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Abstract

Objectives: The objectives of this study were (1) to develop and validate a simulation model to estimate daily probabilities of healthcare-asso-
ciated infections (HAIs), length of stay (LOS), and mortality using time varying patient- and unit-level factors including staffing adequacy and
(2) to examine whether HAI incidence varies with staffing adequacy.

Setting: The study was conducted at 2 tertiary- and quaternary-care hospitals, a pediatric acute care hospital, and a community hospital within
a single New York City healthcare network.

Patients: All patients discharged from 2012 through 2016 (N = 562,435).

Methods: We developed a non-Markovian simulation to estimate daily conditional probabilities of bloodstream, urinary tract, surgical site,
and Clostridioides difficile infection, pneumonia, length of stay, and mortality. Staffing adequacy was modeled based on total nurse staffing
(care supply) and the Nursing Intensity of Care Index (care demand). We compared model performance with logistic regression, and we
generated case studies to illustrate daily changes in infection risk. We also described infection incidence by unit-level staffing and patient
care demand on the day of infection.

Results: Most model estimates fell within 95% confidence intervals of actual outcomes. The predictive power of the simulation model exceeded
that of logistic regression (area under the curve [AUC], 0.852 and 0.816, respectively). HAI incidence was greatest when staffing was lowest and
nursing care intensity was highest.

Conclusions: This model has potential clinical utility for identifying modifiable conditions in real time, such as low stafting coupled with high
care demand.

(Received 5 November 2020; accepted 4 March 2021; electronically published 16 April 2021)

type and quantity of care required by patients on a unit).!*!* Although
staffing supply can be measured and extracted from electronic

Aimed at facilitating real-time surveillance and early intervention,
prediction models for healthcare-associated infections (HAIs)

have proliferated as healthcare data have become increasingly
accessible and robust.!™ Though model performance has
improved with new data sources and engineering methods, action-
able models that provide individualized infection probabilities that
are updated continuously based on patients’ actual hospital event
sequences and care trajectories are lacking,®

In addition, nurse staffing adequacy, a key predictor of infection
risk,%” has been largely omitted from prediction models due to chal-
lenges with defining and capturing this factor in electronic records.®*'?
Staffing adequacy represents the balance between staffing supply (the
number and composition of staff on a unit) and patient demand (the
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records, existing methods of determining patient demand using
healthcare data have significant limitations.'>'® To more accurately
capture patient demand, we previously developed and validated the
Nursing Intensity of Care Index to quantify patients’ daily nursing
care needs based on their actual use of services.!”

This study had 2 main objectives. The first objective was to
develop and validate a simulation model to estimate patients’ daily
probabilities of seven outcomes (bloodstream infection, urinary tract
infection, surgical site infection, Clostridioides difficile infection,
pneumonia, length of stay, mortality) based on time-varying
patient- and unit-level factors, including nurse staffing adequacy.
The second objective was to examine whether the incidence of
HAISs considered to be preventable through evidence-based nursing
care (central line-associated bloodstream infection, catheter-associ-
ated urinary tract infection, C. difficile infection, pneumonia)!8-2?
vary according to nurse staffing adequacy.
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Methods
Sample and setting

This federally funded study was performed using data from 2
tertiary- and quaternary-care hospitals, a pediatric acute care
hospital, and a community hospital within a single New York
City healthcare network. All inpatients discharged from 2012
through 2016 were included (N=562,435). The participating
medical centers’ institutional review boards reviewed and
approved the study.

The Nursing Intensity of Care Index

The Nursing Intensity of Care Index was developed at the study
institution using previously described methods.!” In brief, a
team of clinician researchers reviewed lists of all procedures
occurring at the study institutions and identified those thought
to increase workload for nurses on inpatient units. Eleven staff
nurses in a range of pediatric and adult units reviewed the cura-
ted list, indicated whether the procedures increased their work-
load by at least 15 minutes per shift, and suggested additional
procedures that had not been included. Each procedure in the
final list was ascribed a weight based on previously published
data describing the time burden of each activity.?* The elements
of the final index, including weights and data sources, are pre-
sented in Table 1.

Data sources and definitions

Our team of clinician researchers identified fixed and time-varying
patient- and unit-level factors that contribute to infection risk and
are obtainable from electronic hospital records. Data on these fac-
tors were obtained from administrative records, human resources
staffing records, medication administration records, perioperative
records, provider order entries, structured nursing documentation
in the electronic medical record, International Classification of
Diseases Ninth or Tenth Revision, Clinical Modification (ICD-9/
10-CM) procedure and diagnosis codes, and records of unit-level
infectious disease outbreak periods reported to New York State
through the Nosocomial Outbreak Reporting Application.?*
The variables included in the simulation model are detailed in
Table 2.

HAISs were identified using previously validated case-detection
algorithms based on Centers for Disease Control and Prevention
National Healthcare Safety Network definitions, and time-
stamped records from the institutions’ clinical microbiology
laboratories and patients’ ICD-9/10-CM codes.® Bloodstream
infection was defined as a positive blood culture with any organism
in the absence of a positive culture with the same organism from
another body site within the previous 14 days. Urinary tract infec-
tion was defined as a positive urine culture with any organism
(>10° CFU/mL or 10*-10° CFU/mL plus pyuria). Surgical site
infection was defined as a positive wound culture with any organ-
ism within 30 days following a National Healthcare Safety Network
designated procedure.?® C. difficile infection was defined by posi-
tive stool culture. Pneumonia was defined as a positive respiratory
culture with any organism plus any ICD-9/10-CM pneumonia
code. Any infection that occurred >2 calendar days after admission
was considered healthcare-associated and was included in the
study. Lengths of stay and mortality outcomes were obtained from
hospital administrative records.
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Simulation modeling

We used a non-Markovian simulation to estimate daily conditional
probabilities of bloodstream infection, urinary tract infection, sur-
gical site infection, C. difficile infection, pneumonia, length of stay,
and in-hospital mortality. In brief, each patient characteristic, unit
characteristic, and hospital event in Table 2 was assigned a unique
integer. A patient’s current state (X,) is a value determined by the
presence and order of onset of these integers, representing all that
the patient has experienced to date during the admission. The
model (X111}, hyny) = f{(Xphe).0uge41) } outputs the patient’s
next state (X, ;) and an updated memory of previous states (/. ;)
as a function of the patient’s current state (X;), the previous
memory (h,), model parameters 6, and uniform random variable
Upr1- A detailed description of the model is included in Appendix
1 (online), where the model is parameterized using recurrent neu-
ral networks.

Model validation

To validate the model, we took an independent random sample of
100,000 patient admissions and simulated a path to discharge (or
death) for each. We then compared the average mortality, infection,
and length of stay implied by the simulation model with the
observed metrics to see how closely the output of the simulation
resembles real events. To measure the predictive performance of
the model, we devised a comparison with logistic regression using
the patient and unit variables available at admission to predict C.
difficile infection, noting that this is meant to establish the soundness
of the model, as our model formulation can accommodate more
complex scenarios than traditional supervised learning predictive
models. C. difficile was chosen for the validation because the factors
that affect risk are generalized and not heavily dependent on specific
events such as surgery or indwelling device placement. We com-
pared model performance using area under the receiver operating
characteristic curve (AUC of ROC) as a metric. To illustrate the
potential clinical utility of the model, we present case studies illus-
trating daily changes in outcome probability based on patient and
unit characteristics and events.

Nurse staffing adequacy

To evaluate whether incidence of central-line-associated blood-
stream infection, catheter-associated urinary tract infection, C.
difficile infection, or pneumonia vary according to nurse staffing
adequacy, we calculated infection incidence by unit-level nurse
staffing (total registered nurse, licensed practical nurse, and
nursing assistant hours per patient day by tertile) and unit-level
patient care intensity (Nursing Intensity of Care Index by ter-
tile) on the day of infection.

Results
Model performance

Table 3 presents performance metrics for the simulation model.
Most metrics implied by the model fall within 95% confidence
intervals of the actual estimates (+1.960,,), meaning that the sim-
ulation model captures the structure and order of patient transi-
tions from admission to discharge. The predictive power of our
simulation model was slightly higher than that of the logistic
regression model (AUC 0.852 and 0.816, respectively) (Fig. 1).
The case studies presented in Figure 2 illustrate how our simulation
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Table 1. The Nursing Intensity of Care Index Variables and Scoring?

Bevin Cohen et al

Level Variable Scoring Data Source
Patient Charlson Comqr.bidity Index (for'adults aged >18 y) or Pediatric Chronic 0-33 ICD-9/10-CM POA
Complex Condition Index (for children aged <18 y)
Medications, blood products, and feedings
Blood product administration, whole blood transfusion 2 Provider order
Enteral infusion, tube feeding, gastric lavage 2 Provider order
Injection, oral, topical medications? 0-3 MAR
Intravenous medications® 0-3 MAR
Nebulizer, airway inhalation medications® 0-3 MAR
Procedures
Hemodialysis performed on unit 1 Provider order
Preparation for surgical procedure 1 Perioperative records
Thoracentesis on unit with unit nurse assist 1 ICD-9/10-CM and perioperative records
Devices, catheters, and continuous therapies
Alcohol or drug detoxification 3 ICD-9/10-CM
Central venous catheter maintenance 1 EMR structured documentation
Continuous renal replacement therapy 3 Provider order
Extracorporeal membrane oxygenation 3 ICD-9/10-CM
Implantable cardiac assist device 3 ICD-9/10-CM
Isolation precautions 3 Provider order
Mechanical ventilation 2 ICD-9/10-CM
Ostomy 2 Provider order
Peritoneal dialysis 3 MAR
Peripherally inserted central catheter 1 Provider order
Restraints 1 Provider order
Urinary catheter insertion, indwelling 1 EMR structured documentation
Urinary catheter maintenance, indwelling 1 EMR structured documentation
Urinary catheter, intermittent 2 Provider order
Unit Admissions, discharges, transfers Total count Administrative records
Outbreak period 2 NORA reports
Intensive care 2 Administrative records

Note. HR, human resources; ICD-9/10-CM, International Classification of Diseases 9th or 10th Revision, Clinical Modification; MAR, medication administration record; NORA, Nosocomial Outbreak

Reporting Application; POA, present on admission.

2The Nursing Intensity of Care Index is calculated daily for each patient in a unit and averaged to create a daily score for each unit.
bScoring of medications was determined by tertile of total number administered: 0=none, 1=first tertile, 2=second tertile, 3=third tertile.

model can provide insights beyond traditional supervised learning
methods by accounting for the timing of each additional risk bear-
ing event as well as the history and sequence of previous risk bear-
ing events to calculate a more individualized real-time assessment
of the probability of infection.

Nurse staffing adequacy and infection

Table 4 presents a matrix showing the percent of patients with cen-
tral-line-associated bloodstream infection, catheter-associated uri-
nary tract infection, C. difficile infection, and pneumonia under a
range of nurse staffing and nursing care intensity conditions. For
all 4 types of infection, incidence was greatest when staffing was
lowest and nursing care intensity was highest.
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Discussion

Prediction models for identifying preventable hospital-acquired
conditions, such as HAIs, have great promise for improving
patient outcomes.! Still, the utility of prediction models in
patient care remains limited due to low predictive power, lack
of timely, actionable interventions, or inability to capture
ongoing changes in patient risk.>”?® In this study we addressed
2 major limitations of HAI prediction models. First, we used a
novel approach to modeling the likelihood of infection, death,
and length of stay by estimating daily probabilities that are con-
ditional not only on the events that the patient experienced to
date during their hospital stay but also the sequence of those
events. Second, we used a novel approach to measuring nurse
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Table 2. Patient and Unit Characteristics Included in the Simulation Model

Timing

Variable

Data Source

Integers assigned once at admission

Age (<1, 1-4, 5-12, 13-21, 22-54, 55-64, 65-74, 75-84, >85 y)

Administrative records

Sex (yes, no, unknown)

Administrative records

Malignancy (yes, no)

ICD-9/10-CM

Diabetes mellitus (yes, no)

ICD-9/10-CM

Charlson Comorbidity Index (0-6, 7-13, >14)

ICD-9/10-CM POA

Initial unit of admission (intensive care, stepdown, medical, surgical,
medical/surgical, other, unknown)

Administrative records

Integers assigned on each day the event
occurred (all yes/no)

Medications, blood products, and feedings

Antibiotic agents

MAR

Blood product administration, whole blood transfusion

Provider order

Chemotherapeutic, immunosuppressive, anti-inflammatory agents

MAR

Enteral infusion, tube feeding, gastric lavage

Provider order

Injection, oral, topical medications MAR
Intravenous medications MAR
Nebulizer, airway inhalation medications MAR
Procedures

Biopsy ICD-9/10-CM
Cardiac catheterization ICD-9/10-CM
Catheter angiography 1CD-9/10-CM
Coronary angioplasty ICD-9/10-CM
Endotracheal intubation 1CD-9/10-CM
Feeding tube insertion 1CD-9/10-CM

General anesthesia

Perioperative records

Hemodialysis performed on unit

Provider order

Intra abdominal vascular shunt insertion

ICD-9/10-CM

Operating room procedure (>30 minutes)

Perioperative records

Operating room procedure (any)

Perioperative records

Thoracentesis performed on unit

ICD-9/10-CM and perioperative
records

Transplant (major organ) 1CD-9/10-CM
Vascular stenting 1CD-9/10-CM
Devices and continuous therapies

Alcohol or drug detoxification ICD-9/10-CM

Central venous catheter

EMR structured documentation

Continuous renal replacement therapy

Provider order

Dialysis ICD-9/10-CM
Extracorporeal membrane oxygenation ICD-9/10-CM
Implantable cardiac assist device ICD-9/10-CM
Mechanical ventilation ICD-9/10-CM

Ostomy

Provider order

Peritoneal dialysis

MAR

Peripherally inserted central catheter

Provider order

Restraints

Provider order

Urinary catheter, indwelling

EMR structured documentation

Urinary catheter, intermittent

Provider order
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Table 2. (Continued)

Timing Variable Data Source

Hospitalization characteristics

Intensive care Administrative records

Isolation precautions Provider order

Overnight stay (ie, not discharged that day) Administrative records

Clinical outcomes

Death Administrative records

Bloodstream infection Infection identification algorithm

Clostridioides difficile infection Infection identification algorithm

Pneumonia Infection identification algorithm

Surgical site infection Infection identification algorithm

Urinary tract infection Infection identification algorithm

Integers assigned daily by unit

Nursing Intensity of Care Index score (continuous) See Table 1
Proportion of registered nurse hours to total nursing HR records
hours (categorical by tertile)

Total registered nurse, licensed practical nurse, and nursing HR records

assistant hours per patient day (categorical by tertile)

Note. HR, human resources; ICD-9/10-CM, International Classification of Diseases 9th or 10th Revision, Clinical Modification; MAR, medication administration record; POA, present on admission.

Table 3. Key Metrics Implied by the Simulation Model Compared to Reality After
Simulating 100,000 Patient Paths

Implied by the Simulation Model (95%

Outcome Confidence Interval) Observed
Length of stay, d 6.62 (6.52-6.72) 6.94
Death, % 1.8 (1.49-2.11) 1.76
Urinary tract 1.64 (1.51-1.76) 1.84
infection, %

Bloodstream 0.75 (0.58-0.92) 0.72
infection, %

Pneumonia, % 0.44 (0.38-0.50) 0.52
Clostridioides difficile 0.92 (0.73-1.11) 0.96
infection, %

Surgical site 0.24 (0.20-0.28) 0.25

infection, %

staffing by considering both staffing supply and patient care
demand using the Nursing Intensity of Care Index.!”

To our knowledge, this is the first study to incorporate staffing
adequacy into a prediction model for HAIs. Countless studies have
examined the association between nurse staffing and preventable
complications, including HAIs.?*** The evidence strongly suggests
that staffing plays some role in infection risk, though findings are
not consistent across studies. A review by Shang et al'® reported
that inconsistent findings are likely explained by differences in
the type and quality of staffing supply data sources. Our findings
suggest that mixed results may also be due to whether and how
studies account for patient care demand.
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Figure 1. Baseline comparison between simulation model and logistic regression
using only variables available at admission to predict Clostridioides difficile.

Despite challenges obtaining accurate staffing supply data,
definitions of staffing levels and skill mix are relatively consis-
tent among high-quality studies, with nurse-to-patient and reg-
istered nurse (RN)-to-support staff ratios among the most
common metrics.!” Patient care demand, on the other hand,
is more difficult to define and measure, and meaningful meth-
ods for capturing patient care demand are not incorporated in
most studies.!>!3! Severity of illness indices designed for mor-
tality risk adjustment are sometimes used as proxies for how
much nursing time patients require, but comorbidity burden
does not necessarily correlate with inpatient nursing need.’!
Case-mix indices based on demographics, procedures, and
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Catheter-associated urinary tract infection Low 1.16 (0.00069) 1.13 (0.00056) 1.28 (0.000004)
Moderate 1.24 (0.000005) 1.29 (0.00045) 1.44 (0.00057)
High 1.56 (0.00042) 1.49 (0.00052) 1.27 (0.00081)
Central-line--associated bloodstream infection Low 0.44 (0.00043) 0.45 (0.00035) 0.46 (0.00024)
Moderate 0.40 (0.00029) 0.47 (0.00027) 0.49 (0.00034)
High 0.57 (0.00026) 0.46 (0.00029) 0.41 (0.00046)
Clostridioides difficile infection Low 0.60 (0.000005) 0.61 (0.00041) 0.55 (0.00026)
Moderate 0.53 (0.00033) 0.49 (0.00028) 0.62 (0.00038)
High 0.62 (0.00027) 0.58 (0.00032) 0.49 (0.00051)
Pneumonia Low 0.48 (0.00045) 0.54 (0.00038) 0.53 (0.00026)
Moderate 0.53 (0.00033) 0.57 (0.000003) 0.64 (0.00038)
High 0.65 (0.00027) 0.56 (0.00032) 0.32 (0.00041)

Data are infection incidence per 100 patients (standard error). The highest infection incidence within the matrix for each infection type is shown in bold.
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Figure 2. In Case Study A, a 13-year-old female with a malignancy was admitted with a low Pediatric Chronic Complex Condition score (0-6) to a unit with higher

staffing (upper tertile) and moderate Nursing Intensity of Care unit score (middle tertile). She developed Clostridioides difficile infection (CDI) on day six after taking antibiotics for
six consecutive days. Her daily risk of C. difficile infection estimated from the simulation model is plotted and annotated with landmark risk factors, illustrating how the prob-
ability of infection progressively increases with each consecutive day of antibiotics and following transfer to the intensive care unit (ICU). This case study highlights the use-
fulness of the simulation model to jointly assess the risk of an outcome that is caused by multiple co-dependent time-varying factors occurring simultaneously, which is difficult
to achieve with traditional supervised machine learning methods. In Case Study B, a 62-year-old female diabetic patient with a malignancy was admitted with a high Charlson
Comorbidity score (7-13) to a unit with lower staffing (lower tertile) and higher Nursing Intensity of Care unit score (upper tertile). She developed a urinary tract infection (UTI) on
day 23 after seven days with a urinary catheter. Her daily risk of urinary tract infection is plotted, which illustrates how the probability of infection progressively increases after an
initial spike following antibiotic administration beginning on day seven, urinary catheter insertion on day 16, and the addition of new IV push medications on day 20.

comorbidities are used to estimate nursing needs at the unit
level, yet such measures are insensitive to changes in care
demand throughout a patient’s stay.’® Patient classification
and acuity systems incorporate a more holistic perspective of
nursing care needs; however, these are generally designed to cat-
egorize patients into broad categories of low, medium, and high
need.*?

To improve measurement of nursing care demand, we developed
and validated the Nursing Intensity of Care Index to capture
patients’ nursing needs on a daily basis to account for the fact that
needs change over the course hospitalization and depend on more
than medical diagnoses and demographic characteristics.!”*! Using
this index, we demonstrated that infection incidence was greatest
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when units had the lowest nurse staffing and highest patient care
intensity. There is no clear dose-response relationship between staff-
ing and nursing care intensity aside from the most extreme catego-
ries, which may suggest a threshold at which the staffing versus
intensity ratio becomes unsafe. This warrants further analysis.
Although it was not possible to precisely account for incubation
period in this analysis, meaning that infection incubation could have
begun before the time of staffing measurement, these findings sug-
gest that the Nursing Intensity of Care Index may be useful tool to
aid hospitals in safe staffing allocation.

Our study to improve prediction modeling for HAIs has some
limitations. First, the data used to train the model are limited to a
single health system. Although we aimed to create a model that
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can be generalized and operationalized elsewhere by including only
electronic health data that is widely available across institutions in
the United States, we acknowledge that local methods of data cap-
ture, billing code practices, order sets, and EMR structure may vary
in ways that affect the predictive value of some variables. In addition,
hospitals serving different patient populations or offering a different
balance of services may need to incorporate other variables that
impact infection risk, nursing care intensity, or both. Finally, the use-
fulness of prediction models for preventable hospital complications
is determined in large part by whether they are integrated into prac-
tice such that real-time intervention to change a patient’s infection
probability is possible. Although our model identified modifiable
factors that impact risk of infection, we did not deploy the model
in clinical practice to assess its impact on infection rates in a real-
world setting; however, the real-time availability of the data elements
used for prediction would make this possible.

In summary, this study built on previously developed methods
for predicting infection risk using a modeling approach that con-
siders the order in which risk factors occur and incorporates a
holistic consideration of staffing adequacy. The model had high
predictive value for determining a patient’s risk of infection on
each day of hospitalization, and our results suggest that patients
have the greatest risk of infection when unit-level staffing is low
and patient care demand is high.
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