
Theory and Practice of Logic Programming 1 (5): 611–615, September 2001.

Printed in the United Kingdom c© 2001 Cambridge University Press

611

T E C H N I C A L N O T E

Worst-case groundness analysis using
definite Boolean functions

SAMIR GENAIM, MICHAEL CODISH

Department of Computer Science, Ben-Gurion University of the Negev,

PO Box 653, 84105 Israel

(e-mail: mcodish@cs.bgu.ac.il)

JACOB M. HOWE

Computing Laboratory, University of Kent, Canterbury, Kent, UK

Abstract

This note illustrates theoretical worst-case scenarios for groundness analyses obtained through

abstract interpretation over the abstract domains of definite (Def) and positive (Pos) Boolean

functions. For Def, an example is given for which any Def-based abstract interpretation for

groundness analysis follows a chain which is exponential in the number of argument positions

as well as in the number of clauses but sub-exponential in the size of the program. For Pos,

we strengthen a previous result by illustrating an example for which any Pos-based abstract

interpretation for groundness analysis follows a chain which is exponential in the size of the

program. It remains an open problem to determine if the worst case for Def is really as bad

as that for Pos.

1 Introduction

Boolean functions play an important role in various formal methods for specification,

verification and analysis of software systems. In program analysis, Boolean functions

are often used to approximate properties of the set of states encountered at a given

program point. For example, a conjunction x ∧ y could specify that variables x

and y satisfy some property whenever control reaches a given program point. A

Boolean function ϕ1 → ϕ2 could specify that if ϕ1 is satisfied at a program point

(perhaps depending on the unknown inputs to the program) then also ϕ2 is satisfied.

A disjunction ϕ1 ∨ϕ2 could arise as a consequence of a branch in the control where

ϕ1 and ϕ2 approximate properties of the then and else branches, respectively.

For program analysis using Boolean functions, we often consider the positive

Boolean functions, Pos. Namely, those for which f(1, . . . , 1) = 1 (denoting false

and true by 0 and 1 respectively). This restriction is natural as, due to the element

of approximation, the result of an analysis is not a ‘yes/no’ answer, but rather a

‘yes/maybe not ’ answer. In this case there is no ‘negative’ information. Sophisticated

Pos-based analyzers implemented using binary decision diagrams (Bryant, 1992)

https://doi.org/10.1017/S1471068401001077 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001077


612 S. Genaim, M. Codish and J. M. Howe

have been shown (Van Hentenryck et al., 1995) to give good experimental results

with regards to precision as well as the efficiency of the analyzers. However, scalability

is a problem and inputs (programs) for which the analysis requires an exponential

number of iterations or exponentially large data structures are encountered (Codish,

1999).

The domain, Def, of definite Boolean functions is a subdomain of Pos. These

are the positive functions whose sets of models are closed under intersection. The

domain Def is less expressive than Pos. For example, the formula x∨y is not in Def.

However, Def-based analyzers can be implemented using less complex data structures

and can be faster than Pos-based analyzers. For goal dependent groundness analyses

(where a description of the inputs to the program being analyzed is given) Def has

been shown to provide a reasonable tradeoff between efficiency and precision (King

et al., 1999; Howe & King, 2000).

The work described in Codish (1999) illustrates a series of pathological inputs for

Pos-based groundness analysis. That paper defines a predicate chain(x1, . . . , xn) using

n clauses and illustrates that its Pos-based groundness analysis requires 2n iterations.

However, given that the size of the program (the total number of arguments), is

quadratic in n (m = n2 +n), the number of iterations is sub-exponential in the size of

the input (2n or 2O(
√
m)). It has been suggested that Def analyses might provide better

scalability properties than Pos due to the restriction to functions whose models are

closed under intersection. This note makes two contributions:

1. It demonstrates that the worst-case behavior of a Def-based analysis is (at

least) as bad as that described in Codish (1999) for Pos-based analyses; and

2. It demonstrates that the worst-case behavior of a Pos-based analysis is expo-

nential in the size of the input.

We have not succeeded to demonstrate a worst-case analysis for Def for which the

number of iterations is exponential in the size of the input, nor to prove that Def-

based groundness analysis has sub-exponential worst-case behavior. This remains

an open problem.

2 A potential worst-case for Def

Consider an n-ary Boolean function f. A model M of f can be viewed as a

sequence (b1, . . . , bn) of zero’s and one’s such that f(b1, . . . , bn) = 1. For the sake of

our construction, we order n-ary models according to their value as n-digit binary

numbers. So a model M1 is smaller or equal to a model M2 if and only if the binary

number corresponding to M1 is less or equal to the binary number corresponding to

M2. The intersection of models is defined as usual so that (a1, . . . , an)∩ (b1, . . . , bn) =

(c1, . . . , cn) where ci = 1 if and only if ai = bi = 1.

Let us first comment on the series of programs which demonstrates the potential

worst-case behavior of a Pos-based groundness analysis (Codish, 1999). The analysis

of the predicate chain/n enumerates the models of the (constant) n-ary Boolean func-

tion 1 (true) in reverse order. Starting from the initial approximation (which has no

models), each consecutive approximation is a function which has one new model that

https://doi.org/10.1017/S1471068401001077 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001077


Technical note 613

was not in the previous iteration. For example, when n = 3, the models accumulate

in the following order: (1, 1, 1), (1, 1, 0), (1, 0, 1), (1, 0, 0), . . . , (0, 0, 0) and the Pos-based

analysis totals 8 iterations. In contrast the corresponding Def-based analysis totals

4 iterations because at each iteration the current set of models is closed under

intersection. So for example, in the third iteration, the set {(1, 1, 1), (1, 1, 0), (1, 0, 1)}
is closed to give {(1, 1, 1), (1, 1, 0), (1, 0, 1), (1, 0, 0)}.

We now construct a series of programs which demonstrates the potential worst-

case behavior of a Def-based groundness analysis. This construction is based on the

following observation:

Proposition 2.1

Let M be an n-ary model. Then the set of n-ary models smaller or equal to M is

closed under intersection.

Proof

The result follows from the following observation: If M1 and M2 are n-ary models,

then M1∩M2 is no larger than M1 (and no larger than M2). This is because M1∩M2

is obtained from M1 (or from M2) by changing some one’s to zero’s. q

A consequence of Proposition 2.1 is that the domain of definite Boolean functions

over n variables contains a chain of length 2n. To demonstrate such a chain consider

an enumeration M0, . . . ,M2n−1 of the n-ary models according to their binary ordering

(so M0 = (0, . . . , 0) and M2n−1 = (1, . . . , 1)). Observe that Mi is the n-ary binary

representation of i. Define a sequence F = (f0, . . . , f2n−1) as follows: let f0 be the

Boolean function with the empty set of models and for 0 < i < 2n − 1 define fi
to be the Boolean function whose models are {M0, . . . ,Mi−1} ∪ {M2n−1}. From the

construction it is clear that F forms a chain. Moreover, the elements of F are in

Def: They are positive because they have M2n−1 as a model; and from Proposition

2.1, it follows that they are closed under intersection. The chain F is of length 2n− 1

because, for 1 < i < 2n − 1 fi has exactly one model more than fi−1. This is the

setting for our construction.

The (Def-based) groundness analysis of the following predicate ‘p/n’ iterates

through the chain F . The arguments typeset in boldface highlight the case for n = 4.

The program size is quadratic in n and consists of a single predicate of arity n with

n + 1 binary clauses. The analysis of the program can be viewed as counting from

zero to 2n − 2 in its arguments.

p(Xn, . . . , X4,X3,X2, c) ← p(Xn, . . . , X4,X3,X2,X1).

p(Xn−1, . . . , X3,X2, c,X1) ← p(Xn−1, . . . , X3,X2,X1, c).

p(Xn−2, . . . , X2, c,X1,X1) ← p(Xn−2, . . . , X2,X1, c, c).
...

p(c,X1, . . . , X1,X1) ← p(X1, c, . . . , c, c).

p(X1,X1, . . . , X1,X1) .

https://doi.org/10.1017/S1471068401001077 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001077


614 S. Genaim, M. Codish and J. M. Howe

3 A challenge

The Def- and Pos-based groundness analyses of the predicate p/n program in the

series given in this note involve an exponential number of iterations and compute

an n-ary Boolean function. The same is true for the Pos-based analysis of the series

given in Codish (1999). However, it is important to note that complexity is typically

expressed in terms of the size of the input to a problem and that the size of the

program defining p/n in both series is quadratic in n (m = n2 + n). Hence, formally

speaking, we have shown that both Def and Pos-based groundness analyses may

potentially involve a number of iterations which is 2O(
√
m). This is bad enough, but

sub-exponential.

For Pos, we can strengthen the result. The following program is of size linear in

n (m = 11 · n) and its Pos-based groundness analysis requires 2n − 2 iterations.

p(X1, . . . , X1).

p(A1, . . . , An) ← p(B1, . . . , Bn), s(A1, . . . , An, B1, . . . , Bn).

s(c , X1, . . . , X1, X1, c , . . . , c ).

s(W,A1, . . . , An−1, W , B1, . . . , Bn−1) ← s(A1, . . . , An, B1, . . . , Bn).

Intuitively, the 2n arguments of the predicate s/2n represent two n-digit binary

numbers (the first is the successor of the second) so that the n recursive clauses from

the program in Section 2 can be simulated by two clauses for s/2n. The base case of

s/2n corresponds to the last recursive clause. However, the analysis of s/2n does not

follow an exponential chain so we still need the predicate p/n to get the worst-case

behaviour. This approach does not work for Def because the result in Pos for s/2n

is not closed under intersection.

4 Conclusion

We have demonstrated a 2O(m) worst case complexity for Pos and at least 2O(
√
m) for

Def (where m is the size of the program). It remains to be determined if the worst

case for Def is really as bad as that for Pos or perhaps Def has better worst-case

behaviour.

Theorem 4.1

Groundness analysis using Def has a potential worst-case behaviour involving 2O(
√
m)

iterations, where m is the size of the program.

Theorem 4.2

Groundness analysis using Pos has a worst-case behaviour involving 2O(m) iterations,

where m is the size of the program.

References

Bryant, R. (1992) Symbolic Boolean manipulation with ordered binary-decision diagrams.

ACM Computing Surveys, 24(3), 293–318.

Codish, M. (1999) Worst-case groundness analysis using positive Boolean functions. J. Logic

Programming, 41(1), 125–128.

https://doi.org/10.1017/S1471068401001077 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001077


Technical note 615

Howe, J. M. and King, A. (2000) Implementing groundness analysis with definite Boolean

functions. In: Smolka, G. (ed.), European symposium on programming: Lecture Notes in

Computer Science 1782, pp. 200–214. Springer-Verlag.

King, A., Smaus, J.-G. and Hill, P. (1999) Quotienting share for dependency analysis. In:

Swierstra, D. (ed.), European symposium on programming: Lecture Notes in Computer Science

1576, pp. 59–73. Springer-Verlag.

Van Hentenryck, P., Cortesi, A. and Le Charlier, B. (1995) Evaluation of the domain Prop.

J. Logic Programming, 23(3), 237–278.

https://doi.org/10.1017/S1471068401001077 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001077

