
Adv. Appl. Prob. 49, 549–580 (2017)
doi:10.1017/apr.2017.12

© Applied Probability Trust 2017

LIMIT THEOREMS FOR SOME BRANCHING
MEASURE-VALUED PROCESSES
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Abstract

We consider a particle system in continuous time, a discrete population, with spatial
motion, and nonlocal branching. The offspring’s positions and their number may depend
on the mother’s position. Our setting captures, for instance, the processes indexed by
a Galton–Watson tree. Using a size-biased auxiliary process for the empirical measure,
we determine the asymptotic behaviour of the particle system. We also obtain a large
population approximation as a weak solution of a growth-fragmentation equation. Several
examples illustrate our results. The main one describes the behaviour of a mitosis model;
the population is size structured. In this example, the sizes of the cells grow linearly and
if a cell dies then it divides into two descendants.
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1. Introduction

In this paper we study the evolution of a Markov process indexed by a tree in continuous
time. The tree can represent a population of cells, polymers, or particles. On this population,
we consider the evolution of an individual characteristic. This characteristic can represent
the size, the age, or the rate of a nutrient. During the life of an individual, its characteristic
evolves according to an underlying Markov process. At nonhomogeneous time, the individuals
die and divide. The offspring’s characteristics depend on the mother’s and on the number of
children. This model was studied in [1], [4]–[6], [17], and [23]. Here, we study the asymptotic
behaviour of the empirical measure which describes the population. Following [5], we begin
to prove a many-to-one formula (also known as, for example, spinal decomposition or tagged
fragment) and then deduce its long-time behaviour. This formula looks like the Wald formula
and reduces the problem to the study of a ‘typical’ individual. Closely related, we can find a
limit theorem in discrete time as in [11], in continuous time with a continuous population as in
[16] and for a space-structured population model as in [17]. Our approach is closer to [5] and
extends their law of large number to a variable rate of division. This extension is essential in
application [4]. In our model, the population is discrete. It is the microscopic version of some
deterministic equations studied in [31], [39], and [40]. Following [20] and [44], we scale our
empirical measure and prove that these partial differential equations are macroscopic versions
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550 B. CLOEZ

of our model. Before expressing our main results, we begin with some notation. If we startwith
one individual then we will use the Ulam–Harris–Neveu notation [5]:

• the first individual is labelled by ∅; when the individual u divides then it has a random
number of descendants, denoted by Ku, who are labelled by u1, . . . , uKu;

• set U = ⋃
m≥0(N

∗)m, where N = {0, 1, . . .}, N
∗ = {1, 2, . . .}, and (N∗)0 = {∅}; we

denote by Vt ⊂ U the set of individuals which are alive at time t ; we denote by Nt the
number of individuals alive at time t ;

• we denote by T ⊂ U the random set of individuals which are dead, alive, or will be
alive; for each u ∈ T , α(u), β(u), and (Xut )t∈[α(u), β(u)) denote respectively the birth
date and the death date of the individual u.

The dynamics of our model are then as follows.

• The characteristic of the first individual, (X∅

t )t∈[0,β(∅)) is distributed according to an
underlying càdlàg strong Markov process (Xt )t≥0 starting from X

∅

0 . For the sake of
simplicity, we will assume that X = (Xt )t≥0 is a Feller process, takes values in a subset
E of R

d , and is generated by

Gf (x) = φ(x) · ∇f (x)+ σ�f (x) (1.1)

for every f in the domain D(G) of G, where d ∈ N
∗, φ : R

d → R
d is a C∞ and

Lipschitz function, and σ ∈ R+. It is well known that D(G) contains the set C2
c (E)

of C2 functions with compact support. Note that our approach is available for another
underlying dynamic.

• The death time β(∅) of the first individual satisfies

P(β(∅) > t | X∅

s , s ≤ t) = exp

(
−

∫ t

0
r(X∅

s ) ds

)
,

where r is a nonnegative, measurable, and locally bounded function. Note that α(∅)= 0.
We assume that for any starting distribution, we have∫ ∞

0
r(X∅

s ) ds = +∞ almost surely. (1.2)

This ensures that whatever the initial condition, the death time is almost surely finite.

• At time β(∅), the first individual splits into a random number of children given by an
independent random variable K∅ of law (pk(X

∅

β(∅)−))k∈N∗ . For every k ∈ N, the
mapping x 
→ pk(x) is continuous and, for every x ∈ E, (pk(x))k≥0 is a vector whose
coordinates are nonnegative and sum to 1. We have α(1) = · · · = α(K∅) = β(∅).

• We assume that the mean offspring number, which is defined bym : x 
→ ∑
k≥0 kpk(x),

is locally bounded on E.

• The characteristics of the new individuals are given by (F (K
∅)

j (X
∅

β(∅)−,�))1≤j≤K∅ ,
where � is a uniform variable on [0, 1]. The sequence (F (k)j )j≤k,k∈N∗ is supposed to be
a family of continuous functions.

• Finally, the children evolve independently from each other as the first individual.
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Limit theorems for some branching measure-valued processes 551

The last point is the branching property. In [5], the cell’s death rate x 
→ r(x) and the law of
the number of descendants x 
→ (pk(x))k≥1 are constant (that is, do not depend on x) and a
many-to-one formula is proved: for every continuous and bounded function f , we have

1

E[Nt ]E
[∑
u∈Vt

f (Xut )

]
= E[f (Yt )], (1.3)

where Y is generated, for every function f ∈ D(G) and x ∈ E, by

A0f (x) = Gf (x)+ rm
∑
k≥1

kpk

m

∫ 1

0

1

k

k∑
j=1

(f (F
(k)
j (x, θ))− f (x)) dθ. (1.4)

This process evolves as X, until it jumps, at an exponential time with mean 1/rm. We observe
that r is not the jump rate of the auxiliary process. There is a biased phenomenon; note that the
children distribution is size biased; see [5], [23], and the references therein. We can interpret it
by the fact that the faster the cells divide, the more descendants they have; also, the more prolific
the cells are, the more representative they are. That is why a uniformly chosen individual has
an accelerated rate of division and a size-biased reproduction law. A possible generalisation of
(1.3) is a Feynman–Kac formula as in [23]: for every continuous and bounded function f , we
have

E

[∑
u∈Vt

f (Xut )

]
= E

[
f (Yt ) exp

(∫ t

0
r(Ys)(m(Ys)− 1) ds

)]
,

where Y is an auxiliary process generated by (1.4). In [4], another representation of the
empirical measure was used to prove the extinction of a parasite population. However, it is
difficult to exploit these formulae. Inspired by [16], [31], [39], [40], we follow an alternative
approach. In (1.3), Y can be understood as a uniformly chosen individual. The problem is: if r
is not constant then a uniformly chosen individual does not follow a homogeneous Markovian
dynamic. Our solution is to choose this individual with an appropriate weight. This weight is
a positive eigenvector V of the operator G defined, for every f ∈ D(G) and x ∈ E, by

Gf (x) = Gf (x)+ r(x)

[(∑
k≥0

k∑
j=1

∫ 1

0
f (F

(k)
j (x, θ)) dθ pk(x)

)
− f (x)

]
.

It is not the generator of a (conservative) Markov process on E but it is related to the branching
mechanism; see Lemma 2.2. Under some assumptions, we are able to prove that the following
weighted many-to-one formula holds:

1

E[∑u∈Vt
V (Xut )]

E

[∑
u∈Vt

f (Xut )V (X
u
t )

]
= E[f (Yt )], (1.5)

where Y is an auxiliary Markov process generated by

A = M + J, (1.6)

where M describes the motion between the jumps and is defined by

Mf (x) = G(f × V )(x)− f (x)GV (x)

V (x)
= Gf (x)+ 2σ

∇V (x) · ∇f (x)
V (x)

,
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and J describes the jump dynamics and is given by

Jf (x) = 	(x)

[∑
k∈N

∑k
j=1

∫ 1
0 V (F

(k)
j (x, θ))f (F

(k)
j (x, θ)) dθ pk(x)∑

k∈N

∑k
j=1

∫ 1
0 V (F

(k)
j (x, θ)) dθ pk(x)

− f (x)

]
,

where

	(x) =
[∑
k∈N

k∑
j=1

∫ 1

0
V (F

(k)
j (x, θ)) dθpk(x)

]
× r(x)

V (x)

for every f ∈ C2
c (E) and x ∈ E. These formulae seem to be complicated but they are very

simple when applied. Contrary to the previous bias, this one is present in the motion and the
branching mechanism. It has already been observed in another context; see [16]. Also note
that we do not assume that V is associated to the first eigenvalue. It is then possible to have
different many-to-one formulae as can be seen in Remark 3.4. Some criteria for the existence
of eigenelements can be found in [3], [12], [37], [41], and the references therein.

If Y is ergodic with invariant measure π then from (1.5), we have

lim
t→+∞

1

E[∑u∈Vt
V (Xut )]

E

[∑
u∈Vt

f (Xut )V (X
u
t )

]
=

∫
f dπ

for all continuous and bounded function f . We improve this result.

Theorem 1.1. (Long-time behaviour of the empirical measure.) If the following assumptions
hold:

(i) X∅

0 = x ∈ E is deterministic;

(ii) the system is nonexplosive; namely, Nt < +∞ almost surely for all t ≥ 0;

(iii) there exists (V , λ0) such that GV = λ0V , V > 0, and V is C2;

(iv) Y is a Feller process and is ergodic with invariant measure π ;

(v) there exists α < λ0 and Cx , such that Ex[V 2(Yt )] ≤ Cxeαt and

Ex

[
r(Yt )

V (Yt )

∫ 1

0

∑
a,b∈N∗, a �=b

∑
k≥max(a,b)

pk(Yt )V (F
(k)
a (Yt , θ))V (F

(k)
b (Yt , θ)) dθ

]
≤ Cxeαt ;

then for any continuous function g such that g/V is bounded, we have

lim
t→+∞ e−λ0t

∑
u∈Vt

g(Xut ) = W

∫
g

V
dπ,

where W = limt→+∞ e−λ0tV (x0)
−1 ∑

u∈Vt
V (Xut ) and the convergences hold in probability.

If, furthermore, V is lower bounded by a positive constant then

lim
t→+∞

1{W �=0}
Nt

∑
u∈Vt

g(Xut ) = 1{W �=0}
∫
g

V
dπ

/ ∫
1

V
dπ in probability,

where 1{·} is the indicator function.
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Assumption (1.1) seems difficult to apply but if r, V , and (pk)k≥0 are polynomials then it
is enough to prove the finiteness of the moments of (Yt )t≥0. Unfortunately, in general, it is
difficult to derive such properties on V from assumptions on the branching mechanism.

As a direct application, if the maps x 
→ r(x) and x 
→ pk(x) are constant, then V ≡ 1 is an
eigenvector, and so this theorem generalises [5, Theorem 1.1]. Some inhomogeneous examples
are developed in Sections 5 and 6.

On the other hand, our model can be seen as a microscopic version of some deterministic
models. More precisely, let (Zt )t≥0 be the empirical measure. It is defined, for all t ≥ 0, by

Zt =
∑
u∈Vt

δXut .

Now let Z(n) evolve as Z, but with Z
(n)
0 dependent on n and set X(n) = Z(n)/n.

Theorem 1.2. (Law of large number for the large population.) If the following assumptions
hold:

(i) T > 0, r is upper bounded, and there exist k̄ ≥ 0 such that pk ≡ 0 for all k ≥ k̄;

(ii) either E is compact or E ⊂ R, F (k)j (x, θ) ≤ x for all j ≤ k and θ ∈ [0, 1], and
supx∈E φ(x) < +∞;

(iii) then (1.7) below admits a unique solution;

(iv) the starting distribution X
(n)
0 converges in distribution to X0 ∈ M(E), embedded with

the weak topology;

(v) we have supn≥0 E[X(n)
0 (E)] < +∞; then X(n) converges in distribution in D([0, T ],

M(E)) to X, which satisfies∫
E

f (x)Xt (dx) =
∫
E

f (x)X0(dx)+
∫ t

0

∫
E

Gf (x)Xs(dx) ds. (1.7)

Here, D([0, T ],M(E)) is the space of càdlàg functions, with values in the set M(E) of finite
measures on E, embedded with the Skorokhod topology [7], [27]. We observe that if X0 is
deterministic then Xt is deterministic for any time t ≥ 0. In a weak sense, (1.7) can be written
as

∂tn(t, x)+ ∇(φ(x)n(t, x))+ r(x)n(t, x)

= σ∂xxn(t, x)+
∑
k≥0

k∑
j=1

Kk
j (r × pk × n(t, ·)), (1.8)

where Xt = n(t, x) dx and Kk
j is the adjoint operator of f 
→ ∫ 1

0 f (F
(k)
j (x, θ)) dθ . Note

that, in contrast with a classical parabolic partial differential equation, in general, the previous
equation has no regularisation properties. In particular, if σ = 0 and X0 has no density, then
nor does Xt . This equation was studied in [31], [39], [40] and Theorem 1.1 is relatively close to
their (long-time) limit theorems. We will see in the next section that it is also the Kolmogorov
equation associated to Z. So, we observe that X evolves as the mean measure of Z; that is,
f 
→ E[∫

E
f (x)Zt (dx)]. This average phenomenon comes from the branching property. After

a branching event, each cell evolves independently from the others, there is no interaction.
Another interpretation is the linearity of the operator G. From the many-to-one formula, we
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also deduce that, in a large population, the empirical measure behaves as the auxiliary process.
The proof is based on the Aldous–Rebolledo criterion [27], [43], and is inspired by [20], [35],
and [44].

At the end of the paper, these two theorems are applied to some structured population
models. Our main example is a size-structured population; the size of cells grows linearly
and if they divide into two descendants. Thus, there is a motion between the branching events
and discontinuity at division times. This model is a branching version of the well-known TCP
(transmission control protocol) windows size process [8], [22], [32], [38]. We are able to give
some explicit formulae of the invariant distribution, the moments, and the rate of convergence.
Also, we prove a central limit theorem for the limit in a large population.

Outline. In the next section we introduce some properties of the empirical measure. In
Section 3 we focus our interest on the long-time behaviour. We prove some many-to-one
formula and deduce a general limit theorem which implies Theorem 1.1. Section 4 is devoted
to the study of large populations. In this section, we prove Theorem 1.2. Note that Section 3
and Section 4 are independent. In Section 5 we give our main example, which describes the cell
mitosis. Moreover, we give two theorems for the long-time behaviour of our empirical measure
in addition to some explicit formula. We also give a central limit theorem for asymmetric cell
division for the large population limit. In Section 6 we conclude with two classical examples
which are branching diffusions and self-similar fragmentation.

2. Preliminaries

In this section we describe a little more the empirical measure (Zt )t≥0. We recall that, for
all t ≥ 0, Zt = ∑

u∈Vt
δXut . Let us add the following notation:

Zt (f ) =
∫
E

f (x)Zt (dx) =
∑
u∈Vt

f (Xut ), Zt (1 + ‖x‖p) =
∫
E

(1 + ‖x‖p)Zt (dx),

for every continuous and bounded function f and for every p ≥ 0. We can describe the
dynamics of the population with a stochastic differential equation [25]. Let C2,1

c (E,R+) be
the set of functions f : (x, t) 
→ f (x, t) = ft (x) that are C1 in time, with bounded derivative,
such that ft ∈ C2

c (E). For any function f belonging to C1,2
c (E × R+), we have

Zt (ft ) = Z0(f0)+
∫ t

0

∫
E

Gfs(x)+ ∂sfs(x)Zs(dx) ds

+
∫ t

0

∑
u∈Vs

√
2σ∂xfs(X

u
s ) dBus

+
∫ t

0

∫
U×R+×N×[0,1]

[
1{u∈Vs−, l≤r(Xus−)}

×
( k∑
j=1

fs(F
(k)
j (Xus−, θ))

)
− fs(X

u
s−)

]
ρ(ds, du, dl, dk, dθ),

where (Bu)u∈U is a family of independent standard Brownian motions andρ(ds, du, dl, dk, dθ)
is Poisson point process on R+ × U × R+ × N × [0, 1] of intensity

ρ̄(ds, du, dl, dk, dθ) = ds n(du)dldpkdθ.
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It is also independent from the Brownian motions. We have denoted by n(du) the counting
measure on U and ds, dl, and dθ are Lebesgue measures. The fist hypothesis ensures the
nonexplosion (and is a little bit stronger) of our model.

Assumption 2.1. (Nonexplosion.) For all t ≥ 0, sups≤t E[Ns] < +∞.

Lemma 2.1. (Sufficient condition to nonexplosion.) If there exists r̄ , k̄ > 0 such that, for every
x ∈ E, we have

r(x) ≤ r̄ and pk(x) = 0 for all k ≥ k̄,

then Assumption 2.1 holds. Moreover, for any T > 0, we have, for all t ≤ T ,

E[Nt ] ≤ E[N0]e(k̄−1)r̄T .

Proof. We can easily couple the number of particles (Nt )t≥0 with a branching process
(Wt )t≥0, which does not depend on the underlying dynamics, to obtain

Nt ≤ Wt for all t ≥ 0.

With rate r̄ , the process (Wt )t≥0 produces k̄ − 1 individuals, hence, its mean is

E[Wt ] = e(k̄−1)r̄t for all t ≥ 0.

See [2] for more details. �
If there is no explosion then we have a semimartingale decomposition.

Lemma 2.2. (Semimartingale decomposition.) If Assumption 2.1 holds then, for all f ∈
D(G), we have

Zt (f ) = Z0(f )+ Mt (f )+ Vt (f ),

where (Mt (f ))t≥0 is a semimartingale and

Vt (f ) =
∫ t

0
Zs(Gf ) ds,

and if, furthermore, f ∈ C2
c (E) then the bracket of Mt (f ) is given by

〈M(f )〉t =
∫ t

0
(G(f 2

s )(x)− 2fs(x)Gfs(x))Zs(dx)

+
∫
E

r(x)
∑
k∈N

∫ 1

0

( k∑
j=1

fs(F
(k)
j (x, θ))− fs(x)

)2

pk(x) dθ Zs(dx) ds

Proof. This follows by an application of the Dynkin and Itô formulae; see, for instance, [26,
Lemma 3.68, p. 487] and [25, Theorem 5.1, p. 67]. If f ∈ C2

c (E) then, by assumption 2.1,
(Mt (f ))t≥0 is a square-integrable martingale. Indeed, if f ∈ C2

c (E) and τn = inf{s ≥
0 | Mt (f )

2 ≥ n}, then there exists C > 0 (only depending on f ) such that 〈M(f )〉t∧τn ≤
C

∫ t∧τn
0 Ns ds ≤ ∫ t

0 Ns ds. Using the Fatou lemma, Fubini–Tonelli theorem, and the optional
stopping theorem, we have

E[Mt (f )
2] ≤ lim inf

n→∞ E[Mt∧τn(f )2] = lim inf
n→∞ E[〈M(f )〉t∧τn ] ≤ C

∫ t

0
E[Ns] ds. �
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Let us fix μ = ∑m
i=1 δxi , where m ∈ N

∗ and xi ∈ E for all i ∈ {1, . . . , m}. We define the
mean measure (zt )t≥0, for any continuous and bounded function f on E, by, for all t ≥ 0,

zt (f, μ) = E(Zt (f ) | Z0 = μ) = E

[∑
u∈Vt

f (Xut ) | Z0 = μ

]
.

The measure zt (dx, μ) is defined by
∫
E
f (x)zt (dx, μ) = zt (f, μ). Moreover, the branch-

ing property ensures that zt (f, μ) = ∑m
i=1 zt (f, δxi ). In application, we have zt (f, μ) =∫

E
zt (f, δx)μ(dx). If μ is a probability measure then zt (f, μ) = E[Zt (f )], where Z0 = δ

X
∅

0
and X∅

0 is a random variable distributed by μ.

Corollary 2.1. (Evolution equation for the mean measure.) Under Assumption 2.1, if f ∈ C2
c ,

μ ∈ M(E), and t ≥ 0, then we have

zt (f, μ) = μ(f )+
∫ t

0

(
zs(Gf,μ)+

∫
E

r(x)

(∑
k≥0

k∑
j=1

∫ 1

0
f (F

(k)
j (x, θ)) dθpk(x)

)

− f (x)zs(dx, μ)

)
ds. (2.1)

The previous equation can be written as (1.8) in a weak sense; namely, n is defined by
n(t, x) dx = zt (dx, μ), t ≥ 0.

Remark 2.1. (Uniqueness of (2.1).) As illustrated in [15] for instance, the question of unique-
ness for evolution equations is generally nontrivial. Think, for instance, of the reflected and
absorbed Brownian motions on (0, 1) whose semigroups have the same generator � when
applied on smooth functions. Nevertheless, if (2.1) holds for f = 1 then using the following
norm (on the space of signed measure):

‖z‖0 = sup{|z(f )| | ‖f ‖∞ + ‖Gf ‖∞ ≤ 1},

and the Gronwall lemma in (2.1) ensures the uniqueness.

3. Long-time behaviour

Let us recall that

Gf (x) = Gf (x)+ r(x)

[(∑
k≥0

k∑
j=1

∫ 1

0
f (F

(k)
j (x, θ)) dθpk(x)

)
− f (x)

]

for every f ∈ D(G) and x ∈ E. In the following, we will prove some formula which
characterise the mean behaviour of our model. Then we will use them to prove our limit
theorems.

3.1. Eigenelements and auxiliary process

As said in introduction, the existence of eigenelements is fundamental in our approach.
Nevertheless the eigenvector does not still belong to the domain of the generator. Henceforth,
we assume the following.
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Assumption 3.1. (Existence of eigenelements.) Assumption 2.1 holds, and there exist λ0 > 0
and a continuous and positive function V such that there exists a sequence (Vn)n≥0 of functions
belonging to C2

c (E) satisfying, for all x ∈ E,

lim
n→∞Vn(x) = V (x), lim

n→∞ GVn(x) = λ0V (x)

and the mappings x 
→ supn≥0 Vn(x) and x 
→ supn≥0 GVn(x) are integrable with respect to
zt (dx, δx0) for every t ≥ 0 and x0 ∈ E.

Remark 3.1. (Smooth eigenvector.) If there exists a smooth eigenvector V ∈ C2
c (E) then we

can choose Vn = V for every n. Also if V is C2 then a trivial truncation argument ensures the
previous assumption. This assumption enables us to consider less regular eigenvectors. The
integrability condition is essentially a consequence of V being an eigenfunction. Indeed, it can
be proved using Lemma 2.2 and the suitable sequence of stopping times (τn)n≥0 defined by
τn = inf{t ≥ 0, Zt (V ) ≥ n}. See, for instance, Lemma 5.1, where a similar computation is
done.

Under Assumption 3.1, we introduce the martingale (Zt (V )e−λ0t )t≥0 which plays an impor-
tant role in the proof of Theorem 1.1.

Lemma 3.1. (Martingale properties.) If Assumption 3.1 holds and

E[Z0(V )] < +∞,

then the process (Zt (V )e−λ0t )t≥0 is a martingale. Moreover, it converges almost surely to a
random variable W .

Proof. By corollary 2.1 and the dominated convergence theorem, we have

zt (V ,Z0) = lim
n→∞ z0(Vn,Z0)+

∫ t

0
zs(GVn,Z0) ds = z0(V ,Z0)+ λ0

∫ t

0
zs(V ,Z0) ds.

Hence, for all t ≥ 0, we have zt (V ,Z0) = z0(V ,Z0)eλ0t = Z0(V )eλ0t . Then if Ft =
σ {Zs | s ≤ t} then the Markov property, applied on Z, yields

E[Zt+s(V )e−λ0(t+s) | Fs] = e−λ0(t+s)zt (V ,Zs) = Zs(V )e
−λ0s ,

and so the process (Zt (V )e−λ0t )t≥0 is a martingale. Since it is a positive, it converges almost
surely. �

To have our many-to-one formula, we add the following natural assumption.

Assumption 3.2. (Auxiliary process.) The operator A defined in (1.6) is the generator of a
Feller process.

Lemma 3.2. (Weighted many-to-one formula.) Under Assumptions 3.1 and 3.2, if μ is a
probability measure satisfying μ(V ) < +∞ then we have

1

zt (V , μ)
zt (ft × V,μ) =

∫
E

E[f (Yt , t) | Y0 = x]μ(dx) (3.1)

for any nonnegative function f : (x, t) 
→ f (x, t) = ft (x) on E × R+ and t ≥ 0, where Y is
a Markov process generated by A starting from x0.
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Proof. As the time variable t is deterministic, it is enough to prove that (3.1) holds for any
function that are not time dependent. Let (γt )t≥0 be the family of operators defined by

γt (f ) = zt (f × V,μ)e−λ0tμ(V )−1

for every f ∈ D and t ≥ 0. Using Lemma 2.2, we have, for all t ≥ 0 and f ∈ D(G),

∂tγt (f ) = zt (G(Vf )− fGV,μ)e−λ0tμ(V )−1 = γt (Af ).

Now, by the Itô–Dynkin formula, the right-hand side of (3.1) satisfies the same equation.
Uniqueness comes from classical arguments. Indeed, by Assumption 3.2, operator A is
the generator of a Feller semigroup and satisfies the positive maximum principle; see [29,
Theorem 3.6.6]. As a consequence, if (Pt )t≥0 is the semigroup of the auxiliary process then
Pt = γt by [18, Proposition 9.19, Chapter 10]; see also [29, Theorem 4.1.2]. �

Remark 3.2. (Schrödinger operator and h-transform.) The operator G is not a (conservative)
Markov generator. Indeed, for all f ∈ C2

c (E), Gf = Bf − r(m− 1)f , where B is a Markov
generator. Operator G is sometimes called a Schrödinger operator. Its study is connected to
the Feynman–Kac formula. Our weighted many-to-one formula can be seen as an h-transform
(Girsanov type transformation) of the Feynman–Kac semigroup as in [41]. This transformation
is usual in the superprocesses study [16].

Remark 3.3. (Galton–Watson tree and Malthus parameter.) If the maps x 
→ r(x) and x 
→
pk(x) are constant then V ≡ 1 is an eigenvector with respect to the eigenvalue λ0 = r(m− 1),
where m = ∑

k≥0 kpk denotes the mean offspring number. So, Zt (V ) = Nt and the size of
the population grows exponentially when it survives. This result is already know for Nt ; see
[2], [5]. Furthermore, since Malthus introduced the following simple model to describe the
population evolution: ∂tNt = (b0 − d0)Nt , namely Nt = e(b0−d0)t , where b0 and d0 represent,
respectively, the individual birth rate and death rate, in biology and genetic population study,
λ0 = b0 − d0 is sometimes called the Malthus parameter.

Remark 3.4. (Many eigenelements are possible.) In the previous lemmas, λ0 was not required
to be the first eigenvalue. So, it is possible to have different eigenelements and auxiliary
processes. Consider the example of [4], where some eigenelements are explicit; that is,

Gf (x) = a1xf
′(x)+ b1xf

′′(x)

for every f ∈ C2
c (E) and x ∈ E = R+, where a1, b1 are two nonnegative numbers. We also

consider that of p2 = 1 and, for all j ∈ {1, 2}, E[f (F (2)j (x,�))] = E[f (Hx)], where H
is a symmetric random variable on [0, 1], that is, H

d= 1 −H , where ‘
d=’ denotes equality in

distribution. This example models cell division with parasite infection. In this case,

Gf (x) = a1xf
′(x)+ b1xf

′′(x)+ r(x)(2E[f (Hx)] − f (x))

for every continuous and bounded function f . Here a1 is an eigenvalue of G and V1(x) = x is
its eigenvector. So, we should have

E

[∑
u∈Vt

Xut f (X
u
t ) | X∅

0 = x0

]
= Ex0 [f (Yt )]ea1t x0
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for every continuous and bounded function f and x0 ∈ E, where Y is a Markov process
generated by GY defined by

GYf (x) = (a1x + 2b1)f
′(x)+ b1xf

′′(x)+ r(x)(2E[Hf (Hx)] − f (x))

for every f ∈ C2
c (E) and x ∈ E. We can see a bias in the drift terms and jumps mechanism

which is not observed in [4], [5]. When r is affine, we obtain a second formula. Indeed, if r(x) =
c1x+d1 with c1 ≥ 0 and d1 > a1 (or d1 > 0 and c1 = 0), then V2(x) = x(c1/(d1 −a1))+1 is
an eigenvector with respect to the eigenvalue λ2 = d1 (which implies λ2 > λ1 = a1). A rapid
calculation then gives a different many-to-one formula with another auxiliary process.

3.2. Many-to-one formulae

To compute our limit theorem, we need to control the second moment. As in [5], we describe
the population over the whole tree and then give a many-to-one formula for forks. Recall that
T = {u ∈ U | there exists t > 0, u ∈ Vt }. Lemmas 3.3 and 3.4 that follow are, respectively,
the generalisation of [5, Proposition 3.5] and [5, Proposition 3.9].

Lemma 3.3. (Many-to-one formula over the whole tree.) Under Assumption 3.1, if Z0 = δx0 ,
where x0 ∈ E, then for any nonnegative measurable function f : E × R+ → R, we have

E

[∑
u∈T

f (Xuβ(u)−, β(u))
]

=
∫ +∞

0
E

[
f (Ys, s)

r(Ys)

V (Ys)

]
V (x0)e

λ0s ds.

Proof. First we have, for all u ∈ U,

E[1{u∈T }f (Xuβ(u)−, β(u))] = E

[
1{u∈T }

∫ β(u)

α(u)

f (Xus , s)r(X
u
s ) ds

]
since, by (1.2) and the Fubini theorem,

E

[
1{u∈T }

∫ β(u)

α(u)

f (Xus , s)r(X
u
s ) ds

]

= E

[
1{u∈T }

∫ +∞

0

∫ τ

α(u)

f (Xus , s)r(X
u
s ) dsr(Xuτ ) exp

(
−

∫ τ

α(u)

r(Xut ) dt

)
dτ

]

= E

[
1{u∈T }

∫ +∞

α(u)

∫ +∞

s

r(Xuτ ) exp

(
−

∫ τ

α(u)

r(Xut ) dt

)
dτf (Xus , s)r(X

u
s ) ds

]

= E

[
1{u∈T }

∫ +∞

α(u)

exp

(
−

∫ s

α(u)

r(Xut ) dt

)
f (Xus , s)r(X

u
s ) ds

]
= E[1{u∈T }f (Xuβ(u)−, β(u))].

Thus,

E[1{u∈T }f (Xuβ(u)−, β(u))] = E

[∫ +∞

0
1{u∈Vs }f (Xus , s)r(Xus ) ds

]
,

and finally,

E

[∑
u∈T

f (Xuβ(u)−, β(u))
]

=
∫ +∞

0
E

[∑
u∈Vs

f (Xus , s)r(X
u
s )

]
ds

=
∫ +∞

0
E

[
f (Ys, s)

r(Ys)

V (Ys)

]
V (x0)e

λ0s ds. �
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If we set g(x, s) = f (x, s)/V (x) then we have

E

[∑
u∈T

g(Xuβ(u)−, β(u))V (X
u
β(u)−)

]
=

∫ +∞

0
E[g(Ys, s)r(Ys)] × E[Zs(V )] ds.

This equality means that adding the contributions over all the individuals corresponds to
integrating the contribution of the auxiliary process over the average number of living individuals
at time s. Let (Pt )t≥0 be the semigroup of the auxiliary process; it is defined for any continuous
and bounded f by Ptf (x) = E[f (Yt ) | Y0 = x].
Lemma 3.4. (Many-to-one formula for forks.) Under Assumption 3.1, if Z0 = δx0 , where
x0 ∈ E, then for all nonnegative and measurable functions f, g on E, we have

E

[ ∑
u,v∈Vt , u�=v

f (Xut )V (X
u
t )g(X

v
t )V (X

v
t )

]

= E[Zt (V )]2
∫ t

0

1

E[Zs(V )]E
[
J2(V Pt−sf, V Pt−sg)(Ys)

r(Ys)

V (Ys)

]
ds,

where J2 is defined by

J2(f, g)(x) =
∫ 1

0

∑
a �=b

∑
k≥max(a,b)

pk(x)f (F
(k)
a (x, θ))g(F

(k)
b (x, θ)) dθ.

The operator J2 describes the starting positions of two siblings picked at random.

Proof. Let u, v ∈ Vt , be such that u �= v, then there exists (w, ũ, ṽ) ∈ U3 and a, b ∈ N
∗,

a �= b, such that u = waũ and v = wbṽ. The cell w is sometimes called the most recent
common ancestor. We have

E

[ ∑
u,v∈Vt , u�=v

f (Xut )V (X
u
t )g(X

v
t )V (X

v
t )

]

=
∑
w∈U

∑
a �=b

∑
ũ,ṽ∈U

E[1{u∈Vt }f (Xut )V (Xut )1{v∈Vt }g(Xvt )V (Xvt )].

Let Ft = σ {Zs | s ≤ t}. By the conditional independence between descendants, we have

E

[ ∑
u,v∈Vt , u�=v

f (Xut )V (X
u
t )g(X

v
t )V (X

v
t )

]

=
∑
w∈U

∑
a �=b

E

[
E

[∑
ũ∈U

1{u∈Vt }f (Xut )V (Xut ) | Fβ(w)

]

× E

[∑
ṽ∈U

1{v∈Vt }g(Xvt )V (Xvt ) | Fβ(w)

]]
.
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Therefore, as β(w) is a stopping time, then using the strong Markov property, (3.1), and the
previous lemma, we have

E

[ ∑
u,v∈Vt , u�=v

f (Xut )V (X
u
t )g(X

v
t )V (X

v
t )

]

=
∑
w∈U

∑
a �=b

E[1{wa,wb∈T , t≥β(w)}Pt−β(w)f (Xwaβ(w))V (X
wa
β(w))

× Pt−β(w)g(Xwbβ(w))V (X
wb
β(w))e

2λ0(t−β(w))]
= E

[∑
w∈T

1{t≥β(w)}J2(V Pt−β(w)f, V Pt−β(w)g)(Xwβ(w)−)e
2λ0(t−β(w))

]

= e2λ0tV (x0)

∫ t

0
Ex0

[
J2(V Pt−sf, V Pt−sg)(Ys)

r(Ys)

V (Ys)

]
e−λ0s ds. �

3.3. Proof of Theorem 1.1

In this section we give the main limit theorem which implies Theorem 1.1.

Theorem 3.1. (General condition for the convergence of the empirical measure.) Under
Assumption 3.1, if f is a measurable function defined on E and μ a probability measure
such that there exists a probability measure π , two constants α < λ0 and C > 0, and a
measurable function h such that, for all t > 0,

(H1) π(|f |) < +∞ and for all x ∈ E, lims→+∞ Psf (x) = π(f ),

(H2) μ(V ) < +∞ and μPt(f 2 × V ) ≤ Ceαt ,

(H3) Pt |f | ≤ h and μPt(J2(V h, V h)(r/V )) ≤ Ceαt ,

and Z0 = δ
X

∅

0
, where X∅

0 ∼ μ, then we have

lim
t→+∞

1

E[Zt (V )]
∑
u∈Vt

f (Xut )V (X
u
t ) = W × π(f ),

where the convergence holds in probability. If, furthermore, (Zt (V )e−λ0t )t≥0 is bounded in L2

then the convergence holds in L2.

Note that the constants may depend on f and μ. Also note that λ0 is not assumed to be
the largest eigenvalue. The condition α < λ0 is not restrictive at all, even if λ0 is unknown.
Indeed, in all our examples, α = 0.

Proof. As in [5, Theorem 4.2], we first prove the convergence for f such that π(f ) = 0.
From Lemma 3.1, we have E[Zt (V )] = μ(V )eλ0t and so

E

[(
1

E[Zt (V )]
∑
u∈Vt

f (Xut )V (X
u
t )

)2]
= E[Zt (f × V )2e−2λ0tμ(V )−2] = At + Bt ,

where, by Lemma 3.2,

At = e−2λ0tμ(V )−2
E

[∑
u∈Vt

f 2(Xut )V
2(Xut )

]
= e−λ0tμ(V )−1

E[f 2(Yt )V (Yt )],
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and, by Lemma 3.4,

Bt = e−2λ0tμ(V )−2
E

[ ∑
u,v∈Vt , u�=v

f (Xut )V (X
u
t )f (X

v
t )V (X

v
t )

]

= μ(V )−1
∫ t

0
E

[
J2(V Pt−sf, V Pt−sf )(Ys)

r(Ys)

V (Ys)

]
e−λ0s ds.

From (H2), we obtain limt→+∞At =0. Sinceπ(f )=0, from (H1), we obtain limt→∞ Ptf =0.
Then, by (H3) and Lebesgue’s theorem, we obtain, for all s ≥ 0 and x ∈ E,

lim
t→+∞ J2(V Pt−sf, V Pt−sf )(x) = 0.

And again by (H3) and Lebesgue’s theorem, we obtain limt→+∞ Bt = 0. Now, if π(f ) �= 0
then we have

Zt (f V )e
−λ0tμ(V )−1 −Wπ(f )

= Zt ((f − π(f ))V )e−λ0tμ(V )−1 + π(f )(Zt (V )e
−λ0tμ(V )−1 −W).

Then, thanks to the first part of the proof, the first term of the sum, in the right-hand side,
converges to 0 in L2. Moreover, the second term converges to 0 in probability thanks to
Lemma 3.1. �

Proof of Theorem 1.1. If f = g/V then it is a continuous and bounded function. If h ≡ 1
then all assumptions of the previous theorem hold. In particular, assumption (H3) of the previous
theorem is exactly assumption (v) of Theorem 1.1. We then have the first convergence. Now
if V is lower bounded, we can use the same argument with g = 1 and f = 1/V which is also
a continuous and bounded function. �

4. Macroscopic approximation

Let (M(E), dv) (respectively (M(E), dw)) be the set of finite measures embedded with the
vague (respectively weak) topology. These topologies are defined as follow:

lim
n→+∞ dv(Xn,X∞) = 0 ⇐⇒ for all f ∈ C0, lim

n→+∞Xn(f ) = X∞(f ),

lim
n→+∞ dw(Xn,X∞) = 0 ⇐⇒ for all f ∈ Cb, lim

n→+∞Xn(f ) = X∞(f ),

where (Xn)≥1 is a sequence on M(E) and X∞ ∈ M(E). Here, C0 is the set of continuous
functions which vanish at ∞, and Cb is the set of continuous and bounded functions.

Note that vague convergence can also be defined as the weak* convergence with C∞
c test

functions; see [28, Chapter 4] but we use the latter definition (used in [19, Section 7.3] for
instance). These two definitions are generally not equivalent but, under the additional condition
limn→∞Xn(1) = X∞(1) or if the family (Xn)n≥1 is tight, they are.

Let D([0, T ], E) and C([0, T ], E) be, respectively, the sets of càdlàg functions embedded
with the Skorokhod topology and continuous functions embedded with the uniform topology [7].

4.1. Proof of Theorem 1.2

Let (Z(n))n≥1 be a sequence of random measure-valued evolving as Z with starting distribu-
tions depending on n. In this section we consider the following scaling: X(n) = (1/n)Z(n), and
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we describe the behaviour of this scaled process forn tending to ∞. To understand the behaviour
of our model in a large population, we can consider that it starts from a deterministic probability
measure X0, and approach it by the interesting sequence defined by X

(n)
0 = (1/n)

∑n
k=0 δYk ,

where (Yk)k≥1 is a sequence of independent and identically distributed (i.i.d.) random variable,
distributed according to X0. In other words, we set Z

(n)
0 = ∑n

k=0 δYk . The sequence X(n)

converges. Indeed, by the branching property, we have Z(n)
d= ∑n

k=0Z
Yk , where Z

Yk
t are i.i.d.,

distributed as Z, and starting from Z
Yk
0 = δYk . Henceforth, if f is a continuous and bounded

function then from the classical law of large number, for all t ≥ 0,

lim
n→∞ X

(n)
t (f ) = E[ZY1

t (f )] almost surely.

So, by corollary 2.1, and under a uniqueness assumption, it implies that X(n) (point-wisely)
converges to the solution (μt )t≥0 of the following integro-differential equation:

μt(f ) = μ0(f )+
∫ t

0
μs(Gf )

+
∫
E

r(x)

((∑
k≥0

pk(x)

∫ 1

0

k∑
j=1

f (F
(k)
j (x, θ)) dθ

)
− f (x)

)
μs(dx) ds. (4.1)

Theorem 1.2 gives a stronger convergence.

Lemma 4.1. (Semimartingale decomposition.) If Assumption 2.1 holds then for all f ∈ C2
c (E)

and t ≥ 0,
X
(n)
t (f ) = X

(n)
0 (f )+ M

(n)
t (f )+ V

(n)
t (f ),

where V
(n)
t (f ) is equal to

∫ t

0

∫
E

(
Gf (x)+ r(x)

((∫ 1

0

∑
k∈N

k∑
j=1

f (F
(k)
j (x, θ))pk(x) dθ

)
− f (x)

))
X(n)
s (dx) ds,

and M
(n)
t (f ) is a square-integrable and càdlàg martingale. Its bracket is defined by

〈M(n)(f )〉t = 1

n

∫ t

0
2X(n)

s (Gf 2)− 2X(n)
s (f ×Gf )

+
∫
E

r(x)

∫ 1

0

∑
k∈N

( k∑
j=1

f (F
(k)
j (x, θ))− f (x)

)2

pk(x) dθX(n)
s (dx) ds.

Proof. This is a direct consequence of Lemma 2.2. Indeed, if L
(n) is the generator of X(n)

then it satisfies
L
(n)Ff (μ) =� ∂tE[Ff (X(n)) | X

(n)
0 = μ]t

= 0

=� ∂tE[Ff/n(Z(n)) | Z
(n)
0 = nμ]t

= 0

= LFf/n(nμ),

where Ff (μ) = F(μ(f )), F, f are two test functions, and L is the generator of Z. �

https://doi.org/10.1017/apr.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.12


564 B. CLOEZ

Remark 4.1. (Nonexplosion.) Let us recall that, by Lemma 2.1, if the assumptions of Theo-
rem 1.2 hold then Assumption 2.1 holds. In particular, there is no explosion.

Let us denote by L(U) the law of any random variable U .

Lemma 4.2. Under the assumptions of Theorem 1.2, the sequence (L(X(n)))n≥1 is uniformly
tight in the space of probability measures on D([0, T ], (M(E), dv)).

Proof. We follow the approach of [20]. According to [43], it is enough to show that, for
any continuous bounded function f , the sequence of laws of X(n)(f ) is tight in D([0, T ],R).
To prove it, we will use the Aldous–Rebolledo criterion. Let C∞

c be the set of functions of
class C∞ with finite support, we set S = C∞

c ∪ {1}, where 1 is the mapping x 
→ 1. We have
to prove that, for any function f ∈ S, we have

(i) for all t ≥ 0, (X(n)
t (f ))n≥0 is tight;

(ii) for all n ∈ N, and ε, η > 0, there exists δ > 0 such that, for each stopping time Sn
bounded by T ,

lim sup
n→+∞

sup
0≤u≤δ

P(|V (n)
Sn+u(f )− V

(n)
Sn
(f )| ≥ η) ≤ ε,

lim sup
n→+∞

sup
0≤u≤δ

P(|〈M(n)(f )〉Sn+u − 〈M(n)(f )〉Sn | ≥ η) ≤ ε.

The first point is the tightness of the family of time marginals (X(n)
t (f ))n≥1 and the second

point, called the Aldous condition, gives a ‘stochastic continuity’. It looks like the Arzelà–
Ascoli theorem. Using Lemma 2.1, there exists C > 0 such that

P(|X(n)
t (f )| > k) ≤ ‖f ‖∞E[X(n)

t (1)]
k

≤ ‖f ‖∞CE[X(n)
0 (1)]

k
,

which tends to 0 as k tends to ∞. This proves the first point. Note that here and in all the proofs,
constants may depend onT . Let δ > 0, we have, for all stopping timesSn ≤ Tn ≤ (Sn+δ) ≤ T ,
that there exist C′, Cf > 0 such that

E[|V (n)
Tn
(f )− V

(n)
Sn
(f )|]

= E

[∣∣∣∣
∫ Tn

Sn

X(n)
s (Gf )

+
∫
E

(
r(x)

(∫ 1

0

∑
k∈N

k∑
j=1

f (F
(k)
j (x, θ)pk(x) dθ)

)
− f (x)

)
X(n)
s (dx) ds

∣∣∣∣
]

≤ C′[‖Gf ‖∞ + ‖f ‖∞] × E[|Tn − Sn|]
≤ Cf δ.
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On the other hand, there exists C′
f > 0 such that

E[|〈M(n)(f )〉Tn − 〈M(n)(f )〉Sn |]

= 1

n
E

[∣∣∣∣
∫ Tn

Sn

X(n)
s (Gf 2)− 2X(n)

s (fGf )

+
∫
E

r(x)

∫ 1

0

∑
k∈N

k∑
j=1

(f (F
(k)
j (x, θ))− f (x))2pk(x) dθX(n)

s (dx) ds

∣∣∣∣
]

≤ C′
f δ

n.

Then, for a sufficiently small δ, the second point is verified and we conclude that (X(n))n≥1 is
uniformly tight in D([0, T ], (M(E), dv)). �

Proof of Theorem 1.2. Let us denote by X a limit process of (X(n))n≥1; namely, there exists
an increasing sequence (un)n≥1, on N

∗, such that (X(un))n≥1 converges to X. It is almost surely
continuous in (M(E), v) since

sup
t≥0

sup
‖f ‖∞≤1

|X(n)
t− (f )− X

(n)
t (f )| ≤ k̄

n
. (4.2)

In the case where E is compact, the vague and weak topologies coincide. By the Cauchy–
Schwarz equation and Doob’s inequality, there exists C > 0 such that

sup
f

E

[
sup
t≤T

|M(n)
t (f )|

]
≤ 2 sup

f

E[〈M(n)(f )〉T ]1/2 ≤ C√
n
,

where the supremum is taken over all the function f ∈ C2
c (E) such that ‖f ‖∞ ≤ 1. Hence,

lim
n→+∞ sup

f

E

[
sup
t≤T

|M(n)
t (f )|

]
= 0.

However, since

M
(n)
t (f ) = X

(n)
t (f )− X

(n)
0 (f )

−
∫ t

0

∫
E

(
Gf (x)+ r(x)

((∫ 1

0

∑
k∈N

k∑
j=1

f (F
(k)
j (x, θ))pk(x) dθ

)

− f (x)

))
X(n)
s (dx) ds,

we have

0 = Xt (f )− X0(f )−
∫ t

0
Xs(Gf )

+
∫
E

r(x)

(( k∑
j=1

f (F
(K)
j (x, θ))pk(x) dθ

)
− f (x)

)
Xs(dx) ds.

Since this equation has a unique solution, it ends the proof when E is compact. This approach
fails in the noncompact case. Nevertheless, we can use the Méléard–Roelly criterion [34]. We
have to prove that X is in C([0, T ], (M(E),w)) and X(n)(1) converges to X(1). By (4.2), X

is continuous. To prove that X(n)(1) converges to X(1), we use the following lemmas. �
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Lemma 4.3. (Approximation of indicator functions.) Under the assumptions of Theorem 1.2,
for each k ∈ Z, there exists ψk ∈ C2(E) such that, for all x ∈ E,

1[k;+∞)(x) ≤ ψk(x) ≤ 1[k−1;+∞)(x) and there exists C > 0, Gψk ≤ Cψk−1.

Lemma 4.4. (Commutation of limits.) Under the assumptions of Theorem 1.2,

lim
k→+∞ lim sup

n→+∞
E

[
sup
t≤T

X
(n)
t (ψk)

]
= 0,

where (ψk)k≥0 are defined as in the previous lemma.

Proof. The proofs are very similar to [35] and we omit the details here. As a consequence,
the same computation as [35] gives us the convergence in D([0, T ], (M(E),w)). Thus, each
subsequence converges to (4.1). The end of the proof follows with the same argument of the
compact case. �

We can give another argument, which does not use the Méléard–Roelly criterion [34].
By (4.2), X is continuous from [0, T ] to (M(E), dw), let G be a Lipschitz function on
C([0, T ], (M(E), dw)) with a Lipschitz constant equal to 1. We obtain

|E[G(X(un))] − G(X)| ≤ E

[
sup
t∈[0,T ]

dw(X
(un)
t ,Xt )

]
≤ E

[
sup
t∈[0,T ]

dw(X
(un)
t ,X

(un)
t (· × (1 − ψk)))

]
+ E

[
sup
t∈[0,T ]

dw(X
(un)
t (· × (1 − ψk)),Xt (· × (1 − ψk)))

]
+ sup
t∈[0,T ]

dw(Xt (· × (1 − ψk)),Xt ).

According to Lemma 4.4, we have

lim
k→+∞ lim sup

n→+∞
E

[
sup
t∈[0,T ]

dw(X
(un)
t ,X

(un)
t (· × (1 − ψk)))

]
= 0

and
lim

k→+∞ sup
t∈[0,T ]

dw(Xt (· × (1 − ψk)),Xt ) = 0.

Then, we have

dw(X
(un)
t (· × (1 − ψk)),Xt (· × (1 − ψk))) = dv(X

(un)
t (· × (1 − ψk)),Xt (· × (1 − ψk))).

Thus,

lim
k→+∞ lim sup

n→+∞
E

[
sup
t∈[0,T ]

dw(X
(un)
t (· × (1 − ψk)),Xt (· × (1 − ψk)))

]
= 0,

by the continuity of ν 
→ ν(1 − ψk) in D(M(E), dv). Finally, limn→+∞E[G(X(un))] =
E[G(X)] = G(X), which completes the proof. �

Note that in the previous proof, we used Lipschitz functions instead of bounded continuous
functions in order to prove weak convergence. This can be justified from (a slight modification
of) the classical Portmanteau theorem. Indeed, see [7, Theorem 2.1] and its proof.
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5. Main example: a size-structured population model

Let us introduce a model which represents the cell mitosis. It is described as follows: the
underlying process X is deterministic and linear and when a cell dies, it divides in two parts.
Formally and with our notation, we have

E = (0,+∞), p2 = 1, and Gf = f ′ (5.1)

for every f ∈ C1(E), and, for all x ∈ E, for all θ ∈ [0, 1],
F
(2)
1 (x, θ) = F−1(θ)x and F

(2)
2 (x, θ) = (1 − F−1(θ))x, (5.2)

where F is the cumulative distribution function of a random variable on [0, 1]. It satisfies
F(x) = 1 −F(1 − x). In this case, when r is smooth enough, one cell lineage is generated by,
for all x ≥ 0,

Lf = f ′(x)+ r(x)[E[f (Hx)] − f (x)]
for every f ∈ C1(E), where H is distributed according to F . This (one cell lineage) process
is sometimes called the TCP process in computer science [8], [22], [32], [38]. First, we prove
the nonexplosion even if r is not bounded.

Lemma 5.1. (Nonexplosion.) Let p ≥ 1. If (5.1) and (5.2) hold, r is continuous and, for all
x ∈ R

∗+, r(x) ≤ C0(1 + xp), and E[Z0(1 + xp)] < +∞, then our process is nonexplosive.
Moreover,

E

[
sup

s∈[0,T ]
Zs(1 + xp)

]
≤ E[Z0(1 + xp)]eCpT ,

where Cp is constant and T > 0.

Proof. Recall that, for every f ∈ C2
c (E), we have

Zt (f ) = Z0(f )+
∫ t

0

∫
E

f ′(x)Zs(dx) ds

+
∫ t

0

∫
U×R+×[0,1]

1{u∈Vs−, l≤r(Xus−)}(f (θX
u
s−)+ f ((1 − θ)Xus−)

− f (Xus−))ρ(ds, du, dl, dθ).

Using the same argument as in [20, Theorem 3.1], we introduce τn = inf{t ≥ 0 | Zt (1+xp) >
n}; and we have

sup
u∈[0,t∧τn]

Zu(1 + xp)

≤ Z0(1 + xp)+
∫ t∧τn

0
Zs(px

p−1) ds

+
∫ t∧τn

0

∫
U×R+×[0,1]

1{u∈Vs−, l≤r(Xus−)}

× (1 + (θp + (1 − θ)p − 1)(Xus−)p)ρ(ds, du, dl, dθ)

≤ Z0(1 + xp)+
∫ t∧τn

0
p × sup

u∈[0,s∧τn]
Zu(1 + xp) ds

+
∫ t

0

∫
U×R+×[0,1]

1{u∈Vs−, l≤r(Xus−)}ρ(ds, du, dl, dθ),
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since (θp + (1 − θ)p − 1) ≤ 0. Thus, there exist C > 0 such that

E

[
sup

u∈[0,t∧τn]
Zu(1 + xp)

]
≤ E[Z0(1 + xp)] +

∫ t

0
CE

[
sup

u∈[0,s∧τn]
Zu(1 + xp)

]
ds.

Finally, the Gronwall lemma implies the existence of Cp such that

E

[
sup

s∈[0,t∧τn]
Zs(1 + xp)

]
≤ E[Z0(1 + xp)]eCpt .

We deduce that τn tends almost surely to ∞ and that there is nonexplosion. �
5.1. Equal mitosis: long-time behaviour

In this subsection we establish the long-time behaviour of Z. We assume that, for all x ≥ 0,
for all θ ∈ [0, 1],

F
(2)
1 (x, θ) = F

(2)
2 (x, θ) = 1

2x. (5.3)

That is, the cells divide in two equal parts. In short, we have, for all x ≥ 0,

Gf (x) = f ′(x)+ r(x)(2f
( 1

2x
) − f (x)) for every f ∈ C1(E).

In order to give a many-to-one formula, we recall a theorem of [40].

Theorem 5.1. (Sufficient condition for the existence of eigenelements.) If (5.1) and (5.3)
hold, there exist r, r̄ > 0 such that, for all x ∈ E, r ≤ r(x) ≤ r̄ , r is continuous and r(x) is a
constant equal to some r∞ for x large enough, then there exist V ∈ C1(R+) and λ0 > 0 such
that GV = λ0V and, for all x ≥ 0,

c(1 + xk) ≤ V (x) ≤ C(1 + xk),

where C, c are two constants and 2k = 2r∞/(λ0 + r∞).

So, we obtain a many-to-one formula with an auxiliary process generated by A, defined for
every f ∈ C1(E) and x ∈ E, by

Af (x) = f ′(x)+ r(x)
2V (x/2)

V (x)

(
f

(
x

2

)
− f (x)

)
.

Our main result gives the two following limit theorems.

Corollary 5.1. (Convergence of the empirical measure for a mitosis model.) Under the ass-
umptions of Theorem 5.1, there exists a probability measure π1 such that, for any continuous
and bounded function g, we have

lim
t→+∞

1

Nt

∑
u∈Vt

g(Xut ) =
∫
g dπ1 in probability.

In particular, for a constant rate r , π1 has Lebesgue density

x 
→ 2r∏+∞
n=1(1 − 2−n)

+∞∑
n=0

( n∏
k=1

2

1 − 2k

)
e−2n+1rx . (5.4)
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The explicit formula in (5.4) is not new (see [39], [40]), but here, the empirical measure
converges in probability, while, in the mentioned papers, the mean measure or the macroscopic
process converges (see Theorem 1.2).

Proof of Corollary 5.1. By Theorem 5.1, the mapping x 
→ V (x/2)/V (x) is upper and
lower bounded. Thus, the auxiliary process is ergodic and admits a unique invariant law π ,
as can be checked using a suitable Foster–Lyapunov function [36, Theorem 6.1]. Indeed, if
ψp : x 
→ 1 + xp then, for p ≥ 1,

Aψp(x) ≤ pxp−1 − xp
rc

2pC
≤ Kp − αpψ(x) for some Kp, αp > 0.

See also [21, Theorem 1] which gives several details. As a second consequence, all the moments
of Y are finite. Assumption (1.1) of Theorem 1.1 then holds because the left-hand side is
bounded. Indeed r is bounded, V is bounded by polynomials, and Y has finite moments.
Now, applying Theorem 1.1, we have the convergence on the set {W �= 0}, where W =
limt→∞ Zt (V )e−λ0 almost surely. It remains to prove that W > 0 almost surely. We begin
by proving that the martingale (Zt (V )e−λ0t )t≥0 converges to W in L1. Let p > 1, by the
Burkholder–Davis–Gundy inequality [10, Theorem 92, p. 304], there exists C > 0 such that

E[|Zt (V )e−λ0t − Z0(V )|p] ≤ CE

[∑
t≥0

|Zt+(V )e−λ0t − Zt−(V )e−λ0t |p
]

≤ CE

[∑
u∈T

e−λ0pβ(u)

∣∣∣∣2V
(
Xuβ(u)−

2

)
− V (Xuβ(u)−)

∣∣∣∣p
]
.

Now by Lemma 3.3, we have

E[|Zt (V )e−λ0t − Z0(V )|p]
≤ C

∫ ∞

0
E[Z0(V )]e−(p−1)λ0sE

[
r(Ys)

|2V (Ys/2)− V (Ys)|p
V (Ys)

]
ds.

Finally, using the fact that r is bounded, the conclusion of Theorem 5.1, and that all moments
of Y are bounded, it holds that the right-hand side of the previous equation is bounded. As a
consequence, the martingale (Zt (V )e−λ0t )t≥0 has a bounded second moment and converges
to W in L1. We deduce that E[W ] > 0 and � = P(W = 0) < 1. But, conditioning to the
time of the first division and taking the limit t → +∞ shows that �2 = �. Finally, � = 0
and this completes the proof. The measure π1 is then 1/(V (x)

∫
1/V dπ)π(dx). In particular,

when r is constant, V is constant, and π1 corresponds to the invariant distribution of a TCP
process with rate 2r; the explicit formula is then an application of [38, Theorem 1] and [22,
Proposition 5]. �

We can see that the assumptions of Theorem 5.1 are strong and not necessary.

Corollary 5.2. (Convergence of the empirical measure when r is affine.) If (5.1) and (5.3) hold
and for all x ≥ 0, r(x) = u1x + v1, where u1 > 0 and v1 ≥ 0, then there exists a measure π
such that

lim
t→+∞

1

Nt

∑
u∈Vt

g(Xut ) =
∫
g dπ.

The convergence holds in probability and for any continuous function g on E such that, for all
x ∈ E, |g(x)| ≤ C(1 + x).
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Proof. If r(x) = u1x + v1 then V (x) = x(

√
v2

1 + 4u1 − v1)/2 + 1 is an eigenvector and

2u1/(

√
v2

1 + 4u1 − v1) is its corresponding eigenvalue. Henceforth, the proof is very similar
to the previous corollary. �
Remark 5.1. (Malthus parameter.) Under the assumptions of the previous corollary, we also
deduce that

lim
t→+∞Nte

−λ0t = W

∫
E

1

V
dπ,

where λ0 = 2u1/(

√
v2

1 + 4u1 − v1) is the Malthus parameter (see Remark 3.3).

Remark 5.2. (Estimation of r .) We can find some estimates of the division rate in the literature.
An inverse problem was developed and applied with experimental data in [13] (see also [30]).
More recently, in [14] the author gave a nonparametric estimation of the division rate.

5.2. Homogeneous case: moment and rate of convergence

When r is constant, the process is easier to study since the auxiliary process has already
been studied [8], [32], [38]. Here, we give the moments and a first approach to estimate the
rate of convergence.

Lemma 5.2. (Moments of the empirical measure.) If (5.1) and (5.2) hold and r is constant,
then, for all m ∈ N, and t ≥ 0, we have

E[Zt (xm)] = E

[∑
u∈Vt

(Xut )
m

]

=
∫ +∞

0
ert

[
m!∏m
i=1 θi

+m!
m∑
i=1

( i∑
k=0

xk

k!
m∏

j=k, j �=i

1

θj − θi

)
e−θi t

]
z0(dx),

where θi = 2r(1 − 2−i ).

Proof. Since r is constant, we have G1 = r1, where 1 is the constant mapping, which is
equal to 1. From Lemma 3.2, we have

1

E[Nt ]E
[∑
u∈Vt

f (Xut )

]
= E[f (Yt )]

for every continuous and bounded function f , where Y is generated by A, defined, for every
f ∈ C1(E) and x ∈ E, by

Af (x) = f ′(x)+ 2r
(
f

( 1
2x

) − f (x)
)
.

Finally, we complete the proof using [32, Theorem 4]. �
Now, let us talk about the rate of convergence. To estimate the distance between two random

measures, we will use the Wasserstein distance [9], [45].

Definition 5.1. (Wasserstein distance.) Let μ1 and μ2 two finite measures on a Polish space
(F, dF ), the Wasserstein distance between μ1 and μ2 is defined by

WdF (μ1, μ2) = inf
∫
F×F

dF (x1, x2)�(dx1, dx2),
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where the infimum runs over all the measures � on F × F with marginals μ1 and μ2. In
particular, if μ1 and μ2 are two probability measures, we have

WdF (μ1, μ2) = inf E[dF (X1, X2)],
where the infimum runs over all two random variablesX1, X2, which are distributed according
to μ1, μ2.

So, if M1,M2 are two random measures then

Wd(L(M1),L(M2)) = inf E[d(M1,M2)],
where the infimum is taken over all the couples of random variables (M1,M2) such thatM1 ∼
L(M1) and M2 ∼ L(M2), and d is a distance on the measures space. Here, we consider
d = W|·|. It is the Wasserstein distance on (E, | · |).
Theorem 5.2. (Quantitative bounds.) If (5.1) and (5.2) hold and r is constant, then we have,
for all t ≥ 0,

WW|·|

(
L

(
Zxt

E[Nt ]
)
,L

(
Z
y
t

E[Nt ]
))

≤ |x − y|e−rt ,

WW|·|

(
L

(
Zxt
Nt

)
,L

(
Z
y
t

Nt

))
≤ |x − y| rte

−rt

1 − e−rt ,

where Zx and Zy are distributed as Z and start from δx and δy .

This result does not give a bound for WW|·|(L(Zt /E[Nt ]),L(Wπ)), or WW|·|(L(Zt /Nt ),
L(π)), where π is the limit measure of 5.1.

Proof of Theorem 5.2. By homogeneity, we can see our branching measure Z as a process
indexed by a Galton–Watson tree [5]. For our coupling, we take two processes indexed by the
same tree. More precisely, as the branching time does not depend on the position, we can set
the same times to our two processes. Let T = ⋃

n∈N
{1, 2}n represent cells that have lived at a

certain moment. Let (τu)u∈U be a family of i.i.d. exponential variables with mean 1/r , which
model the lifetimes. We build Zx and Zy by induction. First, for all t ∈ [0, τ∅),X∅

t = x+t and
Y

∅

t = y+ t . We set α(∅) = 0. Then, for all u ∈ T and k ∈ {1, 2}, we set α(uk) = α(u)+ τu,
for all t ∈ [α(uk), α(uk)+ τuk),

Xukt = 1
2X

u
α(uk)− + t − α(uk) and Yukt = 1

2Y
u
α(uk)− + t − α(uk).

Finally, we have Vt = {u ∈ T | α(u) ≤ t < α(u) + τu},Zxt = ∑
u∈Vt

δXut , and Z
y
t =∑

u∈Vt
δY ut .

We observe that, for any cell u, the trajectories of Xu and Yu are parallel (because they are
linear). When a branching occurs,

∑
u∈Vt

|Xut − Yut | is constant. Hence, we easily deduce that∑
u∈Vt

|Xut − Yut | = |x − y|.

Finally, we have, for all t ≥ 0,

W|·|(Zxt ,Z
y
t ) ≤

∑
u∈Vt

|Xut − Yut | ≤ |x − y|.
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Dividing by E[Nt ] = ert , we obtain the first bound. For the second bound, a similar computation
yields

WW|·|

(
L

(
Zxt
Nt

)
,L

(
Z
y
t

Nt

))
≤ E

[
1

Nt

]
|x − y|.

The process (Nt )t≥0 is know to be the Yule process. It is geometrically distributed with
parameter e−rt (see Lemma 5.3 below). The following equality completes the proofs:

E

[
1

Nt

]
= rte−rt

1 − e−rt . �

Recall the following well-known result whose the proof is given for sake of completeness.

Lemma 5.3. (Properties of the Yule process.) Let (Mt)t≥0 be the process which gives the
number of individuals alive at time t in a branching process in which each individual lives for
an exponential time of constant parameter r and gives birth at its death to two children. For
every t ≥ 0, Mt follows a geometric law with parameter e−rt .

Proof. We have Mt = inf{n ≥ 0 | Sn ≤ t}, where Sn = ∑n
k=1 Fk and Fk denotes the time

of the kth birth; Fk is an exponential variable with parameter rk. A straightforward recurrence
shows that

Sn
d= max(E1, . . . , En),

where (Ei)i≥0 is a sequence of i.i.d. exponential random variable with parameter r and then

P(Nt − 1 ≥ n) = P(max(E1, . . . , En) ≤ t) = (1 − e−rt )n. �

Remark 5.3. (Generalisation of Theorem 5.2.) In the proof of Theorem 5.2, we only need
that, for all n ∈ N

∗, θ ∈ [0, 1], t ≥ 0, and x, y ∈ E,

n∑
j=1

|F (k)j (Xt , θ)− F
(k)
j (Yt , θ)| ≤ |x − y|,

where X and Y are generated by G and start respectively from x, y. For instance, we can
consider that X is a continuous Lévy process and the division is a subcritical fragmentation;
namely, F (k)j (x,�) = �kjx, where (�kj )j,k is a family of random variables satisfying

k∑
j=1

�kj ≤ 1 and, for all j ∈ {1, . . . , k}, �kj ∈ [0, 1].

5.3. Asymmetric mitosis: macroscopic approximation

Now, we do not assume that size is divided by 2 at each division. We assume thatF (2)1 (x, θ) =
F−1(θ)x and F (2)2 (x, θ) = (1 − F−1(θ))x. We recall that F(x) = 1 − F(1 − x). In this case,
(1.7) becomes

∂tn(t, x)+ ∂xn(t, x)+ r(x)n(t, x) = 2E

[
1

�
r

(
x

�

)
n

(
t,
x

�

)]
,

where n(t, ·) is the density of Xt . In particular, we deduce that the following partial differential
equation has a weak solution:

∂tn(t, x)+ ∂xn(t, x)+ r(x)n(t, x) =
∫ +∞

x

b(x, y)n(t, y) dy, (5.5)
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where b satisfies the following properties:

b(x, y) ≥ 0, b(x, y) = 0 for y < x, (5.6)∫ +∞

0
b(x, y) dx = 2r(y), (5.7)∫ +∞

0
xb(x, y) dx = yr(y), (5.8)

b(x, y) = b(y − x, y). (5.9)

Equation (5.5) was studied in [39]. Here,

b(x, y) = 2

y
r(y)g

(
x

y

)
, (5.10)

where g is the weak density of F . We easily prove the equivalence satisfying (5.10) and (5.6)–
(5.9). Our aim in this section is to describe the limit of the fluctuation process. It is defined by,
for all t ∈ [0, T ], for all n ∈ N

∗,

η
(n)
t = √

n(X
(n)
t − Xt ).

Theorem 5.3. (Central limit theorem for asymmetric size-structured population.) Let T > 0.
Assume that η(n)0 converges in distribution and that

E

[
sup
n≥1

∫
E

(1 + x2)X
(n)
0 (dx)

]
< +∞. (5.11)

Then the sequence (η(n))n≥1 converges in D([0, T ], C−2,0) to the unique solution of the evolu-
tion equation: for all f ∈ C2,0,

ηt (f ) = η0(f )

+
∫ t

0

∫ +∞

0
(f ′(x)+ r(x)

∫ 1

0
(f (qx)+ f ((1 − q)x)− f (x))F (dq))ηs(dx) ds

+ M̃t (f ), (5.12)

where M̃(f ) is a martingale and a Gaussian process with bracket

〈M̃(f )〉t =
∫ t

0

∫ +∞

0

(
2f ′(x)f (x)+ 2r(x)

∫ 1

0
(f (qx)− f (x))2F(dq)

)
Xs(dx) ds.

And C2,0 is the set of C2 functions, such that f, f ′, f ′′ vanish to 0 when x tends to ∞. Also
C−2,0 is its dual space.

From Lemma 4.1 we have, for all t ≥ 0, η(n)t = η
(n)
0 + Ṽ

(n)
t + M̃

(n)
t , where, for any

f ∈ C2
c (E),

Ṽ
(n)
t (f ) =

∫ t

0

∫ +∞

0

(
f ′(x)+ r(x)

∫ 1

0
(f (qx)+ f ((1 − q)x)− f (x))F (dq)

)
η(n)s (dx) ds,

and M̃(n) is a martingale with bracket

〈M̃(n)(f )〉t =
∫ t

0

∫ +∞

0
r(x)

∫ 1

0
(f (qx)+ f ((1 − q)x)− f (x))2F(dq)X(n)

s (dx) ds. (5.13)
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As the set of signed measure is not metrisable, we cannot adapt the proof of Theorem 1.2.
Inspired by [33, Section 3.2] and [5, Section 6], we consider η(n) as an operator in a Sobolev
space, and use the Hilbertian properties of this space to prove tightness. Let us explain the
Sobolev space that we will use. Let p > 0 and j ∈ N. The set Wj,p is the closure of C∞

c ,
which is the set of functions of class C∞ from R+ into R with compact support, embedded
with the norm, for all f ∈ Wj,p,

‖f ‖2
Wj,p =

j∑
k=0

∫ ∞

0

(
f (k)(x)

1 + xp

)2

dx.

The set Wj,p is a Hilbert space and we denote by W−j,p its dual space. Let Cj,p be the space
of function f of class Cj such that, for all k ≤ j ,

lim
x→+∞

f (k)(x)

1 + xp
= 0.

We embed it with the norm, for all f ∈ Cj,p,

‖f ‖Cj,p =
j∑
k=0

sup
x≥0

f (k)(x)

1 + xp
.

The set Cj,p is also a Banach space and we denote by C−j,p its dual space. These spaces
satisfy the following continuous injection [33, Section 3.2]:

Cj,p ⊂ Wj,p+1 and W 1+j,p ⊂ Cj,p. (5.14)

Or, equivalently, if for every function f , we have

‖f ‖Wj,p+1 ≤ C‖f ‖Cj,p and ‖f ‖Cj,p ≤ C‖f ‖Wj+1,p .

The first embedding/inequality prove that the tightness inWj,p+1 implies the tightness inCj,p.
The second is useful for some upper bounds. For instance, we have the following lemma.

Lemma 5.4. If (ek)k≥1 is a basis of W 2,1 then we have, for all k ≥ 0 and x ∈ E,∑
k≥1

ek(x)
2 ≤ C(1 + x2).

Proof. We have δx : f 
→ f (x) is an operator on W 2,1. We have, for all f ∈ W 2,1,

|δxf | ≤ (1 + x)‖f ‖C0,1 ≤ C(1 + x)‖f ‖W 1,1 ≤ C(1 + x)‖f ‖W 2,1 .

But, by Parseval’s identity, we obtain ‖δx‖2
W−2,1 = ∑

k≥1 ek(x)
2, completing the proof. �

We introduce the trace (〈〈M̃(n)〉〉t )t≥0 of (M̃(n)
t )t≥0. It is defined such that

(‖M̃(n)
t ‖2

W−2,1 − 〈M̃(n)〉〉t )t≥0

is a local martingale. Then

‖M̃(n)
t ‖2

W−2,1 =
∑
k≥1

M̃
(n)
t (ek)

2,
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where (ek)k≥1 is a basis of W 2,1. Then, by (5.13), we obtain

〈〈M̃(n)〉〉t =
∑
k≥1

∫ t

0

∫ +∞

0
r(x)

∫ 1

0
(ek(qx)+ ek((1 − q)x)− ek(x))

2F(dq)X(n)
s (dx) ds.

Now, we first prove the tightness of (η(n))n≥1 then Theorem 5.3.

Lemma 5.5. (Tightness.) The sequence (ηn)n≥1 is tight in D([0, T ],W−2,1).

Proof. By [27, Theorem 2.2.2] and [27, Theorem 2.3.2] (see also [33, Lemma C]), it is
enough to prove that

(i) E[sups≤t ‖ηns ‖2
W−2,1] < +∞,

(ii) for all n ∈ N, for all ε, ρ > 0, there exists δ > 0 such that for each stopping times Sn
bounded by T ,

lim sup
n→+∞

sup
0≤u≤δ

P(‖Ṽ (n)
Sn+u − ṼSn‖W−2,1 ≥ η) ≤ ε,

lim sup
n→+∞

sup
0≤u≤δ

P(|〈〈M̃(n)〉〉Sn+u − 〈〈M̃(n)〉〉Sn | ≥ η) ≤ ε.

For the first point, using lemma 5.1, there exists C > 0 such that

∑
k≥1

〈M̃(n)
t (ek)〉 ≤

∫ t

0
r̄

∫ 1

0
3

∑
k≥1

(e2
k(qx)+ e2

k((1 − q)x)+ e2
k(x))F (dq)X

(n)
s (dx) ds

≤ CX
(n)
0 (1 + x).

Then, since ‖M̃(n)
t ‖2

W−2,1 = ∑
k≥1(M̃

(n)
t (ek))

2, from Doob’s inequality and (5.11), we have

E

[
sup
t∈[0,t]

‖M̃(n)
t ‖2

W−2,1

]
≤ C′,

where C′ > 0. Then there exits C′′ > 0 such that

‖η(n)t ‖2
W−2,1 ≤ ‖η(n)0 ‖2

W−2,1 + ‖Ṽ (n)
t ‖2

W−2,1 + ‖M̃(n)
t ‖2

W−2,1 ≤ C′′ + ‖Ṽ (n)
t ‖2

W−2,1 .

And as

‖Ṽ (n)
t ‖2

W−2,1 ≤ C

∫ t

0
sup
w≤s

‖η(n)s ‖2
W−2,1 ds,

from the Gronwall lemma, we obtain

E

[
sup
s≤t

‖η(n)s ‖2
W−2,1

]
≤ K

for a certain constant K . Finally, for the second point, we have

E[‖Ṽ (n)
Sn+u − Ṽ

(n)
Sn

‖W−2,1] ≤ E

[
K ′

∫ Sn+u

Sn

sup
s≤T

‖η(n)s ‖2
W−2,1 ds

]
≤ K ′′u.

Here, K ′ and K ′′ are two constants. Using the Markov–Chebyshev inequality, we prove the
Aldous condition. We similarly prove that 〈〈M̃(n)〉〉 satisfies the Aldous condition. We deduce
that (η(n))n≥1 is tight. �
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Proof of Theorem 5.3. Let M̃ be a continuous Gaussian process with quadratic variation
satisfying, for every f ∈ C2,0 (⊂ W 2,1) and t ∈ [0, T ],

〈M̃(f )〉t =
∫ t

0

∫ +∞

0
r(x)

∫ 1

0
(f (qx)+ f ((1 − q)x)− f (x))2F(dq)Xs(dx).

Since there exists Cf such that, for all f ∈ C2,0, supt∈[0,T ] |M̃(n)(f )| ≤ Cf /
√
n and 〈M̃(n)〉t

converges in law to 〈M̃〉t , then by [26, Theorem 3.11, p. 473], M̃(n)(f ) converges to M̃(f ) in
distribution, as n tends to ∞.

By Lemma 5.5 and (5.14) , the sequence (η(n))n≥1 is also tight in C−2,0. Let η be an
accumulation point. Since its martingale part M̃ in its Doob’s decomposition is almost surely
continuous, then η is also almost surely continuous. Hence, η is a solution of (5.12). Using
the Gronwall inequality, we obtain the uniqueness of this equation, in C([0, T ], C−2,0), up to
a Gaussian white noise M̃ . We deduce the announced result. �

6. Another two examples

6.1. Space-structured population model

Here, we study an example which can model the cell localisation. One cell moves following
a diffusion on E ⊂ R

d , d ≥ 1, and when it dies, its offspring is localised at the same place.
Hence, in all this section the branching is local; that is, for all k ≥ 0, for all j ≤ k, for all
x ∈ E, for all θ ∈ [0, 1], F (k)j (x, θ) = x.

6.1.1. Branching Ornstein–Uhlenbeck. In this subsection we consider the model of [17, Exam-
ple 10]. Assume that E = R

d and G is given by

Gf (x) = 1
2σ

2�f (x)− gx · ∇f (x)
for every f ∈ C2

c (R
d) and x ∈ R

d , where d ∈ N
∗ and σ, g > 0. Also assume that the division

is dyadic; that is, p2 = 1, with rate r(x) = bx2 + a, where a, b ≥ 0 and a or b is not null.
Here x2 = ‖x‖2 = x.x. If g >

√
2b then we add the notation

� = g − √
g2 − 2bσ 2

2σ 2 and α =
√
g2 − 2bσ 2.

We also denote by π∞ the Gaussian measure whose density is defined by

x 
→
(
α

πσ 2

)
exp

(
− α

σ 2 x
2
)
.

From our main theorem, we deduce the following corollary.

Corollary 6.1. (Limit theorem for an branching Ornstein–Uhlenbeck process.) If g > σ
√

2b
and X∅

0 = x ∈ R
d then, for any continuous and bounded f , we have

lim
t→+∞

1

Nt

∑
u∈Vt

f (Xut ) =
∫

Rd
f (y)e�y

2
π∞(dy)∫

Rd
e�y2

π∞(dy)
in probability.

In particular,

E[Nt ] = eλt+�x2
(
α

πσ 2

) ∫
Rd

e−�y2
exp

(
−α(y − xe−αt/σ 2

)2

σ 2(1 − e−2αt/σ 2
)

)
dy,

where λ = 1
2 (g − √

g2 − 2bσ 2)+ a is the Malthus parameter.
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The assumption g > σ
√

2b is quite natural. Indeed, the quantity g/σ represents the rate
of convergence to equilibrium of the Ornstein–Uhlenbeck process. Also the larger it is, the
closer from the origin the trajectories are. In contrast, in a certain sense, parameter b keeps the
particles away from the origin. Indeed, the more distant from the origin the cell is, the more
prolific it is. Condition g > σ

√
2b is then a pay-off type assumption.

Proof. If V : x 
→ eλx
2

then it is an eigenvector of G, which is defined for every f ∈ C2
c (E)

by
Gf (x) = Gf (x)+ r(x)f (x).

A computation similar to Lemma 5.1 ensures nonexplosion and

zt (V , δx) < +∞.

Hence, Lemma 3.2 gives the second equality. The limit result comes from Theorem 1.1 and
that V 2 is integrable with respect to the semigroup of the auxiliary process. �
Remark 6.1. (Another eigenelement.) Note that if V2 : x 
→ eλ2x

2
then it is an eigenvector

of G, associated to the eigenvalue

λ2 = 1
2

(
g +

√
g2 − 2bσ 2

) + a.

But in this case, the auxiliary process is not ergodic and we are not able to deduce any
convergence from our main theorem.

General case. Let us assume that G is the generator of a diffusive Markov process. If the
state space E is bounded then we can find sufficient conditions to the eigenproblem in [41,
Section 3] and [41, Theorem 5.5]. For instance, under some assumptions, we have

λ0 = lim
t→+∞ ln

(
sup
x∈E

E[Nt | X∅

0 = x]
)
.

If E is not bounded then we can see the results of [24], [42]. This example was developed
in [17]. The authors proved a strong law of large numbers, closely related to Theorem 1.1.

6.2. Self-similar fragmentation

Self-similar mass fragmentation processes are characterised by:

• the index of self-similarity α ∈ R;

• a so-called dislocation measure ν on S = {s = (si)i∈N | limi→+∞ si = 0, 1 ≥ sj ≥
si ≥ 0, for all j ≤ i}, which satisfies

ν(1, 0, 0, . . .) = 0 and
∫

S
(1 − s)ν(ds) < +∞.

If ν(S) < +∞ then the dynamics are as follows:

• a block of mass x remains unchanged for exponential periods of time with parameter
xαν(S);

• a block of mass x dislocates into a mass partition xs, where s ∈ S, at rate ν(ds);

• there are finitely many dislocations over any finite time horizon.
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The last point is not verified when ν(S) = +∞. In this case, there is a countably infinite number
of dislocations over any finite time horizon. So, when ν(S) < +∞, our setting captures this
model with the following parameters:

G = 0, r(x) = xαν(S),

and, for every continuous and bounded function f ,

∫ 1

0

∑
k≥0

pk(x)

k∑
j=1

f (F kj x, θ) dθ =
∫

S

∑
i≥0

f (six)
ν(ds)

ν(S)
.

Hence, in this case we have

Gf (x) = xαν(S)

((∫
S

∑
i≥0

f (six)
ν(ds)

ν(S)

)
− f (x)

)

for every continuous and bounded f , and V : x 
→ xp is an eigenvector. See [6] for further
details. Theorem 1.1 does not give a relevant result in this case since the auxiliary process have
a trivial behaviour (convergence to 0).
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