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Abstract

We undertake a systematic study of Lipschitz normally embedded normal complex
surface germs. We prove, in particular, that the topological type of such a germ deter-
mines the combinatorics of its minimal resolution which factors through the blowup of
its maximal ideal and through its Nash transform, as well as the polar curve and the
discriminant curve of a generic plane projection, thus generalizing results of Spivakovsky
and Bondil that were known for minimal surface singularities. In an appendix, we give
a new example of a Lipschitz normally embedded surface singularity.

1. Introduction

A germ of a real or complex analytic space (X, 0) embedded in (Rn, 0) or in (Cn, 0) is equipped
with two natural metrics: its outer metric dout, induced by the standard metric of the ambient
space, and its inner metric dinn, which is the associated arc-length metric on the germ. These
two metrics are usually studied up to bi-Lipschitz local homeomorphisms, because they then give
rise to tame classifications of singular sets, as was proven in various geometric contexts by Pham
and Teissier [PT69], Mostowski [Mos85, Mos88], Parusiński [Par88, Par94], and Valette [Val05].

The germ (X, 0) is said to be Lipschitz normally embedded (LNE) if the identity map of
(X, 0) is a bi-Lipschitz homeomorphism between the inner and the outer metric, that is, if there
exist a neighborhood U of 0 in X and a constant K ≥ 1 such that

dinn(x, y) ≤ Kdout(x, y)

for all x and y in U . As the inner and the outer geometries of (X, 0) are invariant under
bi-Lipschitz homeomorphisms (see [Pic20, Proposition 7.2.13]), this property only depends on
the analytic type of (X, 0), and not on the choice of an embedding in some smooth ambient
space (Rn, 0) or (Cn, 0).

The study of LNE singularities is a very active research area with many recent results, for
example by Birbrair, Bobadilla, Fernandes, Heinze, Kerner, Mendes, Misev, Neumann, Pedersen,
Pereira, Pichon, Ruas, and Sampaio (see [BM18, FHPS21, FS19, KPR18, NPP20a, NPP20b]),
but despite the current progress it is still in its infancy.

Although an irreducible complex curve germ (X, 0) is LNE if and only if it is smooth (see
[PT69, Fer03, NP07]), the situation is far richer already for complex surface germs. LNE germs

Received 8 January 2021, accepted in final form 12 January 2022, published online 27 May 2022.
2020 Mathematics Subject Classification 32S25 (primary), 13A18, 14B05 (secondary).
Keywords: complex surface singularities, Lipschitz geometry, Lipschitz normal embeddings, polar varieties,
discriminant varieties, valuation spaces.

© 2022 The Author(s). The publishing rights in this article are licensed to Foundation Compositio Mathematica
under an exclusive licence.

https://doi.org/10.1112/S0010437X22007357 Published online by Cambridge University Press

http://www.compositio.nl/
http://www.ams.org/msc/
https://doi.org/10.1112/S0010437X22007357


A. Belotto da Silva, L. Fantini and A. Pichon

are fairly common in this context, including, in particular, all minimal surface singularities
(as proven in [NPP20b] exploiting a characterization obtained in [NPP20a]), and the superiso-
lated surface singularities with LNE tangent cone (see [MP21]). In this paper we prove several
properties of a general complex LNE normal surface, describing in particular its generic polar
curves and the discriminant curves of its generic plane projections. We also give a new example
of a LNE normal singularity which is neither minimal nor superisolated, showing that the class
of LNE normal surface singularities contains more elements than those already discovered (see
Appendix B).

Among LNE surface singularities, the most widely studied are minimal singularities, which
have been introduced in greater generality in [Kol85]. In dimension two, they are the rational
surface singularities with reduced fundamental cycle, and they have the remarkable property
that the topological type of (X, 0) determines the following data, which is a priori of analytic
nature.

(1) The dual graph of the minimal good resolution of (X, 0) which factors through the blowup
of the maximal ideal and through the Nash transform, decorated by two families of arrows
corresponding to the strict transform of a generic hyperplane section and to the strict
transform of the polar curve of a generic plane projection.

(2) The topological type of the discriminant curve of a generic projection. Moreover, this data
can be computed explicitly from the dual graph of the minimal good resolution of (X, 0).

The first property is a deep result of Spivakovsky [Spi90, III, Theorem 5.4], the second was
later proven by Bondil (see [Bon03, Theorem 4.1] and [Bon16, Proposition 5.4]).

Observe that by good resolution of (X, 0) we mean a proper bimeromorphic morphism
π : Xπ → X from a smooth surface Xπ to X which is an isomorphism outside of a simple normal
crossing divisor E = π−1(0), and the vertices of the dual graph Γπ of E carry as weights the
genera and self-intersections of the corresponding irreducible components of E. The fact that
the topological type of a surface germ determines the dual graph of its minimal resolution is a
classical result of Neumann [Neu81].

The two main results of the present paper extend the theorems of Spivakovsky and Bondil to
all LNE surface singularities. Furthermore, we strengthen Spivakovsky’s result by showing that
another important datum is an invariant of the topological type of (X, 0), namely the inner rates
of (X, 0), an infinite family of rational numbers which measures the local metric structure of the
germ (X, 0) with respect to its inner metric. If Ev is a component of the exceptional divisor of
a good resolution of (X, 0), then its inner rate qv, introduced in [BNP14] and further studied
in [BFP22], measures the shrinking rate of the piece of the link of (X, 0) that corresponds to Ev

(see [BFP22, §§ 1 and 3]). These results show the crucial role played by generic projections and
polar varieties, notions introduced and studied by Teissier [Tei82], in the understanding of LNE
singularities.

To give a precise statement of our results we need to introduce some additional notation.
Let π : Xπ → X be a good resolution of (X, 0) and denote by V (Γπ) the set of vertices of the
dual graph Γπ of π, so that every element v of V (Γπ) corresponds to a component Ev of the
exceptional divisor E = π−1(0) of π. We denote by Zmax(X, 0) =

∑
v∈V (Γπ) mvEv the maximal

ideal divisor of (X, 0), that is, the divisor of Xπ supported on E and whose coefficient mv,
called multiplicity of v, is the multiplicity along the component Ev of the pullback via π of a
generic linear form h : (X, 0)→ (C, 0) on (X, 0). Although, in general, the divisor Zmax(X, 0)
depends on the analytic type of (X, 0), there is another divisor supported on E, namely the
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fundamental cycle Zmin of Γπ, defined as the unique minimal nonzero element of the Lip-
man cone of Γπ (see § 2 for the relevant definitions), which only depends on the graph Γπ.
Finally, we denote by ZΓπ the canonical cycle of Γπ, that is, the divisor supported on E
determined by ZΓπ · Ev = −E2

v + 2g(Ev)− 2 for every vertex v of Γπ.
For each vertex v of Γπ, set lv = −Zmax(X, 0) · Ev, that is, lv is the intersection multiplicity

of Ev with the strict transform of a generic hyperplane section h−1(0) of (X, 0) via π. We call
L-vector of (X, 0) the vector Lπ = (lv)v∈V (Γπ) ∈ Z

V (Γπ)
≥0 . Recall that the blowup Bl0X of the

maximal ideal of (X, 0) is the minimal resolution of the base points of the family of generic
hyperplane sections of (X, 0). Whenever π : Xπ → X factors through Bl0X, the strict transform
of such a generic hyperplane section via π consists of a disjoint union of smooth curves that
intersect transversely E at smooth points of E (see Appendix A), and lv is the number of such
curves passing through the component Ev; we then call L-node of Γπ (or simply of (X, 0)) any
vertex v such that lv > 0. Similarly, we denote by pv the intersection multiplicity of the strict
transform of the polar curve of a generic plane projection � : (X, 0)→ (C2, 0) with Ev and we
call the P-vector of (X, 0) the vector Pπ = (pv)v∈V (Γπ) ∈ Z

V (Γπ)
≥0 . The Nash transform ν of (X, 0)

is the minimal resolution of the base points of the family of generic polar curves of (X, 0) (see
[Spi90, Section III, Theorem 1.2]). Whenever π : Xπ → X factors through ν, then such a strict
transform consists of smooth curves intersecting E transversely at smooth points, and pv equals
the number of such curves through Ev (see again Appendix A).

We then call the P-node of Γπ (or simply of (X, 0)) any vertex v such that pv > 0. Finally,
whenever π : Xπ → X factors through the blowup of the maximal ideal, we define a natural
distance d on Γπ by declaring the length of an edge e between two vertices v and v′ of Γπ to be
1/ lcm(mv, mv′).

We can now state our first main theorem, which generalizes Spivakovsky’s result [Spi90, III,
Theorem 5.4] to all LNE normal surface germs.

Theorem 1.1. Let (X, 0) be a LNE normal surface germ, let π : Xπ → X be the minimal good
resolution of (X, 0), and let Γπ be the dual graph of π. Then the following properties hold.

(i) The resolution π factors through the blowup of the maximal ideal of (X, 0) and all L-nodes
have multiplicity one.

(ii) The maximal ideal divisor Zmax(X, 0) of (X, 0) coincides with the fundamental cycle Zmin

of Γπ. In particular, Γπ determines the multiplicity mv associated with every vertex v of Γπ,
and therefore also the set VL of L-nodes of Γπ, the L-vector Lπ of (X, 0), and the distance
d on Γπ.

(iii) The inner rate qv of each vertex (or, more generally, of each divisorial point) of Γπ is
given by

qv = d(v, VL) + 1.

(iv) The P-vector Pπ of (X, 0) is determined by

pv = −Ev ·
( ∑

v′
(mv′qv′ − 1)Ev′ − (ZΓπ − Zmin)

)

for every vertex v of Γπ. Moreover, if v is an L-node, this formula simplifies to pv = 2(g(Ev) +
lv − 1).

(v) Let π′ be the minimal good resolution of (X, 0) that factors through its Nash transform.
A vertex v of Γπ′ is a P-node of (X, 0) if and only if either lv > 1 or there exist two distinct
vertices v′ and v′′ of Γπ′ adjacent to v and such that qv′ , qv′′ < qv.
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(vi) The resolution π′ is obtained by composing π with a finite sequence of blowups of double
points of the respective exceptional divisor: at each step, a double point in Ev ∩ Ev′ has to
be blown up if and only if |qv − qv′ | < d(v, v′). In particular, an edge e = [v, v′] of Γπ contains
a P-node of (X, 0) in its interior (that is, such a P-node appears as a vertex after blowing
up finitely many double points of the exceptional divisor, starting with the blowup of the
double point associated with e) if and only if |qv − qv′ | < d(v, v′); when this is the case,
e contains exactly one P-node w, and the inner rate of w is qw = (d(v, v′) + qv + qv′)/2.

In particular, we can build from Γπ the resolution graph Γπ′ of π′, decorated by arrows
corresponding to the components of the polar curve of a generic plane projection � : (X, 0)→
(C2, 0) and by the inner rate of each vertex. Observe also that parts (i) and (ii) imply that the
multiplicity of a LNE normal germ is determined by its topological type.

Although the first two parts of the theorem are quite elementary, the remaining parts rely
heavily on a careful study of generic projections of LNE surfaces (see Lemma 4.1), building on
results from [NPP20a]. Parts (iii) and (iv) also depend on the study of inner rates of [BFP22],
and, in particular, on the so-called Laplacian formula of [BFP22].

We then move our attention to the study of the discriminant curve Δ of a generic plane pro-
jection � : (X, 0)→ (C2, 0) of (X, 0). Our second main result, which generalizes Bondil’s results
(see [Bon03, Theorem 4.1] and [Bon16, Proposition 5.4]), can be stated as follows.

Theorem 1.2. Let (X, 0) be a LNE normal surface germ and let π : Xπ → X be the minimal
good resolution of (X, 0). Then the dual graph Γπ of π determines the embedded topological
type of the discriminant curve of a generic plane projection � : (X, 0)→ (C2, 0) of (X, 0).

To be more precise, the embedded topological type of a plane curve can be conveniently
encoded in a combinatorial object, its Eggers–Wall tree, whose construction is recalled in § 7 (see
also [GGP19, Definition 3.9]). We give a more precise statement of Theorem 1.2 in Theorem 7.5,
showing explicitly how to obtain the Eggers–Wall tree of the discriminant curve Δ of a generic
plane projection � : (X, 0)→ (C2, 0) of (X, 0) as the quotient of the graph Γπ′ by a suitable
equivalence relation.

Part (iv) of Theorem 1.1 can be thought of as the uniqueness of a solution, within the class
of LNE surface singularities, to what we refer to as the problem of polar exploration of surface
singularities, which asks to determine the possible configurations of arrows of a finite graph that
can be realized as polar curves of a complex surface germ (X, 0). Recall that surface singularities
can be resolved either by a sequence of normalized point blowups, following the seminal work
of Zariski [Zar39] from the late 1930s, or by a sequence of normalized Nash transforms, as was
done half a century later by Spivakovsky [Spi90]. The relationship between these two resolution
algorithms, and therefore between hyperplane sections and polar curves of a surface singularity,
is still quite mysterious, and they seem to be in some sense dual, as was observed by Lê [Lê00,
§ 4.3].

More precisely, recall that the incidence matrix of the dual graph Γπ associated with a good
resolution π : Xπ → X of (X, 0) is negative definite by a classical result of Mumford [Mum61, § 1].
Moreover, Grauert [Gra62] proved that every weighted graph Γ without loops and with negative-
definite incidence matrix can be realized as dual graph Γπ associated with a good resolution of
some normal complex surface germ (X, 0). It is well known that the weighted graph Γπ determines
the topology of (X, 0), because Γπ is a plumbing graph of the link of (X, 0) and, conversely, as
we have already mentioned, Neumann [Neu81] proved that the plumbing graph Γπ is determined
up to a natural equivalence relation by the topology of the surface germ. It is, thus, natural to
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consider the plumbing graph Γπ endowed with an L- and a P-vector. From this point of view,
our result implies the following statement.

Corollary 1.3. Let Γ be a finite connected graph without loops weighted by attaching to each
vertex v a genus g(v) ≥ 0 and a self-intersection e(v) < 0. Then there exists at most one pair
(L, P ) of vectors L = (lv) and P = (pv) ∈ (Z≥0)V (Γ) such that there exist a LNE normal surface
singularity (X, 0) and a good resolution π of (X, 0) satisfying

(Γ, L, P ) = (Γπ, Lπ, Pπ).

Observe that not all weighted graphs can be realized as resolution graph of a LNE surface
germ. For instance, one topological restriction comes from parts (i) and (ii) of Theorem 1.1: if
Γ is the resolution graph of a LNE normal surface germ, then for every vertex v of Γ such that
Ev · Zmin < 0 the component Ev has to have multiplicity one in Zmin.

2. Surface germs with unique L-vector

In this section we prove parts (i) and (ii) of Theorem 1.1. More generally, we are interested in
finding a suitable geometric condition yielding a class of complex surfaces (X, 0) whose L-vector
is completely determined by the topology of a resolution. To achieve this, we recall the precise
definitions of the divisors Zmax(X, 0) and Zmin that have been mentioned in the introduction,
and determine a condition that guarantees their equality.

We begin by recalling the notion of Lipman cone. A more thorough discussion of the objects
described in this section can be found in [Ném99]. Let Γ be a finite connected graph without loops
and such that each vertex v ∈ V (Γ) is weighted by two integers g(v) ≥ 0, called genus, and e(v),
called self-intersection. We assume that the incidence matrix induced by the self-intersections of
the vertices of Γ, that is the matrix IΓ ∈ ZV (Γ) whose (v, v′)th entry is e(v) if v = v′, and the
number of edges of Γ connecting v to v′ otherwise, is negative definite. Let E =

⋃
v∈V (Γ) Ev be

a configuration of curves whose dual graph is Γ, so that IΓ = (Ev · Ev′), and consider the free
additive group G generated by the irreducible components of E, that is,

G =
{

D =
∑

v∈V (Γ)

mvEv

∣∣∣∣ mv ∈ Z

}
.

By a slight abuse of notation, we refer to the elements of G as divisors on Γ. On G there is a
natural intersection pairing D ·D′, described by the incidence matrix IΓ, and a natural partial
ordering given by setting

∑
mvEv ≤

∑
m′

vEv if an only if mv ≤ m′
v for every v ∈ V (Γ).

The Lipman cone of Γ is the semi-group E+ of G defined as

E+ = {D ∈ G |D · Ev ≤ 0 for all v ∈ V (Γ)}.
Remark 2.1. By looking at the coefficients of a divisor we can identify G with the additive group
ZV (Γ). Then the Lipman cone E+ of Γ is naturally identified with the cone Z

V (Γ)
≥0 ∩ −I−1

Γ (QV (Γ)
≥0 ),

because, by definition, a divisor
∑

mvEv belongs to E+ if and only if the vector IΓ · (mv)v∈V (Γ)

belongs to Z
V (Γ)
≤0 .

A cardinal property of the Lipman cone E+, proven in [Art66, Proposition 2], is that it has
a unique nonzero minimal element Zmin, called the fundamental cycle of Γ, and that moreover
Zmin > 0, that is, the coefficients of Zmin are all positive. Observe that the existence of the
fundamental cycle and the fact that Zmin > 0 are equivalent to the fact that D > 0 for every
nonzero divisor D in E+.
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Assume from now on that Γ is the dual graph of a good resolution of a normal surface
singularity (X, 0). Note that the Lipman cone, and therefore its fundamental cycle, only depend
on the graph Γ, that is, on the topology of (X, 0), and not on the complex geometry of (X, 0);
the fundamental cycle Zmin can be explicitly computed from Γ by using Laufer’s algorithm from
[Lau72, Proposition 4.1].

Consider now a germ of analytic function f : (X, 0)→ (C, 0). The total transform of f by
π is the divisor (f) = (f)Γ + f∗ on Xπ, where f∗ is the strict transform of f and (f)Γ =∑

v∈V (Γ) mv(f)Ev is the divisor supported on E such that mv(f) is the multiplicity of f ◦ π
along Ev. By [Lau71, Theorem 2.6], we have

(f) · Ev = 0 for all v ∈ V (Γ). (1)

In particular, (f)Γ belongs to the Lipman cone E+ of Γ, and therefore the semi-group A+
X =

{(f)Γ | f ∈ O(X,0)} of G is contained in E+; it has a unique nonzero minimal element Zmax(X, 0),
which is called the maximal ideal divisor of (X, 0). Observe that the divisor Zmax(X, 0) coincides
with the cycle (h)Γ of a generic linear form h : (X, 0)→ (C, 0), and that by the definition of the
fundamental cycle we have Zmin ≤ Zmax(X, 0).

The following proposition is the main result of this section.

Proposition 2.2. Let (X, 0) be a normal surface singularity and let π : (Xπ, E)→ (X, 0) be
the minimal good resolution of (X, 0). If a generic hyperplane section of (X, 0) is a union of
smooth curves, then:

(i) π factors through the blowup of the maximal ideal of (X, 0) and all L-nodes have multiplicity
one;

(ii) the maximal ideal divisor Zmax(X, 0) of (X, 0) coincides with the fundamental cycle Zmin

of Γπ.

Proof. Let π′ : Xπ′ → X be the minimal good resolution of (X, 0) which factors through the
blowup of its maximal ideal and let Ev be a component of (π′)−1(0). Let γ∗ be a curvette of Ev,
that is, a smooth complex curve germ intersecting transversely Ev at a smooth point of (π′)−1(0),
and let h′ : (X, 0)→ (C, 0) be a generic linear form of (X, 0) such that the strict transform of
(h′)−1(0) via π′ does not pass through the point p = γ∗ ∩ Ev. Then the multiplicity mult(γ, 0) of
γ = π′(γ∗) at 0 can be computed as the intersection multiplicity of γ with a Milnor fiber {h = t}
of h in a small neighborhood of 0. Let us choose local coordinates (u, v) centered at p such
that u = 0 is a local equation for Ev and v = 0 a local equation for γ∗. Then by the definition
of mv we have (h′ ◦ π)(u, v) = umvα(u, v) where α(u, v) is a unity in C{u, v} and, therefore,
mv = mult(γ, 0).

If v is an L-node of (X, 0) and h : (X, 0)→ (C, 0) is a generic linear form of (X, 0), so that
h−1(0) is a generic hyperplane section of (X, 0), then there exists an irreducible component γ
of h−1(0) whose strict transform γ∗ by π′ intersects Ev. By hypothesis, the curve γ is smooth,
therefore it has multiplicity 1 and γ∗ is a curvette of Ev. This proves that mv = 1.

Assume now that π does not factor through the blowup of the maximal ideal, so that π′ =
π ◦ α, where α is a finite composition of point blowups. By minimality of π′ there exists an L-
node v0 of (X, 0) which is associated with the exceptional component of one of the point blowups
in α. Let α1 be the first blowup in the sequence α, that is, α1 is the blowup of Xπ at a point p
of Ev ∩ h∗, where Ev is a component of π−1(0), and let Ew be the exceptional curve of α1. As
h∗ passes through p, we have mw = mw(h) > mv(h) ≥ 1. As this argument can be repeated for
every blowup forming α, we deduce that mv0(h) > 1 as well, contradicting the first part of the
proof. This implies that α must be an isomorphism, proving part (i).
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To prove part (ii), write Zmax = Zmax(X, 0) =
∑

v∈V (Γ) mvEv and Zmin =
∑

v∈V (Γ) m̃vEv,
and for every v in V (Γ) consider the non-negative integers

lv = −Zmax · Ev and l̃v = −Zmin · Ev.

As Zmin ≤ Zmax by the definition of Zmin, it is enough to prove that Zmin ≥ Zmax. As IΓ is
negative definite, it is therefore sufficient to show that the integer (Zmin − Zmax) · Ev = lv − l̃v
is at most zero for every vertex v of Γ. Whenever lv = 0, this follows immediately from the
definition, so let us fix a vertex v such that lv > 0. From part (i), we know that mv = 1. It
follows from the inequality 0 < m̃v ≤ mv = 1 that m̃v = 1 as well. We therefore obtain

lv − l̃v = (Zmin − Zmax) · Ev =
∑

w∈V (Γ)

(m̃w −mw)Ew · Ev =
∑
w �=v

(m̃w −mw)Ew · Ev ≤ 0,

because Ew · Ev ≥ 0 whenever w �= v and m̃w ≤ mw at all vertices. �
The hypothesis of Proposition 2.2 is quite weak, as it is satisfied by every normal surface

germ with reduced tangent cone (in which case the components of a generic hyperplane section
are not only smooth but also transverse, see, for example, [GL97, § 1]), for example, by every
minimal surface singularity. More generally, the hypothesis holds for all LNE surface germs, as
was proven in [FS19, Theorem 3.10]. In particular, the proposition implies parts (i) and (ii) of
Theorem 1.1.

Observe that it follows by (1) that the vector −IΓπ · Zmax(X, 0) of Z
V (Γπ)
≥0 coincides with

the L-vector Lπ of (X, 0) considered in the introduction. Therefore, whenever Zmax(X, 0)
is determined by the topological type of (X, 0), the same holds true for Lπ. We collect
this result, which is the first step towards the proof of Corollary 1.3, in the following
corollary.

Corollary 2.3. Let Γ be a weighted graph. Then there exists at most one vector L ∈ ZV (Γ)

such that there exist a normal surface germ (X, 0) whose generic hyperplane section is a union
of smooth curves and a good resolution π : Xπ → (X, 0) of (X, 0) satisfying (Γ, L) = (Γπ, Lπ).

3. A lemma on generic projections

In this section, we introduce three notions that prove fundamental in the remaining part of the
paper, namely generic projections, non-archimedean links, and local degrees. We also prove an
important result, Lemma 3.1, that shows the compatibility of generic projections with minimal
resolutions.

We begin by discussing the notion of generic projection, which is based on seminal
work of Teissier. Fix an embedding of (X, 0) in a smooth germ (Cn, 0), and consider the
morphism �D : (X, 0)→ (C2, 0) obtained as the restriction to X of the projection along an
(n− 2)-dimensional linear subspace D of Cn. Recall that whenever �D is finite, the asso-
ciated polar curve ΠD is the closure in (X, 0) of the ramification locus of the restriction
of �D to X � {0}, and the associated discriminant curve is the plane curve ΔC = �D(ΠD).
The Grassmannian variety Gr(n− 2, Cn) of (n− 2)-planes in Cn contains an analytic dense
open subset Ω such that, for every D in Ω, the projection �D is finite and the families
{ΠD}D∈Ω and {ΔD}D∈Ω are both well behaved (for example, they are equisingular in a strong
sense). We say that a morphism � : (X, 0)→ (C2, 0) is a generic projection of (X, 0) if � = �D
for some D in Ω. A discussion of the properties satisfied by a generic projection, leading
to a precise definition of Ω, can be found in [NPP20a, § 2], building on work of Teissier
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(see, in particular, [Tei82, Lemme-clé V 1.2.2]); we will come back to this matter later in this
section.

We now recall the definition of the non-archimedean link NL(X, 0) of the germ (X, 0). Indeed,
our goal for this section is to study the map induced by a generic projection � : (X, 0)→ (C2, 0)
on the dual graph of a good resolution of (X, 0). In principle, for this to make sense, it is
necessary to choose a suitable good resolution π : Xπ → X of (X, 0) and a compatible sequence
of point blowups σ : Yσ → C2 of (C2, 0) in order for � to induce a map |Γπ| → |Γσ| between the
topological spaces underlying Γπ and Γσ. In this paper, we use NL(X, 0) as a convenient way
of encoding intrinsically all the dual graphs of good resolutions of (X, 0); for this purpose, we
can adopt the following ad hoc definition. Recall that, if π : Xπ → X and π′ : Xπ′ → X are two
good resolutions of (X, 0) such that π′ dominates π (that is, π′ factors through π), then we have
a natural inclusion |Γπ| ↪→ |Γπ′ | between the topological spaces underlying the dual graphs Γπ

and Γπ′ , and a retraction |Γπ′ | → |Γπ| obtained by contracting the trees in |Γπ′ |� |Γπ|. The non-
archimedean link can then be seen as the inverse limit NL(X, 0) = lim←−π

|Γπ| in the category of
topological spaces and with respect to the various retraction morphisms, where the limit runs over
the poset of good resolutions of (X, 0), ordered by domination. In particular, NL(X, 0) contains
a copy the dual graph of each good resolution of (X, 0), and it can be seen as a compactification
of the infinite union

⋃
π |Γπ| of all the dual graphs of the good resolutions of (X, 0). As such, it

can be thought of as a universal dual graph of the singularity (X, 0). To unburden the notation,
in the remaining part of the paper we usually identify a dual graph Γπ with its image |Γπ| in
NL(X, 0). This point of view makes it convenient to think of L- and P-nodes abstractly as points
of NL(X, 0).

Traditionally, the non-archimedean link NL(X, 0) is built as a space of normalized semivalu-
ations on the complete local ring ÔX,0 of X at 0. In particular, if π : Xπ → X is a good resolution
of (X, 0) and Ev is a component of its exceptional divisor π−1(0), the corresponding vertex of
Γπ is identified with the corresponding divisorial valuation v : ÔX,0 → R+ ∪ {+∞} defined by
v(f) = ordEv(π

∗f)/mv, where ordEv(π
∗f) denotes the order of vanishing along Ev of the pull-

back of f via π. Throughout the paper, we freely make use of this terminology, calling divisorial
point of NL(X, 0) (or of a given dual graph Γπ) any point that can arise in this way, and denoting
by Ev any exceptional curve corresponding to a divisorial point v. Observe that the subset of
NL(X, 0) consisting of its divisorial points is dense in the non-archimedean link; this corresponds
to the fact that any given dual graph Γπ can be refined ad infinitum by passing to resolutions
dominating π, subdividing each edge e = [v, v′] into smaller edges by successively blowing up
double points starting with the blowup of Xπ at the point of Ev ∩ Ev′ that corresponds to e.
In particular, a divisorial point of NL(X, 0) is contained in the interior of e if and only if it
is associated with an exceptional component that appears after blowing up only double points
as above. We refer the reader to [BFP22, § 2.1] and [Fan18] for further details on this point
of view.

The morphism � : (X, 0)→ (C2, 0) induces a natural map �̃ : NL(X, 0)→ NL(C2, 0). From
the point of view of semivaluations, this is simply defined functorially by pre-composing
a semivaluation on ÔX,0 with the morphism of complete local rings ÔC2,0 → ÔX,0 induced
by �.

Concretely, �̃(v) can also be computed explicitly on a divisorial point v of NL(X, 0) as fol-
lows: we can find a sequence of point blowups σ�,v : Yσ�,v

→ C2 of (C2, 0) and a good resolution
π�,v : Xπ�,v

→ X of (X, 0) such that v corresponds to a component Ev of the exceptional divisor
of π�,v, the composition � ◦ π�,v : Xπ�,v

→ C2 factors through a map �̂ : Xπ�,v
→ Yσ�,v

making the
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following diagram commute

Xπ�,v

�̂
��

π�,v
�� X

�

��

Yσ�,v σ�,v

�� C2

(2)

and such that Ev is mapped by �̂ surjectively onto a component Ew of the exceptional divisor of
σ�,v; we then have �̃(v) = w.

Let π : Xπ → X be a good resolution of (X, 0). As � is a finite map ramified precisely over
the associated polar curve, the induced map �̃|Γπ : Γπ → �̃(Γπ) is itself a finite cover, which on a
set contained in the set of P-nodes of (X, 0) that are contained in Γπ (not necessarily as vertices
but possibly in the interior of some edges). In particular, �̃ cannot contract an edge of Γπ, but
it may fold one if it contains a P-node in its interior.

Observe that the map �̃ clearly depends on the choice of �. Indeed, if �′ : (X, 0)→ (C2, 0) is
another generic projection obtained by composing � with an automorphism φ of (C2, 0), then φ
induces a nontrivial automorphism ϕ̃ of NL(C2, 0), and we have �̃ = ϕ̃ ◦ �̃′. Although, in general,
two generic projections of (X, 0) do not differ by an automorphism of (C2, 0), it it possible to
control this phenomenon if we restrict �̃ to the dual graph Γπ of the minimal good resolution
π : Xπ → X of (X, 0) that factors through its Nash transform, as we explain in Lemma 3.1.

To do this, we need to dive deeper into the definition of generic projections, to be able to
study the polar curves and the discriminant curves of (X, 0) in families. Let us begin by recalling
the precise notion of strong equiresolution of singularities given in [Tei76, 3.1.1 and 3.1.5]. Given
a morphism β : M → Λ with reduced fibers between smooth connected complex manifolds and a
simple normal crossing divisor E of M , we say that β is simple (with respect to E) if β is smooth
and its restriction β|E : E → Λ to E is proper and locally a trivial deformation along its fibers.
If we have another morphism σ : M ′ →M , we say that σ is β-compatible if the composition
β′ = β ◦ σ is simple (with respect to E′ = σ−1(E)). Finally, given a (singular) subvariety X of
M , we say that an embedded resolution of singularities π : M̃ →M of X is a strong equiresolution
(along Λ) of X if π is β-compatible and all of its restrictions πλ over λ ∈ Λ are good embedded
resolutions of Xλ.

According to [Tei82, Lemme-clé V 1.2.2] (see [NPP20a, Proposition 2.3] for an English pre-
sentation), there exists an analytic open dense subset Ω of the Grassmannian Gr(n− 2, Cn)
where the family {(ΔD,D)}D∈Ω of discriminant curves, which can be seen as a surface in
(C2, 0)× Ω fibered over Ω via the projection β : (C2, 0)→ Ω on the second factor, admits a
strong equiresolution

(Y,F)
σ

��

βY
������������������� (C2, 0)× Ω

β

��

Ω

with F = σ−1({0} × Ω}) a simple normal crossing divisor of Y.
For each D in Ω, denote by σD : (YD, FD)→ (C2, 0) the restriction of σ to the fiber

β−1
Y (D), which is a sequence of point blowups of (C2, 0). Given two elements D and D′ of

Ω, this allows us to define an isomorphism of graphs ηD,D′ : ΓσD
∼−→ ΓσD′ as follows. For each

v ∈ V (ΓσD), if we denote by FD
v the corresponding irreducible component of F = σ−1

D (0), there
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is a unique irreducible component FD
v of σ−1({0} × Ω) such that FD

v = FD
v ∩ σ−1

D (0). We then
set ηD,D′(v) = v′, where v′ is the vertex of ΓD′ such that FD′

v′ = FD
v (that is, equivalently, such

that FD
v ∩ σ−1

D′ (0) = FD′
v′ ). This yields a bijection V (ΓσD)→ V (ΓσD′ ) which extends to a natural

homeomorphism

ηD,D′ : ΓσD → ΓσD′

defined on the divisorial points of ΓσD as follows. Fix D ∈ Ω and consider a divisorial point v on
an edge [v1, v2] of ΓσD . Then ED

v is created by a finite sequence of blowups of double points of the
previous exceptional divisor, starting with the blowup of the point FD

v1
∩ FD

v2
. We can perform

this blowups in family by blowing up along successive intersections of the form FD
w1
∩ FD

w2
,

starting with the blowup along FD
v1
∩ FD

v2
. By composing this sequence of blowups with σ, we

obtain a (β-compatible) morphism σv : Yσv → (C2, 0)× Ω. The last blowup creates an irreducible
new component FD

v in the exceptional divisor, and as before we define v′ = ηD,D′(v) by declaring
that the corresponding irreducible component FD′

v′ is the intersection FD
v ∩ (σ′)−1(0,D′). Observe

that, because multiplicities are constant along a smooth family, we have mv = mηD,D′ (v) for every
divisorial point v of ΓσD .

The following lemma relating the graph ΓσD to Γπ plays a crucial role in several arguments
in the rest of the paper.

Lemma 3.1. Let (X, 0) be a normal surface singularity, let π : Xπ → X be the minimal good
resolution of (X, 0) that factors through the blowup of its maximal ideal and its Nash transform,
and let Γπ ⊂ NL(X, 0) be the dual graph of π. Then for all D and D′ in Ω the diagram

Γπ

�̃D|Γπ

����
��

��
�� �̃D′ |Γπ

����
��

��
��

ΓσD ηD,D′
�� ΓσD′

obtained by restricting to the graph Γπ the two induced morphisms of non-archimedean links
�̃D, �̃D′ : NL(X, 0)→ NL(C2, 0), is commutative.

Before moving to the proof of the lemma, which is rather technical, we observe that
the homeomorphism ηD,D′ : ΓσD → ΓσD′ lifts naturally to an automorphism ηD,D′ of the dual
graph Γπ′ of any good resolution π′ : Xπ′ → X of (X, 0). However, the commutativity ηD,D′ ◦ �̃D
does not necessarily hold on the whole of Γπ′ . We defer an illustration of this phenomenon to
Example 4.4, because showing this now would require a lengthy local computation, while after
proving Lemma 4.1 we can give a more conceptual explanation.

As our needs go slightly beyond what was done by Teissier, let us explain how to adapt his
constructions accordingly. We start by proving a technical lemma about resolution in families of
surfaces, much in the spirit of [Tei76, 4.1 and 4.2].

Lemma 3.2. Let M and Ω be connected complex manifold such that dim(M) = dim(Ω) + 2, let
E be a simple normal crossing divisor of M , and let β : M → Ω be a simple morphism (with
respect to E). Consider a finite sequence of (adapted) smooth blowups σ : (M ′, E′)→ (M, E)
whose centers have codimension at least 2. Then, up to shrinking the size of the dense open Ω
(and, therefore, of M and M ′), the composition β′ = β ◦ σ is simple (with respect to E′).

Proof. It is enough to prove the claim in the case that σ is a single blowup with center C. By
Remmert’s proper mapping theorem applied to β|E , the image β(C) is a closed analytic subset
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of Ω. If dim(β(C)) < dim(Ω), set Z = β(C) and note that, once we replace Ω by Ω � Z, the
result easily follows from the fact that σ : M ′ →M is an isomorphism. We can therefore assume
that dim(β(C)) = dim(Ω), so that β(C) = Ω. Since dim(C) ≤ dim(Ω) by hypothesis, we conclude
that dim(C) = dim(Ω), and, in particular, the restriction β|C : C → Ω is generically a local iso-
morphism. Let Y ⊂ C be the set of critical points of β|C , which is a proper closed analytic subset
of C. Again by Remmert’s proper mapping theorem, the image Z ′ = β(Y ) is a closed analytic sub-
set of Gr(n− 2, Cn), properly contained in Gr(n− 2, Cn) because dim(Y ) < dim(Gr(n− 2, Cn)).
Now, after replacing Ω by Ω � Z ′, we can assume that β : C → Ω is everywhere a local iso-
morphism. We now claim that β′ is simple via direct computation. Indeed, because smoothness
can be verified locally, let us fix a point p ∈ C, and denote by f1 and f2 ∈ Op local generators
of C. As β is simple at p, there exists an (analytic) local coordinate system (λ, x1, x2) at p such
that β(λ, x1, x2) = λ and E is locally contained in (x1x2 = 0). As π : C → Ω is a local isomorphism
around p and C is smooth and adapted to E, if follows that the map (λ, x1, x2)→ (λ, f1, f2) is
a local isomorphism and E ⊂ (f1f2 = 0). Therefore, up to a local change of variables, we can
assume that f1 = x1 and f2 = x2, and we easily conclude that β′ : M ′ → Ω is simple. �

Now, recall that we have an embedding of (X, 0) in (Cn, 0) and let Φ: (X, 0)× Ω→ (C2, 0)×
Ω be the morphism defined by Φ(x,D) = (�D(x),D), which is generically of maximal rank. Let
π : (Xπ, E)→ (X, 0) be a good resolution of (X, 0) which factors through the blowup of its
maximal ideal and through its Nash transform. We note that, by using [Lau71, Lemma 5.2]
(a special case of the direct image theorem of Grauert), resolution of singularities, and the
universal property of blowups, there exists a sequence of blowups α : (Z,G)→ (Xπ, E)× Ω and
an analytic morphism Ψ: (Z,G)→ (Y,F) such that Ψ−1(F)red = Gred and the following diagram
is commutative

(Z,G) α
��

Ψ
��

(Xπ, E)× Ω
π×Id

�� (X, 0)× Ω

Φ
��

(Y,F)
σ

�� (C2, 0)× Ω
β

�� Ω

(3)

with βY = β ◦ σ simple. Thanks to Lemma 3.2, up to shrinking the size of the open Ω if neces-
sary, the morphism βZ = βY ◦Ψ is simple as well. We are now ready to complete the proof of
Lemma 3.1.

Proof of Lemma 3.1. The map �̃|Γπ is determined by its restriction to the set of divisorial points
of Γπ, as those form a dense subset of Γπ. As βZ and βY are simple, for every pair of elements
D,D′ of Ω, the following diagram commutes

V (Γπ)
�̃D

����������� �̃D′

�����������

V (ΓσD)
ρ̃D,D′

�� V (ΓσD′ )

We now need to prove the result on the divisorial points of Γπ which are not vertices of Γπ. It is
sufficient to consider the case where v is the divisorial point associated with the exceptional curve
of the blowup π′ : (X ′

π, E′)→ (Xπ, E) of center Ev1 ∩ Ev2 , because the same argument can then
be repeated verbatim for general sequence of point blowups. Observe that if Ev × Ω is already
a component of G, then �̃D(v) ∈ ΓσD for every D ∈ Ω, and we conclude easily. If Gv = Ev × Ω

633

https://doi.org/10.1112/S0010437X22007357 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007357


A. Belotto da Silva, L. Fantini and A. Pichon

is not a component of G, we note that Gv1 ∩ Gv2 = (Ev1 ∩ Ev2)× Ω is an admissible center in
(Z,G), because all blowups in α are admissible. We therefore may perform this extra blowup
α′ : (Z ′,G′)→ (Z,G), whose exceptional divisor Gv = Ev × Ω is trivial with respect to the family
structure. Fix D ∈ Ω, set w1 = �D(v1) and w2 = �D(v2), and consider the associated components
FD

w1
and FD

w2
of F . Then, after performing a sequence of combinatorial blowups ρ : (Y ′,F ′)→

(Y,F), starting with blowing up the center FD
w1
∩ FD

w2
, the projection �̃D′(v) belongs to the graph

of ΓρD′◦σD′ for every D′ in Ω. We have obtained, without the need to shrink the size of Ω, the
following commutative diagram:

(Z ′,G′)
Ψ′

��

α′
�� (Z,G)

Ψ
��

α
�� (Xπ, E)× Ω

π×Id
�� (X, 0)× Ω

Φ
��

(Y ′,F ′)
ρ

�� (Y,F)
σ

�� (C2, 0)× Ω
β

�� Ω

where βY ′ = β ◦ σ ◦ ρ and βZ′ = βY ′ ◦Ψ′ are simple morphisms. We conclude easily. �
Remark 3.3. If (X, 0) is a hypersurface in (C3, 0), shrinking the open set Ω is not necessary
when applying Lemma 3.2, because a resolution of the family can be constructed everywhere
by performing a Hirzebruch–Jung process in family, exploiting the fact that, thanks to [Pop02,
Corollary 3.4] (or, more generally, to [Pop04, Theorem 5.1]), the combinatorial data of the
quasi-ordinary singularities that appear during the process are constant in the family.

We conclude the section by recalling the definition of the local degree of a divisorial point v of
NL(X, 0), as it will be very important in the remaining part of the paper. Let � : (X, 0)→ (C2, 0)
be a generic projection of (X, 0) and consider the diagram (2). For each component Eν of π−1

�,v (0)
(respectively Eν′ of σ−1

�,v (0)), let us choose a tubular neighborhood disc bundle N(Eν) (resp.
N(Eν′)), and consider the two sets

N (Ev) = N(Ev) �
⋃

Eν �=Ev

N(Eν) and N (E
�̃(v)

) = N(E
�̃(v)

) �
⋃

Eν′ �=E
�̃(v)

N(Eν′)

in Xπ�,v
and Yσ�,v

, respectively. We can then adjust the disc bundles N(Eν) and N(Eν′) in such
a way that the cover � restricts to a cover

�v : π�,v(N (Ev)) −→ σ�,v(N (E
�̃(v)

)) (4)

branched precisely on the polar curve of � (if v is not a P-node, the branching locus is just the
origin). Using a resolution in family over Ω as in the proof of the Lemma 3.1, it is easy to deduce
the following result.

Lemma 3.4. For every divisorial point v of NL(X, 0), the degree deg(�v) of the cover �v does
not depend on the choice of a generic projection � : (X, 0)→ (C2, 0).

Therefore, we can set deg(v) = deg(�v). We call this integer the local degree of a generic
projection of (X, 0) at v, or simply the local degree of (X, 0) at v. Note that if deg(v) = 1, then
the map (4) is an isomorphism.

4. Generic projections of LNE surfaces

In this section, we study LNE surface germs by establishing some properties related to their
generic projections.
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We begin by proving the invariance of multiplicities under generic projections, and showing
a characterization of the P-nodes of a LNE normal surface in terms of their local degrees. More
precisely, we prove the following result.

Lemma 4.1. Let (X, 0) be a LNE normal surface germ, let � : (X, 0)→ (C2, 0) be a generic
projection, let π : Xπ → X be the minimal good resolution of (X, 0) which factors through its
Nash transform, and let v be a divisorial point of Γπ ⊂ NL(X, 0). Then:

(i) mv = m
�̃(v)

;

(ii) v is a P-node of (X, 0) if and only if deg v > 1.

Before delving into the proof of the lemma, let us recall the notions of inner and outer contact
and that of inner rate. Let (γ, 0) and (γ′, 0) be two distinct real or complex curve germs on the
surface germ (X, 0) ⊂ (Cn, 0) and denote Sε the sphere in Cn having center 0 and radius ε > 0.
The inner contact between γ and γ′ is the rational number qinn = qinn(γ, γ′) defined by

dinn(γ ∩ Sε, γ
′ ∩ Sε) = Θ(εqinn),

where Θ stands for the big-Theta asymptotic notation of Bachmann–Landau, which is defined
as follows: given two function germs f, g : ([0,∞), 0)→ ([0,∞), 0) we say that f is big-Theta
of g, and we write f(t) = Θ(g(t)), if there exist real numbers η > 0 and K > 0 such that
K−1g(t) ≤ f(t) ≤ Kg(t) for all t ≥ 0 satisfying f(t) ≤ η. The outer contact qout(γ, γ′) is defined
in an analogous way, by using the outer metric dout instead of the inner metric dinn. Observe
that if (X, 0) is LNE then qinn(γ, γ′) = qout(γ, γ′). Recall that the inner rate qv of a divisorial
point v of NL(X, 0) is defined as the inner contact qinn(γ, γ′), where γ, γ′ ⊂ (X, 0) are two curve
germs that pullback to two curvettes through distinct points of the divisor Ev associated with v
via any good resolution π : Xπ → X of (X, 0) that makes the divisor Ev appear. This definition
only depends on the divisorial point v (see [BFP22, Lemma 3.2]).

Proof. We begin by proving part (i). Write � = �D and set w = �̃D(v). Consider maps

Xπ�,D

�̂D
��

π�,D
�� X

�D
��

Yσ�,vD σ�,D
�� C2

as in diagram (2) such that πv,D is a good resolution of (X, 0) factoring through its Nash trans-
form (and, therefore, through π), σv,D is a sequence of point blowups of (C2, 0) such that w is
associated with a component Ew of (σv,D)−1(0), and the component Ev of (πv,D)−1(0) associated
with v is sent by �̂ surjectively onto Ew.

Take a curvette γ∗ of Ew which does not intersect a component of the strict transform of the
discriminant curve ΔD of �D and let (γ, 0) ⊂ (C2, 0) be the irreducible curve germ defined by
γ = σv,D(γ∗), so that we have mw = mult(γ). Up to replacing γ∗ by a nearby curvette, among the
components of (�D)−1(γ) we can find an irreducible curve germ γ̂ on (X, 0) whose strict transform
by πv,D is a curvette of Ev, so that we have mv = mult(γ̂). We then have mult(γ̂) = k mult(γ),
where k is the degree of the covering γ̂ → γ induced by �.

We argue by contradiction. Assume that mult(γ̂) �= mult(γ), that is, that k > 1. Our goal
will be to construct two real arcs δ̂1 and δ̂2 inside γ̂ whose inner and outer contacts do not
coincide; this will then imply that (X, 0) is not LNE, contradicting our hypothesis. To do so, we
consider another generic projection �D′ : (X, 0)→ (C2, 0), chosen to be generic with respect to
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the curve γ̂ as well, and set γ′ = �D′(γ̂). Then the cover γ̂ → γ′ induced by �D′ has degree 1, and
thus γ̂ and γ′ have the same multiplicity because mult(γ̂) = degree(�D′ |γ̂) mult(γ′) = mult(γ′).
Set w′ = �̃D′(v). By Lemma 3.1, we have w′ = ηD,D′(w) and, thus, mw′ = mw and qw′ = qv = qw.
Moreover, by the definition of ηD,D′ , the strict transform of γ′ by σv,D′ intersects (σv,D′)−1(0) in
a smooth point p of Ew′ .

Observe that, because the plane curve germ γ is the image through σv,D of a curvette of
Ew, it has no characteristic Puiseux exponent strictly greater than the inner rate qw of w.
On the other hand, the strict transform of γ′ by σv,D′ cannot be a curvette of Ew′ because
mult(γ′) = mult(γ̂) = kmw′ > mw′ . Therefore, the minimal good embedded resolution of γ′ is
obtained by composing σv,D′ with a nontrivial sequence of point blowups, starting with the
blowup of Yσv,D′ at p. Let Ew′′ be the last irreducible curve created by this sequence, so that
the strict transform of γ′ is a curvette of Ew′′ . Then the inner rate qw′′ of Ew′′ , which is strictly
greater than qw′ = qw, is a characteristic Puiseux exponent of γ′.

Let us choose an embedding (X, 0) ⊂ (Cn, 0) and coordinates (x1, . . . , xn) of Cn such that
�D′(x) = (x1, x2) and γ′ is not tangent to the line x1 = 0. Then, since qw′′ is a characteristic
Puiseux exponent of γ′, we can find a pair of real arcs δ′1 and δ′2 among the components of the
intersection γ′ ∩ {x1 = t | t ∈ R} such that their contact q(δ′1, δ′2) is equal to qw′′ (we refer to
[NP14, § 3] for details on this classical result about Puiseux expansions). Let δ̂1 and δ̂2 be two
liftings of δ′1 and δ′2 via �′. As the projection �D′ is generic with respect to γ̂, it induces by [Tei82,
pp. 352–354] a bi-Lipschitz homeomorphism for the outer metric from γ̂ onto γ′ and, therefore,
the outer contacts qout(δ̂1, δ̂2) and q(δ′1, δ′2) coincide, so that, in particular, we have

qout(δ̂1, δ̂2) = qw′′ > qv. (5)

We now show that the inner contact qinn(δ̂1, δ̂2) between δ̂1 and δ̂2 is at most qv, which will
yield the contradiction we were after. Observe that the inner contact q = qX

inn(δ̂1, δ̂2) between
δ̂1 and δ̂2 can also be computed as dFt

inn(δ̂1(t), δ̂2(t)) = Θ(tq), where dFt
inn(δ̂1(t), δ̂2(t)) denotes the

inner distance between δ̂1(t) and δ̂2(t) inside the Milnor fiber Ft = X ∩ {x1 = t}, that is, the
distance measured by taking the infimum of the inner lengths of the paths joining δ̂1(t) to δ̂2(t)
inside Ft. This is a consequence of the fact that, by [BNP14] and in the language therein, the
subset π(N (Ev)) of (X, 0) is a B(qv)-piece fibered by the restriction of the generic linear form
x1 whenever qv > 1, whereas it is a conical piece if qv = 1.

To conclude, consider a small disc D contained in the divisor Ev and centered at the point
γ̂∗ ∩ Ev and let N ∼= D ×D′ be a trivialization of the normal disc-bundle to Ev over D such that
γ̂∗ = {0} ×D′. The intersection Ft ∩ π(N) consists of mv disjoint discs each centered at one of
the mv distinct points of γ̂ ∩ Ft. As δ1(t) and δ2(t) are two of these points, then they are the
centers of two of these discs, D1 and D2, respectively. As these two discs have diameters Θ(tqv),
any path from δ̂1(t) to δ̂2(t) inside Ft will have intersections with D1 and D2 of length at least
Θ(tqv). Therefore, qinn(δ̂1, δ̂2) ≤ qv, and so qinn(δ̂1, δ̂2) < qout(δ̂1, δ̂2), which contradicts the fact
that (X, 0) is LNE. This completes the proof that mv = m

�̃D(v)
.

Let us now prove part (ii). If v is a P-node, then it immediately follows from the definition
of degree that deg(v) > 1, because the cover � is ramified in a neighborhood of the polar curve.
Assume that v is not a P-node and that deg v > 1. We use again the plane curve γ = σv,D(γ∗)
introduced in the proof of part (i).

By the definition of deg(v), the curve �−1(γ) has kv irreducible components whose strict trans-
forms by πv,D are curvettes of Ev, where kv divides deg(v), and we have mv = m

�̃(v)
deg(v)/kv.

As mv = m
�̃(v)

by part (i), then deg(v) = kv, so kv > 1. Let γ̂1 and γ̂2 be two components of
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�−1(γ) whose strict transforms by πv,D are curvettes of Ev (as was the case in part (i), two such
components can always be found after replacing γ∗ by a nearby curvette if necessary), and let
us consider two real arcs δ̂1 ⊂ γ̂1 and δ̂2 ⊂ γ̂2 such that �D(δ̂1) = �D(δ̂2). By the definition of qv,
we have qinn(γ̂1, γ̂2) = qv and then qinn(δ̂1, δ̂2) = qv. As v is not a P-node, the lifted Gauss map λ
on Xπ (see [NPP20a, Definition 6.11]) is constant along Ev and we then have λ(p1) = λ(p2), see
[NPP20a, p. 19]. By [NPP20a, Lemma 9.1], this implies that qinn(δ1, δ2) < qout(δ1, δ2), therefore
(X, 0) is not LNE, contradicting the hypothesis. �
Remark 4.2. Whenever v is not a P-node, then part (i) of the lemma is an immediate consequence
of part (ii) (whose proof is more elementary and independent on the proof of part (i)). Indeed,
consider the degree deg(v) cover �v : π�,v(N (Ev))→ σ�,v(N (E

�̃(v)
)) of equation (4), and choose

coordinates of C2 so that � = (z1, z2), with h = z1 a generic linear form on (X, 0). Then �v

restricts to a degree deg(v) cover from the intersection Fv = N (Ev) ∩ {h = t} to its image �(Fv),
implying that mv = km

�̃(v)
, where the integer k divides deg(v).

As a simple consequence of Lemma 4.1(ii) we deduce the following result.

Corollary 4.3. Let (X, 0) be a LNE normal surface germ, let v be a divisorial point of
NL(X, 0), and assume that v is associated with a genus g > 0 component Ev of the exceptional
divisor of some good resolution of (X, 0). Then v is a P-node of (X, 0).

Proof. Consider again the finite cover �v : π�,v(N (Ev))→ σ�,v(N (E
�̃(v)

)) of equation (4), and
assume that v is not a P-node. Then �v is a homeomorphism by Lemma 4.1(ii), and so is
its restriction �v|N (Ev)∩Ev

: N (Ev) ∩ Ev → N (E
�̃(v)

) ∩ E
�̃(v)

. Observe that N (Ev) ∩ Ev (respec-
tively N(E

�̃(v)
) ∩ E

�̃(v)
) is the complex curve Ev (respectively, E

�̃(v)
) with a finite union of discs

removed. As E
�̃(v)

has genus zero, this implies that Ev also has genus zero. �

Example 4.4. Let us show with an example that the minimality of π is a necessary hypothesis
in Lemma 4.1. Let (X, 0) be the standard singularity A2, which is the hypersurface singularity
in (C3, 0) defined by the equation x2 + y2 + z3 = 0. A good resolution π : Xπ → X of (X, 0) can
be obtained by the method described in [Lau71, Chapter II]. It considers the generic projection
� = �D = (y, z) : (X, 0)→ (C2, 0) and, given a suitable embedded resolution σΔ : YσΔ → C2 of the
associated discriminant curve Δ: y2 + z3 = 0, gives a simple algorithm to compute a resolution
of (X, 0) as a cover of Y . In this example, Δ is a cusp and the dual graph ΓσΔ of its minimal
embedded resolution σΔ is depicted on the left of Figure 1. Its vertices are labeled as w0, w1, and
w2 in their order of appearance as exceptional divisors of point blowups in the resolution process,
the negative number attached to each vertex denotes the self-intersection of the corresponding
exceptional curve, the positive numbers in parentheses denote the multiplicities, and the arrow
denotes the strict transform of Δ. In this case, Laufer’s method gives us the dual graph of a
good resolution π� of (X, 0) such that � ◦ π� factors through σΔ, appearing as the graph in the
middle of Figure 1. Again, all exceptional components are rational, each vertex is decorated by
the self-intersection of the corresponding exceptional curve and with its multiplicity, the arrow
denotes the strict transform of Δ, and the vertices are labeled in a way that �̃(v0) = �̃(v′0) = w0,
�̃(v1) = w1, and �̃(v2) = w2. Observe that the vertex v1 has multiplicity 2, but it is sent by �̃
to the vertex w1, which has multiplicity 1. However, the rational curve Ev1 associated with the
vertex v1 has self-intersection −1 and can, thus, be contracted. The resulting map π : Xπ → X,
which no longer factors through σΔ, is the minimal resolution of (X, 0) factoring through its
Nash transform. Observe that its P-node v2 can also be contracted, yielding the minimal good
resolution of (X, 0), which in this case does not factor through the Nash transform of (X, 0).
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Figure 1. Dual resolution graphs for the plane curve Δ (left) and for the surface singularity
X = A2 (middle and right).

In the proof of Lemma 4.1, the minimality of π is only required to apply Lemma 3.1. There-
fore, this example also shows how the commutativity of the diagram of Lemma 3.1 may fail to
hold on a larger dual graph such as Γπ�

.

We can now move our focus to the morphism �̃ induced by a generic projection � : (X, 0)→
(C2, 0), and more precisely to its restriction to the dual graph Γπ of some good resolution of
(X, 0). Recall that, given a graph Γ, we denote by V (Γ) the set of its vertices. In general, even
whenever π factors through the Nash transform of (X, 0), it is not possible to find a suitable
sequence of point blowups σ : Y → C2 of (C2, 0) such that �̃ induces a morphism of graphs
�̃|Γπ → Γσ, because to make the elements of �̃(V (Γπ)) appear among the vertices of Γσ, one
usually introduces too many additional vertices, so that the image �̃(e) of some edge e of Γπ

is not an edge of Γσ, but only a string of several edges. Remarkably, thanks to Lemma 4.1(ii),
in the case of LNE surfaces we can control this phenomenon completely. Indeed, the following
proposition explains that in this case we do obtain a morphism of graphs, provided that we
restrict our attention to a subgraph of Γπ that does not contain a P-node of (X, 0) in its interior.

Proposition 4.5. Let (X, 0) be a LNE normal surface germ, let π : Xπ → X be the minimal
good resolution of (X, 0) that factors through its Nash transform, let � : (X, 0)→ (C2, 0) be a
generic projection, and let �̃ : NL(X, 0)→ NL(C2, 0) be the map induced by �. Let S be a subset
of V (Γπ) which contains all P-nodes. Let W be one of the connected components of Γπ � S,
and let Γ0 be the subgraph of Γπ whose underlying topological space is the closure of W in Γπ.
Let σΓ0 : YσΓ0

→ C2 be the minimal sequence of point blowups such that �̃(V (Γ0)) ⊂ V (ΓσΓ0
).

Then:

(i) σΓ0 : YσΓ0
→ C2 coincides with the minimal sequence of point blowups of (C2, 0) such that

�̃(V (∂W )) ⊂ V (ΓσΓ0
);

(ii) the restriction �̃|Γ0 : Γ0 → NL(C2, 0) induces an isomorphism of graphs from Γ0 onto its
image, which is the subgraph of ΓσΓ0

whose underlying topological space is the closure of

the connected component of ΓσΓ0
� �̃(∂W ) which contains �̃(W );

(iii) the isomorphism of part (ii) respects the weights of all vertices of Γ0 that are contained
in W .

Let v be a vertex of Γπ which is not a P-node, let W be the connected component
of Γπ � {P−nodes} containing v, and let Γ0 be any subgraph of Γπ contained in the clo-
sure of W and such that v ∈ V (Γ0) and all edges of Γπ at v are edges of Γ0. Then the
last part of the statement of Proposition 4.5 tells us that g(Ev) = g(E

�̃(v)
) = 0 and E2

v =
E2

�̃(v)
, where the self-intersection of Ev is computed in Xπ and that of E

�̃(v)
is computed

in YσΓ0
.
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Proof. Write ∂W = {z1, . . . , zn} ⊂ V (Γπ). Observe that, because Γ0 contains no P-node in its
interior, �̃ does not fold it, and, thus, ∂(�̃(W )) = �̃(∂W ) as subsets of V (ΓσΓ0

). If W con-
tains at least one vertex of Γ0, that is, if Γ0 has at least a vertex which is not a point of
S, denote by Γ◦

0 the maximal subgraph of Γ0 contained in W and set V (Γ◦
0) = {v1, . . . , vr},

so that V (Γ0) = {v1, . . . , vr, z1, . . . , zn}. Let U be a tubular neighborhood of the curve C =
Ev1 ∪ · · · ∪Evr in Xπ. As the incidence matrix of Γ◦

0 is negative definite, the analytic contrac-
tion η : (U, C)→ (S, p) of the curve C onto a point p defines a normal surface singularity (S, p).
Observe that, because π is the minimal resolution of (X, 0) which factors through its Nash trans-
form, the only components of π−1(0) that could be contracted while retaining smoothness of the
ambient surface are associated with P-nodes of (X, 0). As Γ◦

0 ⊂W ⊂ Γπ � S contains no P-node,
this implies that η : (U, C)→ (S, p) is the minimal good resolution of the surface germ (S, p).
On the other hand, if W contains no vertex of Γ0, then Γ0 consists of two vertices v and v′ in
S and a single edge corresponding to an intersection point p = Ev ∩ Ev′ , in which case we set
(U, C) = (S, p) = (Xπ, p) and η = IdU .

Let π̂ : Xπ̂ → X be the minimal resolution of (X, 0) that factors through its Nash transform
and such that � ◦ π̂ factors through σΓ0 via a map �̂ : Xπ̂ → YΓ0 . Then π̂ factors through π by
minimality of the latter, so that we obtain a commutative diagram as follows.

Xπ̂

π̂

		β
��

�̂
��

Xπ
π

�� X

�
��

YΓ0

σΓ0
�� C2

Set Û = β−1(U) and Ĉ = β−1(C), so that (Û , Ĉ) contracts to (S, p) via π̂ = π ◦ β. Set U ′ = �̂(Û)
and consider the curve C ′ = �̂(Ĉ) = Ew1 ∪ · · · ∪Ews ⊂ σ−1

Γ0
(0) in YΓ0 . Observe that, because

∂(�̃(W )) = �̃(∂W ) ⊂ V (ΓσΓ0
), we have {w1, . . . , ws} = �̃(W ) ∩ V (ΓσΓ0

). Moreover, because Û ∩
π̂−1(0) ⊂ Ĉ ∪ Ez1 ∪ · · · ∪Ezn and no curve among the Ezi is contracted by �̂, we deduce that
U ′ is open in YΓ0 . It follows that U ′ is a tubular neighborhood of C ′. This also shows that the
set �̃(Γ0) is the closure of the connected component of ΓσΓ0

� �̃(∂W ) which contains �̃(W ). To
establish the proposition, it is then sufficient to prove that � induces an isomorphism between
the pairs (U, C) and (U ′, C ′).

Similarly as above, the contraction of the curve C ′ in U ′ defines a normal surface singularity
(S′, p′) and an analytic map η′ : (U ′, C ′)→ (S′, p′) which is a good resolution of (S′, p′). Moreover,
the restriction �̂|U induces a finite analytic map �̌ : (S, p)→ (S′, p′). As W contains no P-node,
by Lemma 4.1 we have deg(w) = 1 for every divisorial point w of W ∩ Γ0. This implies that �̂ is
a one-sheeted analytic covering between normal complex analytic spaces, thus an isomorphism
by [Rem94, Proposition 14.7]. It follows that �̌−1 ◦ η′ is a good resolution of (S, p). Therefore, by
minimality of the resolution η, the map �̌−1 ◦ η′ factors through η via a finite sequence of point
blowups α : (U ′, C ′)→ (U, C), so that we obtain the following commutative diagram.

(Û , Ĉ)
β

��

�̂
��

(U, C)
η

�� (S, p)

(U ′, C ′)

α


�����������

η′
�� (S′, q)

�̌−1

��

639

https://doi.org/10.1112/S0010437X22007357 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007357


A. Belotto da Silva, L. Fantini and A. Pichon

It remains to show that α is an isomorphism. If this is not the case, then the excep-
tional component of the last point blowup forming α, which is contractible by definition,
is the image through �̂ of the exceptional component of one of the point blowups form-
ing β. As this contradicts the minimality condition in the definition of σΓ0 , this proves
both parts (ii) and (iii) of the proposition. Part (i) is then a consequence of the minimality
of π. �

What might prevent Proposition 4.5 from holding globally on Γπ is that, for example, there
might exist an edge e of Γπ such that �̃(e) contains in its interior one (and, for the sake of
the example, exactly one) point of the form �̃(v) for some vertex v elsewhere in Γπ. However,
whenever this happens it is always possible to refine the graph Γπ, performing a blowup of the
double point of the exceptional divisor of Xπ that corresponds to e and, thus, subdividing the
edge e by adding a new vertex w, and this vertex satisfies �̃(w) = �̃(v). Observe that, if (X, 0)
were arbitrary, this could still fail to give a morphism of graphs because the vertex associated
with the blowup would not necessarily be sent to �̃(v) by �̃. The fact that this does not occur in
the case of LNE surfaces and that, therefore, we can refine Γπ to obtain a morphism of graphs,
is the content of the following corollary.

Corollary 4.6. Let (X, 0) be a LNE normal surface germ, let π : Xπ → X be the minimal
good resolution of (X, 0) that factors through its Nash transform, let � : (X, 0)→ (C2, 0) be a
generic projection, let �̃ : NL(X, 0)→ NL(C2, 0) be the map induced by �, and let σ� : Yσ�

→ C2

be the minimal sequence of point blowups of (C2, 0) such that �̃(V (Γπ)) ⊂ V (Γσ�
). Then there

exists a good resolution π′ : Xπ′ → X of (X, 0), obtained by composing π with a finite sequence of
blowups of double points of the successive exceptional divisors, such that �̃ induces a morphism
of graphs �̃|Γπ′ : Γπ′ → Γσ�

.

Proof. If Γπ consists of a single vertex, then there is nothing to prove, so that we can assume
without loss of generality that Γπ has at least an edge. Let e be an edge of Γπ and let Γ0 be the
subgraph of Γπ that consists of e and of the two vertices v and v′ to which the latter is adjacent.
Let σΓ0 be the minimal sequence of point blowups of (C2, 0) such that �̃(v), �̃(v′) ∈ V (ΓσΓ0

). By
Proposition 4.5, �̃(e) is an edge of ΓσΓ0

, and in particular �̃ induces an isomorphism of smooth
germs α : (Xπ, Ev ∩ Ev′) ∼−→ (YσΓ0

, E
�̃(v)
∩ E

�̃(v′)). Now, σ� factors through σΓ0 by minimality
of the latter. In particular, a finite sequence of point blowups above E

�̃(v)
∩ E

�̃(v′) occur in this
factorization. By performing the same sequence of blowups on (Xπ, Ev ∩ Ev′) via the isomorphism
α, we subdivide the edge e in a chain of edges that is sent isomorphically to a subgraph of Γσ�

via �̃. Repeating this procedure for every edge e of Γπ, we obtain the resolution π′ that we were
after. �

Observe that the resulting morphism of graphs �̃|Γπ′ : Γπ′ → Γσ�
is not surjective, as is clear

from Example 4.4. This issue is discussed further in § 7.
We conclude the section by discussing a remarkable property of the Nash transforms of

LNE normal surface germs. The singularity (S, p) appearing in the course of the proof of
Proposition 4.5, being isomorphic to the singularity (S′, p′) appearing in a modification of (C2, 0),
is sandwiched, which means that it admits a proper bimeromorphic morphism to a smooth sur-
face germ. Sandwiched singularities play an important role in Spivakovsky’s proof of resolution of
singularities of surfaces via normalized Nash transforms [Spi90], because Hironaka [Hir83] proved
that it is possible to reduce any singularity to a sandwiched singularity by a finite sequence of
normalized Nash transforms. As Proposition 4.5 applies, in particular, to any connected compo-
nent of the complement in NL(X, 0) of its P-nodes, and the P-nodes are precisely the divisorial
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valuations corresponding to the exceptional components of the Nash transform of (X, 0), we
deduce the following result.

Corollary 4.7. Let (X, 0) be a LNE normal surface germ and let ν : N (X)→ X be the Nash
transform of (X, 0). Then all the singularities of N (X) are sandwiched.

5. Inner rates on LNE surface germs

In this section, we move to the study of the inner rates of LNE surface germs, whose definition was
recalled immediately before the proof of Lemma 4.1, and prove parts (iii) and (iv) of Theorem 1.1.

We begin by endowing the dual graph of a good resolution of (X, 0) with a natural metric.
Let π : Xπ → X be a good resolution of (X, 0) factoring through the blowup of its maxi-
mal ideal, and denote by |Γπ| the topological space underlying the graph Γπ. We endow |Γπ|
with the metric defined by declaring that the length of an edge connecting two vertices v
and w is equal to 1/ lcm(mv, mw), and denote by d the associated distance function. Observe
that, because the exceptional component of the blowup of an intersection point between the
two components associated with v and w has multiplicity mv + mw, and 1/ lcm(mv, mw) =
1/ lcm(mv, mv + mw) + 1/ lcm(mv + mw, mw), the metric on |Γπ| is compatible with subdivid-
ing the edges of the graph Γπ by blowing up Xπ at double points of π−1(0), and thus induces a
metric on NL(X, 0). The reader should be warned that this metric on Γπ is not the same as that
defined in [BFP22, § 2.1], albeit it is strictly related to the latter and was already briefly used in
Lemma 5.5 of [BFP22].

The following proposition is strictly stronger than part (iii) of Theorem 1.1, as it computes
inner rates on the whole NL(X, 0) rather than on a specific resolution graph.

Proposition 5.1. Let (X, 0) be a LNE normal surface germ. Then, for every divisorial point v
of NL(X, 0), the inner rate qv of v equals d(v, VL) + 1, where d(v, VL) denotes the distance of v
from the set VL of all L-nodes of (X, 0).

Proof. Let π : Xπ → X be the minimal good resolution of (X, 0) which factors through its Nash
transform and let Γπ′ be a refinement of Γπ as in Corollary 4.6. We begin by proving the
wanted equality for divisorial points contained in Γπ′ . Denote by w0 the unique L-node of (C2, 0),
that is, the divisorial point associated with the blowup of C2 at 0. For every divisorial point
w of NL(C2, 0) the inner rate of w is d(w, w0) + 1 by [BFP22, Lemma 5.5] (or, in a more
elementary way, by a simple computation using Lemma 3.6 of [BFP22]). As the inner rates
on (X, 0) and (C2, 0) commute with the map �̃ (see [BFP22, Lemma 3.2]), we need to show that
d(v, VL) = d(�̃(v), w0). We claim that, if γ is an injective path in Γπ′ connecting two divisorial
points v1 and v2, then the length of γ is greater or equal to the length of its image �̃(γ) in
NL(C2, 0), with equality holding as long as �̃ maps γ injectively onto its image. Indeed, any
edge e in γ is sent via �̃ to an edge �̃(e) of the dual graph of some sequence of point blowups
of (C2, 0) thanks to Corollary 4.6. It then follows from Lemma 4.1(i) that the edges e and �̃(e)
have the same length, which implies our claim. In particular, because VL = �̃−1(w0), we deduce
that d(v, VL) ≥ d(�̃(v), w0). To obtain the converse inequality it is sufficient to prove that there
exists a path γ from v to an element of VL where �̃ is injective. This follows from the fact that
there exists such a path along which the inner rate function is strictly decreasing (and, hence,
injective), which was proven in [BFP22, Proposition 3.9]. The fact that the equality holds on the
whole of NL(X, 0) is a consequence of [BFP22, Lemma 5.5] (which is itself based on the same
computations using Lemma 3.6 of [BFP22] that appears above). �
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Remark 5.2. Proposition 5.1 shows that the inner rate function generalizes the function s used
by Spivakovsky in [Spi90, Definition 5.1] to study minimal and sandwiched surface singularities.

To prove part (iv) of Theorem 1.1, we need to rely on a deeper result, the so-called Laplacian
formula for the inner rate function that we obtained in [BFP22] and that we now briefly recall.
To state this formula we introduce two additional vectors indexed by the vertices of the dual
graph Γπ of a good resolution π : Xπ → X of (X, 0). Let Lπ and Pπ be the L- and the P-vector
of (X, 0), respectively, as before. For every vertex v of Γπ, set kv = valΓπ(v) + 2g(v)− 2 and
av = mvqv, and consider the vectors Kπ = (kv)v∈V (Γπ) and Aπ = (av)v∈V (Γπ). Denote by IΓπ the
incidence matrix of the exceptional divisor of π. Then the following equality holds:

IΓπ ·Aπ = Kπ + Lπ − Pπ. (6)

This equality is an effective version (see [BFP22, Proposition 5.3]) of the main result of [BFP22].

Proof of part (iv) of Theorem 1.1. For every vertex v of Γπ, equation (6) yields

mvqvE
2
v +

∑
v′

mv′qv′ = valΓπ(v) + 2g(Ev)− 2 + lv − pv, (7)

where the sum runs over the vertices v′ of Γπ adjacent to v. Then the equality we are after
follows from the fact that Ev ·

∑
v′∈V (Γπ) Ev′ = E2

v + valΓπ(v), that lv = −Ev · Zmax(X, 0) by
the definition of lv, that Zmax(X, 0) = Zmin by part (ii) of the theorem, and that Ev · ZΓπ =
−E2

v + 2g(Ev)− 2 by the definition of ZΓπ . Whenever v is an L-node, we have qv = 1 and qv′ =
1 + 1/mv′ by Proposition 5.1. Therefore, the left-hand side of equation (7) becomes equal to
Ev · Zmax(X, 0) +

∑
v′ 1 = −lv + valΓπ(v), and we deduce that pv = 2(g(Ev) + lv − 1). �

6. End of the proof of Theorem 1.1

In this section, we conclude the proof of Theorem 1.1, showing parts (v) and (vi), which means
that we are interested in determining the P-nodes of the LNE surface germ (X, 0).

We begin with two definitions. Let π denote a good resolution of (X, 0) that factors through
the blowup of its maximal ideal and through its Nash transform, let v be a vertex of Γπ, and
let e = [v, v′] be an edge of Γπ adjacent to v. We say that e is incoming at v if we have qv > qv′ .
Following [Spi90, Definition 5.3], we say that it is a central node of Γπ if v has at least two
incoming edges.

Observe that the L-nodes of Γπ have no incoming edges, and that the number of incoming
edges at a vertex v does not depend on the choice of a resolution such that v is a vertex of
the associated dual graph, because the inner rates increase along any new edge introduced by
blowing up a smooth point. In the LNE case, we can prove the following more precise result,
building on the local degree formula [BFP22, Lemma 4.18].

Lemma 6.1. Let (X, 0) be a LNE normal surface germ, let π be a good resolution of (X, 0) that
factors through its Nash transform, and let v be a vertex of Γπ. Then the local degree deg(v) at
v equals lv if v is an L-node of Γπ, or the number of incoming edges of Γπ at v otherwise.

Proof. Denote by � : (X, 0)→ (C2, 0) a generic projection. Assume first that v is an L-node.
In this case, we can compute the degree directly via the definition, using a generic linear form
h : (X, 0)→ (C, 0) that factors through � (that is, such that there exists a linear projection
�h : (C2, 0)→ (C, 0) satisfying h = �h ◦ �). More precisely, let γ be the curve h−1(0) ∩X. As h
factors through �, we know that �(γ) is a line in (C2, 0). Now, lv corresponds to the number of
distinct irreducible components of the strict transform of γ by π that intersect Ev. As each of
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those components is smooth, we conclude that deg(v) = lv by the definition of degree. Assume
now that v is not an L-node. By Corollary 4.6, there exist a refinement Γπ′ of Γπ and a sequence
of point blowups σ : Y → C2 such that �̃ induces a morphism of graphs Γπ′ → Γσ. In particular,
because �̃ respects inner rates (see again [BFP22, Lemma 3.2]), all edges of Γπ′ that are incoming
at v are sent to the unique edge of Γσ that is incoming at �̃(v) (its uniqueness can for example
be seen as a consequence of Proposition 5.1). The lemma follows now by applying the formula
of [BFP22, Lemma 4.18], observing that the local degree deg(e) along every edge adjacent to v
equals 1 by Lemma 4.1(ii) and that, even if further point blowups may be needed to pass from
π′ to a resolution adapted to �, no new edge can be incoming at v. �

We can now complete the proof of our main theorem.

End of proof of Theorem 1.1. Let (X, 0) be a LNE normal surface germ, denote by π : Xπ → X
be the minimal good resolution of (X, 0), let π′ : Xπ′ → X the minimal one that factors through
the Nash transform, and let v be a vertex of Γπ′ . By combining the lemmas 4.1(ii) and 6.1, we
obtain the following:

v is a P − node of Γπ′ if and only if either lv > 1, or v is a central node of Γπ′ (∗)
which establishes part (v) of the theorem. We claim that this also implies that the P-nodes of
Γπ′ are already on the graph Γπ ⊂ Γπ′ (possibly in the interior of some edge). Indeed, if v is a
vertex of Γπ′ � Γπ, because π′ is obtained from π by a sequence of point blowups, we deduce
from Proposition 5.1 that there is only one incoming edge at v (observe that all L-nodes of (X, 0)
are contained in Γπ thanks to Proposition 2.2), so that the claim follows from (*). Therefore,
we obtain π′ by successive blowups of double points on the exceptional divisor of π. Now, let
e be an edge of Γπ. If e = [v, v′] contains no P-node, then it is also an edge of Γπ′ , and by
applying Proposition 4.5 to its closure we deduce that its image through the map induced by
a generic projection � : (X, 0)→ (C2, 0) is an edge �̃(e) = [�̃(v), �̃(v′)] of Γσ�

. Therefore we have
|q

�̃(v)
− q

�̃(v′)| = d(�̃(v), �̃(v′)), as it can, for example, be seen by Proposition 5.1, and because

the inner rate map commutes with �̃, and d(v, v′) = d(�̃(v), �̃(v′)) by Lemma 4.1(i), we deduce
that |qv − qv′ | = d(v, v′). This shows that if |qv − qv′ | < d(v, v′), then e must contain a P-node.
Conversely, if e contains a P-node w, then, as it can only contain one P-node, e is folded in
two by the projection �̃. It follows that, with respect to the distance d, the inner rate grows
linearly with slope 1 from v to w, and then decreases linearly with slope 1 from w to v′, so that
|qv − qv′ | < d(v, v′). We also deduce that d(v, v′) = d(v, w) + d(w, v′) = (qw − qv) + (qw − qv′),
and therefore qw = (d(v, v′) + qv + qv′)/2. This reasoning can be repeated after blowing up the
double point of π−1(0) corresponding to e and is, therefore, sufficient to establish part (vi) of
Theorem 1.1 and, thus, conclude its proof. �

7. Discriminant curves

In this section, we focus our attention on the discriminant curve of a generic plane projection
of a LNE normal surface germ. We describe those curves completely, proving in Theorem 7.5
a more precise version of Theorem 1.2 from the introduction. To do so, we need to pursue in
greater depth the study of the properties of the map �̃ already undertaken in § 4.

Let (X, 0) be a LNE normal surface singularity, let π : Xπ → X be the minimal good
resolution of (X, 0) which factors through its Nash transform, let � : (X, 0)→ (C2, 0) be a
generic projection, let �̃ : NL(X, 0)→ NL(C2, 0) be the induced morphism, and, as in § 4, let
σ� : Yσ�

→ C2 be the minimal sequence of point blowups of (C2, 0) such that �̃(V (Γπ)) ⊂ V (Γσ�
).
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We call a Δ-node of Γσ�
any vertex v which is the image by �̃ of a P-node of Γπ, and we call

a root vertex of Γσ�
the image by �̃ of the L-nodes of Γπ. Observe that the root vertex of Γσ�

is the divisorial point associated with the exceptional divisor of blowup of C2 at 0, which can
also be seen as the unique L-node of (C2, 0). Moreover, a vertex v of Γσ�

is a Δ-node if and
only if the associated exceptional component Ev ⊂ Yσ�

intersects the strict transform Δ∗ of the
discriminant curve Δ of � via σ�.

The following proposition explains that for LNE surfaces the morphism σ� coincides with
the minimal good embedded resolution of the discriminant curve Δ.

Proposition 7.1. Let (X, 0) be a LNE normal surface germ, let � : (X, 0)→ (C2, 0) be a generic
projection of (X, 0), and let π : Xπ → X be the minimal good resolution of (X, 0) that factors
through its Nash transform. Consider the three finite sequences of point blowups of (C2, 0)
defined as follows:

(i) σΔ : YσΔ → C2 is the minimal good embedded resolution of the discriminant curve Δ
associated with �;

(ii) σΩ : Yσ → C2 is the minimal sequence which resolves the base points of the family of
projected generic polar curves {�(ΠD)}D∈Ω;

(iii) σ� : Yσ�
→ C2 is the minimal sequence such that V (Γσ�

) contains �̃(V (Γπ)).

Then σΔ, σΩ, and σ� coincide.

Proof. Let us assume for now that the graph Γπ does not consist of a single vertex. We
begin by showing that σ� and σΩ coincide. Denote by S the set of P-nodes of Γπ and by
W1, . . . , Wr the connected components of Γπ � S. For each i = 1, . . . , r, following the nota-
tion of Proposition 4.5, let Γ0,i be the subgraph of Γπ induced on the topological closure of
Wi in Γπ, and let σΓ0,i : YσΓ0,i

→ C2 be the minimal sequence of point blowups (C2, 0) such

that �̃(V (Γ0,i)) ⊂ V (ΓσΓ0,i
). As V (Γπ) =

⋃
i V (Γ0,i), it follows that σ� is the minimal sequence

of point blowups of (C2, 0) that factors through all the maps σΓ0,i . On the other hand, by
Proposition 4.5(i), σΓ0,i coincides with the minimal sequence σΩ,i of point blowups of (C2, 0)
such that �̃(V (∂Wi)) ⊂ V (ΓσΓ0,i

). As
⋃

i ∂Wi = S, this implies that σ� is the minimal sequence

of blowups of C2 over 0 such that V (Γσ�
) contains the set �̃(S) of the Δ-nodes, which is, by

definition, σΩ.
Let us now prove that σΩ factors through σΔ by showing that it is a good embedded resolution

of the curve Δ. Assume, by contradiction, that this is not the case, so that there exist a Δ-node w
and a component Δ0 of Δ whose strict transform by σΩ, while intersecting Ew at a smooth point
p of an exceptional component Ew, is not a curvette of Ew. This implies that the multiplicity
of Δ0 is strictly greater than mw. Let Π0 be the component of the polar curve Π of � such that
Δ0 = �(Π0). As π is minimal, the strict transform of Π0 by π is a curvette on an exceptional
component Ev such that �̃(v) = w, so that the multiplicity of Π0 equals mv. As �̃(v) = w, by
Lemma 4.1(ii) we have mv = mw and, therefore, mult(Δ0) > mult(Π0). However, the restriction
�|Π0 : Π0 → Δ0 is a bi-Lipschitz homeomorphism with respect to the outer metric by [Tei82,
pp. 352–354], so that, in particular, we have mult(Δ0) = mult(Π0), yielding a contradiction.
This proves that σΩ is a good embedded resolution of Δ.

It is now sufficient to show that σΔ also resolves the base points of the family {�(ΠD)}D∈Ω,
so that it factors through σΩ. Assume, by contradiction, that this is not the case, so that there
exists a component Δ0 of Δ whose strict transform by σΔ meets the exceptional divisor σ−1

Δ (0)
at a (smooth) point p which is a base point of the family {�(ΠD)}D∈Ω. Let w be the vertex of
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ΓσΩ such that Ew is the irreducible component of σ−1
Ω (0) that contains p. The base point p is

resolved by a sequence of point blowups δ which creates a bamboo (that is, a chain of two-valent
vertices ending with a univalent vertex) B living inside ΓσΩ � ΓσΔ , stemming from the vertex w
and having the corresponding Δ-node w′ at its extremity. As σΩ is a resolution of Δ, we can
construct a resolution of (X, 0) by performing the Hirzebruch–Jung resolution process starting
from the morphisms � and σΩ. For this, we begin by taking the strict transform of (X, 0) by the
fiber product of � and σΩ and normalize it. As � is a cover which ramifies over the discriminant
curve Δ, we obtain a normal surface Z and a finite cover �′ : Z → YσΩ which ramifies over the
total transform σ−1

Ω (Δ) of the discriminant curve Δ. Resolving the singularities of Z, we obtain a
resolution π′ : Xπ′ → X of (X, 0) which we can describe as follows. As ΓσΩ contains all Δ-nodes,
then Γπ′ contains all P-nodes of (X, 0) and, therefore, π′ factors through π. As by the previous
part σΩ factors through σΔ, the total transform σ−1

Ω (Δ) has normal crossings in YσΩ . Moreover,
each singularity of Z is branched over a double point of σ−1

Ω (Δ) and has a resolution whose
exceptional divisor is a string of rational curves, and the strict transform of the branching locus
consists of two curvettes, one at each extremity of the string. This implies that the bamboo
B lifts via �̃ to a bamboo B′ in the resolution graph Γπ′ with a P-node at its extremity. This
gives a P-node with a unique inward edge in Γπ′ and, therefore, a unique inward edge in Γπ,
contradicting the statement (*).

In the special case where Γπ consists of a single vertex, then the morphisms σΔ, σΩ, and σ�

all coincide with a single blowup of C2 along its origin. To see this, the only part which is not
immediate is the factorization of σΩ through σΔ, but the argument given above remains valid in
this special case and, thus, the proof of the proposition is complete. �

Recall that, as shown by Example 4.4, the map �̃ : Γπ → Γσ�
may fail to be surjective. As a

first step to better understand the situation, the following proposition, which refines the tech-
niques we employed in the course of the proof of Lemma 4.1, allows us to describe �̃ more
explicitly.

Lemma 7.2. Let (X, 0) be a LNE normal surface germ, let � : (X, 0)→ (C2, 0) be a generic
projection, let π : Xπ → X be the minimal good resolution of (X, 0) which factors through its
Nash transform, and let v and v′ be two divisorial points of Γπ ⊂ NL(X, 0). Then �̃(v) = �̃(v′) if
and only if the two following conditions are satisfied:

(i) qv = qv′ ;
(ii) there exists a path τ in Γπ between v and v′ such that the inner rate of any point in τ is

greater than or equal to qv.

Proof. Let us begin by proving the ‘only if’ part of the statement. Assume that �̃(v) = �̃(v′).
Then qv = qv′ because both inner rates are equal to q

�̃(v)
by [BFP22, Lemma 3.2]. Assume, by

contradiction, that the condition (ii) is not satisfied, and let γ be a curve in (C2, 0) which is the
image through σ� of a curvette of E

�̃(v)
. Let γ̂ (respectively, γ̂′) be a component of �−1(γ) which

is the image of a curvette of Ev (respectively, Ev′) via a suitable resolution factoring through π.
As Γπ is path connected but part (ii) is not satisfied, then the inner contact qinn(γ̂, γ̂′) between
γ̂ and γ̂′ is strictly smaller than qv by [NPP20a, Proposition 15.3]. On the other hand, by taking
a different generic projection �D′ which is also generic with respect to γ̂ ∪ γ̂′, and observing (in a
similar way as in the proof of Lemma 4.1) that �D′ induces a bi-Lipschitz homeomorphism for the
outer metric from γ̂ ∪ γ̂′ onto its image by [Tei82, pp. 352–354], we deduce that the outer contact
qout(γ̂, γ̂′) between γ̂ and γ̂′ equals qout(�D′(γ̂), �D′(γ̂′)) = qinn(�D′(γ̂), �D′(γ̂′)). By Lemma 3.1 we
have �̃D′(v) = �̃D′(v′) and, thus, the curves �D′(γ̂) and �D′(γ̂′) lift to the same divisor E

�̃D′ (v)
.
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Therefore, their inner contact is bigger than or equal to q
�̃D′ (v)

= qv, which contradicts the fact
that (X, 0) is LNE.

To prove the converse implication, observe that if w and w′ are two points of NL(C2, 0),
then there exists a unique injective path τw,w′ between w and w′ in NL(C2, 0), because the
latter is a connected infinite tree. Moreover, for each point w′′ in the interior of τw,w′ we have
qw′′ < max{qw, qw′} (for example, this can be derived from Proposition 5.1). Now assume that v
and v′ are two points of Γπ that satisfy the conditions (i) and (ii) and let τ be any path in Γπ

between v and v′. By continuity of the projection, �̃(τ) must contain τ
�̃(v),�̃(v′), and the latter has

nonempty interior as soon as �̃(v) �= �̃(v′), therefore we deduce that when this is the case then τ
contains a point v′′ mapping to the interior of τ

�̃(v),�̃(v′), so that qv′′ = q
�̃(v′′) < q

�̃(v)
= qv. As this

would contradict condition (ii), we must have �̃(v) = �̃(v′). �
To make good use of this result we need to introduce some additional notation. We denote

by VN (Γπ) the set of nodes of Γπ, that is, the subset of V (Γπ) consisting of the P-nodes, the
L-nodes, and of all the vertices that have valency at least three in Γπ (that is, those with at least
three adjacent edges). Similarly, we call node of Γσ�

a vertex which is either the root vertex, a
Δ-node, or a vertex of valency at least three in Γσ�

, and we denote by VN (Γσ�
) the set of nodes

of Γσ�
.

Let Γ be either of the two graphs Γπ or Γσ�
. We call principal part of Γ the subgraph Γ′ of

Γ generated by the set VN (Γ) of nodes of Γ, that is, the subgraph defined as the union of all
injective paths connecting pairs of points of VN (Γ). The closure of each component of Γ � Γ′ is
a bamboo (that is, a chain of valency 2 vertices ending with a valency 1 vertex) stemming from
a node of Γ.

Lemma 7.2 prompts us to consider an equivalence relation ∼ on the graph Γ′
π defined by

declaring that two vertices v and v′ of Γ′
π are equivalent if the two conditions (i) and (ii)

of the lemma hold, and two edges e = [v1, v2] and e′ = [v′1, v′2] are equivalent if and only if
v1 ∼ v′1 and v2 ∼ v′2. The following proposition relates the nodes of Γπ to those of Γσ�

and
explains how the equivalence relation ∼ allows to retrieve the principal part Γ′

σ�
of Γσ�

from that
of Γπ.

Proposition 7.3. Let (X, 0), π, �, and σ� be as above. Then we have:

(i) �̃(VN (Γπ)) = VN (Γσ�
);

(ii) the map �̃|Γ′
π
: Γ′

π → Γ′
σ�

identifies the graph Γ′
σ�

with the quotient graph Γ′
π/∼.

Proof. Observe that Γσ�
and ΓσΔ coincide thanks to Proposition 7.1, and the latter, being the

minimal embedded resolution graph of the plane curve Δ, has a very simple shape (see, for
example, [BK86]). In particular, we deduce that the principal part Γ′

σ�
of Γσ�

coincides with the
union of the injective paths connecting the root vertex of Γσ�

to one of its Δ-nodes. It follows
that the image �̃(Γπ) of Γπ via �̃ contains Γ′

σ�
. Indeed, any injective path from an L-node to

a P-node v in Γπ is sent by �̃ to the unique injective path in Γσ�
from the root vertex to the

Δ-node �̃(v). Moreover, any vertex of Γσ�
contained in �̃(Γπ) is the image of a vertex of Γπ, as

follows readily from Proposition 4.5. From the particular shape of Γσ�
we also deduce that, if w

is a vertex of Γσ�
, then at most one of the edges of Γσ�

that are outgoing (that is, not incoming
in the sense of § 6) at w may fail to be contained in the principal part Γ′

σ�
.

By definition, a vertex w of Γσ�
is the root vertex (respectively, a Δ-node) of Γσ�

if and
only if �̃−1(w) contains an L-node (respectively a P-node) of (X, 0). To prove part (i) of the
proposition it is then sufficient to establish the following claim: a vertex w of Γσ�

that is not
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the root vertex nor a Δ-node has valency at least three if and only if �̃−1(w) contains at least a
vertex of valency at least three in Γπ.

The ‘if’ part of the claim can be easily obtained by taking a vertex v in �̃−1(w) having valency
at least three and applying Proposition 4.5 to the subgraph of Γπ consisting of the topological
closure of v and its adjacent edges.

Let us prove the ‘only if’ part of the claim. We begin by showing that all edges of Γσ�
that

are outgoing at w belong to �̃(Γπ). Assume, by contradiction, that this is not the case, and
let e be such an edge that is not contained in �̃(Γπ). In particular, e is not contained in Γ′

σ�

either, and recalling that σ� coincides with the minimal resolution of the plane curve Δ, we
deduce that the connected component of σ� � {w} containing e is a bamboo which cannot be
contracted. Therefore, in the notation of Proposition 4.5, if Γ0 is the graph induced on the closure
of any connected component of Γπ � {P−nodes} which intersects �̃−1(w) nontrivially, then e is
contained in the dual graph ΓσΓ0

. As w is not a Δ-node of Γσ�
, we deduce from Proposition 4.5

that e is contained in �̃(Γπ). To conclude the proof of the claim we make use of Lemma 7.2. Let e
and e′ be two distinct outgoing edges of Γσ�

at w. If there exists a vertex v of Γπ such that e and
e′ are both images of edges of Γπ adjacent to v, then v has valency at least three in Γπ, because
not being an L-node it must also have an incoming edge and, therefore, there is nothing else
to prove. We can, thus, assume without loss of generality that there exist two distinct vertices
v and v′ of Γπ such that �̃(v) = �̃(v′) = w and two edges, ẽ adjacent to v and ẽ′ adjacent to
v′, whose images contain e and e′, respectively. As �̃(v) = �̃(v′), it follows from Lemma 7.2 that
there exists an injective path τ from v to v′ passing through outgoing edges only. However, τ
cannot leave v from ẽ and reach v′ through ẽ′, as if that were the case then τ would become a
loop in Γσ�

, which is a tree. This imply that at least one among the vertices v and v′ must have
a second outgoing edge, and must therefore be trivalent. This concludes the proof of the claim,
and therefore of part (i) of the proposition.

To conclude the proof, observe that part (i) implies that �̃ restricts to a surjective map
�̃|Γ′

π
: Γ′

π → Γ′
σ�

between the principal parts of Γπ and Γσ�
. Lemma 7.2 then shows that setwise

the map �̃ identifies Γ′
σ�

with the quotient Γ′
π/∼. The fact that it gives an isomorphism of graphs

follows then from the fact that, as we already observed, any vertex of Γσ�
contained in �̃(Γπ) is

the image of a vertex of Γπ, and so �̃(V (Γ′
π)) = V (Γ′

σ�
). �

Remarks 7.4. (i) Observe that Lemma 7.2 fails outside of the dual graph of the minimal reso-
lution π. Indeed, it is sufficient to compose π with two point blowups, choosing as center two
distinct points of the same component of the exceptional divisor of π which are identified by a
suitable lifting of �, to obtain two divisorial points v and v′ such that �̃(v) = �̃(v′) and for which
condition (ii) does not hold.

(ii) If w is the root vertex of Γσ�
, then �̃−1(w) is exactly the set of L-nodes of (X, 0), so

that �̃−1(w) ⊂ VN (Γπ). However, if w is a Δ-node of Γσ�
, not all vertices in �̃−1(w) need to be

P-nodes of (X, 0) (nor, more generally, nodes of Γπ), as [NPP20b, Example 3.13] shows. If w is
a node of Γσ�

which is not a Δ-node and which has valency at least three in Γσ�
, we do not know

whether �̃−1(w) may contain vertices having valency less than three in Γπ.
(iii) In the course of the proof of Proposition 7.3, we have shown that Γσ�

� �̃(Γπ) consists of
bamboos stemming from Δ-nodes. Moreover, over a bamboo of Γσ�

stemming from a vertex w
which is not a Δ-node, there is a copy of same bamboo stemming from any vertex v of Γπ such
that �̃(v) = w. It then follows from Lemma 7.2 that there can only be one vertex v of Γπ which
is sent to such a vertex w by �̃.
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We have now collected all the results we need to move to the study of the embedded topo-
logical type of the discriminant curve (Δ, 0) ⊂ (C2, 0). Fix once and for all a set of coordinates
(x1, x2) on (C2, 0) such that x1 = 0 is transverse to Δ. The topological type we are interested in
is then completely determined by the characteristic exponents of the Newton–Puiseux expansion
with respect to x1 of each branch of Δ and by the coincident exponents between each pair of
branches. This data is encoded by another combinatorial object, the so-called Eggers–Wall tree
Θ(Δ) = Θx1(Δ) of Δ. We refer the reader to [GGP19, § 3] for a thorough introduction to this
object, and in particular to Definition 3.8 and Remark 3.14 of [GGP19] for a formal definition
starting from Newton–Puiseux expansions and an interesting historical remark. From our point
of view, it is more convenient to describe the Eggers–Wall tree Θ(C) of a plane curve germ
(C, 0) ⊂ (C2, 0) starting from the dual graph of a good embedded resolution of Δ and from the
invariants we already consider, namely multiplicities and inner rates. This follows the philosophy
of § 8 of [GGP19], where an embedding of Θ(C) in a valuation space homeomorphic to NL(C2, 0)
is described (see, in particular, Theorem 8.19 there). The procedure is as follows.

Algorithm A. Denote by σC : YσC → C2 the minimal good embedded resolution of the
curve C. The set of nodes VN (ΓσC ) of the dual graph ΓσC of σC is, by definition, the set consist-
ing of its root, its C-nodes, which are the vertices corresponding to the components of σC

−1(0)
intersecting the strict transform of C, and its vertices of valency at least three. The Eggers–Wall
tree Θ(C) is obtained from the set of nodes VN (ΓσC ) of the tree ΓσC , from its principal part
Γ′

σC
, and from the multiplicities and the inner rates of the vertices of Γ′

σC
, as follows.

(i) From Γ′
σC

, attach one extra edge to the root and one to each C-node w for every branch of
C passing through Ew.

(ii) Decorate each node w ∈ VN (ΓσC ) (this includes vertices that have valency larger than three
in ΓσC but less than three in Γ′

σC
) with the rational number eC(w) = qw.

(iii) If e = [w, w′] is an edge of Γ′
σC

, decorate it with the integer i(e) = lcm(mw, mw′).
(iv) If e is one of the new edges of Θ(C) adjacent to a vertex w, decorate it with the integer

i(e) = mw.

The rational numbers eC(w) on the nodes w on the path connecting the root to a C-node w′

are then precisely the characteristic exponents of any branch of C passing through Ew, whereas
the coincident exponent between two branches can be computed from the functions eC and iC ,
as explained in [GGP19, Theorem 3.25].

To describe the embedded topological type of the discriminant curve Δ, it remains to show
how to combine results we proved in §§ 4, 6, and 7 to determine the input of Algorithm A from
the minimal good resolution of (X, 0). This can be done as follows.

Algorithm B. Denote by π0 : Xπ0 → X the minimal good resolution of (X, 0).

(i) The multiplicities and the inner rates of the vertices of Γπ0 are uniquely determined by
parts (ii) and (iii) of Theorem 1.1.

(ii) The minimal resolution π : Xπ → X of (X, 0) factoring through its Nash transform, dec-
orated with its multiplicities and inner rates, is obtained from π0 applying the algorithm
of part (vi) of Theorem 1.1. This also determines the set of nodes VN (Γπ) of Γπ and its
principal part Γ′

π.
(iii) Recall that we have σ� = σΔ by Proposition 7.1. Therefore, by Proposition 7.3 we obtain

the principal part Γ′
σΔ

of ΓσΔ and the subset VN (ΓσC ) consisting of the nodes of ΓσΔ .
(iv) The multiplicities of the vertices of Γ′

σΔ
are determined by those of the vertices of Γπ thanks

to Lemma 4.1(i).
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(v) The inner rates of the vertices of Γ′
σΔ

are determined by those of the vertices of Γπ because
inner rates commute with �̃ thanks to [BFP22, Lemma 3.2].

We have proven the following result, which is a more precise version of Theorem 1.2 from
the introduction.

Theorem 7.5. Let (X, 0) be a LNE normal surface germ and let � : (X, 0)→ (C2, 0) be a generic
projection. Then the embedded topology of the discriminant curve Δ of � is completely deter-
mined by the topology of (X, 0). More precisely, the Eggers–Wall tree of Δ can obtained by
applying Algorithm B followed by Algorithm A to the dual graph of the minimal resolution of
(X, 0).

Appendix A. Generic polar curves and Nash transform

In this appendix we give a comprehensive proof of a result stated in the introduction.

Proposition A.1. Let (X, 0) be a normal surface singularity, let π : Xπ → X be a good reso-
lution of (X, 0), and let h : (X, 0)→ (C, 0) and � : (X, 0)→ (C2, 0) be a generic linear form and
a generic plane projection of (X, 0), respectively.

(i) If π factors through the blowup of the maximal ideal of (X, 0), then the strict transform via
π of the hyperplane section h−1(0) associated with h consists of smooth curves intersecting
the exceptional divisor π−1(0) transversely at smooth points.

(ii) If π factors through the Nash transform of (X, 0), then the strict transform via π of the
polar curve of � consists of smooth curves intersecting π−1(0) transversely at smooth points.

Observe that, in the statement, by the word generic we also mean generic with respect to
π, which means that the strict transforms by π of the associated linear form and polar curve
intersect π−1(0) only at L- and P-nodes, respectively, rather than moving to other components
created by additional blowups (this is a standard condition; see, for example, [BFP22, 2.2]). We
note that this result seems to be accepted by the experts working in the field (see, for instance,
the discussion of [Bon05, Section 2] regarding the first part of the proposition), but we have not
been able to locate a proof of it in the literature and therefore we provide one here.

Proof. Let us prove a more general version of part (i). Denote by M the maximal ideal of
(X, 0) and let I be a M-primary ideal (that is, I contains a power of M). Choose a system of
generators (f1, . . . , fk) of I, consider the blowup BlI(X) : XI → X of I, which is defined as the
closure in X × Pk−1 of the set {(x, [f1(x) : . . . : fk(x)]) |x ∈ X � V (I)}, and let nI : (XI , EI)→
(XI , EI) be its normalization. Denote by p2 : EI → Pk−1 the projection on the second factor. By
Bertini’s theorem, a generic hyperplane H : a1z1 + . . . + akzk = 0 of Pk−1 intersects the complex
curve p2(EI) transversely at smooth points. Therefore, the multigerm (p2 ◦ nI)−1(H) consists
of disjoint smooth curves intersecting transversely EI at a finite numbers of smooth points. On
the other hand, (p2 ◦ nI)−1(H) is exactly the strict transform of V (h) by BlI(X) ◦ nI , where h
is the element of I defined by h = a1f1 + · · ·+ akfk. Applying this to I = M, because π factors
through the normalized blowup of the maximal ideal, we obtain part (i) of the proposition.

Let us now prove part (ii). Recall that the Nash transform ν : N (X)→ X of (X, 0) is the
projection on the first factor of the closure of {(x, TxX) | x ∈ X � {0}} in X ×Gr(2, Ck). Set
ν = ν ◦ n where n : N (X)→ N (X) is the normalization of N (X). The Gauss map X � {0} →
Gr(2, Ck) which sends x to TxX lifts to a well-defined map λ : N (X)→ Gr(2, Ck). To complete
the proof of the proposition it is now sufficient to show that the strict transform by ν of a generic
polar curve of (X, 0) intersects transversely the exceptional divisor E = ν−1(0) at smooth points.
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The proof is similar in spirit to the proof of (i), but relies on a construction from [BNP14,
p. 210]. Let Ω be a dense open subset of Gr(k − 2, Ck) parametrizing generic plane projections
of (X, 0), let D be an element of Ω, and let �D : (X, 0)→ (C2, 0) be the generic plane projection
of (X, 0) associated with D. Assume first that k = 3 and denote by LD the projective line in
Gr(2, C3) ∼= P2 consisting of the 2-planes of C3 which contain the line D. By Bertini’s theorem,
LD intersects the complex curve λ(E) transversely at smooth points. Therefore, the multigerm
(λ)−1(LD) consists of disjoint smooth curves intersecting transversely E at a finite numbers of
smooth points. As ΠD � {0} is the set of critical points of the restriction �D : (X, 0)→ (C2, 0) of
the linear projection Ck → C2 with kernel D to (X, 0), then the strict transform Π∗

D by ν is the
multigerm defined by Π∗

D = λ
−1(LD). This proves part (ii) when k = 3.

Assume now that k ≥ 3 and let us choose a (k − 3)-dimensional subspace W ⊂ Ck transverse
to the 2-planes which belong to the finite set B = λ(A) where A = Π∗

D ∩ E. Let Gr(2, Ck; W )
denote the set of 2-planes in Ck transverse to W , so that the projection p : Ck → Ck/W induces
a map p′ : Gr(2, Ck; W )→ Gr(2, Ck/W ) ∼= P 2C. Observe that Gr(2, Ck; W ) is a Zariski open
subset of Gr(2, Ck) containing B, therefore on a small neighborhood of A in N (X) we can define
the map λ′ = p′ ◦ λ. We now follow the lines of the argument in the case k = 3 but using λ′ instead
of λ. Let LD be the projective line in Gr(2, Ck/W ) ∼= P 2C image by p′ of the set of 2-planes that
intersect D non-trivially. By genericity of D and by Bertini’s theorem, LD intersects the complex
curve λ(E) transversely at smooth points. Therefore, the multigerm Π∗

D = (λ′)−1(LD) consists
of disjoint smooth curves intersecting transversely E at smooth points. �

Appendix B. A new example of a LNE normal surface singularity

The aim of this appendix is to prove the following result.

Proposition B.1. The hypersurface singularity (X, 0) ⊂ (C3, 0) defined by the equation x5 +
y5 + z5 + xyz = 0 is LNE.

This is a cusp singularity (see [Lau77]). The blowup of (X, 0) at 0 has as exceptional divisor a
loop formed by three rational curves, and three singular points (all being A1 singularities) where
two of those intersect. The minimal resolution π : Xπ → X is then obtained by composing this
blowup with the blowups of those three singular points. The dual graph Γπ of π is shown in Figure
B.1, where the negative numbers denote the self-intersections of the corresponding components.
The vertices v1, v2, and v3 are the L-nodes of Γπ and carry one arrow each, representing a
component of the strict transform to Xπ of a generic linear form h : (X, 0)→ (C2, 0).

Therefore, (X, 0) gives an example of a LNE normal surface singularity which was not
previously known. Indeed, the examples of LNE surface germs already known are either min-
imal surface singularities [NPP20b] or superisolated surface singularities with LNE tangent

Figure B.1. The dual graph Γπ of π.
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cone [MP21]. The cusp singularity (X, 0) : x5 + y5 + z5 + xyz = 0 is not minimal, because it
is not rational (its resolution graph is not a tree), nor superisolated, because it is not resolved
by the blowup of its maximal ideal.

Proof. A generic polar curve Π of (X, 0) has equation g(x, y, z) = 0, where g is a generic linear
combination αfx + βfy + γfz of the three partial derivatives fx = 5x4 + yz, fy = 5y4 + xz and
fz = 5z4 + xy of f . A direct computation in the charts of the point blowups forming π shows that
the family of generic polar curves has no base points on Xπ, that is, π factors through the Nash
transform of (X, 0), and that the P-nodes of (X, 0) are the three vertices w1, w2, and w3, with
pwi = 2. Observe that it is easy to see from the defining equation that the projectivized tangent
cone of (X, 0) consists of three distinct projective lines Cv1 , Cv2 , and Cv3 , each one corresponding
to one of the three L-nodes of (X, 0). The Gauss map λ : Xπ → Gr(2, C3) induces a natural map
λ̃ : Γπ → Gr(2, C3) which is constant on each connected component of Γπ � {P − nodes}, sending
any point of the connecting component containing the L-node vi to the projective line Cvi . Then
the fact that (X, 0) is LNE is a direct consequence of [MP21, Lemma 5.2] and the test curve
criterion [NPP20a, Theorem 3.8], repeating the arguments of [MP21, § 5]. �
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Mathématiques et de leurs Interactions of the Centre National de la Recherche Scientifique. The
second author has also been supported by a Research Fellowship of the Alexander von Humboldt
Foundation.

References

Art66 M. Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129–136.
BFP22 A. Belotto da Silva, L. Fantini and A. Pichon, Inner geometry of complex surfaces: a valuative

approach, Geom. Topol. 26 (2022), 163–219.
BM18 L. Birbrair and R. Mendes, Arc criterion of normal embedding, in Singularities and foliations.

Geometry, topology and applications, Springer Proceedings in Mathematics and Statistics,
vol. 222 (Springer, Cham, 2018), 549–553.

BNP14 L. Birbrair, W. D. Neumann and A. Pichon, The thick-thin decomposition and the Bilipschitz
classification of normal surface singularities, Acta Math. 212 (2014), 199–256.

Bon03 R. Bondil, Discriminant of a generic projection of a minimal normal surface singularity, C. R.
Math. Acad. Sci. Paris 337 (2003), 195–200.

Bon05 R. Bondil, General elements of an m-primary ideal on a normal surface singularity, in Sin-
gularités Franco-Japonaises, Séminaires & Congrès, vol. 10 (Société Mathématique de France,
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Lê00 D. T. Lê, Geometry of complex surface singularities, in Singularities—Sapporo 1998, Advanced

Studies in Pure Mathematics, vol. 29 (Kinokuniya, Tokyo, 2000), 163–180.
MP21 F. Misev and A. Pichon, Lipschitz normal embedding among superisolated singularities, Int.

Math. Res. Not. IMRN 2021 (2021), 13546–13569.
Mos85 T. Mostowski, Lipschitz equisingularity, Dissertationes Math. (Rozprawy Mat.) 243

(1985), 46.
Mos88 T. Mostowski, Tangent cones and Lipschitz stratifications, in Singularities (Warsaw, 1985),

Banach Center Publications, vol. 20 (PWN, Warsaw, 1988), 303–322.
Mum61 D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for

simplicity, Publ. Math. Inst. Hautes Études Sci. 9 (1961), 5–22.
Ném99 A. Némethi, Five lectures on normal surface singularities, in Low dimensional topology (Eger,

1996/Budapest, 1998), Bolyai Society Mathematical Studies, vol. 8 (János Bolyai Mathematical
Society, Budapest, 1999), 269–351, with the assistance of Ágnes Szilárd and Sándor Kovács.
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Par88 A. Parusiński, Lipschitz properties of semi-analytic sets, Ann. Inst. Fourier (Grenoble) 38
(1988), 189–213.
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