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Breaking waves generate a distribution of bubble sizes that evolves over time. Knowledge
of how this distribution evolves is of practical importance for maritime and climate
studies. The analytical framework developed in Part 1 (Chan, Johnson & Moin,
J. Fluid Mech., vol. 912, 2021, A42) examined how this evolution is governed by
the bubble-mass flux from large- to small-bubble sizes which depends on the rate of
break-up events and the distribution of child bubble sizes. These statistics are measured
in Part 2 as ensemble-averaged functions of time by simulating ensembles of breaking
waves, and identifying and tracking individual bubbles and their break-up events. The
large-scale break-up dynamics is seen to be statistically unsteady, and two intervals
with distinct characteristics were identified. In the first interval, the dissipation rate and
bubble-mass flux are quasi-steady, and the theoretical analysis of Part 1 is supported
by all observed statistics, including the expected −10/3 power-law exponent for the
super-Hinze-scale size distribution. Strong locality is observed in the corresponding
bubble-mass flux, supporting the presence of a super-Hinze-scale break-up cascade. In the
second interval, the dissipation rate decays, and the bubble-mass flux increases as small-
and intermediate-sized bubbles become more populous. This flux remains strongly local
with cascade-like behaviour, but the dominant power-law exponent for the size distribution
increases to −8/3 as small bubbles are also depleted more quickly. This suggests the
emergence of different physical mechanisms during different phases of the breaking-wave
evolution, although size-local break-up remains a dominant theme. Parts 1 and 2 present
an analytical toolkit for population balance analysis in two-phase flows.
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1. Introduction

Breaking waves in oceans generate bubbles of a wide range of sizes (Blanchard &
Woodcock 1957; Medwin 1970; Johnson & Cooke 1979; Trevorrow, Vagle & Farmer 1994;
Melville 1996; Deane 1997; Vagle & Farmer 1998; Deane & Stokes 2002; and others).
A key driver in establishing this wide range of bubble sizes is the turbulence that emerges
as these waves break (Kanwisher 1963; Kitaigorodskii et al. 1983; Rapp & Melville 1990;
Agrawal et al. 1992; Melville 1994, 1996; Terray et al. 1996; Gemmrich & Farmer 2004;
Drazen, Melville & Lenain 2008; Deane, Stokes & Callaghan 2016a,b; Mortazavi et al.
2016; and others). A travelling water wave carries gravitational potential energy from the
variation of its surface height, as well as kinetic energy in the coherent motion of the
water beneath its surface. As these waves break, a significant proportion of these potential
and kinetic energies is either expended in entraining air beneath the surface or converted
to turbulent kinetic energy. This turbulent kinetic energy is then cascaded from large to
small scales, establishing a wide range of characteristic scales of turbulent motion before
being dissipated as thermal energy (Richardson 1922; Kolmogorov 1941; Onsager 1945).
The resulting turbulence breaks up sufficiently large entrained air cavities into bubbles
of various sizes (Kolmogorov 1949; Hinze 1955). The smaller the size of the bubbles
produced by these break-up events, the slower their rise velocity and the longer their
residence time in the ocean (Garrettson 1973; Thorpe 1982, 1992; Trevorrow et al. 1994).
As they rise towards the ocean surface, these bubbles are known to scavenge surfactants
and other microparticles. This delays their coalescence with the atmosphere and with one
another, and stabilizes them for a longer period of time in the ocean (Fox & Herzfeld
1954; Turner 1961; Blanchard & Syzdek 1970; Johnson & Cooke 1980; Weber, Blanchard
& Syzdek 1983; Johnson & Wangersky 1987; Stefan & Szeri 1999; Takagi & Matsumoto
2011; Czerski 2017; and references therein). Some of these bubbles eventually burst at the
surface to form film and jet drops (Blanchard & Woodcock 1957; Thorpe 1992; Deane
& Stokes 2002; Veron 2015; and references therein). On the whole, then, these bubbles
impart an enduring influence on various physical phenomena.

Knowledge of the distribution of bubble sizes informs the total interfacial area, as well
as size-dependent effects. These are important for quantifying bubble- and drop-mediated
mass, momentum and energy transport near the wave surface (Kanwisher 1963; Atkinson
1973; Thorpe 1982, 1992, 1995; Woolf 1993; Melville 1996; Wanninkhof et al. 2009;
Emerson & Bushinsky 2016; and references therein), the reflection and scattering of solar
and other electromagnetic radiation by the water-wave surface and surrounding air–water
interfaces (Stramski 1994; Zhang, Lewis & Johnson 1998; Stefan & Szeri 1999; Terrill,
Melville & Stramski 2001; Reed & Milgram 2002; Stramski et al. 2004; Zhang et al.
2004; Seitz 2011; Twardowski et al. 2012; Crook, Jackson & Forster 2016; and references
therein) as well as the generation, scattering and propagation of acoustic waves beneath
the water-wave surface (Strasberg 1956; Schulkin 1968, 1969; Medwin 1970; Farmer &
Lemon 1984; Prosperetti 1988; Hall 1989; Melville 1996; Deane 1997, 2016; Duineveld
1998; Vagle & Farmer 1998; Farmer, Deane & Vagle 2001; Stanic et al. 2009; Czerski
& Deane 2010; and references therein). In order to rigorously quantify these effects, one
needs to have a good grasp of the initial distribution of bubble sizes generated in the
wave-breaking process, as well as how and why this distribution evolves while the resulting
turbulence dissipates and the bubbles rise to the surface.

A number of experiments have measured the bubble-size distribution due to breaking
waves generated under a variety of conditions. Among these, the experiments by Deane &
Stokes (2002) and Blenkinsopp & Chaplin (2010) were able to resolve bubbles of sizes
spanning over two decades (from under 100 μm to over 10 mm) – a formidable size
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range for a single measurement set-up. Crucially, these experiments could characterize the
size distribution early in the wave-breaking process, as the optical methods employed are
suitable for these high-void-fraction scenarios. While there are differences in the reported
distributions due to the different wave parameters and measurement techniques, as well
as the precise stages of wave breaking that were characterized, there appear to be two
common themes: first, the distribution of bubble sizes has distinct scalings in different
bubble-size subranges; second, the distribution evolves noticeably in time as the wave
breaks. As alluded to in Part 1 (Chan, Johnson & Moin 2021), these observations imply
that different physical mechanisms are at play at different length and time scales in the
formation and dynamics of bubbles in these waves. Similar observations were made in the
three-dimensional breaking-wave simulations of Wang, Yang & Stern (2016) and Deike,
Melville & Popinet (2016), which draw heavily on the foundational two-dimensional
simulations of Chen et al. (1999) and Iafrati (2009, 2011). Numerical simulations have
fewer limitations on the access to detailed spatial information than experimental studies,
which is crucial for characterizing these physical mechanisms. However, the separation
of scales inherent in these oceanic systems makes it prohibitively costly to generate large
simulation ensembles that resolve the range of bubble sizes accessed in these seminal
experiments. A large number of ensemble realizations are necessary to achieve statistical
convergence for various bubble statistics in these statistically unsteady waves. As such,
mechanisms governing bubble formation and dynamics have not all been straightforward
to isolate and remain a subject of active research. A number of candidate mechanisms
have been proposed for various bubble-size subranges and wave-breaking stages, including
bubble break-up by turbulence (Kolmogorov 1949; Hinze 1955), air entrainment and
microbubble formation due to plunging jets and drops (Deane & Stokes 2002; Kiger &
Duncan 2012; Chan, Urzay & Moin 2018c; Mirjalili, Chan & Mani 2018; Chan et al. 2019;
Mirjalili & Mani 2020), buoyant degassing and dissolution (Garrett, Li & Farmer 2000)
and intermittency in the energy dissipation rate (Garrett et al. 2000; Gemmrich 2010),
although this intermittency remains a topic of active investigation (Deane 2016; Deane
et al. 2016b). Note that microbubble formation due to plunging jets and drops may entail
the direct generation of sub-Hinze-scale bubbles with subunity Weber numbers from larger
air sheets and films, which may bypass the action of turbulent break-up (Deane & Stokes
2002; Chan et al. 2018c, 2019; Mirjalili et al. 2018; Mirjalili & Mani 2020). As is discussed
in § 3, the simulations of this work do not have numerical support for sub-Hinze-scale
bubbles, and thus these bubbles are out of the scope of the current work.

Break-up by turbulence is often cited as the dominant mechanism for the generation
of bubbles of intermediate sizes during the active wave-breaking phase, when air is
entrained beneath the wave surface. The sizes of these fragmenting bubbles are typically
comparable to or larger than the global Hinze scale, at which forces of capillary and
inertial origins are approximately in balance (Kolmogorov 1949; Hinze 1955). This
characteristic length scale was introduced in Part 1 and is dimensionally about a millimetre
in most terrestrial oceanic waves (Deane et al. 2016a). Because these bubbles are smaller
than the integral scales of the system, the large-scale flow geometry should not have
a strong influence on the break-up dynamics. Garrett et al. (2000) suggested that the
break-up of these bubbles by turbulence occurs through a quasi-steady cascade of bubble
mass from large- to small-bubble sizes. (This quasi-steadiness is from the point of
view of the small- and intermediate-sized bubbles.) As discussed in the introduction
of Part 1, prior studies have theorized and observed in various bubbly flows that this
mechanism implies a D−2/3 power-law scaling for the break-up frequency of bubbles of
size D (Hinze 1955; Martínez-Bazán, Montañés & Lasheras 1999; Rodríguez-Rodríguez,
Gordillo & Martínez-Bazán 2006; Chan et al. 2018b), and a D−10/3 power-law scaling
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for the corresponding bubble-size distribution (Filippov 1961; Garrett et al. 2000; Deane
& Stokes 2002; Mortazavi 2016; Deike et al. 2016; Wang et al. 2016; Chan et al.
2018b,c). The mathematical formalism in Part 1, which quantifies the average rate of
bubble-mass transfer from large- to small-bubble sizes due to break-up events, further
demonstrates that these power-law scalings are directly compatible with the notions
of locality and self-similarity in the bubble-mass-transfer process. This compatibility
confirms key physical aspects of the bubble break-up cascade phenomenology, and
provides a theoretical basis for the dimensional analysis of Garrett et al. (2000).

This paper (Part 2) aims to determine the extent to which the theoretical results of Part
1 are supported by numerical simulations, by algorithmically embedding this analytical
toolkit and directly measuring its key component metrics in the simulations. While
previous breaking-wave simulations have observed a −10/3 power-law exponent in the
bubble-size distribution, this work seeks a more direct observation of the bubble break-up
cascade. The bubble-mass-transfer rate introduced in Part 1 achieves this objective,
and is itself dependent on the size distribution, the break-up frequency as well as the
distribution of child bubble sizes. In Part 2, these bubble statistics are measured by
averaging over ensembles of breaking-wave simulations. They were computed using novel
post-processing algorithms that identify and track individual bubbles, and record the
details of individual break-up events. The evolution of these ensemble-averaged statistics
with time is studied, building on the work of Deike et al. (2016), and the effect of time
averaging is elucidated with reference to the time-averaged statistics of Deane & Stokes
(2002), Wang et al. (2016) and Deike et al. (2016). The statistics discussed in Part 2 provide
direct support for the existence of the quasi-steady bubble break-up cascade proposed
by Garrett et al. (2000) and theoretically examined in Part 1, at least during the early
wave-breaking stages. This support lends credence to the usage of this analytical toolkit
for examining the break-up dynamics of turbulent two-phase flows in general, and provides
an avenue for developing and validating break-up kernels typically used for population
balance modelling.

The dynamics of bubble break-up appears to be distinct in the early and late
wave-breaking stages, suggesting the emergence of distinct bubble generation and
evolution mechanisms. The size distribution was observed to deviate from the
aforementioned D−10/3 power-law scaling by Deane & Stokes (2002), Tavakolinejad
(2010) and Masnadi et al. (2020) late in the wave-breaking process. Prior breaking-wave
simulations either did not investigate the evolution of the ensemble-averaged size
distribution as a function of time, or did not conclusively recover these alternative
scalings in their ensemble-averaged size distribution in the late wave-breaking stages.
The results of this work indicate that the size distribution and other bubble statistics
are indeed evolving functions of bubble size and time. This paper systematically
identifies bubble-size subranges and times over which the D−10/3 scaling is not
fully recovered in the size distribution. The characteristics of the bubble-mass-transfer
rate are examined in these bubble-size subranges and times in order to explore
candidate mechanisms for the formation and dynamics of bubbles under these
conditions.

This paper is organized as follows. In § 2, the key results of Part 1 are recapitulated and
reformulated with the inclusion of volume averaging for the ensembles of breaking-wave
simulations described in § 3. Features of the algorithms used to identify individual bubbles
in these ensembles, and to detect break-up and coalescence events by tracking the lineages
of these bubbles, are briefly discussed in § 4. The resulting bubble statistics are examined
in § 5 in relation to the theoretical analysis of Part 1 and § 2. Finally, conclusions are drawn
in § 6.
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2. Analysis of the bubble break-up cascade for breaking-wave simulations

Volume averaging (·̄) is commonly used in the computation of bubble statistics in both
numerical and experimental studies of breaking waves. As such, this section recasts the
essential expressions of the mathematical formulation for bubble statistics in Part 1 using
volume averaging in order to facilitate the subsequent analysis of bubble break-up in
breaking-wave simulations. References to §§ 4 and 5 are also made to indicate how these
statistics are computed in the simulations and where they are reported, respectively. The
reader is referred to Part 1 for a more detailed development and interpretation of the
analysis tools summarized here, as well as references to relevant prior art.

Volume averaging may be interpreted as an averaging procedure over the small,
localized regions in which the turbulent energy and bubble-mass cascades are postulated to
coexist, as reviewed in § 2 of Part 1. The volume-averaging procedure is further discussed
in appendix A. The order of magnitude of the correspondingly averaged dissipation
rate ε̄ may be estimated in a global sense by u3

L/L, where L is the wavelength of the
dominant wave, uL = (gL)1/2/(2π)1/2 is the corresponding wave phase velocity and g
is the magnitude of standard gravity. This estimate for the characteristic dissipation rate
is addressed in more detail in appendix B. It corresponds to the following dimensional
expressions for the global Kolmogorov and Hinze scales:

LK ∼
(

μl

ρl

)3/4

(ε̄)−1/4 , (2.1)

LH ∼
(

σ

ρl

)3/5

(ε̄)−2/5 , (2.2)

where ρl and μl denote the density and dynamic viscosity of the liquid phase, respectively,
and σ denotes the air–water surface tension coefficient.

2.1. The bubble-mass-transfer flux
The population balance equation describing the time evolution of the volume-weighted
size distribution, fD3, was discussed in § 3.2 of Part 1. Volume averaging the
phase-space-based equation (3.4) in Part 1 yields

∂[f̄ (D; t)D3]
∂t

+ ∂[vDf (D; t)D3]
∂D

= H̄(D; t). (2.3)

Correspondingly, volume averaging the kernel-based equation (3.7) in Part 1 yields

∂[f̄ (D; t)D3]
∂t

= Tb(D; t) + Tc(D; t). (2.4)

As with the derivation of (3.10) in Part 1, these two equations may be compared and
reduced by assuming that size-local break-up dominates in an intermediate subrange of
bubble sizes to yield a simplified evolution equation for f̄D3:

∂[f̄ (D; t)D3]
∂t

= −∂[vDf (D; t)D3]
∂D

= Tb(D; t). (2.5)

The size distribution, f̄ , is computed using the identification algorithm in § 4.1, and is
further discussed in § 5.1. Note that the atmosphere above the wave is treated as a large
gaseous reservoir in this work. As such, entrainment events are not included in the tally of
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break-up events, and degassing events are not included in the tally of coalescence events.
The local break-up flux Wb = −vDf D3 may be interpreted as the ensemble-averaged and
volume-averaged rate of bubble-mass transfer from all bubble sizes larger than D to all
bubble sizes smaller than D. One may derive an expression for the analogous flux arising
from Tb, which is obtained by volume averaging (3.11) in Part 1 as follows:

Tb(D; t) =
∫ ∞

D
dDpq̌b

(
D; t|Dp

)
gbf

(
Dp; t

)
D3 − gbf (D; t)D3. (2.6)

The ensemble-averaged and volume-averaged differential break-up rate gbf (Dp; t) is the
expected number of break-up events per unit time, unit domain volume and unit size for
bubbles of size Dp at time t, including all events throughout the characteristic wave volume
L3 of each ensemble realization. Then, q̌b(Dc; t|Dp) describes the probability distribution
of sizes of child bubbles in these events. Note that each relevant break-up event is weighted
equally within each ensemble realization in the computation of q̌b. As such, q̌b satisfies
the same constraints as the analogous distribution qb in Part 1. The quantities gbf and
q̌b are both computed using the tracking algorithm in § 4.2, and are further discussed in
§§ 5.2 and 5.3, respectively. The corresponding bubble-mass-transfer flux, Wb, may then
be expressed as

Wb(D; t) =
∫ D

0
dDcD3

c

∫ ∞

D
dDpq̌b

(
Dc; t|Dp

)
gbf (Dp; t). (2.7)

The transfer flux Wb may also be directly computed using the tracking algorithm in § 4.2,
and is further discussed in § 5.4. In particular, its variations with bubble size and time are
discussed in § 5.4.2. In a system where entrainment at large sizes and break-up towards
smaller sizes are the dominant physical mechanisms present, the break-up flux Wb may
be used as a proxy for the entrainment flux, as suggested in figure 9 of Part 1. Note
that a similar procedure may be used to derive the bubble coalescence flux Wc from an
appropriate model coalescence kernel Tc.

2.2. Assessing locality
The expressions (3.15) and (3.16) derived in Part 1 to quantify infrared and ultraviolet
locality may be rewritten as

Ip(Dp; t|D) =
∫ D

0
dDcD3

c q̌b
(
Dc; t|Dp

)
gbf

(
Dp; t

)
, (2.8)

Ic(Dc; t|D) =
∫ ∞

D
dDpD3

c q̌b
(
Dc; t|Dp

)
gbf

(
Dp; t

)
. (2.9)

These quantities may also be directly computed using the tracking algorithm in § 4.2, and
are further discussed in § 5.4.1.

In this work, the infrared and ultraviolet locality of Wb are investigated using ensembles
of breaking-wave simulations in two ways. First, the individual scalings of q̌b(Dc; t|Dp)

and gbf (Dp; t) with Dc and Dp are computed and compared against the scalings derived
in Part 1. Second, Ip and Ic are directly computed by summing the mass transfers from all
relevant break-up events in the simulations, as outlined in appendix B of Part 1. The decay
rates of Ip(Dp; t|D) and Ic(Dc; t|D) with increasing Dp and decreasing Dc, respectively, are
then examined. Before these statistics are discussed in § 5, the breaking-wave simulation
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Bubble statistics from breaking-wave simulations

ensembles are first described in § 3, and the algorithms used to obtain these statistics are
introduced in § 4.

3. The breaking-wave simulation ensembles

3.1. Flow solver
In order to investigate the evolution of the bubble-size distribution f̄ , as well as the other
bubble statistics introduced in § 2, ensembles of numerical simulations of breaking waves
were generated using an unstructured, collocated, node-centred and unsplit geometric
volume-of-fluid-based flow solver developed for incompressible and immiscible two-phase
flows (Ham et al. 2014; Kim et al. 2014; Bravo et al. 2018b). Among other flow variables,
the solver tracks the spatially discretized volume fraction of one of the two phases φ,
noting that the local sum of the volume fractions of the two phases is 1 by definition.
Without loss of generality, it is assumed that the solver is used to simulate a liquid–gas
mixture, and φ denotes the local volume fraction of the liquid phase. The mixture is
assumed to be non-reacting and electrically uncharged, and no mass transfer takes place
between the phases. In each interfacial computational median dual cell, the interface is
represented using the conventional piecewise-linear interface calculation scheme, while
the corresponding interface normal vector is computed via a reconstructed distance
function (Cummins, Francois & Kothe 2005), and the corresponding interface curvature
is estimated using the second-order direct front curvature method (Herrmann 2008). Note
that the piecewise-linear interface calculation scheme is known to minimize jetsam and
flotsam, and thus suppresses spurious bubble break-up, compared to the traditional simple
line interface calculation scheme with which these structures are commonly associated
(Scardovelli & Zaleski 1999). (See also a related discussion, and a more detailed definition
of jetsam and flotsam, in § 4.1.) The density and viscosity of the fluid in these interfacial
cells are defined as

ρ = φρl + (1 − φ)ρg, (3.1)

μ = φμl + (1 − φ)μg, (3.2)

where ρg and μg denote the density and dynamic viscosity of the gaseous phase,
respectively, and 0 < φ < 1. Mass and momentum are consistently advected at the
interface (Mirjalili, Ivey & Mani 2019) using a variant of the non-intersecting flux
polyhedron advection algorithm (Ivey & Moin 2017) to maintain numerical stability for
large-density-ratio flows, while the viscous terms in the momentum equation are implicitly
time-advanced with the second-order Crank–Nicolson scheme. The fractional-step method
is used in order to include a pressure-projection step to maintain a divergence-free
velocity field. Within this method, the surface tension force is treated using a
balanced-force algorithm (Francois et al. 2006; Herrmann 2008) involving the usual
continuum-surface-force representation to minimize spurious currents of capillary origin.
Surface tension gradients are assumed to be negligible. The solver has been used
to simulate a number of liquid jet break-up problems involving primary atomization,
including laminar, transitional and turbulent jets in quiescent gas (Bravo et al. 2015, 2016,
2018b, 2019), jets in cross-flows (Bravo et al. 2018a) as well as jets from swirling injectors
(Kim et al. 2014; Ham et al. 2014).

3.2. Description of set-up of ensembles
In this work, a baseline ensemble of 30 numerical simulations of breaking third-order
Stokes water waves in air was generated. Specifically, the density and viscosity ratios of the
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Quantity Dimensional notation Non-dimensional notation

Lengths/coordinates x̂, ŷ, ẑ, x̂, η̂ x, y, z, x, η = {x̂, ŷ, ẑ, x̂, η̂}/L
Bubble size D D/L

Gradient operator ∇̂ ∇ = L∇̂
Velocity components û, v̂, ŵ u, v, w = {û, v̂, ŵ}/√(gL)/(2π) = {û, v̂, ŵ}/uL

Time t̂ t = t̂/
√

L/g

Energies Êk, Êp, Ês, Êt Ek, Ep, Es, Et

Table 1. Characteristic scales used for non-dimensionalization. The characteristic time scale was selected to
be equal to that used by Wang et al. (2016). With this time scale, the first wave-surface impact after the wave
overturns occurs shortly after t = 1, while a single wave period corresponds to 2.5 characteristic times. The
energies are defined in § 3.3.

two phases are equal to those of an air–water mixture. These waves have the dimensionless
integral-scale parameters WeL = 1.6 × 103 and ReL = 1.8 × 105, which match those of a
27 cm long water wave at atmospheric conditions, and are similar to those selected by
Wang et al. (2016). Here, ReL is the integral-scale Reynolds number ReL = ρluLL/μl and
WeL is the integral-scale Weber number WeL = ρlu2

LL/σ . The initial conditions employed
are similar to those adopted by Chen et al. (1999), Iafrati (2009, 2011) and Wang et al.
(2016): the initial dimensionless wave-surface height η was initialized in terms of the
non-dimensional streamwise coordinate x using

η(x, t = 0) = 1
2π

[
S1 cos(2πx) + 1

2
S2

1 cos(4πx) + 3
8

S3
1 cos(6πx)

]
, (3.3)

where S1 = a1k1 = 0.55 is the slope of the fundamental wave component, a1 and k1 =
2π/L are, respectively, the corresponding dimensional amplitude and wavenumber and
the wave propagates in the x direction. Note that the lengths in the expression for η have
been non-dimensionalized by the wavelength of the fundamental wave component, L. A
list of characteristic scales used for non-dimensionalization is provided in table 1.

In order to generate an ensemble of statistically independent but similar realizations (i.e.
with the same configuration), the free surface was further perturbed by a set of random
displacements �η = �η(z) smaller than the local grid spacing, such that every interfacial
mesh node with the same z (spanwise) coordinate within the same realization has the same
�η. While the shift �η is not explicitly resolved by the mesh, it perturbs the volume
fraction in these interfacial nodes and provides an implicit disturbance to the original
interface. This choice of perturbation preserves the modal content of the wave profile
in the streamwise direction since the mesh employed in this work is Cartesian. In other
words, the initial conditions are effectively two-dimensional except for a perturbation of
spanwise modes. As in the works cited above, the air above the wave surface was initialized
at rest, while the water below the surface was initialized with the following dimensionless
velocity field (Iafrati 2009, 2011):

u(x, y, t = 0) = S1

√
1 + S2

1 cos(2πx) exp(2πy), (3.4)

v(x, y, t = 0) = S1

√
1 + S2

1 sin(2πx) exp(2πy), (3.5)
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(b)(a)

Figure 1. Snapshots of the spanwise cross-section of the φ = 0.5 isosurface of one of the baseline ensemble
realizations corresponding to (a) the initial waveform (t = 0) and (b) the wave sometime after breaking has
occurred (t = 4.03). The grey lines in the background depict the local mesh configuration. The nodal mesh
volumes in the uniform-resolution regions are isotropic.

where y is the non-dimensional coordinate antiparallel to gravity. Periodic boundary
conditions were employed in the x and z directions, while free-slip boundary conditions
were employed on the two remaining boundary faces of the computational domain, which
is a cube of length L. In each of the realizations in this ensemble, the computational mesh
consists of about 4.2 million mesh nodes with a non-dimensional minimum grid spacing
of 1/216. This is equivalent to a dimensional grid spacing of 1.25 mm for a water wave
in air at atmospheric conditions with the aforementioned dimensionless parameters. To
put this in context, the dimensional Hinze scale (2.2) takes a value of the order of 3 mm.
As evidenced in figures 3, 4, 6 and 7, mesh insensitivity is observed in the energetics
and bubble statistics at this mesh resolution. For the latter, this insensitivity is observed
over a subrange of super-Hinze-scale bubble sizes where turbulent break-up is expected
to be dominant. (See also the description of a more resolved ensemble used in this mesh
sensitivity study in the ensuing paragraph.) This resolution was selected to permit more
ensemble realizations and enable statistical convergence in a time-resolved sense. The
mesh is non-uniform and is finer closer to the central region of the domain, such that a large
majority of the generated bubbles are resolved using the minimum grid spacing. Snapshots
of the initial and post-breaking waveforms, with the computational mesh overlaid, are
illustrated for one of the realizations in figure 1. The non-dimensional time step adopted is
�t = 6.0 × 10−5, leading to a maximum Courant number of about 0.1 throughout the
computational domain in the course of the simulations. The relatively small Courant
number reduces the shape mismatch between the streak tube and the numerical flux
polyhedron in the volume-of-fluid-based advection scheme (Ivey & Moin 2017), which
is important to manage in the case of inadequately resolved mixed-phase regions. The
evolution of the waveform for one of these realizations is depicted from two different
viewpoints in figure 2 to illustrate the interfacial features generated as the wave breaks.

Besides the baseline case, an ensemble of three numerical simulations with the same
wave parameters and a higher mesh resolution was also generated for a mesh convergence
study of the specifically desired quantities studied in this work, such as the bubble-size
distribution. In this ensemble, the computational mesh consists of about 32 million mesh
nodes with a non-dimensional minimum grid spacing of 1/432 (dimensionally equivalent
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(e)

(b)(a)

(c) (d )

(g) (h)

( f )

Figure 2. Snapshots of (a,c,e,g) an axonometric projection from above the wave and (b,d, f,h) the spanwise
cross-section of the φ = 0.5 isosurface of one of the baseline ensemble realizations corresponding to various
times in the wave-breaking process: (a,b) t = 2.00, (c,d) t = 3.01, (e, f ) t = 4.03 and (g,h) t = 5.04. The
snapshots are sampled at an interval of 1.01 characteristic times. The waves are travelling from left to right, and
wrap around the domain due to the periodic boundary conditions in the streamwise direction.

to 0.63 mm) and a non-dimensional time step of 1.2 × 10−5. A more detailed rendering
of one of the realizations from this ensemble may be found in the video discussed by
Chan et al. (2019). Note that even with this higher spatial resolution, the Kolmogorov
length scale (2.1), LK ∼ 30 μm, remains inaccessible as in many previous breaking-wave
simulations. In fact, it may be shown that the smallest scales of turbulent motion near
a phase interface could require sub-Kolmogorov resolution (Dodd & Jofre 2019) that
is rarely attained. As remarked in the introduction, an ensemble of direct numerical
simulations of breaking waves that resolves these dynamics with converged statistics
remains a formidable undertaking due to the inherent scale separation in these oceanic
systems, and in energetic multiphase flows in general. In view of these limitations, only
intermediate-scale quantities where sub-Hinze-scale dynamics has a limited influence are
discussed in this work, including the bubble statistics introduced in § 2. In other words,
the formation of sub-Hinze-scale bubbles, which may be due to mechanisms distinct from
a turbulent break-up cascade, is beyond the scope of this work.

3.3. Time evolution of the breaking wave
From the snapshots of the plunging wave-breaking process in figure 2, it is evident that the
wave profile and accompanying distribution of bubbles dramatically evolve in the span of
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about 1 to 2 wave periods, or 3 to 5 characteristic times. A qualitatively similar evolution
was observed in the studies by Bonmarin (1989), Chen et al. (1999), Deane & Stokes
(2002), Blenkinsopp & Chaplin (2007), Blenkinsopp & Chaplin (2010), Iafrati (2009),
Rojas & Loewen (2010), Kiger & Duncan (2012), Deike, Popinet & Melville (2015), Deike
et al. (2016), Lim et al. (2015) and Wang et al. (2016). In particular, a number of tubular
air cavities are formed, and then subsequently deformed and ruptured beneath multiple
surface splash-ups. This bubble fragmentation eventually ceases as large bubbles degas
more quickly, leaving a plume of smaller, slowly rising bubbles. More details are provided
by Chan (2020).

This evolution in the wave dynamics is also manifested in the energetics of the wave,
whose time evolution averaged over the wave ensemble is plotted in figure 3. The
volume-integrated total energy plotted in figure 3(a) is defined as follows:

Et = Êk + Êp + Ês

Ên
= kinetic energy + potential energy + surface energy

reference energy for normalization

=

[∫
Ωd

1
2
ρ

∣∣û∣∣2 dx̂
]

+
[∫

Ωd

ρgŷ dx̂ − 1
8

(
ρg − ρl

)
gL4

]
+

[∫
Ωd

σ

∣∣∣∇̂φ

∣∣∣ dx̂ − σL2
]

(
1
2
ρlu2

L

)(
1
2

L3
) ,

(3.6)

where the domain of integration Ωd is taken here to be the entire computational domain
with volume Vd = L3. In this domain, the range of ŷ is defined as ŷ ∈ [−L/2, L/2]. The
energy is computed with respect to the reference state of a quiescent air–water system
with a flat interface where the water phase occupies the bottom half of the computational
domain ( y ∈ [−1/2, 0)) and the air phase occupies the top half ( y ∈ (0, 1/2]). It is
normalized by the energy Ên of a body of water occupying half the volume of the domain
and travelling uniformly at the characteristic speed uL = (gL)1/2/(2π)1/2.

The total energy is observed to decay in time in general agreement with the trends
observed by Wang et al. (2016) and Deike et al. (2016). Figure 3(a) suggests that the total
energy is fairly insensitive to the grid spacing, so the baseline mesh should be considered
sufficient for the present study. Figure 3(b) generally supports this claim as well, although
some differences in the rate of change of the total energy are visible during the active
wave-breaking phase due to the difference in the mesh resolution. Note, however, that the
standard errors in the baseline ensemble are also noticeably larger during this phase.

Figure 3(b) suggests that during the large-dissipation phase t ∈ (2.3, 3.1), the system
loses energy at a rate comparable to that if the initial energy of the wave was dissipated in
one wave period. The extraction of the wave period as a defining time scale is compatible
with the expressions for the global Kolmogorov and Hinze scales, (2.1) and (2.2), and
lends support to the dissipation rate estimate in appendix B. The rate of energy dissipation
also appears to be reasonably approximated as quasi-stationary during this time interval,
notwithstanding some temporal fluctuations.

The time evolution of the dissipation rate in figure 3(b) exhibits two intervals of
interest. In the first interval t ∈ (2.3, 3.1) discussed earlier, the dissipation rate remains
quasi-steady as it attains its peak magnitude. In the second interval t ∈ (3.5, 4.0), the
dissipation rate gradually decays in tandem with the surrounding turbulence. The sequence
of events depicted in figure 2 illustrates the importance of bubble break-up in both
intervals. In § 5, the evolution of various bubble statistics in these two intervals is
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Baseline ensemble (min. spacing 1/216)

More resolved ensemble (min. spacing 1/432) 

(b)(a)

Figure 3. (a) Non-dimensional ensemble-averaged total energy (Et) of the waves in the baseline ensemble,
as well as the non-dimensional total energy of one of the realizations in the ensemble with increased mesh
resolution, as a function of non-dimensional time. (b) Non-dimensional rate of change of the energies in (a),
computed by differencing the total energy every 500 time steps in the baseline ensemble and every 2500 time
steps in the more resolved ensemble. The horizontal dotted line in (b) denotes the nominal rate of change of
energy if all the energy initially present in the wave was to be dissipated in one wave period. The left-hand
shaded region spans a third of a wave period between t = 2.30 and t = 3.14, while the right-hand shaded
region spans a fifth of a wave period between t = 3.45 and t = 3.95. In both panels, the lines corresponding
to the baseline ensemble denote ensemble-averaged quantities, while the error bars span, in each direction,
twice the standard error of the energies of each realization with respect to the ensemble average, thus
representing the variation over the ensemble.

analysed, and the characteristics of the bubble-mass-transfer dynamics in these intervals
are compared and contrasted.

4. Algorithms

Two algorithms were used to retrieve bubble statistics from the simulation ensembles
described in § 3 in order to shed light on bubble-mass transfer between large and small
bubble sizes during the active wave-breaking phase. Section 4.1 describes an algorithm
used to identify the sizes and locations of bubbles in each simulation snapshot. The
algorithm was used to determine the bubble-size distribution and the total interfacial
area. The algorithm in § 4.2 tracks these bubbles over successive simulation snapshots
in order to detect break-up and coalescence events, which drive the time evolution of the
bubble-size distribution as discussed in §§ 2.1 and 2.2. More details of these algorithms
are discussed by Chan et al. (2018a) and Chan (2020) and a brief overview is offered in
this section.

4.1. Bubble identification algorithm
An existing bubble identification algorithm (Hebert et al. 2008; Herrmann 2010; Tomar
et al. 2010) was refined in this work to increase the accuracy in determining the volumes
of the identified bubbles. The basis of the algorithm is the identification of connected
regions of computational nodes, where each region corresponds to an individual bubble.
After identifying these regions, one may then integrate the gaseous volume fraction, 1 − φ,
over the nodes in each of these regions to obtain the total volume of each bubble. A region
is assembled by linking node pairs that each satisfy a grouping criterion. The traditional
criterion requires that φ < 1 in each node of a pair, or that each node contains a non-zero
amount of air. This criterion may create bubbles of spurious numerical origin because
energetic collisions may create small wisps of air, which are sometimes also referred to as
flotsam and jetsam, where 1 − φ � 1 in each of these nodes. These wisps tend to linger
in the flow field due to their low buoyancy and slow degassing rate. Wisps may form
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node pairs that satisfy the criterion and become spuriously linked together. Clipping small
values of 1 − φ mitigates this issue at the expense of the volume accuracy of resolved
bubbles. Instead, this work uses the additional criterion that at least one node in a pair
satisfies 1 − φ > φc,m, so that nodes with small 1 − φ are linked only if they neighbour
nodes with large 1 − φ. In this work, φc,m = 0.5 was selected.

The algorithm yields a list of bubbles in every simulation snapshot, and can
simultaneously yield the volume and centre-of-mass (centroid) location of each identified
bubble, among other statistics. Accuracy of the determined volume and centroid location
is crucial to the performance of the bubble tracking algorithm to be discussed in § 4.2.
Volume accuracy also impacts the trends in the bubble-size distribution to be discussed in
§ 5.1. A comparison of the errors incurred from various grouping criteria has been detailed
in other works, such as Chan et al. (2018a) and Chan (2020). This involved systematically
quantifying the incurred error for a number of simple test cases, as summarized in
appendix C.

4.2. An event detection algorithm to track bubbles
A bubble tracking algorithm was developed in this work to detect break-up and coalescence
events by maintaining a tally of all bubbles over time and tracing the lineage of each
bubble. To construct these lineages, lists of bubbles with their sizes and locations are
compared between successive simulation snapshots. These snapshots need not arise from
consecutive time steps. This is because the principle of mass conservation and the
Courant–Friedrichs–Lewy (CFL) condition are used to determine if a bubble has simply
been advected between the two snapshots without any change in topology, or if a break-up
or coalescence event has occurred. These two constraints are discussed in appendix D in
relation to the errors in the identification algorithm discussed in appendix C. As discussed
in § 2.1, disconnections and reconnections with the atmosphere, which is treated as a
large gaseous reservoir, are not included in tallies of break-up and coalescence events,
respectively. This is to prevent frequent topology changes involving the atmosphere and
large, non-spherical bubbles with convoluted shapes near the wave surface from obscuring
the remaining break-up and coalescence statistics.

The time interval between successive snapshots is now discussed in relation to other
characteristic time scales for the baseline ensemble introduced in § 3. The non-dimensional
snapshot interval for a set of snapshots available for all 30 realizations is �ts,30 = 3.0 ×
10−2. A set of more closely spaced snapshots is available for 20 of these realizations with
a time separation of �ts,20 = 6.0 × 10−3. From (2.2) and the inertial subrange scaling
uLn ∼ (ε̄Ln)

1/3, one may estimate the characteristic mean time interval between break-up
events for Hinze-scale bubbles to be �tH ∼ 10−1. This scaling for uLn also suggests that
the corresponding time interval for super-Hinze-scale bubbles will exceed �tH . Since the
snapshot interval is shorter than the mean super-Hinze-scale break-up time, the resulting
statistics should provide a realistic picture of at least super-Hinze-scale turbulent break-up.
In particular, there are at least O(10) snapshots in the 20-realization dataset between two
super-Hinze-scale break-up events on average.

Two additional remarks are in order here. First, a snapshot interval that exceeds the
simulation time step prevents the algorithm from identifying every break-up event of
interest. Second, the discussion in appendix C suggests that the identification algorithm
in § 4.1 cannot effectively discern the separation between two bubbles spaced less than
a grid cell apart. Bubbles that break up but do not separate quickly enough may then
register repeated break-up and coalescence events. An excessively small snapshot interval,
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such as one that is much smaller than the integral time scale, may capture some of
these confounding events. This limitation has also been observed in other event detection
algorithms (Rubel & Owkes 2019) and appears to be inherent in event detection in
turbulent flows. An ideal snapshot interval should resolve the characteristic mean break-up
times of most bubbles while being sufficiently long to skip over these confounding events.
The impacts of these algorithmic limitations are discussed in § 5.2.

5. Bubble statistics

5.1. The bubble-size distribution f̄
Figure 4 plots the bubble-size distribution f̄ at selected time instances for the ensembles
introduced in § 3. The bubble size, Di = [(6Vi)/π]1/3, is the diameter of a sphere with the
same volume, Vi. The size distribution has dimensions (length)−4, is non-dimensionalized
by the wavelength (L4), and was computed by histogram binning with Nbin bins of equal
logarithmic spacing, where the smallest bin is two orders of magnitude larger than the
diameter error in appendix C. The non-dimensional discrete distribution satisfies

〈Nb(t)〉 =
Nbin∑
j=1

f̄ (Dj/L; t)Δ(Dj/L), (5.1)

where f̄ (Dj/L; t) includes bubbles of sizes between Dj and Dj+1, and Δ(Dj/L) = (Dj+1 −
Dj)/L. The distributions from the two ensembles reasonably overlap at intermediate bubble
sizes, suggesting that the distribution is fairly mesh-insensitive at these sizes. While the
large-bubble distribution of the more resolved ensemble has significant standard errors due
to the small ensemble size and the small number of large bubbles, these large bubbles are
well resolved in both ensembles.

One may link the evolution of the size distribution in figure 4 to the wave-breaking
process in figure 2. As the cylindrical air cavities deform and rupture between t = 2 and
t = 3 (figure 2a–d), the size distribution displays a power-law trend (figure 4a,b) with an
exponent near the −10/3 value postulated by Garrett et al. (2000), and observed by Deane
& Stokes (2002) and Deike et al. (2016), suggesting that the turbulent break-up cascade
examined in Part 1 dominates the bubble-mass transfer during these early wave-breaking
stages. As evidenced in figure 3(b), the dissipation rate is also large. In addition, the
smallest resolvable bubbles rapidly appear, as also observed by Deane & Stokes (2002)
and revisited in § 5.3. While bubbles continue to deform, fragment and interact between
t = 3 and t = 4 (figure 2c–f ), the power-law scaling becomes shallower at intermediate
sizes (figure 4c,d). As evidenced in figure 3(b), the dissipation rate also begins to decay.
Figure 2(e–h) suggests that large-scale air entrainment has mostly ceased by this time,
even as intermediate-scale bubble break-up continues, as revisited in § 5.4.

This work focuses on the statistics of intermediate-sized (super-Hinze-scale) bubbles
with non-dimensional diameters larger than 1.1 × 10−2, or dimensional diameters larger
than 2.9 mm, for which mesh insensitivity was observed. Figure 5 quantifies the
evolution of the exponent of a power-law fit to the size distribution in figure 4 over
an intermediate size subrange. Observe its oscillatory variation around −10/3 at early
times, which may be attributed to regularity in the successive wave-surface splash-ups
and impingements. This variation suggests that the largest scales may be influencing these
intermediate-size statistics through analogous fluctuations in the energy and bubble-mass
cascade rates. Indeed, fluctuations manifest in the dissipation rate in figure 3(b) and
the bubble-mass-transfer rate, Wb, in § 5.4. This variation may also reflect the finite
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Figure 4. The non-dimensional bubble-size distribution f̄ (Dj/L; t) against non-dimensional size D/L for the
baseline and more resolved ensembles at (a) t = 2.50, (b) t = 2.74, (c) t = 3.71 and (d) t = 3.95. The dotted
vertical lines in the same colour/shade as the respective distributions indicate the mesh resolution of the
respective ensembles. The dashed sloped lines indicate the D−10/3 power-law scaling for an idealized turbulent
bubbly flow. The error bars span, in each direction, twice the standard error of the distribution in each realization
with respect to the ensemble average. The shaded regions represent the bubble-size subrange over which the
power-law fit exponents in figures 5 and 6 were obtained. More snapshots in time of the bubble-size distribution
are provided by Chan (2020).

convergence time of the break-up dynamics towards quasi-equilibrium (Filippov 1961;
Qi, Masuk & Ni 2020). Figure 6(a) depicts the size distribution averaged over these
early time instances with two power-law fits, which are in general agreement with D−10/3,
although the fit exponent exhibits slight sensitivity to the size subrange used for fitting. A
similar agreement was obtained in the ensemble-averaged and time-averaged statistics of
Deane & Stokes (2002) and Deike et al. (2016), and the time-averaged statistics of Wang
et al. (2016), which builds confidence in the results of this work. Ensemble averaging
improves statistical convergence and reduces data scatter such as that observed by Wang
et al. (2016) in their instantaneous distributions. While the instantaneous distribution in
this work oscillates between D−3 and D−4, better agreement with D−10/3 is obtained via
time averaging over the entire interval, consistent with the suggestion of Deike et al. (2016)
that the scaling of the time-averaged distribution, f̄ T , is sensitive to the time-averaging
window, as is revisited in § 5.4. A more rigorous test of the D−10/3 scaling is shown in
figure 7(a) by premultiplying the time-averaged distribution and using a linear scale on
the vertical axis. Time averaging is further explored in appendix A.

Returning to figure 5, the fit exponent deviates from −10/3 at later times, about one
wave period after the onset of breaking. Interestingly, the exponent does not oscillate, in
seeming correlation with the cessation of large-scale entrainment. Figure 6(b) depicts the
size distribution averaged over these late time instances. Its increased magnitude at most
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Figure 5. The variation of the exponent of a power-law fit over a subset of the baseline distribution, f̄ , in
figure 4 with non-dimensional time. The fit was performed over bubbles with non-dimensional diameters
between 1.07 × 10−2 and 2.23 × 10−2. This bubble-size subrange is marked in the shaded regions in figure 4.
The error bars denote twice the standard error in the fit exponent over the baseline ensemble. The shaded
regions span the same time intervals as the corresponding regions in figure 3(b).
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Figure 6. The non-dimensional time-averaged size distribution f̄ T (Dj/L) against non-dimensional size D/L
for both ensembles. The time-averaging interval is (a) between t = 2.30 and t = 3.14, corresponding to the
left-hand shaded regions in figures 3(b) and 5, and (b) between t = 3.45 and t = 3.95, corresponding to the
right-hand shaded regions in the same figures. For a description of the vertical lines, dashed sloped line in (a)
and error bars, refer to the caption of figure 4. The bubble-size subrange over which the bottom power-law
fit in (a) and the power-law fit in (b) were performed is the same subrange highlighted in figure 4 and used
in figure 5. The subrange for the top power-law fit in (a) is [1.69 × 10−2, 3.54 × 10−2). The fit exponent
uncertainties denote twice the standard error over the baseline ensemble.

resolved sizes relative to figure 6(a) (by about 3–5 times; see also figure 15) suggests
that there are more small and intermediate-sized bubbles at later times, and the break-up
flux from larger sizes consistently outweighs mass loss from degassing. Two distinct
power-law scalings emerge in two size subranges in agreement with the measurements
of Tavakolinejad (2010) and Masnadi et al. (2020), which builds further confidence in the
results of this work (see also Castro, Li & Carrica 2016). The size distribution is reasonably
described by a D−8/3 scaling at intermediate sizes, which is shallower than D−10/3. This is
supported by the compensated time-averaged distribution in figure 7(b). At large sizes, the
power-law scaling is steeper than D−8/3 by a factor of D−2 in agreement with the increased
importance of buoyant degassing postulated by Garrett et al. (2000) and observed by Deike
et al. (2016), as well as in figure 2(e–h). For comparison, Tavakolinejad (2010) obtained
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Figure 7. The compensated time-averaged size distribution using the same time-averaging intervals as in
figure 6: (a) f̄ T (Dj/L)D10/3

j from the first interval, premultiplied by the inverse of the D−10/3 scaling, and

(b) f̄ T (Dj/L)D8/3
j from the second interval, premultiplied by the inverse of the observed D−8/3 scaling, against

non-dimensional size D/L for both simulation ensembles. The compensated distribution is normalized by its
value at D/L = 1.07 × 10−2. For a description of the vertical lines and error bars, refer to the caption of
figure 4.

an exponent between −2.85 and −2.58 at small sizes, and between −6.57 and −3.85 at
large sizes.

Figures 3(b) and 4–7 reflect the unsteadiness in the wave dynamics and demonstrate the
emergence of two time intervals with distinct characteristics, suggesting the presence of
distinct bubble generation and evolution mechanisms. In the first interval, the dissipation
rate appears to be quasi-steady, and the D−10/3 power-law scaling in the time-averaged
size distribution supports the presence of a quasi-steady bubble break-up cascade. In
the second interval, the dissipation rate is seen to decay, and the time-averaged size
distribution deviates from D−10/3. Yet, the robustness of an alternative power-law scaling
with a negative exponent is indicative of size-invariant cascade-like behaviour, as Part 1
suggested that size-local break-up may still occur in the absence of the D−10/3 scaling.
These observations motivate a closer look at other bubble statistics during these two
intervals to test the theoretical analysis developed in Part 1 for the break-up cascade in
the first interval, and to extend this analysis to the possible cascade-like behaviour in the
second interval. Note that these conclusions were drawn from statistics over a limited
size range. Future ensembles with larger scale separation will be valuable for shedding
more light on these conclusions. Volume averaging also precludes the reporting of spatial
size distributions. The physical parameters and grid size selected in this work reflect the
trade-off between the resolved size range and the ensemble size. As noted in §§ 1 and 3.2,
a larger ensemble increases statistical convergence in a statistically unsteady flow that does
not strictly permit time averaging. However, it also necessitates a smaller resolved range
from a practical perspective. The mesh insensitivity in figures 4, 6 and 7, as well as the
agreement of their power-law scalings with prior works, supports these choices in light of
this trade-off.

5.2. The differential break-up rate gbf
In order to gain more insights into the evolution of the size distribution, f̄ , as described by
(2.4) and (2.6), the differential break-up rate gbf is now analysed. Break-up events were
detected in the baseline ensemble using the algorithm in § 4.2. The ensemble-averaged
event rate per unit domain volume and unit size is averaged over the non-dimensional
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Figure 8. The normalized differential break-up rate g̃bf (Dj/L; t) averaged over the non-dimensional sampling
interval 16�ts,20 = 9.6 × 10−2 plotted against non-dimensional size D/L for a 20-realization baseline
ensemble subset at (a) t = 2.51, (b) t = 2.75, (c) t = 3.71 and (d) t = 3.95. The rate is normalized such that

the maximum value in each plot is 1, i.e. g̃bf = gbf /gbf |max. The selected bin sizes are twice those in figure 4
in logarithmic space. For a description of the vertical lines and error bars, refer to the caption of figure 4. The
dashed sloped lines indicate the theoretical D−4 power-law scaling for an idealized turbulent bubbly flow. The
shaded regions represent the bubble-size subrange over which the power-law fit exponents in figures 9 and 10
were obtained. More snapshots in time are provided by Chan (2020).

sampling interval 16�ts,20 = 9.6 × 10−2 to converge statistics over more events. This
interval is kept small enough that temporal variations are not significantly smoothed.
The number of histogram bins for gbf is half that for f̄ to increase the bin width and
improve this convergence. To ensure that the snapshot interval discussed in § 4.2 has been
reasonably selected, rates obtained using two intervals, �ts,20 and 2�ts,20, are reported to
demonstrate snapshot convergence. Since the variation of gbf with parent bubble size is of
interest, gbf is normalized by its maximum value (g̃bf ) at every time instance to highlight
this convergence. This normalization is also carried out in § 5.4.

Figure 8 shows gbf near the time instances for which f̄ was plotted in figure 4. Signatures
of the D−4 scaling derived for a quasi-steady turbulent break-up cascade in Part 1 emerge
at intermediate sizes. Note that the computation of gbf samples energetic regions more
frequently since break-up only occurs with sufficient energy to change the bubble topology.
Thus, gbf is susceptible to large-scale inhomogeneities, and is difficult to converge since
the scale separation in the simulated waves is not exceedingly large.

Figure 9 quantifies the evolution of the exponent of a power-law fit on the differential
rate in figure 8 over a subrange of intermediate sizes, relative to the −4 exponent derived
in Part 1 using traditional turbulent-flow scalings. The behaviour of the exponent in
figure 9 for gbf loosely tracks the corresponding behaviour in figure 5 for f̄ : in the early
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Figure 9. The variation of the exponent of a power-law fit over a subset of the differential break-up rate, gbf ,
in figure 8 with non-dimensional time. The fit was performed on the data with a snapshot interval of �ts,20.
For a description of the bubble-size subrange over which the fit was performed, error bars and shaded regions,
refer to the caption of figure 5.

(b)(a)

–4.1 ± 0.3 –3.3 ± 0.4

T

D/L

10–4

10–2

100

10–6

10–4

10–2

100

10–6

4 × 10–3 1 × 10–2 4 × 10–2 1 × 10–1

D/L
4 × 10–3 1 × 10–2 4 × 10–2 1 × 10–1

–4 power law
Snapshot interval �ts,20
Snapshot interval 2�ts,20

gb f

Figure 10. The normalized time-averaged differential break-up rate g̃bf
T
(Dj/L) against non-dimensional size

D/L for the 20-realization baseline ensemble subset. Panels (a,b) correspond to the time-averaging intervals in
figure 6. For a description of the vertical and sloped lines, error bars, normalization, bubble-size subrange and
dataset over which the fits were performed, and fit-exponent uncertainties, refer to the captions of figures 4, 6,
8 and 9.

wave-breaking stages, the exponent oscillates around the exponent discussed in Part 1; in
the late stages, it does not strongly oscillate. As with the size distribution in figure 6, the
differential rate may be time-averaged over these two intervals, as depicted in figure 10. In
the first interval, it may be described by a D−4.1±0.3 power-law fit, in agreement with
D−4. In the second interval, it may be described by a D−3.3±0.4 fit, which is about a
factor of D−2/3 steeper than the D−8/3 scaling in the corresponding size distribution,
although vestiges of the D−4 scaling remain in the differential rate at larger sizes. These
power-law scalings at intermediate sizes are largely consistent with the turbulent scaling
of the break-up frequency, gb ∼ D−2/3, in agreement with the references cited in § 1 that
were used in the theoretical analysis of Part 1.

In summary, the trends observed in gbf mostly echo those for f̄ in § 5.1. The unusual
persistence of the D−4 scaling may be suggestive of a tendency of the bubble-mass flux
to remain quasi-local and quasi-self-similar, since Wb ∼ gbf D4 in this limit as shown
in Part 1. These characteristics of the bubble-mass flux are further addressed in § 5.4.
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Analogous to § 5.1, future ensembles of higher ReL and WeL simulations could bring about
more clarity on the robustness of these scalings.

5.3. The break-up probability distribution q̌b

In addition to gbf , the probability distribution of child bubble sizes, q̌b, also drives
the evolution of f̄ , as described by (2.4) and (2.6), and may also be computed by the
algorithm in § 4.2. The distribution q̌b(D3

c; t|D3
p) is symmetric in bubble-volume space

and is presented in this space for a more intuitive interpretation. It satisfies

2 =
Nbin∑
j=1

q̌b

(
D3

c,j; t|D3
p

)
Δ

(
D3

c,j/D3
p

)
. (5.2)

The data for each parent bubble size Dp,j are averaged over two histogram bins
[Dp,j, Dp,j+2), where the bins are identical to those in § 5.2. The reported q̌b is
time-averaged over the two time intervals identified in §§ 3.3, 5.1 and 5.2.

Figure 11 plots the time-averaged break-up probability distribution, q̌b
T

, for three
distinct parent bubble sizes and the two aforementioned time intervals. Each row
corresponds to a single parent bubble size, while each column corresponds to a single
time interval. Some child bubble sizes are smaller than the mesh resolution and have to be
excluded. Under the influence of this exclusion, q̌b

T
falls off towards large and small child

bubble sizes for small parent bubbles.
In general, the child bubble volume distribution is relatively close to uniform for events

within the intermediate bubble-size subrange where power-law fits were earlier obtained
for f̄ and gbf in §§ 5.1 and 5.2. Hence, the uniform distribution, which was analysed in

Part 1, appears to be a suitable, albeit rudimentary, surrogate model for q̌b
T

in most cases.
One exception occurs at large parent bubble sizes outside the aforementioned size subrange
in the early wave-breaking stages. Here, large-size-ratio events involving one large child
bubble and one small child bubble do frequently occur as evidenced in figure 11(e),
bypassing the break-up cascade and generating small bubbles as observed in § 5.1. These
individual non-local contributions to bubble-mass transfer are small in volume and may
not necessarily influence the locality of the break-up flux, Wb, as noted in appendix B
of Part 1. Their relative influence is analysed in more detail in § 5.4.1. Another exception
occurs in the late wave-breaking stages in figure 11(d). In these two cases, the break-up
probability is reasonably described by a beta-distribution fit, which was also discussed
in Part 1 as a potential surrogate model. These exceptions indicate that it does not seem
appropriate to characterize a turbulent bubbly flow with a single distribution shape without
giving more consideration to the bubble-size subrange or flow stage of interest, as many
previous studies have done. For example, experimental studies typically report a single
distribution of child bubble volumes, agglomerating data from different parent bubble
sizes (see figure 1 of Qi et al. (2020), and references therein). This has contributed to a
multitude of existing models for the child bubble volume distribution, as noted in Part 1.
Interestingly, the results of this work are in qualitative agreement with the model of Lehr,
Millies & Mewes (2002), where ‘equal sized breakage is preferred for small bubbles . . . as
the size of the parent bubbles increases, unequal breakage is preferred’.

5.4. The break-up flux Wb

The results of § 5.1 revealed that the bubble-size distribution dramatically evolves between
t = 2 and t = 4. Indirect evidence of a quasi-steady bubble break-up cascade (Garrett et al.
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Figure 11. The time-averaged break-up probability q̌b
T
(D3

c,j|D3
p) against normalized child bubble volume

D3
c/D3

p for the 20-realization baseline ensemble subset during the (a,c,e) early (t = 2.30–3.14) and (b,d, f )
late (t = 3.45–3.95) wave-breaking stages. The non-dimensional parent bubble sizes considered are (a,b)
between 1.86 × 10−2 (WeDp = 18) and 2.23 × 10−2 (WeDp = 25), (c,d) between 2.68 × 10−2 (WeDp = 33)

and 3.23 × 10−2 (WeDp = 45) and (e, f ) between 3.54 × 10−2 (WeDp = 53) and 4.25 × 10−2 (WeDp = 72).
For the definition of WeDp , refer to (2.4) in Part 1. Only child bubbles of radii larger than the mesh resolution
are considered. The vertical dashed lines demarcate the child bubble volumes in the break-up event where one
of the child bubble radii corresponds to this resolution limit. The error bars denote one standard error. The time
intervals in the legend denote the snapshot intervals in the detection algorithm. Fits to the beta distribution
have been added in (d,e). These fits were performed on the data obtained by taking the snapshot interval to be
�ts,20, which was also used to plot the histogram bars. The two numbers in the corresponding legend entries
are the shape parameters characterizing each fit, which were obtained via the method of moments.

2000) was observed in the early wave-breaking stages, although multiple mechanisms
could explain the observed D−10/3 power-law scaling in the size distribution (e.g. Yu et al.
2019; Yu, Hendrickson & Yue 2020). The present simulations, with the accompanying
detection algorithm for break-up events, also provide detailed break-up statistics, which
are analysed in §§ 5.2 and 5.3. These statistics contribute to the break-up flux, Wb(D; t),
as discussed in Part 1 and summarized in § 2.1, and provide further indirect evidence
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of a break-up cascade. The break-up flux across size D can be directly decomposed into
incoming contributions Ip(Dp; t|D) from parent bubbles of sizes Dp > D and outgoing
contributions Ic(Dc; t|D) to child bubbles of sizes Dc < D, as shown in § 2.2, as well
as figures 4 and 5 of Part 1. These complementary decompositions respectively provide
information on infrared and ultraviolet locality in the flux. Satisfying these measures of
locality is a necessary condition for the presence of a break-up cascade, with Ip and Ic
decaying rapidly away from D. Cascade-like behaviour may also be directly characterized
by size invariance and quasi-stationarity of the break-up flux at intermediate sizes. These
observations are direct consequences of the theoretical analysis performed in Part 1. In
this subsection, the simulation results are further leveraged by examining these quantities
to obtain more direct observations of cascade-like behaviour.

5.4.1. Infrared and ultraviolet locality
Figure 12 plots the time-averaged differential incoming (parent, Ip

T
) and outgoing

(child, Ic
T
) contributions to the break-up flux for the two time intervals identified in §§ 3.3,

5.1 and 5.2, and an intermediate cutoff bubble size near D/L = 2 × 10−2. This choice of
D/L is representative of a bubble size within the intermediate-size subrange in figures 4–10
in which the break-up cascade scalings were recovered during the first time interval of
interest. Other choices of D/L, which are not shown here, display a similar behaviour. The
differential incoming contributions from parent bubbles strongly decay with increasing
parent bubble size, while the differential outgoing contributions to child bubbles strongly
decay with decreasing child bubble size, indicating that the break-up flux is strongly
infrared and ultraviolet local, as suggested in Part 1. Power-law fits of these decay
rates exhibit exponents near −7 and 5 for Ip

T
and Ic

T
, respectively. The theory in Part 1

predicts these exponents for a uniform child bubble volume distribution, qb, that remains
invariant with parent bubble size. Slight deviations from these idealized values may be
accounted for by the mild deviations of q̌b

T
from uniformity and parent-bubble-size

invariance observed in § 5.3. Note that reasonable agreement with the exponents from Part
1 is obtained for both time intervals even though the D−10/3 scaling is absent from the size
distribution in the second interval. This suggests that cascade-like behaviour persists in this
interval, even as the dissipation rate decays. The recovery of the exponents in the second
interval is consistent with gbf ∼ D−4, whose persistence in both intervals was noted at the
end of § 5.2.

One might observe that the decay rate of Ip
T

becomes gentler at very large parent bubble
sizes, especially during the first time interval. This is reminiscent of the occurrence of
large-size-ratio cascade-bypassing break-up events in large parent bubbles in figure 11(e).
Two remarks are in order here. First, the contributions from these events to the break-up
flux are orders of magnitude smaller than the transfers from events of highest locality.
Second, these contributions arise from intermittent break-up events as evidenced in
figure 13, which illustrates the instantaneous differential incoming contributions from
parent bubbles at two time instances during the first interval. Notwithstanding these
caveats, these results suggest that the break-up dynamics is well approximated as local
in bubble-size space in both time intervals of interest.

5.4.2. Size variation and time evolution of the break-up flux
Figure 14 plots the variation of the time-averaged break-up flux Wb

T
(D) with cutoff

bubble size D for the two time intervals identified in §§ 3.3, 5.1 and 5.2. Observe that
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Figure 12. (a,c) The normalized time-averaged differential outgoing transfer rate Ĩc
T
(Dc,j|D) to child bubbles

as a function of non-dimensional child bubble size Dc/L and (b,d) the corresponding differential incoming

transfer rate Ĩp
T
(Dp,j|D) from parent bubbles as a function of non-dimensional parent bubble size Dp/L, for

the 20-realization baseline ensemble subset at the non-dimensional cutoff size D/L = 1.86 × 10−2 marked by
the dashed vertical line. These statistics are time-averaged over the (a,b) early (t = 2.30–3.14) and (c,d) late
(t = 3.45–3.95) wave-breaking stages. The normalization, histogram bins, shaded regions and dotted vertical
lines are identical to those in figure 8. Break-up events involving subgrid child bubbles are excluded. The error
bars and fit-exponent uncertainties denote twice the standard error over the ensemble. The power-law fits were

performed over bubbles with non-dimensional diameters between 9.74 × 10−3 and 1.69 × 10−2 for Ĩc
T

, and

between 2.04 × 10−2 and 3.54 × 10−2 for Ĩp
T

, on the dataset with snapshot interval �ts,20.
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Figure 13. The normalized differential incoming transfer rate Ĩp(Dp,j; t|D) from parent bubbles as a
function of non-dimensional parent bubble size Dp/L for the 20-realization baseline ensemble subset at
the non-dimensional cutoff size D/L = 1.86 × 10−2, and at the times (a) t = 2.51 and (b) t = 2.99. These
statistics are averaged over the non-dimensional sampling interval 16�ts,20 = 9.6 × 10−2 used in figure 8.
For a description of the normalization, shaded regions, vertical lines, excluded events, error bars, bubble-size
subrange and dataset for the power-law fits, and the fit-exponent uncertainties, refer to the caption of figure 12.
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Figure 14. The normalized time-averaged break-up flux W̃b
T
(D/L) against non-dimensional size D/L for the

20-realization baseline ensemble subset. These statistics are time-averaged over the (a) early (t = 2.30–3.14)
and (b) late (t = 3.45–3.95) wave-breaking stages. For a description of the normalization, vertical lines,
excluded events and error bars, refer to the caption of figure 12. The shaded regions depict the bubble-size
subrange over which the size-averaged break-up flux in figure 15 was obtained.

there is some degree of size invariance in the break-up flux in both time intervals, even
though the scale separation in the simulated waves is not exceedingly large as remarked
in §§ 5.1 and 5.2. This size invariance is expected in the theory from Part 1 if Ip ∼ D−7

p
and Ic ∼ D5

c , or more generally if the magnitude of the power-law exponent for Ip is larger
than that for Ic by 2. These exponents are approximately recovered for both time intervals
in § 5.4.1. Note that the size invariance of the break-up flux, Wb, is also consistent with
approximate stationarity in the size distribution, f̄ , as implied by (2.5), as well as the
usage of the break-up flux as a proxy for the entrainment flux, as discussed in § 2.1.
Further implications of the consistency of quasi-self-similarity and quasi-stationarity in
the break-up dynamics are explored in appendix A with reference to the discussion on
time averaging in § 5.1. Finally, observe that the ratio of the flux at intermediate sizes to
the flux at large sizes differs in the two time intervals of interest. The ratio is close to unity
in the first interval, with variations due to large-scale inhomogeneities, but increases by
an order of magnitude in the second interval. This suggests that active entrainment at the
large scales directly drives bubble-mass transfer from large- to small-bubble sizes in the
first interval. The entrainment appears to have ceased in the second interval as mentioned
in § 5.1, and bubble-mass transfer seems to be chiefly the result of the fragmentation of
already-entrained large cavities and bubbles.

Figure 15 plots the variation of the flux Wb
D
(t) with time, averaged over a narrow

intermediate range of bubble sizes enveloping the cutoff size considered in § 5.4.1.
Because of the quasi-size-invariance observed in figure 14, the results of figure 15 are
representative of the intermediate-size dynamics considered in this work. The flux has
distinct characteristics in the two time intervals identified in §§ 3.3, 5.1 and 5.2. The first
time interval with a relatively constant rate of energy dissipation appears to be concomitant
with an approximately constant flux, closing the loop on the presence of a quasi-steady
turbulent bubble break-up cascade in this interval. The oscillations in the flux mirror the
oscillations in the dissipation rate in figure 3(b), and appear to be related to the earlier
discussion in § 5.1 on the oscillating power-law exponent for the size distribution. The
second time interval with a decreasing dissipation rate appears to be associated with
a flux that linearly increases with time. As discussed in § 5.4.1, the flux was observed
to be strongly size local during this interval, which is indicative of the persistence of
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Figure 15. The normalized size-averaged break-up flux W̃b
D
(t) against non-dimensional time t for the

20-realization baseline ensemble subset. The flux is averaged over the bubble-size subrange spanning
non-dimensional diameters between 1.69 × 10−2 and 2.23 × 10−2, as indicated by the shaded regions in
figure 14. For a description of the normalization, excluded events and error bars, refer to the caption of figure 12.
The shaded regions span the same time intervals as those in figures 3(b), 5 and 9.

cascade-like behaviour. However, the temporally increasing flux does not drive a uniform
increase in the magnitude of the size distribution at all sizes, as depicted in figures 4
and 6. Instead, it is observed in § 5.1 that the power-law scaling of the size distribution
transitions from D−10/3 to D−8/3. This suggests that small bubbles may be depleted more
rapidly at these late times. The continuation of the flux over several characteristic times
suggests that the volume of gas present in small bubble sizes gradually increases over time.
The assumption in Part 1 that one may neglect this accumulation should eventually break
down towards the late wave-breaking stages. The increased importance of coalescence
due to this accumulation, and its potential role in the aforementioned depletion of small
bubbles, is addressed in appendix E.

6. Conclusions

This paper investigates the evolution of the bubble-size distribution and other bubble
statistics beneath a breaking wave during the active wave-breaking phase using
ensembles of numerical simulations. A large ensemble of simulations enhances
statistical convergence in these bubble statistics, which is particularly important for
the time-dependent behaviour explored in this paper. Two time intervals of interest
are identified, with comparison and contrast between them throughout the paper. This
analysis goes beyond the size distribution by identifying and characterizing individual
break-up events in order to directly observe characteristics associated with the bubble-mass
cascade phenomenology that were identified in Part 1. The evolving dynamics in the
bubble-mass-transfer process is summarized in table 2. The results of this paper (Part
2) suggest that cascade-like behaviour is present in both time intervals, even when the
equilibrium D−10/3 power law is not observed in the size distribution at intermediate
sizes. They highlight that different bubble generation and evolution mechanisms emerge
at different length and time scales during the wave-breaking process, even within the
relatively limited range of length scales captured in these simulations. Future ensembles
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Stage Nature of Nature of Scaling Locality of Description of
flux Wb dissipation ε̄ of f̄ flux Wb bubble-mass transfer

Early Quasi-steady Quasi-steady D−10/3 Strong Bubble break-up cascade
Late Increasing Decreasing D−8/3 Strong Cascade-like behaviour

+ other dynamics

Table 2. Summary of bubble-mass-transfer dynamics in the active wave-breaking phase.

of higher ReL and WeL simulations with resolution of a larger range of scales may bring
about more clarity on these mechanisms.

The evolution of the bubble-size distribution and other associated bubble statistics in the
present simulation ensembles may be summarized as follows. In the early wave-breaking
stages, large air cavities are entrained and successively fragmented. The corresponding rate
of bubble-mass transfer from large- to small-bubble sizes is quasi-steady, as is the energy
dissipation rate, which also reaches a maximum value in this time interval. These are the
ideal characteristics of a forward bubble-mass cascade driven by turbulent fragmentation.
As originally proposed by Garrett et al. (2000), this is accompanied by a D−10/3 power-law
scaling in the size distribution. The break-up statistics of Part 2 provide strong support
for the theoretical results of Part 1 in this early time interval. The time-averaged size
distribution matches the D−10/3 scaling in agreement with Deane & Stokes (2002), Wang
et al. (2016) and Deike et al. (2016). Deviations of the instantaneous size distribution
from this scaling are observed but are reduced by time averaging over the entire interval.
The D−4 power-law scaling derived in Part 1 for the differential break-up rate is also
recovered. Notwithstanding several intermittent non-local events for large parent bubbles,
the probability distribution of child bubble volumes is roughly uniform in the range
of parent bubble sizes where the D−10/3 scaling is observed in the time-averaged size
distribution. The resulting break-up flux remains strongly infrared and ultraviolet local.
The incoming differential flux from parent bubbles approaches a D−7

p power-law scaling
over a range of parent bubble sizes, while the outgoing differential flux to child bubbles
approaches a D5

c power-law scaling over a range of child bubble sizes. These scaling
exponents were predicted in Part 1 for a uniform child bubble volume distribution. The
observed scalings suggest that the underlying bubble-mass-transfer process is indeed size
local and self-similar, although a more robust demonstration of self-similarity may only
be evident in larger waves of higher ReL and WeL. Together, these observations provide
strong support for the presence of a quasi-steady turbulent bubble break-up cascade at
intermediate bubble sizes during the early wave-breaking stages.

In the late wave-breaking stages, large entrained bubbles continue to break up into
smaller bubbles. The corresponding rate of bubble-mass transfer from large to small sizes
accelerates while the dissipation rate begins to decay. Two distinct power-law scalings
appear in the size distribution in agreement with Tavakolinejad (2010) and Masnadi et al.
(2020) but in deviation from the D−10/3 scaling. The increased magnitude of the size
distribution suggests that small and intermediate bubbles are more populous in this time
interval. Vestiges of locality, stationarity and self-similarity are nonetheless present in
the corresponding break-up statistics, indicating that the break-up dynamics still exhibits
cascade-like behaviour. The steepening of the size distribution at large bubble sizes is
indicative of buoyant degassing. A shallower size distribution appears at intermediate
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bubble sizes. The data appear to be consistent with a more rapid depletion of small
bubbles, potentially via coalescence.

Several concluding remarks are made in view of these observations. The theoretical
framework developed in Part 1 enables one to go above and beyond the traditional D−10/3

power-law scaling in the size distribution in diagnosing the presence of a break-up cascade.
The results of Part 2 demonstrate that the access to detailed spatial information provided
by numerical simulations allows a more precise evaluation of various components of the
theoretical framework. The multifaceted nature of this analysis enables a more nuanced
description of the underlying break-up dynamics even when the D−10/3 scaling is absent.
For example, a number of key physical aspects of the cascade phenomenology, such
as locality, were determined to be present even in the late wave-breaking stages. The
elements of the formalism in Part 1 could thus be seen as an analytical toolkit that may
be used to selectively probe the characteristics of break-up and coalescence dynamics
in multiscale two-phase flows. This toolkit may be used to advance understanding of
cascading processes, and more generally to inform the validation and development of
model kernels for the population balance equation.

Knowledge of the physical mechanisms underlying bubble generation enables the
quantification of interfacial fluxes and radiation scattering, which are of practical
importance in maritime and climate studies, such as carbon sequestration and the
persistent wake signatures of seafaring vessels. The rich temporal evolution of
the bubble-mass-transfer process observed in this work reflects the complexity in
modelling these mechanisms. Elucidation of sustained cascade-like behaviour in the
bubble-mass-transfer dynamics presents opportunities for modelling of subgrid bubble
break-up in large-eddy simulations.
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Appendix A. Averaging operations for computing bubble statistics

The ensemble-averaged bubble-size distribution f (x, D; t) was defined in Part 1 at every
location x, for every bubble size D and at some time t by ensemble averaging (〈·〉)
the number density function of a bubble population, which is constructed by summing
a contribution from each bubble in the population i = 1, . . . , Nb(t) having a centroid

912 A43-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
84

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-3525-6319
https://orcid.org/0000-0002-3525-6319
https://orcid.org/0000-0002-7929-9396
https://orcid.org/0000-0002-7929-9396
https://orcid.org/0000-0002-0491-7065
https://orcid.org/0000-0002-0491-7065
https://orcid.org/0000-0003-3675-8377
https://orcid.org/0000-0003-3675-8377
https://doi.org/10.1017/jfm.2020.1084


W.H.R. Chan, P.L. Johnson, P. Moin and J. Urzay

location xi and an equivalent size Di. Then f may be expressed as

f (x, D; t) =
〈Nb(t)∑

i=1

δ (x − xi(t)) δ (D − Di(t))

〉
. (A1)

It was alluded to in § 2 that the volume-averaged and ensemble-averaged size distribution
f̄ (D; t) is typically reported in breaking-wave simulations and experiments as

f̄ (D; t) = 1
V

∫
Ω

dx f (x, D; t) = 1
V

〈Nb(t)∑
i=1

δ (D − Di(t))

〉
, (A2)

where V = ∫
Ω

dx is the volume of the domain Ω over which the bubble population is
integrated. Domain Ω should be selected such that it always contains all Nb(t) bubbles.
In this work, V is chosen to be the characteristic wave volume, L3. Since this coincides
with the computational domain volume, all Nb(t) bubbles are thereby always included.
The volume-averaging operation is analogously defined for other bubble statistics like
gbf . The ensemble-averaging and volume-averaging operations commute when V and
Ω are identical across all the ensemble realizations. Thus, f̄ satisfies the normalization
conditions

〈Nb(t)〉
V = 〈nb(t)〉 =

∫ ∞

0
dD f̄ (D; t), (A3)

where nb(t) is the number of bubbles in the system per unit domain volume for an ensemble
realization, or the global bubble number density in the realization. The population balance
equation for f (x, D; t)D3 was written in Part 1 as

∂[ f (x, D; t)D3]
∂t

+ ∂[vi(x, D; t)f (x, D; t)D3]
∂xi

+ ∂[vD(x, D; t)f (x, D; t)D3]
∂D

= H(x, D; t), (A4)

where vi and vD are the velocities of fD3 in the x–D phase space along the spatial and
bubble-size dimensions, respectively, and H is a model term that includes source, sink
and non-local transfer terms for the transport of fD3. Volume averaging the equation
over a domain that always includes all Nb(t) bubbles yields (2.3). A similar procedure
may be used to obtain (2.4). Note that the spatial and bubble-size dimensions are
orthogonal in the x–D phase space. Thus, the expected D-scaling of a quantity, such
as the theoretical variations of f (x, D; t) and f̄ (D; t) with D, should remain invariant
under volume averaging provided there is sufficient statistical convergence in the
quantity.

Volume averaging aggregates statistics at different locations, and provides a convenient
way of achieving statistical convergence in a limited number of realizations, as well as
a more concise description of the underlying dynamics (Hinze 1955). It is argued here
that volume averaging also achieves a good approximation for low-order bubble statistics,
including the size distribution, as if the underlying flow was statistically homogeneous
(Deike et al. 2016). More specifically, it averages these statistics over small, localized
regions that may each be treated as statistically homogeneous in the spirit of local isotropy.
This may be motivated by the arguments behind Kolmogorov’s refinements to his original
energy cascade hypotheses (Kolmogorov 1962). The original hypotheses (Kolmogorov
1941) are best applied in regions where the assumption of spatial homogeneity is robust.
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In a statistically inhomogeneous flow, diffusion fluxes across large-eddy length and
time scales may become important, thereby manifesting as large-scale variations in
the turbulent kinetic energy, as well as intermittency in the localized production and
dissipation rates. The refinements of Kolmogorov (1962) attempt to characterize these
variations systematically through an assumption on their statistical distribution. To
enable this, volume averaging is performed in small, localized regions that are each
approximately statistically homogeneous. The original hypotheses are then recovered for
locally volume-averaged flow statistics, with constants of proportionality that account for
large-scale inhomogeneities. The original and refined hypotheses do not yield significantly
different results when applied to low-order flow statistics (Pope 2000, § 6.7.4), such as the
second-order velocity structure functions. The global volume-averaging procedure adopted
in this work eliminates these diffusion fluxes by averaging flow and bubble statistics over
a volume where no net transport in or out is expected. This assumes each small, localized
region in the global averaging volume is subject to the same characteristic large-eddy
length and time scales, in the spirit of the original hypotheses of Kolmogorov (1941). This
is thus likely to be reasonable for low-order flow and bubble statistics, with additional
corrections necessary for higher-order statistics when, for example, ε̄n is no longer well
approximated by (ε̄)n for large n. Hence, volume averaging is a physically relevant way
of computing low-order bubble statistics in addition to its expedience. Nevertheless,
knowledge of the spatial distribution of bubbles may at times be important, and two
representative snapshots of the ensemble-averaged and spanwise-averaged liquid volume
fraction are provided in appendix F to give a general sense of this spatial variation in the
context of breaking waves.

As an endnote, recall the remark in § 5.1 of Part 1 that the analysis for the
bubble-mass cascade resembles the monofractal analysis of Eyink (2005) for the
energy cascade. The identification of a single power-law scaling in the bubble-size
distribution under a given set of conditions also suggests monofractality in the
bubble break-up dynamics (Turcotte 1986). For example, the D−10/3 power-law scaling
corresponds to a fractal dimension of 7/3, or that of a convoluted surface (see
also Sreenivasan & Meneveau 1986; Sreenivasan, Ramshankar & Meneveau 1989;
Sreenivasan 1991; Vassilicos & Hunt 1991). It appears that the act of averaging out the
previously discussed large-scale fluctuations yields monofractal dynamics that provides
an average sense of any underlying multifractal dynamics. This applies to both the
volume-averaging procedure discussed above and the time-averaging procedure introduced
in § 5.1. The latter implicitly assumes that the dynamics in these small, localized
and quasi-homogeneous regions are also quasi-stationary. The additional observation of
quasi-self-similarity in these break-up dynamics in an intermediate range of bubble sizes,
as discussed in § 5.4.2, brings to mind the five-dimensional turbulent cascade in the
three spatial dimensions, time and scale discussed by Cardesa, Vela-Martín & Jimenéz
(2017).

Appendix B. Estimating the energy dissipation rate ε̄

Recall from Part 1 and § 2 that the wavelength and deep-water-wave phase velocity of a
characteristic wave are respectively used to estimate L and uL in the context of breaking
waves. These characteristic scales may then be used to estimate the characteristic energy
dissipation rate ε̄ ∼ u3

L/L, and thereafter the global Kolmogorov and Hinze scales in
(2.1) and (2.2). However, some experiments (Rapp & Melville 1990; Na et al. 2016)
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have suggested that the largest eddies and gaseous cavities have characteristic sizes
and velocities that are an order of magnitude smaller. Other experiments have further
suggested that most of the turbulence that originates from wave breaking initially resides
in a region whose thickness is of the order of one wave height from the surface (Rapp
& Melville 1990; Terray et al. 1996; Thomson et al. 2016). These have motivated the
choice of other quantities for the estimation of characteristic wave scales. For example,
typical surface trajectories during wave breaking may have motivated the development of
a ballistic scaling by Drazen et al. (2008) that uses the wave height to estimate L and
the corresponding ballistic velocity to estimate uL. The corresponding ballistic time can
be smaller than the wave period by an order of magnitude depending on the wave slope.
The ballistic scaling was demonstrated to be adequate for single breaking events with
moderate wave slope S, where S = ∑Nm

i=1 aiki may be interpreted as the maximum slope of
the initial waveform. The waveform is assumed to be a wave packet with Nm component
modes, and ai and ki are the initial amplitude and wavenumber, respectively, of the ith
mode. However, it has been observed (Loewen & Melville 1991; Melville 1994; Loewen,
O’Dor & Skafel 1996; Drazen et al. 2008; Deane et al. 2016a,b) that the dissipation
rate eventually saturates with increasing wave slope due to the presence of multiple
breaking events. This necessitates a different choice of the characteristic scales for steeper
waves or more general breaking patterns. In this work, for example, the characteristic
maximum slope of the initial waveform is S = ∑3

i=1 aiki = 0.76, where i = 2 and i = 3
refer, respectively, to the first and second harmonics. This value of S is in the saturated
regime identified by Drazen et al. (2008). The forthcoming discussion suggests that in
the absence of additional information, the wavelength and phase velocity remain the most
generic choices for the characteristic length and velocity scales, respectively, in breaking
waves.

Two canonical scenarios are considered for energy conversion during wave breaking.
First, consider the average energy transfer rate from coherent to turbulent motion in a
single travelling wave of height h and wavelength λ. Before breaking occurs, the wave
energy per unit width and wavelength 1

4ρlgh2 is carried forward at the group velocity√
(gλ)/(8π). Suppose that the action of breaking is to transfer this energy into a volume

with cross-sectional area h by h (Lamarre & Melville 1994; Loewen & Melville 1994;
Deane & Stokes 2002; Drazen et al. 2008; Rojas & Loewen 2010). The resulting average
energy transfer rate per unit mass is ε̄ ∼ 0.8c3

p/λ, where cp is the wave phase velocity.
Second, consider the average energy transfer rate from large to small waves in a travelling
wavepacket with central wavelength λ and a corresponding central phase velocity cp.
Gemmrich & Farmer (2004) and Babanin et al. (2010) reported wave and velocity spectra
from individual wave-breaking events indicating the momentary upshifting of the peak
wavenumber towards smaller scales before breaking, and then downshifting towards larger
scales after breaking. This hints at the accumulation and then release of energy at some
small limiting scale. A similar focusing process was observed in physical space during
the prebreaking phase in the two-dimensional numerical study of a spilling breaker by
Iafrati (2011), and in the experimental study of a plunging breaker by Bonmarin (1989).
Inspired by these observations, as well as the arguments by Kitaigorodskii (1983), one may
estimate ε̄ as a ratio of the characteristic energy transported by the wave c2

p to the time scale
associated with the limiting breaking scale tb ∼ Lb/ub. Assuming Lb is a function of only ε̄

and g, and taking ub to be the phase velocity of a wave of length Lb, one eventually obtains
the estimate ε̄ ∼ 4c3

p/λ. Both estimates for ε̄ are of the order O(c3
p/λ). In the absence

of additional constraints to restrict this estimate further, it is proposed that ε̄ ∼ u3
L/L be

estimated by assuming L ∼ λ and uL ∼ cp.
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Appendix C. Bubble identification

The error incurred by the bubble identification algorithm introduced in § 4.1 is briefly
discussed for a number of simple test cases. The reader is referred to the discussion of
Chan et al. (2018a) and Chan (2020) for a more detailed comparison of the employed
grouping criterion with other criteria. First, the error in computing the volume of a single
drop was determined by ballistically advecting the drop in a quiescent gas and by advecting
it with a constant imposed velocity. In both cases, a uniform mesh was adopted, and
there were O(10) grid cells spanning the drop diameter. The volume error normalized
by the grid-cell volume (�D)3 was of the order of O(10−2–10−1), while the centroid error
normalized by the grid-cell spacing �D was of the order of O(10−4). Next, these errors
were used to estimate the ability of the algorithm to distinguish between a closely spaced
large drop–small drop pair and fluctuations in the volume of the large drop from one time
step to another. The performance of the algorithm on this task is crucial in determining the
accuracy of the tracking algorithm in § 4.2. It is first assumed that the normalized volume
error of a drop, �Verr/(�D)3, is proportional to its normalized surface area, πD2/(�D)2:

�Verr

(�D)3 = M
[
π

D2

(�D)2

]
. (C1)

The proportionality constant, M, is assumed to depend only on the grouping criterion.
Next, suppose d and D are the diameters of the small and large drops, respectively. Then,
in the limit that the two scenarios cannot be distinguished, one may write

M
[
π

D2

(�D)2

]
	 πd3

6(�D)3 . (C2)

This yields the limiting size ratio

r = D
d

	
√

d
6M�D

. (C3)

For the grouping criterion in this work, M = O(10−4) and r/
√

N 	 20–40 for a given
limiting bubble resolution N = d/(�D), so the algorithm can distinguish between these
two scenarios for size ratios of the order of O(102) even when the small bubble is not well
resolved. Note that this estimate for M leads to the non-dimensional bubble diameter error
for the breaking-wave baseline ensemble �Derr/L = O(10−6).

It is worth noting that many identification schemes are afflicted by the corner case of
distinguishing two bubbles spaced a grid cell apart from a dumbbell-shaped bubble where
two gaseous masses are connected by a thin gaseous bridge with the dimensions of a grid
cell. The occurrence of this corner case does not necessarily suggest a deficiency in any
of these schemes. Instead, it is representative of an inherent limitation of a sharp-interface
field with finite resolution: when a thin gaseous bridge is numerically indistinguishable
from a small under-resolved bubble or a small gaseous protrusion on the surface of a larger
bubble, none of the geometries necessarily represent reality more accurately in the absence
of additional information. Consequently, any decision by any scheme to favour any of the
geometries is essentially arbitrary to a certain degree. The grouping criterion introduced
in this work collectively identifies the gaseous masses and the gaseous bridge as a single
bubble if the bridge is connected to cells in both gaseous masses with sufficiently large
1 − φ. Otherwise, it returns two large bubbles and a small under-resolved bubble.
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Appendix D. Event detection

The constraints required to track a bubble from one simulation snapshot to another in
the event detection algorithm introduced in § 4.2 are discussed here. As a bubble is
advected, its mass – and volume in an incompressible setting – remains constant between
the snapshots even if it deforms, within the error identified in appendix C. The principle
of mass conservation is necessarily satisfied even if one bubble breaks up into two or if
two bubbles coalesce into one. Suppose bubble 0 breaks up into bubbles 1 and 2, or 1 and
2 coalesce to form 0. In the case of break-up, one may write∣∣∣Vn

0 −
[
Vn+1

1 + Vn+1
2

]∣∣∣ < �Verr, (D1)

while in the case of coalescence, one may write∣∣∣Vn+1
0 − [Vn

1 + Vn
2
]∣∣∣ < �Verr, (D2)

where V j
i is the volume of bubble i in a flow snapshot j, n denotes a generic flow snapshot

and �Verr is the volume error discussed in appendix C. Also, if the simulation satisfies
the CFL condition, then each fluid–fluid interface cannot traverse more than a single cell
width every time step, multiplied by the maximum permissible Courant number C′ for the
employed advection scheme. Thus, the centroid of a bubble remains stationary between
snapshots insofar as the permissible distance error is the product of the local grid spacing
�x, the number of time steps between the snapshots Nt and C′. This condition is also
necessarily satisfied during break-up and coalescence. Denote the centroid of a bubble i in
snapshot j as x j

i . In the case of break-up, one may write∣∣∣∣∣
∣∣∣∣∣xn

0 − xn+1
1 Vn+1

1 + xn+1
2 Vn+1

2

Vn+1
1 + Vn+1

2

∣∣∣∣∣
∣∣∣∣∣ < C′Nt�x, (D3)

while in the case of coalescence, one may write∣∣∣∣∣∣∣∣xn+1
0 − xn

1Vn
1 + xn

2Vn
2

Vn
1 + Vn

2

∣∣∣∣∣∣∣∣ < C′Nt�x. (D4)

Note that the identification algorithm also generates spatial errors in the centroid. However,
as noted in appendix C, these errors are typically much smaller than the grid spacing,
and will be neglected. The constraints (D1)–(D4) are sufficient for the identification of
break-up and coalescence events, as well as continuing bubbles, using the bubble volumes
and centroids. These constraints assume that all break-up and coalescence events are
binary. Note also that (D1) and (D2) imply a critical size ratio r above which events
involving a small bubble and a large bubble cannot be distinguished from fluctuations
in the volume of the large bubble between snapshots. This ratio is discussed in appendix
C. Choosing an identification scheme with a lower volume error increases the critical size
ratio keeping the resolution of the smallest bubble constant, allowing more relevant events
to be captured accurately.

Appendix E. The role of coalescence

Given that the importance of coalescence events is expected to increase with the passage
of time and the increase in the number density of small bubbles, coalescence statistics
were investigated to determine the role of coalescence in the late wave-breaking stages.
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Figure 16. The ratio of the size-averaged coalescence flux to the size-averaged break-up flux, Wc
D
/Wb

D
(t),

against non-dimensional time t for the 20-realization baseline ensemble subset. Coalescence events involving
subgrid parent (ancestral) bubbles are excluded. For a description of the shaded regions, excluded break-up
events, error bars and the bubble-size subrange over which the fluxes were averaged, refer to the caption of
figure 15.

Note that coalescence events driven by large-scale dynamics such as buoyancy and
turbulence are governed by the corresponding large-scale characteristic time scales (see
e.g. Rodríguez-Rodríguez et al. 2006). This means that while the precise moment of
coalescence may not be captured accurately since most full-scale numerical simulations
cannot feasibly resolve the film drainage that precedes coalescence, macroscopic
coalescence statistics remain reasonably reliable unless the system is devoid of these
large-scale external influences. There is, however, a possibility that numerical coalescence
elevates the total observed coalescence flux. The coalescence flux Wc(D; t) across a cutoff
size D was computed in an analogous fashion to Wb(D; t) using the event detection
algorithm in § 4.2. Figure 16 plots the time evolution of Wc

D
/Wb

D
(t) where size averaging

is performed over the same bubble-size subrange used in figure 15. The plot indicates that
Wc

D
is consistently smaller than Wb

D
, indicating that coalescence is possibly not a major

player in the dynamics even towards t = 4. A closer look at the statistics suggests that
the complete story may be more nuanced. Figure 17 plots the time-averaged coalescence
probability q̌c

T
(D3

cp|D3
cc), which is the probability that a coalescence event generating a

child (descendant) bubble of size Dcc involves a parent (ancestral) bubble of size Dcp
and another parent bubble such that the total gaseous volume remains constant, for the
two time intervals identified in §§ 3.3, 5.1 and 5.2. The distributions reveal that for most
child bubbles, large-size-ratio events involving one small parent bubble and one large
parent bubble dominate the dynamics. The dominance of large-size-ratio coalescence
events may be analytically supported from kinetic theory arguments, such as the one
posited by Chan et al. (2018b), which argues that large-size-ratio collisions are favoured
when the size distribution decays with increasing bubble size. In short, the dynamics
of coalescence appears to be dominated by parent bubbles that are beyond the reach of
the current simulations. It is possible, then, that Wc has been underestimated in these
simulations, and the jury is still out as to the importance of coalescence in the late
wave-breaking stages. A study of coalescence is deferred to later work where the capability
to computationally capture these small bubbles is included. One possible approach is to
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Figure 17. The time-averaged coalescence probability q̌c
T
(D3

cp,j|D3
cc) against normalized parent (ancestral)

bubble volume D3
cp/D3

cc for the 20-realization baseline ensemble subset during the (a,c,e) early (t = 2.30–3.14)
and (b,d, f ) late (t = 3.45–3.95) wave-breaking stages. The non-dimensional child (descendant) bubble sizes
considered are (a,b) between 1.86 × 10−2 and 2.23 × 10−2, (c,d) between 2.68 × 10−2 and 3.23 × 10−2 and
(e, f ) between 3.54 × 10−2 and 4.25 × 10−2. Only parent bubbles of radii larger than the mesh resolution are
considered. The vertical dashed lines demarcate the parent bubble volumes in the coalescence event where one
of the parent bubble radii corresponds to this resolution limit. The error bars denote one standard error over the
baseline ensemble.

replace bubbles under-resolved by the current Eulerian treatment with Lagrangian point
particles, as alluded to in Part 1 and to be discussed in forthcoming work.

Appendix F. Spatial distribution of the liquid volume fraction

In order to provide a general sense of how the bubbles are spatially distributed during
the wave-breaking process, figure 18 plots the ensemble-averaged and spanwise-averaged
liquid volume fraction, φ, at two representative time instances, one just before the first
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(b)(a)

0 0.25 0.50 0.75 1.00 0 0.25 0.50 0.75 1.00

Figure 18. The ensemble-averaged and spanwise-averaged liquid volume fraction φ for the 30-realization
baseline ensemble, computed at (a) t = 2.23 and (b) t = 4.04. The solid line denotes the φ = 0.5 isocontour.

characteristic time interval and one just after the second characteristic time interval
identified in table 2. Note that the void fraction may be correspondingly computed
as (1 − φ). In general agreement with the other works discussed in §§ 3.3 and 5.1,
high-void-fraction mixed-phase regions are initially concentrated near the areas with rapid
topology change as evidenced in figure 18(a), and then gradually evolve into a number of
diffuse bubble clouds near the wave surface as evidenced in figure 18(b).
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