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F. Garcı́a†∗, F. Jiménez‡, J. E. Naranjo§, J. G. Zato§, F. Aparicio‡,
J. M. Armingol† and A. de la Escalera†
† Universidad Carlos III de Madrid, Laboratorio de Sistemas Inteligentes Avda, De La Universidad 30, 28911 Leganés
(Madrid), Spain
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§ Universidad Politécnica de Madrid, E.U. de Informática, Carretera de Valencia, km.7, 28031 Madrid, Spain

(Received in Final Form: March 10, 2011. First published online: May 24, 2011)

SUMMARY
The recent developments in applications that have been
designed to increase road safety require reliable and
trustworthy sensors. Keeping this in mind, the most up-to-
date research in the field of automotive technologies has
shown that LIDARs are a very reliable sensor family. In
this paper, a new approach to road obstacle classification
is proposed and tested. Two different LIDAR sensors are
compared by focusing on their main characteristics with
respect to road applications. The viability of these sensors
in real applications has been tested, where the results of this
analysis are presented.

KEYWORDS: Data fusion; Intelligent vehicles; ADAS;
LIDAR.

1. Introduction
Trustworthy sensors are key elements regarding current road
safety applications. In recent years, advances in information
technologies have lead to more intelligent and complex
applications that are able to deal with a large variety of
situations. These new applications are known as Advance
Driver Assistant Systems (ADAS). One of the main features
of ADAS is the detection of dangerous situations while
warning the driver in advance. However, the lack of
trustworthy sensors that can deal with and anticipate such
situations makes this a tough task. In this context, LIDARs
have proved to be a reliable source for information and are
capable of handling the most demanding applications.

A new approach for obstacle detection and classification
using LIDARs is presented; this application attempts to
differentiate between obstacles that are commonly found
during real road situations.

In this work, a comparative analysis of two different 2D
LIDAR techniques has been carried out. Different tests have
been performed, which have involved a high variety of
movements and have been designed to verify the viability
of these sensors for road safety applications.

* Corresponding author. E-mail: fegarcia@ing.uc3m.es

2. State of the Art
ADAS require trustworthy sensors, which provide reliable
information on the surroundings. In this context, the most
recent attempts, based on driver technologies, such as
DARPA Grand and Urban Challenge,1–5 have demonstrated
that laser scanners are versatile sensors able for modern
ADAS applications.6–8

LIDAR applications for road environments cover different
requirements and are not limited to road safety applications.
LIDAR may also be used to map the surrounding area and
are also useful for localization applications (SLAM).9–15

Mapping applications can be performed in both 2D and
3D, depending on the sensors and their capabilities. The
main problem associated with 3D reconstruction is the
large volume of data required for processing. This leads
to laborious tasks that involve high computational cost,
especially when the algorithms are based on pattern matching
classification methods.16,17 Occupation grids can cope more
efficiently with the aforementioned problems; however, they
are free space oriented, resulting in increased difficulties
regarding obstacle classification.2–4,18,19

The main disadvantages associated with LIDAR sensors
are based on the small amount of data provided. Other sources
of information are usually required to fulfill the requirements
for road applications. Techniques, which are capable of
handling more than one sensor, are known as data fusion
applications. Fusion schemes are separated according to the
abstraction level in which the data are fused. For low-level
fusion applications, the raw data are fused,5 medium-level
data fusion is used in applications where the data are obtained
and processed; here, several features are extracted from each
sensor separately, these characteristics are combined in upper
layers.20,21 Finally in high-level fusion, each different sensor
has its own classifier that determines the type of each obstacle
separately, where a final decision is made using the decisions
from all the classifiers.22–25

Model-based laser scanner classification uses a model to
classify the segments found by the laser scanners. In ref. [26],
the authors have used bounding boxes to classify obstacles.
Clouds of points have been classified according to predefined
constraints between points and have made use of a Kalman
Filter to predict their movements.27 In refs. [28–31], the

https://doi.org/10.1017/S0263574711000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000270


186 Environment perception based on LIDAR sensors for real road applications

segments have been classified according to a record of the
movement of the different obstacles and their behavior along
time. The authors of ref. [32] have integrated the patterns
that have been detected during a specific time period and
provide an estimation of the real shape of the obstacle, where
detection is performed according to the shape and predefined
constraints. In ref. [9], the authors have presented results
on the improvement of detection and classification using
localization algorithms based on pattern matching. Reports
of pattern classification according to the morphology and
occlusion have been provided in ref. [33]. Here, a voting
scheme is used, where the classification is improved over time
and an estimation of the classification certainty is provided.

Other classifiers perform classification according to
feature vectors. In ref. [34], the authors use reflectivity and the
size of the objects to create the feature vector. The authors
of ref. [35] use these features to create a voting scheme,
where a weight is associated with each feature to classify the
obstacles. Other attempts36 have used the features to create
a probability density function for each class, which is used
along with a Bayesian filter to determine the type of obstacle.
Features vectors may also be created using size information
obtained from the laser detection and video data.21

Once the obstacle has been detected, the use of a tracking
stage has been observed as an interesting technique to avoid
false positives, maintain the detection over a period of time
and to improve the accuracy of the system. A Kalman Filter
is commonly used,37,38 while other tracking schemes have
made use of particle filters39 where other techniques have
been presented in refs. [40–44].

One of the problems related with LIDAR detection and
classification is due to occlusion from other obstacles on the
road. A Laser Scanner beam is a line of sight ray that can
easily be occluded by any obstacle located on the road. This
is particularly true for 2D LIDARs, where the information is
limited to a single detection plane; thus, occlusion is more
critical as a result of the limited amount of information
provided. The authors of refs. [33] and [45] have attempted
to overcome this problem.

3. Objectives and Methodology
The following objectives for this area of investigation have
been considered:

� Verification of the feasibility of the two LIDAR sensors LD
LRS-1000 and LMS-291 for detection in road applications.
This will be carried out along with a comparative analysis
of their performance and a study of the different scenarios
where they can be implemented. Apart from this analysis
on the two LIDAR sensor families, the practicality of the
laser scanners for ADAS is to be confirmed.

� A new approach for obstacle classification in road
environments using laser scanners has been presented.
This new approach is checked by performing several tests,
which provide important information on the performance
of the system.

These tests have been performed within a closed circuit that
has been configured specifically for these tests. Two different
platforms have been used, a metallic-gray Peugeot 307 and

Fig. 1. (Colour online) Test vehicle with radars mounted on the
bumper (center), black colored car (left) and gray (silver) colored
car (right).

Fig. 2. (Colour online) LMS-291 (left) and LSR 1000 Laser Radar
(right).

Table I. A priori comparison of laser performance.

LRS-1000 LMS-291

Field of vision Up to 360◦ Up to 180◦/100◦
Angle resolution 0.125◦ to 1.5◦ 0.25◦ to 1◦
Max distance measure 250 m 80 m
Detection distancea 229,2 m >80 m
Working frequency 10 Hz 19 Hz
a There are at least four detection points, from the formula: dist =

d

2tg( αmin
2 ) , for a car 2 m width, i.e. d = 0.5 m (distance between

points). It has been considered four points information enough to
perform a trustable detection, according to practical results.

a black Nissan Note (Fig. 1). Both of these present the
two extreme scenarios found in real applications regarding
reflectivity. The metallic-gray vehicle represents the best-
case scenario due to its high reflectivity. The second platform
represents the worst-case scenario due its black color. This
vehicle presents the most challenging situation for a laser
range detector as the amount of reflectivity is lower. Laser
scanners have been mounted on the bumper of the cars, as
shown in Fig. 2.

4. LIDAR Comparison
The sensors that have been used are 2D LIDAR sensors from
SICK, each sensor belongs to a different family. A list of
their characteristics is presented in Table I.
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Fig. 3. (Colour online) Width measured vs. distance for metallic
vehicle.

Fig. 4. (Colour online) Width measured vs. distance for black
vehicle.

In order to evaluate the accuracy of the measurements,
different tests have been performed. All of these have
involved approaching and moving away movements.

The resolution selected is the same in both cases 0.25◦ as
well as the angular resolution for the detection spots.

The index to evaluate the performance of two the lidars
is the estimated width of the detected obstacle taking into
account that the real widths provided by the manufacturers
are

Nissan note = 1691 mm,

Peugeot 307 = 1762 mm.

Width accuracy is very similar for both sensors (Figs. 3
and 4). The measurements from the LMS-291 provide a lower
error (Fig. 5). However, the laser radar LRS-1000 provides
results for distances greater than 80 m (Fig. 6).

The LRS-1000 provides higher capabilities that make it
a suitable sensor for long-range detections due to the wide
range of vision and its exceptionally high resolution. Its lower
frequency and large distance measurements show that more
structured environments, with less changing conditions and
where long distances are important, are typically the best
scenarios for this type of LIDAR. Interurban scenarios are a
good match for these requirements. For interurban scenarios,
detections must be carried out at longer distances (>200 m)
due to the speed of the cars involved. In this case, real-time

Fig. 5. (Colour online) Error in meters vs. distance for LMS-291
Laser scanner.

Fig. 6. (Colour online) Error in meters vs. distance for LRS-1000
Laser scanner.

tracking is not of particular importance when compared to
the importance of obtaining long-distance detections.

The experiment performed with the LMS-291-S05
provides better results for lower distance ranges. One notable
feature of the LMS-291 when compared to the LRS-1000
apart from the lower price is the higher detection frequency.
This higher frequency is a very interesting feature when
dealing with extreme changing environments, such as urban
scenarios; in this case, vehicles have to deal with lower
distances and faster changing conditions. In urban scenarios,
cars, bikes, pedestrians, and all other types of obstacles may
appear from any direction with variable trajectories; in this
case, real-time tracking is mandatory to detect dangerous
situations in advance while at the same time warning the
driver. Thus, in these scenarios, where a fast response is
crucial, this sensor is considered as being the best solution.

It also has been proved that detection can be performed
under the worst-case scenario, i.e., when the cars to be
detected are black. Even though, in some situations, the
detection error is high, obstacle detection may still be
performed under such severe conditions. Results have also
shown that the system is more efficient when detecting
obstacles that are moving away as opposed to approaching
objects. The reason for this particular behavior is that the
front part of the vehicle presents distinctive configurations
that hamper the reflection process when compared to the rear
of the vehicle. These particular configurations are generally
created for aerodynamic proposes to avoid wind forces that
increase the amount of power required to move the vehicle.
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Fig. 7. (Colour online) Comparison of laser reflection for the front
and back part of a car. The back of the vehicle has a more structured
configuration that aids the detection of laser reflections.

Fig. 8. (Colour online) Processes involved in detection and the
classification algorithm.

According to Snell’s law, the incident angle and reflected
angle are equal with respect to the normal of the surface.
According to this law, it is more difficult to detect the front
part of the car when compared to the rear, this particular
attribute has been verified using this test (Fig. 7).

5. Road Environment Detection Algorithm
The main disadvantage with LIDAR is the relatively small
amount of information provided even though it is sufficient to
provide a first estimation of the shape of the obstacle detected
and even to provide some classification results.

Within the scope of this test, an application has
been developed to perform low obstacle detection and
identification. The algorithm consists of low-level detection
and identification, and higher level tracking. This tracking
stage not only records and predicts the movement of vehicles
and pedestrians, but it is also useful for providing more
accurate detections by integrating over the time involved in
the process.

The algorithm is composed of two stages (Fig. 8). In the
first, the data are received and a low-level identification is
performed. In the second stage, the data are integrated over
a specific time period, thus a higher classification level is
obtained.

5.1. Stage 1. Low-level detection
Low-level detection is composed of four systems, where each
of them performs a different task that depends on the results
from the previous stage.

5.1.1. Egomotion correction. The data received by the laser
are corrected according to the movement of the vehicle, to
avoid misdetection due to the time difference between the
spots, which form part of the scan of the surroundings.
Egomotion correction is performed according to the data
provided from a GPS sensor included in the system.
This GPS Sensor from Xsens (MTI-G) is equipped with
egomotion correction and improves the data measured from
the GPS system. It provides positioning data and egomotion
information, such as velocity, acceleration, and Euler angles
(absolute and angular velocity). Velocity and yaw angle
measurements are used to compensate the movement of the
car for each pulse separately (see Eqs. (1)–(4)):

Translation compensation:

x = x0 − v · Ti · cos(�ϕ), (1)

y = y0 − v · Ti · sin(�ϕ), (2)

Rotation compensation:

x = cos(�ϕ) · x0 − sin(�ϕ) · y0, (3)

y = sin(�ϕ) · x0 + cos(�ϕ) · y0, (4)

where v is the velocity of the car, Ti is the time between the
given point and the first point, and �ϕ is the increment in the
yaw angle during a period of time Ti .

5.1.2. Obstacle detection. Once the displacement due to the
movement of the car is corrected, the resulting points are
joined according to the distance between them by using a
clustering algorithm based on the Euclidean distance for a
given threshold, which is distance-dependant (Eq. (5)).

th = th0 + K · dist. (5)

Here th0 is the threshold base and K is a proportional constant
that is multiplied by the distance.

Thus, for a given point p(xi, yi), it may be treated as
belonging to a segment Sj if it satisfies

pi(xi, yi) ∈ Sj → {∃[pj (xj , yj ) ∈ Sj ] : d(pj , pi) < th}.
(6)

The algorithm checks for all of the points the segments
have created and the points among them, if the case arises
where a point is not included within any segment, a new
segment is then created. After all the points have been
verified, the algorithm searches for segments containing only
one point, these are then removed as they are considered as
false detection points.

In Fig. 9, an example of segment creation is presented.
Here, segment A is created, but after the verification process,
where only one point is found, this point is removed from
the final segments.

5.1.3. Polyline creation. Once the segments are created, the
points contained within in each segment are merged using
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Fig. 9. (Colour online) Segment creation example.

Fig. 10. (Colour online) Example of polyline creation.

lines known as polylines. These lines are merged together
according to the distance between the points included in it.
This process is a variation of the Ramer algorithm.33 The
first and last points are merged using a line, for each point
contained within this segment, the distance to the line is
computed and if it is higher than a given threshold two new
lines are created merging these three points. This process is
repeated for every point within these new lines.

An example of polyline creation is shown in Fig. 10. As
dis(p3, Rect(p1, p2)) < th, two new lines are created, Rect
(p1, p3) and Rect (p3, p4). This process is repeated for p4.
Finally, the resulting form of the polylines is shown. The
Point p5 has a smaller distance than the threshold, thus this
point is considered to be a spare point.

5.1.4. Low-level classification. Low-level classification
is performed with the information provided by the
previously described stage. Here, different obstacles can be
differentiated

(1) Little obstacles: These are regarded as obstacles, where
the size is not compatible with that of a vehicle, buildings or
any other large obstacles that are commonly found in the road
environment. These obstacles can be considered as regions
of interest for further fusion algorithms that use vision to
classify the class of obstacles. These are the parts of the road,
where important obstacles for road safety can be found, such
as pedestrian or bicycles.

(2) L-shaped obstacles: These obstacles are those where
the angle and size are similar to a L. In the road environment,

Fig. 11. (Colour online) Road border detection using little obstacle
histograms.

these are typically buildings or cars. This information can
be used for further classifications, which use either fusion
algorithms or higher level laser-scanner-based classification
algorithms. The classification algorithm checks angles of
consecutive lines and looks for angles close to 90◦ that
represent the L-shaped patterns.

(3) Road limits: Two different possibilities exist for these
obstacles. These two detections are performed according to
the following procedures:

(a) Big obstacles: If an obstacle bigger than a given
threshold th is found, it is considered as being a candidate
for a road limit. The position is checked and if it is located
parallel to the trajectory of the car, it is finally labeled as a
road limit.

(b) Other road limits detection: At the first stage, only a
small amount of little obstacles is found and labeled. After
this first classification, two little obstacle histograms that
represent the frequency of little obstacles along the x- and
y-axis of the road are created. If the frequency for a given axis
is sufficient, it may be considered that the obstacles found on
the road borders can be considered as road limits. If a curve is
detected using yaw angle measurements, this detection is dis-
regarded, as road limits are not parallel or perpendicular to the
movement of the car. This method although straightforward
is demonstrated as being fast and reliable for road border
obstacle detection in the majority of scenarios (Fig. 11).

(4) Possible vehicles: The pattern provided by moving
obstacles can be differentiated and used to perform vehicle
obstacle classification and tracking. These obstacles can be
detected using LIDAR LMS-291. For a 0.25◦ resolution, it
performs four independent scans that provide four sets of
spots with a 1◦ resolution. Each scan is separated 0.25◦ with
respect to the previous one (Fig. 12). Thus, after four scans,
the LIDAR returns a complete set of spots separated by 0.25◦.
When a moving obstacle is found, the four scans performed
by the LIDAR for a single detection appear with a variation
that is proportional to the speed and direction of the detected
object and the test vehicle (Fig. 13).

Once this particular pattern with a serrated shape is found,
the velocity of the vehicle can be calculated by measuring
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Fig. 12. (Colour online) Laser behavior for a single spot.

Fig. 13. (Colour online) Moving vehicle pattern.

the distance between two consecutive points (Fig. 12) (see
Eqs. (7)–(10))

v =
2
√

(x1 − x2)2 + (y1 − y2)2

T
. (7)

Here, T is the rotation period, which is T = 13 ms. Since
there are four scans, three different speeds can be measured
in order to provide a more reliable measurement

Vy =
∑N−2

n=N

yn−yn−1
t

3 , (8)

V x =
∑N−2

n=N

xn−xn−1
t

3 , (9)

v =
√

v2
x + v2

y, (10)

where t = 13 msegs and v is in m/s.
False positives can be avoided by detecting impossible

speeds or movements. LRS information cannot give this

pattern for a single spot detection, but by combining more
than one scan a similar pattern may be detected.

(5) Other Obstacles: These obstacles are those that does
not fix with any other patterns previously presented.

5.2. Stage 2. Higher level classification
A higher level stage is required to observe the behavior of
different obstacles during a specific time period. Previously,
scanned obstacles are stored and verified using the new low-
level detection.

5.2.1. Previous obstacle egomotion correction. The
egomotion correction is performed according to the
movement of the car in the same way as the low-level
detection, explained in the previous section (see Eqs. (1)–
(4)). Thanks to this correction, all the previously detected
obstacles can be referenced to the current vehicle position.

For obstacles labeled as possible vehicles, the velocity
of the detected vehicle, according to previous scans, is
computed and the next position is calculated taking the
movement of the car into account. If there is not enough
information available for this tracking process, the low-level
speed detected from the previous scan is used to calculate this
position. Once the vehicle has been detected during several
scans, this velocity is corrected using high-level tracking.
This high-level velocity information is considered to be more
accurate because it eliminates the laser rotation displacement,
which leads to possible measurement errors.

Once the egomotion has been corrected and the movement
of possible vehicles is computed, obstacles are searched for
within a window according to the size of the obstacles from
previous scans. If an obstacle is found within this window of
the current scan, a comparison algorithm is used to verify if
the obstacle is the same and if several obstacles have been
found. The obstacle with the most amount of similarities
according to several parameters is considered as being the
same obstacle.

5.2.2. Obstacle comparison. The Comparison process is
carried out according to shape characteristics, i.e., the width
and position (see Fig. 14 and Eqs. (11)–(13)). If all of
the comparisons remain within certain values, they are
considered as being the same obstacle. If the case arises,
where there are several possible candidates, the one with the
closest value is considered as being the same obstacle (see
Eq. (14))

xmed = xmin + (xmax − xmin)/2, (11)

ymin, (12)

width = xmax − xmin. (13)

These three parameters are the most representative since
Ymax is a parameter with excess variation from the point of
view of changes or occlusions, thus it has not been considered
for comparison purposes

Corr = γ1 · dwidth + γ2 · dxmed + γ3 · dymin. (14)

Here, γ1 is the threshold applied to each distance of the
different parameters that have been considered.
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Fig. 14. (Colour online) Shape characteristics for an obstacle.

5.2.3. Higher level classification. The higher level
classification algorithm is based on a voting scheme that
uses the ten last movements and low-level classification to
perform the final decision

Vi = δiNi. (15)

Here, Vi represents the number of votes for each type of
obstacle, δi is a gain factor associated with each obstacle,
and Ni is the number of times that an obstacle has been
considered as being this type during the low-level detection.
The biggest Vi value represents the type of obstacle that has
been detected. Owing to this scheme, a certainty value is
provided for the given type of obstacle

p = 100 · Vi

(10 · δi)
. (16)

According to the p formula (see Eq. (16)), for values where
the occurrence is 10, the certainly (p) will be 100%.

5.2.4. Final classification. Before the final classification
is carried out, several higher level filters are used to
correct possible false positives in the case of possible
vehicle detection. These false detections can be avoided by
computing the last ten movements stored.

Several filters have been added to avoid false detections.
For example, 100 km/h is a speed limit for urban scenarios.
Also, high lateral movements are considered false detections.

Pitch movements can be detected and the measurement
discarded for the majority of incidences thanks to the MTI-G
sensor used. This sensor is capable of providing the pitch
angle, thus making it possible to detect large changes in the
pitch angle, which degrades the quality of the laser scanner
detection.

Fig. 15. (Colour online) Test Performed to check the algorithm.

Fig. 16. (Colour online) Detection Percentage vs. distance in meters.
Overall results.

5.3. Test performed
Several experiments have been performed (Fig. 15) to test
the proposed method and verify its feasibility for detecting
vehicles. Several of the results from the tests performed have
been presented in Fig. 16. Here, the percentage of positive
vehicle detections according to the distance is presented.
Two kinds of movements have been tested, a vehicle moving
toward the LIDAR (approaching movement) and in the
opposite direction (moving away movement).

It has been shown in the first part of the present work that
the probability of being detected is higher when the car is
moving away, i.e., due to the structure of the car. As a result,
the detection and classification results are more efficient as a
result of the greater amount of information available for this
particular situation.

The results presented in Fig. 16 have been obtained when
only stage 1 has been used, i.e., only low-level detection.
Figure 17 presents results for the complete system. The
results have shown that vehicles can be detected within
30/40 m for approaching movements and as high as 80 m
when the object is moving away, this analysis has proved
that the complete algorithm is a reliable method and
is capable of tracking the movement of cars over short
distances. Given the frequency of the LIDAR sensor used
(LMS-291) of 19 Hz and the detection ratios provided
in this test, the application presented has proved to be
very accurate. As has been previously discussed, in urban
environments, the short distances and fast movements are
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Fig. 17. (Colour online) Tracking distance in meters.

common observed for lower velocities, when compared
to interurban environments. These situations are where
applications, such as that described in this paper, can improve
road safety.

6. Conclusion and Future Works
The first conclusion that may be made from the work
performed and presented in this paper is that the LIDAR,
LMS-291, provides sufficient detection performance,
providing a good estimation of the surrounding road
environment. However, this technique is ineffective for long-
range detections, as it is unable to detect objects located
beyond 80 m. The low cost and high frequency of this
particular system makes it an interesting option for urban
scenarios.

The LIDAR LRS-1000 is a suitable and efficient
sensor for road environments, particularly when considering
interurban areas, where speeds are generally higher and the
detections must be performed for a wide range of distances.
In urban areas, both sensors are capable of providing
enough information for shape estimation and movement
detection; however, the acquisition frequency should also
be considered.

It also has been demonstrated that the two LIDARS
studied in this paper provide suitable obstacle detection
and classification of the vehicles surroundings for real road
situations, where the reliability of the vehicle detection is
within 30/40 m for approaching objects and up to 80 m for
objects moving away.

The algorithm is based on the operation principle of the
LMS-291. This can also be used with the LRS-1000 by
integrating several scans and by searching for the pattern
variation as is done with the LMS-291.

Test showed that pitch movements could alter the results
given by the laser scanner. Thus, a pitching avoiding
algorithm was developed. This algorithm detects high
pitching movements using the MTI-G GPS sensor, which has
accelerometers integrated, able to measure Euler angles. By
checking these measurements, high pitching angle changes
are detected. Data given by laser scanner are discarded if the
case arises that a high pitching movement is detected.

It also has been proved that this system is able to work in
real-time conditions, which makes it a suitable application
for future ADAS systems. Different weather condition where
tested to check the robustness of the algorithm under high
stressful conditions.

Future works will focus on data fusion architectures, able
to deal with the information from different sensors, providing
a more complex set of data. Some of these sensors are
laser scanners, computer vision systems, etc. With the use
of several sensors, difficulties inherent to each independent
sensor can be overcome, providing a complete and trustable
data acquisition system able to fulfill the requirements of
ADAS applications.
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