is maximized under the rule.
The first-order effect of a positive nominal interest rate on the surplus is zero
around the rule. Hence, v′(q∗) < 0 if e′(q∗) > 0. Now, we have the following
proposition.

PROPOSITION 1. If the relative risk aversion coefficient of the function u is
less than or equal to 1, the Friedman rule is not the optimal policy.

Proof. Since (qc′)′ > 0, the function e = qu′ + qc′ is strictly increasing in q

if (qu′)′ ≥ 0. We can easily see that this holds if and only if −qu′′
u′ ≤ 1.

For example, if the utility function is of the constant relative risk aversion
(CRRA) type u(q) = q1−η

1−η
with η > 0 and the coefficient of relative risk aversion

η is equal to or less than 1, e(q) = qc′(q) + q1−η is clearly increasing in q. If we
further assume that the cost function is of the standard power form c(q) = q1+χ

1+χ

with χ ≥ 0, we can analytically show that the optimal inflation rate is positive
when the cost parameter χ is sufficiently large.
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PROPOSITION 2. Suppose that u(q) = q1−η

1−η
and c(q) = q1+χ

1+χ
. The optimal

monetary policy deviates from the Friedman rule if χ > η − 2. If this holds, the
optimal nominal interest rate is i = 1

2
λδ(χ−η+2)

1+λ(1−δ+δη)
. The optimal inflation rate is

positive if χ > 2(1+λ)(1+λ+λη)
λδ2 − η.

Proof. See Appendix B.

The condition χ > η − 2 in Proposition 2 implies that the Friedman rule may
not be optimal even if the relative risk aversion coefficient exceeds 1.

The agent facing a self-control problem experiences utility loss from not adopt-
ing the tempting choice. Here, the utility loss is proportional to the real value
of the end-of-period money balances because the agent is tempted to spend all
his money by the end of each period. Hence, if a positive nominal interest rate
reduces the real balances, it improves welfare. A deviation from the Friedman
rule generates inefficiency in the DM, but the first-order effect is zero at the rule.
Therefore, the welfare improvement obtained from the reduction of the temptation
utility outweighs the surplus loss. In our model, a deviation from the Friedman
rule works as a temptation-reducing device, just as the saving subsidy in Krusell
et al. (2010) and the PAYG social security in Kumru and Thanopoulos (2011) do.

3.3. Numerical Analysis

We now calculate the welfare gain obtained from the positive nominal interest
rate. We parameterize our model by closely following the LW model and set
u(q) = q1−η

1−η
with η = 0.163, c(q) = q, U(x) = A ln x with A = 1.968, and

δ = 0.96. In terms of the temptation parameter λ, DeJong and Ripoll (2007)
estimate the parameter of 0.075, while Bucciol (2012) finds the parameter of
0.052. A recent paper of Huang et al. (2015) estimate the parameter of 0.01. At
this point, there is no consensus on the value of λ and we quantify the welfare
gain for the two cases. We measure the welfare gained ω by deviating from the
Friedman rule by how much consumption the agents would increase by following
the rule instead of having a positive nominal interest rate:

(1 − δ)v[q(i)] = 1

2
{u[(1 +ω)q∗] − c(q∗)}− 1

2

λδ

1 + λ
e(q∗)+U [(1 +ω)x∗] − x∗.

Here, q(i) is the quantity traded when the nominal interest rate is i and it solves
equation(16). Figure 1 shows a graph of welfare gain as a function of i for
the two cases. If we follow DeJong and Ripoll (2007) and set λ = 0.075, the
optimal nominal interest rate is 5.9% and the welfare gained by deviating from
the Friedman rule is 0.67%. On the other hand, if we set λ = 0.052, the optimal
nominal rate of interest is 4.2% and the welfare gain is 0.38%. In both cases, the
nominal interest rate is significantly away from zero. The welfare gains are similar
to Aruoba and Schorfheide (2011), but are small when compared with Liu et al.
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FIGURE 1. Nominal interest rate and welfare.

(2011). In Aruoba and Schorfheide (2011), the welfare gain is less than 0.6%, but
in Liu et al. (2011), the welfare gain is about 2%.

4. EXTENSION

In this section, we modify our model in the following points: (i) terms of trade in
the DM, (ii) timing of temptation, and (iii) the functional form of the temptation
function.

4.1. Nash Bargaining

In the preceding section, we considered a competitive pricing mechanism. Here,
we consider a case in which the terms of trade in the DM are determined by Nash
bargaining as in the LW model. For simplicity, we assume that the buyer has all
the bargaining power. A buyer makes a take-it-or-leave-it offer (q, d) to a seller
in the DM, where q is the quantity and d the money transferred, and the seller
determines whether to accept the offer or not.

After the seller accepts or declines the offer, he chooses a vector of variables
ys = (x, h,m+1). Let ŷs=(x̂, m̂+1, ĥ) be the vector of variables the seller is
tempted to choose. If the seller accepts or is tempted to accept the offer (q, d), his
problem is

V s(m) = max
ys∈E

[(1 + λ)U(0, q, x, h) + δV+1(m+1)] − λ max
ŷs∈E

U(0, q, x̂, ĥ), (19)

where E = [ys ∈ R3
+ : h + φ(d + m + T − m+1) = x] is the budget set. We

rewrite U as U(0, q, x, h) = φd − c(q) + U(x) − x + φ(m + T − m+1), where
φd − c(q) represents the surplus from the offer. Thus, the seller accepts the offer
(q, d) if and only if φd ≥ c(q). Clearly, he is tempted to accept the offer under
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the same condition and to choose m̂+1 = 0. Thus, equation (19) reduces to

V s(m) = φd − c(q) + φ(m + T ) + S∗

+ max
m+1

[−(1 + λ)φm+1 + δV+1(m+1)]. (20)

The first-order condition on mt+1 is the same as before and is given by equation (9).
Now, let us turn to the buyer’s problem. Let yb = (q, d, x,m+1, h) be the vector

of variables the buyer chooses. Similarly, let ŷb = (q̂b, d̂, x̂, m̂+1, ĥ) denote the
vector that he is tempted to choose. His problem is

V b(m) = max
yb∈F

[(1 + λ)U(q, 0, x, h) + δV+1(m+1)] − λ max
ŷb∈F

U(q̂b, 0, x̂, ĥ), (21)

where F = [yb ∈ R5
+ : h + φ(m + T − m+1 − d) = x, c(q) ≤ φd, and d ≤ m]

is the budget set. This is simplified as

V b(m) = max
(q,d)

[u(q) − φd] + φ(m + T ) + S∗

+ max
m+1

[−(1 + λ)φm+1 + δV+1(m+1)], (22)

where the offer (q, d) must satisfy c(q) ≤ φd and d ≤ m. The buyer chooses
(q, d) so that the seller’s participation constraint binds. As before, we focus on
the equilibria where the constraint d ≤ m also binds.

From equations (20) and (22), it is clear that the DM value function is

V (m) = 1

2
max

c(q)≤φm
[u(q) − c(q)] + φ(m + T ) + S∗

+ max
m+1

[−(1 + λ)φm+1 + δV+1(m+1)]. (23)

As in Section 3, the real interest rate is R = (1+λ)/δ−1, the first-order condition
on q is equation (16), and the stationary welfare is equation (17). Thus, q = q∗

if i = 0 and dq/di < 0. However, the real value of money balances φM is
related differently to q from the preceding section. Here, according to the binding
participation constraint of the seller, φM = c(q). Previously, it was equal to
c′(q)q. It follows from equation (17) that stationary welfare is

(1 − δ)v1(q) = 1

2
[u(q) − c(q)] − 1

2

λδ

1 + λ

[
u′(q)

c′(q)
+ 1

]
c(q) + S∗. (24)

We have the following proposition.

PROPOSITION 3. Suppose that the trade in the DM is determined by Nash
bargaining. If a function u′(q)c(q)/c′(q) is nondecreasing in q, the Friedman
rule is not optimal.

Proof. See Appendix C.
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The assumption in Proposition 3 holds if u(q) = q1−η

1−η
with η ∈ (0, 1] and

c(q) = q1+χ

1+χ
. If c(q) = q, the welfare function v1(q) coincides with v(q) in

Section 3. Therefore, the numerical results on the welfare gained by deviating
from the Friedman rule in Section 3.3 continue to hold if the parametric values
are the same.

In LW, the Friedman rule achieves efficiency, if and only if the buyer has all
the bargaining power, but regardless of the bargaining power, the rule is optimal.
In our model, the buyer has all the bargaining power by assumption and then the
Friedman rule achieves efficiency. However, the Friedman rule may not be optimal.
An agent facing a self-control problem has to pay a cost to carry a positive amount
of money with him, and a deviation from the Friedman rule reduces a cost. Thus
it improves welfare. The benefit of reducing the self-control cost dominates the
loss from reducing consumption, the effect of which is only second order.

When the seller has some bargaining power, the equilibrium is not efficient
even under the Friedman rule just as LW. Therefore, reduction of consumption by
deviating the rule is a first-order effect on welfare. In that case, welfare analysis
becomes harder, but we believe that in some cases, the welfare loss dominates the
welfare gain from reducing the self-control cost, and the Friedman rule becomes
optimal.

4.2. Self-Control in Each Subperiod

Here, we assume that the agent faces the self-control problem in each subpe-
riod. The temptation functions in the day and night subperiods are, respectively,
λ[u(qb) − c(qs)] and μ[U(x) − h]. The problems of the seller and buyer entering
the DM and the agent entering the CM are, respectively,

V s(m) = max
qs≥0

[−(1 + λ)c(qs) + W(m + pqs)] − λ max
q̂s≥0

[−c(q̂s)], (25)

V b(m) = max
pq̂b≤m

[(1 + λ)u(qb) + W(m − pqb)] − λ max
pq̂b≤m

[u(q̂b)], (26)

W(m) = max
g∈G

[(1 + μ){U(x) − h} + δV+1(m+1)] − μ max
ĝ∈G

[U(x̂) − ĥ],(27)

where g = (x, h,m+1) is the vector that the agent chooses, ĝ = (x̂, ĥ, m̂+1) is the
vector that the agent is tempted to choose, G = [g ∈ R3

+ : h+φ(m+T −m+1) = x]
is a budget set, and V = (V b + V s)/2 is the DM value function.

From equation (25), the seller is tempted to choose q̂s = 0 since the disutility
−c(q) is decreasing in q. From equation (26), the buyer is tempted to spend all his
money on trade and chooses q̂b = m/p. At night, the seller as well as the buyer
are tempted to choose m̂+1 = 0. The CM problem simplifies to

W(m) = S∗ + φ(m + T ) + max
m+1≥0

[−(1 + μ)φm+1 + δV+1(m+1)]. (28)
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Function W(m) = φm + W(0) is linear and therefore equations (25) and (26)

reduce to

V s(m) = φm + W(0) + max
qs≥0

[−(1 + λ)c(qs) + φpqs], (29)

V b(m) = φm + W(0) + max
pqb≤m

[(1 + λ)u(qb) − φpqb] − λu(m/p). (30)

The first-order conditions on qs and mt+1 are (1 + λ)c′(qs) = φp and (1 + μ)φ =
δV ′

+1(m+1), respectively. It is straightforward to show that the real interest rate
in this economy is equal to (1 + μ)/δ. From equations (28), (29), and (30), the
choice of m solves

max
m

{
1

2
max
pq≤m

[(1 + λ)u(q) − φpq] − iφm − 1

2
λu

(
m

p

)}
. (31)

In the stationary equilibrium, equation (31) implies

1

2

[
u′(q)

(1 + λ)c′(q)
− 1

]
= i = (1 + μ)(1 + π)

δ
.

We now have the following proposition on the nonoptimality of the Friedman rule.

PROPOSITION 4. Suppose that each agent faces a self-control problem in
each subperiod. The steady-state welfare v2 is expressed as a function of quantity:

(1 − δ)v2(q) = 1

2
[u(q) − (1 + λ)c(q)] − 1

2

μδ

1 + μ
e2(q) + S∗, (32)

where e2(q) = [u′(q) + (1 + λ)c′(q)]q. The Friedman rule is not optimal if the
relative risk aversion coefficient of u(q) is less than or equal to 1.

Proof. See Appendix D.

4.3. Quasi-Geometric Temptation

So far, the temptation function was proportional to the period utility. Here, we
assume that it is quasigeometric as in Krusell et al. (2010). The problem of the
seller is

V s(m) = max
zs∈A

[(1 + λ)U(0, qs, x, h) + δ(1 + λβ)V+1(m+1)]

− λ max
ẑs∈A

[U(0, q̂s , x̂, ĥ) + δβV+1(m̂+1)], (33)

where β represents temptation impatience and vector zs and the set A are the same
as those in Section 2. The buyer’s problem is similarly defined. The only difference
between temptation utility and commitment utility is the importance of current
consumption relative to future consumption. If β = 1, the tempting choice is the
same as the actual choice and the self-control problem disappears. We assume that
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β < 1 and the temptation utility is tilted more toward current consumption than
the commitment utility. The model in Section 2 corresponds to a case with β = 0.

LEMMA 2. Let β̄ ≡ 1+λβ
1+λ

. The value function entering the DM satisfies

V (m) = 1

2
max
pq≤m

[u(q) − φpq] + 1

2
max
q≥0

[φpq − c(q)] + φ(m + T ) + S∗

+ (1 + λ) max
m+1

[−φm+1 + β̄δV+1(m+1)]

− λ max
m̂+1

[−φm̂+1 + βδV+1(m̂+1)]. (34)

Proof. See Appendix E.

From equation (34), the term β̄δ represents a compromise between temptation
impatience and commitment impatience. The temptation choice differs from the
actual choice only at the next-period nominal balances. The first-order conditions
on m+1 and m̂+1 are

φ = β̄δV ′
+1(m+1) = βδV ′

+1(m̂+1). (35)

From equation (35), it is clear that m̂+1 < m+1. As in the preceding section,
the temptation choice is tilted less toward future money balances than the actual
choice. In the steady state, φ/φ+1 = 1 + π and φp = c′(q). Thus, equation (35)

implies that

1 + π = β̄δ

2

[
u′(q)

c′(q)
+ 1

]
= βδ

2

[
u′(q̂)

c′(q)
+ 1

]
, (36)

where q̂ = m̂
p

. This can be interpreted as the hypothetical temptation quantity. In
the preceding section, β = 0 and therefore q̂ = 0. It is straightforward to show
that the real interest rate is equal to (β̄δ)−1 and that under the Friedman rule,
q = q∗.

PROPOSITION 5. If the temptation function is quasigeometric, the stationary
welfare is

(1 − δ)v3(q, q̂) = 1

2
[u(q) − c(q)] − λβδ

2
e3(q, q̂) + S∗. (37)

where q and q̂ solve equation (36), and e3(q, q̂) = u′(q̂)(q − q̂) + u(q̂) − u(q).
The Friedman rule is not optimal if the utility function is in the form u(q) = q1−η

1−η

with η ∈ (0, 1].

Proof. See Appendix F.

As in the preceding section, the Friedman rule may not be optimal in this case.
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5. CONCLUSION

In this paper, I incorporate self-control preferences into the microfounded model
of money and study the resulting optimal monetary policy. In each period, the
agent is tempted to enjoy leisure and spend all his money by the end of the period
and suffers from the forgone utility that could have been obtained by adopting the
most tempting choice. I prove that for some utility functions, a deviation from the
Friedman rule works as a temptation-reducing device and is welfare-improving.

NOTES

1. Laibson (1997) uses hyperbolic discounting to explain the preference reversals.
2. Lahiri (2007) finds that the Friedman rule is optimal in a model with endogenous discounting.
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APPENDIX A: PROOF OF LEMMA 1
Following Aruoba and Wright (2003) and Aruoba et al. (2011), we introduce capital.
We assume that agents have access to a concave technology for producing general goods
f (k) with f (0) = 0, f ′(0) = +∞, f ′(+∞) = 0, f ′(k) > 0, and f ′′(k) < 0. Capital
is illiquid and is available only in the CM. At night, the seller chooses the next-period
capital k+1 in addition to m+1. Let y = (qs, x, h, m+1, k+1) denote the vector of variables
that the seller chooses. We denote the vector of variables that he is tempted to choose as
ŷ = (q̂s , x̂, ĥ, m̂+1, k̂+1). The seller’s problem is

V s(m, k) = max
y∈H

[(1+λ)U(0, qs, x, h)+δV+1(m+1, k+1)]−λ max
ŷ∈H

[U(0, q̂s , x̂, ĥ)], (A.1)

where H = [y ∈ R5
+ : x + k+1 = f (k) + h + φ(pq + m + T − m+1)] is the budget set.

From the quasilinearity of the utility function in the CM, the function V s(m, k) reduces to

V s(m, k) = max
q

[φpq − c(q)] + f (k) + S∗ + φ(m + T )

+ max
m+1,k+1

[−(1 + λ)φm+1 − (1 + λ)k+1 + δV+1(m+1, k+1)]

− λ max
m̂+1,k̂+1≥0

[−φm̂+1 − k̂+1]. (A.2)
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From equation (A.2), it is clear that the agent is tempted to choose m̂+1 = k̂+1 = 0. As in
the preceding section, the value function of the buyer differs from that of the seller, V s ,
only in surplus term. The surplus of the buyer is given by maxpq≤m[u(q)−φpq]. The value
function of the agent at the beginning of each period, V (m, k), reduces to

V (m, k) = f (k) + 1

2
max
pq≤m

[u(q) − φpq] + 1

2
max

q
[φpq − c(q)] + φ(m + T )

+ max
m+1,k+1

[−(1 + λ)φm+1 − (1 + λ)k+1 + δV+1(m+1, k+1)] + S∗. (A.3)

From equation (A.3), it follows that V (m, k) = f (k)+V (m, 0), and the first-order condition
with respect to k+1 is 1+λ

δ
= ∂V+1

∂k+1
, which is equal to f ′(k+1). Therefore, R = 1+λ

δ
. �

APPENDIX B: PROOF OF PROPOSITION 2
We have e(q) = q1−η + q1+χ , and q∗ = 1. Thus, e′(q∗) = 2 + χ − η > 0 if χ > η − 2.
We also have 2(1 − δ)v(q) = u(q) − c(q) − αe(q) + 2S∗ with α = λδ

1+λ
. Thus,

2(1 − δ)v′(q) = [1 − α(1 − η)]q−η − [1 + α(1 + χ)]qχ .

This is maximized when q = [ 1+α(η−1)

1+α(1+χ)
]1/(χ+η). From equation (16), it is clear that i =

1
2 (q−χ−η − 1). Thus, welfare is maximized when i = im ≡ 1

2
α(2+χ−η)

1−α(1−η)
. The money growth

rate πm is

πm = δ

1 + λ
(1 + im) − 1 = 1

2

δ

1 + λ

2(1 + λ) + λδ(η + χ)

1 + λ(1 − δ + δη)
− 1,

and πm > 0 if and only if η+χ

2 > (1+λ){(1+λ)(1−δ)+λδη}
λδ2 . The right-hand side of this inequality

is less than (1+λ)(1+λ+λη)

λδ2 because δ ∈ (0, 1). Thus, πm > 0 if η+χ

2 > (1+λ)(1+λ+λη)

λδ2 . �

APPENDIX C: PROOF OF PROPOSITION 3
Let e1(q) ≡ [u′(q)/c′(q) + 1]c(q) denote the second term of equation (24). The optimal
monetary policy deviates from the Friedman rule if e′

1(q
∗) > 0. As c′(q) > 0, the function

e1(q) = u′(q)c(q)/c′(q) + c(q) is an increasing function of q if [u′(q)c(q)/c′(q)]′ ≥ 0. �

APPENDIX D: PROOF OF PROPOSITION 4
In the steady state, the value function V = Vs+Vb

2 is simplified as

(1 − δ)V = 1

2
[u(q) − (1 + λ)c(q)] + S∗ − μφM+1. (D.1)

The real balances are φM = (1 + λ)c′(q)q. As 1 + π = δ
1+μ

(1 + i), the real value of the

end-of-period cash balances is φM+1 = 1
2

δ
1+μ

[u′(q) + (1 + λ)c′(q)]q. Substituting this

equation into equation (D.1) yields equation (32). As v′
2(q

∗) = − 1
2

μδ

1+μ
e′

2(q
∗), the Friedman
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rule is not optimal if e′
2(q

∗) > 0. If the relative risk aversion coefficient of u(q) is less than
or equal to 1, (u′(q)q)′ ≥ 0 and then e′

2(q) > 0. �

APPENDIX E: PROOF OF LEMMA 2
We denote the first and second terms of equation (33) as V s

com and V s
tem, respectively. From

the quasilinearity of the utility function in the CM, these terms are, respectively, simplified
as

(1 + λ)−1V s
com = max

qs

[φpqs − c(qs)] + max
x

[U(x) − x]

+ max
m+1

[−φm+1 + β̄δV+1(m+1)] + φ(m + T ),

λ−1V s
tem = max

q̂s

[φpq̂s − c(q̂s)] + max
x̂

[U(x̂) − x̂]

+ max
m̂+1

[−φm̂+1 + βδV+1(m+1)] + φ(m + T ).

As in the preceding section, q̂s = qs and x̂ = x = x∗. Therefore, the seller’s value function
V s(m) = V s

com − V s
tem reduces to

V s(m) = max
q

[φpq − c(q)] + (1 + λ) max
m+1

[−φm+1 + β̄δV+1(m+1)]

− λ max
m̂+1

[−φm̂+1 + βδV+1(m̂+1)] + S∗ + φ(m + T ).

The first-order condition on the quantity q is the same as in the preceding section. The
buyer’s value function differs from the seller’s value function only in the surplus terms.
Thus, the function V = V s+V b

2 satisfies equation (34). �

APPENDIX F: PROOF OF PROPOSITION 5
The substitution of V (m) = 1

2 maxq≤m/p[u(q) − φpq] + φm + V (0) into equation (34)

yields

V (0) = 1

2
max

q
[φpq−c(q)]+(1+λ) max

m+1,q

((
−φm+1+β̄δ

{
1

2
[u(q)−φpq]+φ+1m+1

}))

− λ max
m̂+1,q̂

((
−φm̂+1 + βδ

{
1

2
[u(q̂) − φpq̂] + φ+1m̂+1

}))
+ φT + S∗ + δV+1(0).

Let π̄ = 1 +π . In equilibrium, m = pq, m̂ = pq̂, and T = πpq. The stationary welfare is

(1−δ)v3 = 1

2
[u(q)−c(q)]−λ{−π̄φp(q̂−q)+ βδ

2
[u(q̂)−u(q)+φp(q̂−q)]}+S∗. (F.1)

Substituting the seller’s first-order condition φp = c′(q) into equation (F.1) yields equa-
tion (37).
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It is sufficient to show that the self-control cost e3(q, q̂) is a decreasing function of i.

Suppose that u(q) = q1−η

1−η
with η ≤ 1. Let z = q/q̂ > 1 and � = β̄/β > 1. Equation (36)

reduces to � + (� − 1)qηc′(q) = zη. As [qηc′(q)]′ > 0 and dq/di < 0, dz/di < 0.
We first assume that η = 1. In this case, e3(q, q̂) = (q−q̂)/q̂+ln q̂−ln q = z−ln (z)−1

depends only on z. The function z − ln z is a strictly increasing function when z > 1. As
dz/di < 0, de3/di < 0. We next assume that 0 < η < 1. Function e3(q, q̂) is written as
(1 − η)e3(q, q̂) = q1−η[(1 − η)zη + ηzη−1 − 1]. The term ψ(z) ≡ (1 − η)zη + ηzη−1 is
an increasing function of z for z > 1 because ψ ′(z) = (1 − η)ηzη−2(z − 1) > 0. Since
dq/di < 0 and dz/di < 0, de3/di < 0 as long as η ≤ 1. �
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